CN1723230A - 聚对苯二甲酸丙二醇酯树脂及其制造方法 - Google Patents

聚对苯二甲酸丙二醇酯树脂及其制造方法 Download PDF

Info

Publication number
CN1723230A
CN1723230A CNA200480001790XA CN200480001790A CN1723230A CN 1723230 A CN1723230 A CN 1723230A CN A200480001790X A CNA200480001790X A CN A200480001790XA CN 200480001790 A CN200480001790 A CN 200480001790A CN 1723230 A CN1723230 A CN 1723230A
Authority
CN
China
Prior art keywords
resin
cyclic dimer
ptt
thick
propylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480001790XA
Other languages
English (en)
Other versions
CN1324064C (zh
Inventor
横山宏
渡边春美
冈本裕重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of CN1723230A publication Critical patent/CN1723230A/zh
Application granted granted Critical
Publication of CN1324064C publication Critical patent/CN1324064C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof

Abstract

一种聚对苯二甲酸丙二醇酯树脂,其含有60至100摩尔%对苯二甲酸丙二醇酯重复单元(a)和0至40摩尔%至少一种单体单元(b),该至少一种单体单元(b)是由与用于获得所述单元(a)的单体不同并可以与至少一种用于获得所述单元(a)的单体共聚的单体单元生成的,摩尔百分比是以所述单元(a)和(b)的总量为100摩尔%时的相对百分比,该树脂具有下列特性(A)至(D):(A)0.6至4dl/g的极限粘度[η];(B)2至2.7的分子量分布(Mw/Mn);(C)2重量%或更低的环状二聚物含量;(D)70至100的明度指数L-值,和-5至25的色指数b*-值。

Description

聚对苯二甲酸丙二醇酯树脂及其制造方法
                        发明背景
发明领域
本发明涉及聚对苯二甲酸丙二醇酯树脂。更具体地,本发明涉及主要由对苯二甲酸丙二醇酯重复单元构成的聚对苯二甲酸丙二醇酯树脂,其具有下列特性:0.6至4dl/g的特性粘度[η];2至2.7的分子量分布(Mw/Mn);不超过2重量%的环状二聚物含量;和70至100的心理测量明度L-值,和-5至25的心理测量色度b*-值。通过使用本发明的聚对苯二甲酸丙二醇酯树脂,可以以工业规模稳定地制造优异的成型制品。具体而言,使用本发明的聚对苯二甲酸丙二醇酯树脂制得的成型制品具有高强度和优异的颜色。此外,该成型制品不存在环状二聚物渗到成型制品表面的情况,因此该成型制品适合用涂料组合物或粘合剂涂布并表现出优异的附着性能。本发明还涉及以工业规模和高生产率稳定地制造聚对苯二甲酸丙二醇酯树脂的方法。
现有技术
聚对苯二甲酸丙二醇酯(下文中常称作“PTT”)不仅具有与尼龙类似的特性(例如柔软感、优异的弹性回复和良好的可染性),还具有与聚对苯二甲酸乙二醇酯(下文称作“PET”)类似的特性(例如洗-穿性能、尺寸稳定性和抗变色性)。因此,PTT已经作为划时代的纤维材料引起注意。此外,由于尼龙不具有的特性,例如低吸湿性和抗变色性,以及由于聚对苯二甲酸-1,6-丁二醇酯(下文称作“PBT”)不具有的特性,例如可模制加工性,PTT可有利地用作优异的制造成型制品用的原材料。
为了进一步扩大PTT的应用领域,需要改进PTT的纤维和成型制品的强度和颜色。为了改进聚合物的纤维和成型制品的强度,必须提高聚合物的聚合度,并使该聚合物的分子量分布变窄以降低聚合物中低分子量组分的量。此外,为了改进聚合物的纤维和成型制品的颜色,必须不仅提高聚合物的白度,还要提高聚合物的耐热性以防止由聚合物在干燥、熔化和类似操作过程中经历的热过程引起的聚合物变色。
作为制造PTT的聚合方法,熔融聚合法是公知的(参看,例如未审查日本专利申请公开说明书平5-262862号(对应于美国专利5,340,909号)、WO98/23662、WO01/14450和WO01/14451)。在上述文献中,描述了使用配有搅拌器的聚合器实施熔融聚合的方法。上述聚合器的优点在于,其表现出优异的容积效率并具有简单的结构。这种聚合器可用于有效地进行聚合以便以小规模制造具有高聚合度的聚合物。然而,当以工艺规模使用上述聚合器进行聚合时,聚合器中液体反应混合物的深度不可避免地变大,导致明显产生聚合物的热分解。因此,不能以工业规模制造具有高聚合度的聚合物。
已经提出多种技术以便通过熔融聚合制造具有高聚合度的PTT。这些技术的例子包括下述技术:使对苯二甲酸的低级醇二酯和丙二醇在存在钛化合物的情况下进行酯交换反应和缩聚反应,其中对苯二甲酸的低级醇二酯与丙二醇的摩尔比率为1/1.2至1/1.8(未审查日本专利申请公开说明书昭51-140992号);使用有机金属催化剂作缩聚催化剂,并使用有机磺酸或脂族羧酸作助催化剂(美国专利4,611,049号);使用锡催化剂作缩聚催化剂(未审查日本专利申请公开说明书平5-262862号(对应于美国专利5,340,909号));使用特定的钛催化剂作缩聚催化剂(未审查日本专利申请公开说明书2000-159875号和2000-159876号);使用锑化合物作缩聚催化剂(Chemical Fiber International,卷46,pp263-264,1996);通过使用具有特定结构的受阻酚型稳定剂抑制PTT的热分解(未审查日本专利申请公开说明书昭51-142097号);通过用含磷稳定剂和受阻酚型稳定剂封闭预聚物和聚合物的末端来抑制副产物丙烯醛(由聚合过程中预聚物和聚合物在空气中的加热生成)的产生(WO98/23662和WO99/11709);和使特定的钛化合物与特定的磷化合物反应,它们各自的量使得磷/钛原子比为1/1至3/1,并使用制得的产物作缩聚催化剂(未审查日本专利申请公开说明书2001-278971号)。然而,上述技术的缺点在于,获得的PTT的分子量不够高,在其模制过程中发生了PTT分子量的降低,和/或产生了PTT的变色。因此,通过上述技术,不能获得具有令人满意的性能的PTT。例如,当通过上述未审查日本专利申请公开说明书2001-278971号中描述的技术制造PTT时,制得的PTT具有改进的颜色;然而,聚合速率变得不利地低,由此,尤其是以工业规模(其中聚合器中液体反应混合物的深度不可避免地变大)制造PTT时,就会明显产生聚合物的热分解,并因此几乎不可能制造具有高聚合度的PTT。此外,上述未审查日本专利申请公开说明书平5-262862号中描述的技术具有下列问题。为了通过此技术改进PTT的颜色,必须不仅要控制锡催化剂的量以便不超过对苯二甲酸二甲酯重量的525ppm,还要使用Hostaperm颜料(商品名)、钴和类似物。此外,对于聚合度的改进,可以小规模制造具有高聚合度的PTT,其中聚合器中反应混合物的量仅为大约1千克以使聚合器中反应混合物的深度较小;然而,难以以工业规模(其中反应混合物的深度不可避免地变大)制造具有高聚合度的PTT。此外,作为上述锡催化剂,该专利文献使用含有C-Sn键的有机锡化合物,例如丁基锡酸。这种有机锡化合物是有毒的,因此不是优选的催化剂。
通过传统熔融聚合法制得的PTT具有PTT含有大量低聚物副产物的问题。具体而言,传统的PTT含有2.5至3.5重量%的低聚物,而大约90重量%的低聚物是环状二聚物,其为由2个对苯二甲酸分子缩合而成的环状化合物。该环状二聚物的缺点在于它会升华并可从PTT中渗出。因此,例如,当对传统的PTT进行纺丝时,环状二聚物会升华并沉积在纺丝头周围。沉积的环状二聚物粘附到通过该纺丝头的纺成聚合物(聚合物纤维)上,由此造成聚合物纤维的断裂或起毛。
此外,当对传统PTT进行注射成型时,环状二聚物沉积在模具内表面(也就是,产生模垢),这样会破坏成型制品的外观和尺寸精度。此外,环状二聚物在成型制品表面上渗出,由此不仅降低了使用涂料组合物或粘合剂的涂布中的涂布性能,还降低了粘合性能。此外,在通过传统熔融聚合法制造PTT的过程中,环状二聚物从聚合物中挥发出来并沉积在所用生产系统中的管道内壁上,由此造成管道堵塞。
上述环状二聚物是由在PTT含羟基的末端部分发生的所谓“环-直链平衡反应”形成的。具体而言,在PTT树脂中,在PPT的含羟基的末端上,环状二聚物和直链二聚物单元(也就是两个连续的对苯二甲酸丙二醇酯分子)之间有一种平衡(即环-直链平衡),如下式所示:
其中M代表对苯二甲酸丙二醇酯重复单元,D代表环状二聚物。
因此,即使在聚合反应过程中通过挥发从PTT中去除环状二聚物,也会立即生成与去除掉的环状二聚物相同量的环状二聚物,由此造成PTT的损耗。因此,不可能制造不合意的环状二聚物含量明显降低的PTT。因此,PTT的产率不可避免地变低。
已知的是,具有与PTT类似骨架的PET也含有低聚物。然而,PET的低聚物含量低到仅为大约1重量%。此外,PET中的多数低聚物是环状三聚物。PET的环状三聚物与PTT的环状二聚物相比,升华并渗出的可能性较低。因此,在PTT的情况下,因低聚物的存在引起的问题比使用PET时严重。
此外,作为制造具有优异的热稳定性的高分子量PTT的方法,提出了一种通过固相聚合法制造PTT的方法(其中对预聚物粒料进行聚合)(参看,例如,未审查日本专利申请公开说明书平8-311177号、日本专利申请审前公开(Tokuhyo)2000-502392号和韩国专利1998-061618号)。在固相聚合法中,在低温下进行聚合,因此PTT的环-直链平衡可以朝在PTT含羟基的末端上形成直链二聚物单元(由环状二聚物得到)的方向转移。因此,已经提出,固相聚合法对降低PTT的环状二聚物含量有效。
然而,经过本发明人的研究,已经发现,即使在通过固相聚合法制造其环状二聚物含量降至低于1重量%的PTT时,在PTT的熔融模塑过程中当其熔化时仍会迅速产生环状二聚物,而PTT中降低的环状二聚物含量会恢复到固相聚合之前预聚物(其中含羟基的末端部分处于环-直链平衡状态)的环状二聚物含量(大约2.5至3.5重量%)。因此,当通过固相聚合法制得的PTT用于制造熔融模制品(例如纤维、薄膜或注射成型产品)时,无法避免由环状二聚物引起的上述问题。
此外,在固相聚合之前要从PTT预聚物粒料的表面去除丙二醇(下文称作“TMG”)。因此,聚合度根据粒料的大小和形状变化,还根据粒料的位置变化。因此,由此方法制得的PTT在聚合度方面明显不均匀(也就是说,PTT具有宽分子量分布)。此外,在固相聚合中,固体预聚物粒料长时间互相摩擦,由此产生变成损耗的聚合物粉末。在纺纱过程中聚合物粉末的存在会导致聚合物纤维的断裂或起毛。为了去除聚合物粉末,就需要一个额外的步骤。此外,固相聚合应该在通过熔融聚合和类似方法制造预聚物之后进行,因此制造PTT的整个过程变得复杂且昂贵。
为了解决伴随固相聚合法的上述问题,已经提出了一种改进的制造具有高聚合度的PTT的熔融聚合法,其中使用盘环(disc ring)型或笼型反应器(WO00/64962)或盘式和环形(donut)导体(美国专利5,599,900号)以便从聚合反应体系中有效去除TMG。然而,上述每个装置都是配有旋转驱动部件的立式搅拌型聚合器。因此,在上述方法中,当在高真空下进行聚合以获得具有高聚合度的聚合物时,不可能完全密封驱动部件。因此,不可能防止痕量氧进入聚合物中并因此不可避免地产生聚合物的变色。尤其是在PTT的情况下,会明显产生这种变色。当用封闭液体密封驱动部件时,封闭液体可能会与聚合物混合,由此降低制成的PTT的质量。此外,即使该装置的驱动部件在其开始运转时是密封的,但在长时间进行运转的过程中,密封的紧密度会降低。因此,上述方法也具有与装置维护有关的严重问题。
另一方面,下述制造树脂(非PTT)的方法是已知的——其中所用聚合装置不含旋转驱动部件,并通过使预聚物从穿孔板中落下来进行聚合(自由下落聚合法)。例如,公开了这样一种方法,其中在真空中使聚酯预聚物以纤维形式下落,以试图获得具有所需分子量的聚酯(美国专利3,100,547号)。在该方法中,以不使聚合物再循环的单程模式进行聚合反应,因为已经以纤维形式下落的聚合物的再循环会导致最终聚酯质量的降低。然而,上述方法具有下列缺点。纤维形式的聚合物在聚合反应过程中容易断裂,由此导致最终缩聚物产品质量的不利的极大波动。此外,在聚合反应过程中,低分子量缩聚物从聚合物纤维中分散(scatter)出来以致污染穿孔板的下表面。由于这种对穿孔板下表面的污染,使聚合物难以以纤维形式下落,这样聚合物纤维互相接触以导致聚合物纤维断裂或者使聚合物纤维结合在一起形成粗纤维,在粗纤维中,反应不能有效进行。
为了解决这些问题,已经提出了各种方法。这些方法的例子包括下述方法:使预聚物沿着并接触着与反应器垂直设置的穿孔导板或导丝(wireguide)的表面下落,由此制造聚酯或聚酰胺,这样预聚物在其下落过程中实现聚合(已审查日本专利申请公开昭48-8355号和未审查日本专利申请公开说明书昭53-17569号);一种使对苯二甲酸二(β-羟乙基)酯(其为聚对苯二甲酸乙二醇酯(PET)的初期缩合产物)连续缩聚的方法,其中使对苯二甲酸二(β-羟乙基)酯在惰性气体气氛中沿着并接触着导丝下落,其中导丝从穿孔板的孔中垂直悬挂,这样对苯二甲酸二(β-羟乙基)酯在其下落过程中实现聚合(已审查日本专利申请公开平4-58806号);和一种以薄膜形式制造熔融缩聚物(例如聚酯、聚酰胺或聚碳酸酯)的方法,其中使熔融缩聚预聚物吸收惰性气体,然后减压聚合(WO99/65970,其还公开了该方法中使用的装置)。
然而,上述各个专利文献仅描述了一种制造聚酯(例如PET)或尼龙的方法,对于PTT的制造还没有任何提议或暗示。经过本发明人的研究,已经发现,简单地对PTT的制造适用上述任何方法时(也就是说,使用PTT制造中传统使用的原材料和条件,通过上述任何方法进行PTT制造时),会产生聚合物的剧烈发泡,由此污染穿孔板的下表面或其中含有引导部件(guide)的反应器的内壁。PTT与例如PBT相比易于热分解。因此,因上述聚合物的剧烈发泡产生的污点容易分解。当制成的分解产物与聚合物混合时,会导致降低聚合物的质量,无法获得所需的聚合度,且获得的PTT产生变色的缺点。因此,对PTT的制造简单使用上述方法伴随着难以获得令人满意的高聚合度的问题。此外,最终PTT含有低分子量聚合物,这导致最终聚合物的宽分子量分布并可能降低最终成型制品的机械强度。
近年来,已经提出了下述技术:使具有特定聚合度的PTT预聚物流过穿孔板的孔,然后使其在减压和特定温度下沿着并接触着引导部件下落,由此在其下落过程中进行PTT预聚物的聚合(日本专利申请2002-172735号)。通过此技术,第一次可能制造具有高聚合度和优异颜色的PTT。然而,为了满足最近对高质量纤维和成型制品的需求,已经需要进一步改进聚合物的颜色和机械性能。此外,由传统熔融聚合法制得的PTT不利地具有高的环状二聚物含量,因此需要降低环状二聚物含量。此外,需要解决通过任何传统技术进行PTT连续制造时产生的问题,也就是下述在聚合过程中从聚合物中挥发出来的环状二聚物沉积在生产系统中所配的管道内壁上,由此造成管道堵塞,以致PTT的稳定制造变得困难的问题。
发明概述
在这种情况下,本发明人进行了广泛和深入的研究,目的在于解决伴随现有技术的上述问题,并开发出可用作以工业规模稳定制造高质量成型制品(也就是具有优异强度和颜色的成型制品,而且该成型制品不存在环状二聚物渗到成型制品表面的情况,因此该成型制品适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能)用的原材料的聚对苯二甲酸丙二醇酯(PTT)树脂。结果,意外地发现,当通过特定方法(例如使用特定催化剂的方法)制造粗PTT树脂(用作具有有利的低环状二聚物含量的最终PTT树脂的PTT树脂原材料)时,可以获得即使在粗PTT树脂熔化时也能抑制环状二聚物形成的粗PTT树脂。此外,通过从获得的熔融形式的粗树脂中去除环状二聚物,可以获得具有0.6至4dl/g的特性粘度[η]、2至2.7的分子量分布(Mw/Mn)、不超过2重量%的环状二聚物含量和70至100的心理测量明度L-值和-5至25的心理测量色度b*-值的PTT树脂。通过使用这种PTT树脂,可以以工业规模稳定地制造优异的成型制品。具体而言,使用本发明的聚对苯二甲酸丙二醇酯树脂制得的成型制品具有高强度和优异的颜色。此外,该成型制品不存在环状二聚物渗出到成型制品表面的情况,因此该成型制品适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能。基于这些新发现,完成本发明。
相应地,本发明的一个目的是提供可用于以工业规模稳定制造下述成型制品的聚对苯二甲酸丙二醇酯树脂——该成型制品具有高强度和优异的颜色,而且不存在环状二聚物渗到成型制品表面的情况,因此该成型制品适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能。
本发明的另一目的是提供一种以工业规模稳定地制造上述PTT树脂的方法。
参照附图,根据下列描述和所附权利要求,本发明的前述和其它目的、特征和优点是显而易见的。
附图的简要说明
在附图中:
图1表示本发明中可以使用的聚合器的一个例子的说明性示意图;
图2表示实施本发明方法用的生产系统的一种形式的说明性示意图;
图3表示本发明中可以使用的薄膜蒸发器的一个例子的说明性示意图。
标记和数字的说明
A:粗聚对苯二甲酸丙二醇酯树脂
B:聚对苯二甲酸丙二醇酯树脂
C:原材料的混合物(包括起始单体、反应物单体、催化剂、添加剂和类似物)
1:聚合器
2,14,18,22和24:输送泵
3和25:粗聚对苯二甲酸丙二醇酯树脂入口
4:穿孔板
5:引导部件
5’:沿着并接触着引导部件下落的聚合物
6和32:惰性气体入口
7,13,17,21和33:排气口
8:观察窗
9:提取泵
10和29:出口
11:酯交换反应器
12,16和20:搅拌叶片
15:第一搅拌型聚合器
19:第二搅拌型聚合器
23:薄膜蒸发器
26:旋转轴
27:呈螺旋形连到旋转轴上的叶片
28:熔融树脂的薄膜
30:提取口
31:发动机
发明详述
在本发明的一个方面,提供了一种聚对苯二甲酸丙二醇酯树脂,含有:60至100摩尔%(a)对苯二甲酸丙二醇酯重复单元,和0至40摩尔%(b)至少一种单体单元,选自由与用于形成对苯二甲酸丙二醇酯重复单元的单体不同并可以与至少一种用于形成对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元,
(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,
该聚对苯二甲酸丙二醇酯树脂具有下列特性(A)至(D):
(A)0.6至4dl/g的特性粘度[η];
(B)Mw/Mn比率为2至2.7的分子量分布,其中Mw代表聚对苯二甲酸丙二醇酯树脂的重均分子量,Mn代表聚对苯二甲酸丙二醇酯树脂的数均分子量;
(C)不超过2重量%的环状二聚物含量,环状二聚物如下式(1)所示:
(D)70至100的心理测量明度L-值和-5至25的心理测量色度b*-值。
为了易于理解本发明,下面列举本发明的基本特征和各种优选实施方式。
1.一种聚对苯二甲酸丙二醇酯树脂,其含有:60至100摩尔%的(a)对苯二甲酸丙二醇酯重复单元,和0至40摩尔%的(b)至少一种选自单体单元。由不同于用于形成对苯二甲酸丙二醇酯重复单元并可以与至少一种用于形成对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元,(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,聚对苯二甲酸丙二醇酯树脂具有下列特性(A)至(D):
(A)0.6至4dl/g的特性粘度[η];
(B)Mw/Mn比率为2至2.7的分子量分布,其中Mw代表聚对苯二甲酸丙二醇酯树脂的重均分子量,Mn代表聚对苯二甲酸丙二醇酯树脂的数均分子量;
(C)不超过2重量%的环状二聚物含量,所述环状二聚物如下式(1)所示:
(D)70至100的心理测量明度L-值和-5至25的心理测量色度b*-值。
2.以上项目1的聚对苯二甲酸丙二醇酯树脂,其为粒料形式,所述粒料具有40%或更低的结晶度(Xc),其中所述结晶度(Xc)如下式
(2)所定义:
Xc(%)={ρc×(ρsa)}/{ρs×(ρca)}×100         (2)
其中ρa为1.300克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的无定形密度,ρc为1.431克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的晶体密度,ρs代表所述粒料的密度(克/立方厘米)。
3.以上项目1或2的聚对苯二甲酸丙二醇酯树脂的制造方法,包括:
(1)提供熔融形态的粗对苯二甲酸丙二醇酯树脂,该粗对苯二甲酸丙二醇酯树脂含有:60至100摩尔%的(a)对苯二甲酸丙二醇酯重复单元,和0至40摩尔%的(b)至少一种选自的由不同于用于形成对苯二甲酸丙二醇酯重复单元的单体并可以与至少一种用于形成所述对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元的单体单元,(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,所述粗对苯二甲酸丙二醇酯树脂进一步含有下式(1)所示的环状二聚物:
所述粗对苯二甲酸丙二醇酯树脂具有0.2至4dl/g的特性粘度[η]和低于0.066的环状二聚物生成指数(E),所述环状二聚物生成指数(E)如下式(3)所定义:
                 E=W/M              (3)
其中M代表粗对苯二甲酸丙二醇酯树脂的末端羟基含量,用基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔%来表示,w代表所述环状二聚物的再生成速率(用绝对百分数值表示),是指对于熔融形态的粗聚对苯二甲酸丙二醇酯树脂的样品,在氮气气氛中于260℃测得的粗对苯二甲酸丙二醇酯树脂中每分钟环状二聚物含量(重量%)的增加,其中所述熔融样品通过将环状二聚物含量降至0.1重量%或更低的环状二聚物含量降低的粗聚对苯二甲酸丙二醇酯树脂样品熔化获得;和
(2)通过减压挥发从熔融形态的粗聚对苯二甲酸丙二醇酯树脂中去除基于所述粗聚对苯二甲酸丙二醇酯树脂重量0.5重量%或更多的环状二聚物。
4.以上项目3的方法,其中所述粗聚对苯二甲酸丙二醇酯树脂具有低于0.033的环状二聚物生成指数(E)。
5.以上项目3或4的方法,其中在所述步骤(1)中提供的熔融形态的粗对苯二甲酸丙二醇酯树脂具有0.2至2dl/g的特性粘度[η],而且在所述步骤(2)中环状二聚物的去除通过下述方法进行:包括将熔融形态的粗对苯二甲酸丙二醇酯树脂连续加入具有穿孔板和至少一个与该穿孔板结合的引导部件的引导-润湿下落聚合器,其中在等于或高于粗对苯二甲酸丙二醇酯树脂的结晶熔点且不高于290℃的温度下在减压下使粗对苯二甲酸丙二醇酯树脂沿着并接触着该聚合器中配备的至少一个引导部件的表面下落,从而在粗对苯二甲酸丙二醇酯树脂的下落过程中实现粗对苯二甲酸丙二醇酯树脂的聚合和环状二聚物的挥发,同时连续从所述聚合器中取出制成的对苯二甲酸丙二醇酯树脂。
6.以上项目3或4的方法,其中在所述步骤(1)中提供的熔融形态的粗对苯二甲酸丙二醇酯树脂具有0.6至4dl/g的特性粘度[η],而且步骤(2)中环状二聚物的去除是利用薄膜蒸发器在下述条件下进行的:
(a)薄膜蒸发器中的压力是2.6千帕或更低,
(b)在薄膜蒸发器的内壁上形成熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜,同时进行粗聚对苯二甲酸丙二醇酯树脂的表面更新,
(c)就用与薄膜蒸发器内气相接触的粗聚对苯二甲酸丙二醇酯树脂的面积除以薄膜蒸发器中存在的粗聚对苯二甲酸丙二醇酯树脂的重量计算得到的值而言,熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜具有1平方厘米/克或更高的树脂-气体接触面积,和
(d)所述粗聚对苯二甲酸丙二醇酯树脂占据所述薄膜蒸发器不超过40%的内部空间。
7.以上项目3至6中任何一项的方法,其中通过在存在下述催化剂的情况下进行的缩聚反应制造所述粗对苯二甲酸丙二醇酯树脂,所述催化剂含有至少一种钛化合物和至少一种选自磷酸、磷酸酯、亚磷酸、亚磷酸酯和下式(4)所示的磷化合物的磷化合物:
其中m是1或2的整数,且
每一R独立地代表
Figure A20048000179000192
其中n是0至3的整数,其中至少一种钛化合物和至少一种磷化合物分别以使磷/钛原子比为0.01至10的量使用。
8.以上项目3至7中任何一项的方法,其中通过在含有至少一种不具有碳-锡键的锡化合物的催化剂的存在下进行的缩聚反应制造所述粗对苯二甲酸丙二醇酯树脂。
下面,详细描述本发明。
本发明的聚对苯二甲酸丙二醇酯(PTT)树脂含有:
60至100摩尔%(a)对苯二甲酸丙二醇酯重复单元,和
0至40摩尔%(b)至少一种单体单元(共聚单体单元),选自:由与用于形成对苯二甲酸丙二醇酯重复单元的单体不同并可以与至少一种用于形成对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元。
通过对苯二甲酸材料与丙二醇材料的反应形成对苯二甲酸丙二醇酯重复单元。对苯二甲酸材料的例子包括对苯二甲酸和对苯二甲酸的二酯,例如对苯二甲酸二甲酯。丙二醇材料的例子包括1,3-丙二醇、1,2-丙二醇、1,1-丙二醇、2,2-丙二醇和它们的混合物。从稳定性的角度考虑,1,3-丙二醇是尤为优选的丙二醇材料。
上述共聚单体的例子包括形成酯的单体,例如5-磺基间苯二酸钠盐、5-磺基间苯二酸钾盐、4-磺基-2,6-萘二羧酸钠盐、3,5-二羧酸苯磺酸四甲基鏻盐、3,5-二羧酸苯磺酸四丁基鏻盐、3,5-二羧酸苯磺酸三丁基甲基鏻盐、3,6-二羧酸萘-4-磺酸四丁基鏻盐、3,6-二羧酸萘-4-磺酸四甲基鏻盐、3,5-二羧酸苯磺酸铵盐、2,3-丁二醇、1,3-丁二醇、1,4-丁二醇、新戊二醇、1,5-戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇、1,10-癸二醇、十二甲撑二醇、1,4-环己二醇、1,3-环己二醇、1,2-环己二醇、1,4-环己烷二甲醇、1,3-环己烷二甲醇、1,2-环己烷二甲醇、草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、癸二酸、十二烷二酸、2-甲基戊二酸、2-甲基己二酸、富马酸、马来酸、衣康酸、1,4-环己烷二羧酸、1,3-环己烷二羧酸、1,2-环己烷二羧酸、羟基乙酸(oxyacetic acid)和羟苯甲酸;和分子量为200至100,000的多元醇,例如聚乙二醇和聚丁二醇。此外,本发明的PTT树脂可含有在制造PTT树脂的聚合反应过程中形成的共聚单体单元。作为这种共聚单体单元的例子,可以提及1,3-丙二醇二聚物单元(也就是二(3-羟丙基)醚单元)。具体而言,例如,二(3-羟丙基)醚单元如下并入PTT树脂中。两个1,3-丙二醇分子互相反应形成二(3-羟丙基)醚,并作为二(3-羟丙基)醚单元并入PTT树脂的聚合物链中。或者,1,3-丙二醇的一个分子与形成的聚合物的末端3-羟丙基反应,使得二(3-羟丙基)醚单元并入PTT树脂的聚合物链中。当本发明的PTT树脂含有二(3-羟丙基)醚单元时,二(3-羟丙基)醚单元的量通常为PTT树脂重量的0.01至5重量%,优选为0.04至2重量%。
本发明的聚对苯二甲酸丙二醇酯树脂还可以含有下列物质作为附加组分:不同于聚对苯二甲酸丙二醇酯树脂的其它环状或链型低聚物;单体,例如对苯二甲酸二甲酯(下文称作“DMT”)、对苯二甲酸(下文称作“TPA”)和丙二醇(下文称作“TMG”);和/或去珠光剂、热稳定剂和阻燃剂之类的各种添加剂中的任何一种。上述附加组分的量通常为PTT树脂重量的0.001至5重量%,优选0.005至2.5重量%。
为了获得具有优异的强度和颜色而且作为本发明的目标的纤维或成型制品,必须不仅要在使聚合度的分布变窄的同时提高PTT树脂的聚合度,还要在提高树脂的高温抗变色性的同时提高树脂的白度。
作为聚合度的衡量标准,可以使用特性粘度[η]。为了获得上述具有优异强度的优异的纤维或成型制品,该树脂(用于制造纤维或成型制品)必须具有0.6dl/g或更高的特性粘度[η]。另一方面,从提高树脂的可模制加工性和易于测量齿轮泵(用于将熔融形态的树脂加入制模机中)中树脂量的角度考虑,特性粘度不应该过高。因此,特性粘度[η]必须为4dl/g或更低。特性粘度[η]优选为0.7至3dl/g,更优选为0.8至2.5dl/g,再优选为1.0至2.0dl/g。
此外,为了提高上述纤维或成型制品的强度,不仅平均聚合度要高,而且低分子量聚合物的量还要低,也就是说,分子量分布要窄。在本发明中,分子量分布以通过将重均分子量(Mw)除以数均分子量(Mn)计算得到的值(Mw/Mn)来表示,其中Mw和Mn各自是通过凝胶渗透色谱法测量的。在本发明中,Mw/Mn值必须为2.7或更低。Mw/Mn值优选为2.6或更低,更优选为2.5或更低,再优选为2.4或更低。通常,缩聚物的分子量分布的下限为2。
为了制造具有优异的可模制加工性并可用于制造下述成型制品的PTT树脂(该成型制品不仅适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能,还具有优异的机械性能和优异的颜色),PTT树脂的环状二聚物含量必须不超过2重量%。如下测量PTT树脂的环状二聚物含量。将PTT树脂溶于氘代六氟异丙醇溶剂,并通过高分辨率傅里叶变换核磁共振(FT-NMR)谱分析制得的溶液,由此测定PTT树脂的环状二聚物含量(重量%)。
为了提高PTT树脂和由其制成的成型制品的上述性能,环状二聚物含量优选尽可能小。具体而言,优选环状二聚物含量不超过1.7重量%,更有利为不超过1.5重量%,再有利为不超过1.0重量%,最有利为不超过0.8重量%。
至于PTT树脂的颜色,为了抑制最终成型制品的变暗并易于通过使用染料或颜料使树脂具有所需颜色,PTT树脂必须具有70或更高的心理测量明度L-值和-5或更高的心理测量色度b*-值。另一方面,为了抑制成型制品的变色(即变黄),b*-值必须为25或更低。对于L-值的上限没有特别的限制,但是通常为100。L-值优选为70或更高,更优选为80或更高。b*-值优选为-3至15,更优选为-2至10。
此外,根据本发明人的研究,已经发现,为了提高最终成型制品的白度,用于制造成型制品的PTT树脂应该不仅表现出优异的白度,还应该在树脂加热过程中(例如在树脂的高温干燥、熔融模塑或类似过程中)表现出优异的抗变色性。其原因不清楚,但是发明人认为是因为树脂的变色不仅是由树脂本身的热分解引起的,而且PTT树脂中不可避免地含有的某些物质或官能团也会引起树脂变色。上述物质和官能团被认为是由预聚物(用于制造PTT树脂)和/或PTT树脂的热分解形成的。然而,尤其在使用下述引导-润湿下落法时,也可以获得在加热过程中具有优异的抗变色性的PTT树脂。其原因被认为如下。引导-润湿下落法的优点不仅在于可以抑制氧渗漏到聚合反应体系中,由此阻止上述物质和官能团的形成,还在于在该方法中使用的聚合器中聚合的预聚物的表面积与传统用于PTT树脂制造的聚合器中的情况相比极大,而且预聚物的表面有效地更新,这样即使存在上述物质或官能团,也易于从反应体系中去除。
作为易受热变色性的衡量标准,可以使用在空气中于180℃加热24小时后PTT树脂的颜色。在本发明中,在上述条件下加热的PTT树脂优选具有70或更高的心理测量明度L-值(L-2),和-5至25的心理测量色度b*-值(b*-2)。心理测量明度L-值(L-2)更优选为75或更高,再优选为80或更高。心理测量色度b*-值(b*-2)更优选为-4至21,再优选为-3至18,最优选为-2至16。
例如,可以使用本发明的PTT树脂,用于制造薄膜或板材之类的挤出成型制品,例如膜或板。在这种挤出成型制品的制造中,PTT树脂需要同时满足所有下列要求:非常高的分子量、非常窄的分子量分布和非常低的环状二聚物含量。因此,用于制造挤出成型制品的PTT树脂优选具有1.25至2.5dl/g的特性粘度[η],2.5或更低的Mw/Mn比率,和不超过1.8重量%的环状二聚物含量;该树脂更优选具有1.28至2.2dl/g的特性粘度[η],2.4或更低的Mw/Mn比率,和不超过1.7重量%的环状二聚物含量;该树脂再优选具有1.30至2.0dl/g的特性粘度[η],2.35或更低的Mw/Mn比率,和不超过1.5重量%的环状二聚物含量。当通过引导-润湿下落法(下面解释)进行PTT树脂制造时,聚合速率很高而且进行聚合的预聚物的表面积很大。因此,不仅可以将聚合度提高到传统的熔融聚合法从未达到的程度,还可以降低环状二聚物含量。此外,在引导-润湿下落法中,可以在保持高活塞流动性(“高活塞流动性”是指聚合器中的流动树脂没有流动速率的局部变化,也就是所有流动树脂具有均匀的流动速率的性质)的同时改善聚合度。因此,通过引导-润湿下落法,可以获得具有窄分子量分布的PTT树脂,也就是不含分子量差别极大的聚合物的树脂。当通过固相聚合制造PTT树脂时,制得的树脂表现出高聚合度。然而,在固相聚合中,聚合度根据粒料中的反应部位的不同而不同(也就是反应部位是在粒料内部还是外部),还根据粒料的大小和形状的不同而不同,因此非常难以获得具有窄分子量分布的聚合物。通过本发明的方法(下面描述),第一次有可能制造适用于上述挤出成型制品的工业规模制造的PTT树脂。
本发明的PTT树脂在刚制造完后可以立即以熔融形态纺丝或成型。或者,可以将树脂制成粒料,然后在树脂的纺丝或成型时再熔化。
当以粒料形式使用树脂时,希望做到的是,损耗小而且粒料可以用挤出机或任何其它类型的制模机均匀挤压。因此,优选的是,每个粒料具有适当的大小而且粘附在粒料表面的聚合物粉末的量很小。粒料的平均重量优选为每个粒料1至1,000毫克。具有该平均重量的粒料的优点在于通过挤出成型机均匀挤压粒料变得简单,粒料在运输、干燥、纺丝和成型时易于操作,而且粒料的干燥速度变高。粒料的平均重量更有利为每粒料5至500毫克,再有利为每粒料10至200毫克。在粒料的形状方面,没有特别的限制,粒料的形状可以是球形、矩形、圆柱形和锥形的任何一种。然而,从粒料易于处理的角度考虑,每个粒料最长部分的长度为15毫米或更低,更有利为10毫米或更低,再有利为5毫米或更低。
至于粘附在粒料表面的聚合物粉末,聚合物粉末的量优选为粒料总重量的0至0.5重量%,该粉末穿过30目过滤器但不穿过300目过滤器。当聚合物粉末的量为0.5重量%或更低时,不仅损耗降低,而且可以防止气动管路(也就是在其中用气体传送粒料的管路)或与干燥器相连的排气通风器的过滤器堵塞,并可以抑制纺丝、成型或混合过程中挤出机中的压力波动,这样可以容易地获得具有均匀质量的最终产品。聚合物粉末的量优选尽可能小。从实践角度看,聚合物粉末的量为粒料总重量的0至0.2重量%,更优选为0至0.1重量%,再优选为0至0.05重量%。
此外,粒料优选具有0至40%的结晶度(Xc),其中结晶度如下式所定义:
Xc(%)={ρc×(ρsa)}/{ρs×(ρca)}×100          (2)
其中ρa为1.300克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的无定形密度,ρc为1,431克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的晶体密度,且ρs代表粒料的密度(克/立方厘米)。
上述对苯二甲酸丙二醇酯均聚物的晶体密度(1.431克/立方厘米)是由对苯二甲酸丙二醇酯均聚物的晶格数计算得的理论值。在“Poritorimechirenterefutareto no Kesshoudanseiritsu(Crystal elasticity ofpolytrimethylene terephthalate)”(“Zairyou(Material)”,作者为KatsuhikoNakamae,卷35,No.396,p.1067,2000)中描述了上述晶体密度值(1.431克/立方厘米)。此外,通过测量使熔融形态的对苯二甲酸丙二醇酯均聚物骤冷获得的无定形聚合物样品的密度获得对苯二甲酸丙二醇酯均聚物的无定形密度(1.300克/立方厘米)。(至于聚合物样品,当通过X射线衍射学分析聚合物样品时没有观察到结晶峰时,可以确认聚合物样品为无定形的。)
当粒料具有上述结晶度时,可以防止PTT特有的而且在PET和PBT(聚对苯二甲酸丁二醇酯)之类的其它聚酯中不可能产生的问题,也就是在用气动输送器或进料器输送粒料的过程中粒料变脆并产生大量聚合物粉末的问题。结晶度优选为0至35%,更有利为0至30%。
在本发明中,粒料的结晶度是指在粒料不同部分测量的结晶度值的平均值。具体而言,例如,优选的是,当将粒料表面部分从粒料中心部分切除并对于粒料的表面和中心部分各在3个或多个不同部分测量结晶度时,所有测得的结晶度值都在上述结晶度范围内。此外,优选的是,表面部分和中心部分的结晶度差异为40%或更低,更有利为30%或更低,再有利为20%或更低。
为了获得具有上述结晶度的粒料,优选的是将聚合获得的熔融形态的PTT树脂挤出成束状物或板材,并随后将获得的束状物或板材浸在水之类的冷却剂中以冷却束状物或板材,然后将该束状物和板材切割获得粒料。冷却剂的温度优选为20℃或更低,更有利为15℃或更低,再有利为10℃或更低。从经济和易于处理粒料的角度考虑,优选使用水作冷却剂。当然,作冷却剂的水的温度为0℃或更高。优选的是,在挤出后120秒内将挤出的束状物或板材冷却至55℃或更低,对由此固化的束状物或板材进行切割以获得粒料。
接下来,下面对本发明的聚对苯二甲酸丙二醇酯(PTT)树脂的制造方法进行解释。
如上所述,在用于制造PTT树脂的聚合反应体系中,在PTT树脂含羟基的末端处,存在环状二聚物和直链二聚物单元之间的环-直链平衡。因此,当通过传统的熔融聚合法制造PTT树脂时,PTT树脂中所含的一部分环状二聚物在聚合过程中挥发;然而,又会立即生成与挥发出的环状二聚物相同量的环状二聚物,由此导致PTT的损耗。因此,通过传统的熔融聚合法,不可能制造不希望的环状二聚物的含量明显降低的PTT。因此,所需PTT的产率不可避免地变低。此外,如上所述,经过本发明人的研究,已经发现,即使通过固相聚合法制造环状二聚物含量降至低于1重量%的PTT,在PTT的熔融模塑过程中当其熔化时仍会迅速生成环状二聚物,而且PTT降低的环状二聚物含量会恢复到固相聚合之前预聚物(其中含羟基的末端部分处于环-直链平衡状态)的环状二聚物含量(大约2.5至3.5重量%)。
在这种情况下,本发明人已经对环状二聚物的性能和形成机制进行了详细分析。由此,已经发现,环状二聚物主要由在PTT树脂含羟基的末端部分进行的所谓“回咬(back-biting)反应”生成的,而且环状二聚物的生成速率受PTT树脂的末端羟基含量和PTT制造中使用的聚合催化剂的类型影响。“回咬反应”是下式所示的分子内反应:
在回咬反应中,属于相同聚合物链的羟基(位于PTT树脂的末端)和酯基互相反应,由此导致环状二聚物的生成和随后末端羟基的再生成。从上述化学式明显看出,回咬反应在含羟基的末端部分发生,并且因此回咬反应的反应速率与PTT树脂的末端羟基含量成比例。
当通过传统技术制得的PTT在260℃保持熔融形态时,由于上述环-直链平衡,PTT总是表现出基本相同的环状二聚物含量,也就是大约2.6重量%。此外,即使通过固相聚合法制造环状二聚物含量为大约PTT的1.0重量%,当PTT树脂熔化并保持在260℃时,仍会迅速生成环状二聚物,且环状二聚物含量在树脂开始熔化后的几分钟到几十分钟内升至大约2.6重量%,然后环状二聚物含量保持在大约2.6重量%。
本发明人已经发现,当PTT树脂具有高末端羟基含量(这导致回咬反应)时(例如,当PTT树脂具有低聚合度时),PTT树脂的环状二聚物生成速率变高,而当PTT树脂具有低末端羟基含量时(例如当PTT树脂具有高聚合度或当PTT树脂的末端羟基被封闭时),PTT的环状二聚物生成速率变低。
此外,本发明人还发现,PTT树脂的环状二聚物生成速率还极大地受到末端羟基含量以外的因素,例如PTT树脂的制造中使用的缩聚催化剂的类型的影响,而且通过使用特定的缩聚催化剂和/或通过以特定方法高度提纯PTT树脂,可以极大地抑制环状二聚物树脂的生成速率。
此外,为了开发出通过挥发从PTT树脂中有效去除环状二聚物的技术,本发明人已经分离并提纯了环状二聚物,并在减压和高温下测定了纯化环状二聚物的蒸气压。由此,本发明人已经成功地开发出一种以工业规模稳定地制造下述PTT树脂的方法,该PTT树脂具有低环状二聚物含量并且即使在熔融模塑过程中也能够抑制环状二聚物的生成,并因此能够有利地作为原材料用于制造适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能的高质量成型制品。传统上,由于上述环-直链平衡,具有低环状二聚物含量的PTT树脂被认为不能仅通过熔融聚合法制得。然而,通过本发明人研发出的上述方法,即使制造PTT树脂用的聚合反应仅通过熔融聚合法进行时(不使用固相聚合法),也可以制造上述优异的PTT树脂(其具有低环状二聚物含量而且能够在熔融模塑过程中抑制环状二聚物的生成)。
相应地,在本发明的另一方面,提供了一种制造聚对苯二甲酸丙二醇酯(PTT)树脂的方法,其包括:
(1)提供一种熔融形态的粗对苯二甲酸丙二醇酯树脂,该粗对苯二甲酸丙二醇酯树脂含有:
60至100摩尔%(a)对苯二甲酸丙二醇酯重复单元,和0至40摩尔%(b)至少一种单体单元,其选自由与用于形成对苯二甲酸丙二醇酯重复单元的单体不同并可以与至少一种用于形成对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元,
(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,
该粗对苯二甲酸丙二醇酯树脂进一步含有下式(1)所示的环状二聚物:
该粗对苯二甲酸丙二醇酯树脂具有0.2至4dl/g的特性粘度[η]和低于0.066的环状二聚物生成指数(E),环状二聚物生成指数(E)如下式(3)所定义:
               E=W/M                  (3)
其中M代表粗对苯二甲酸丙二醇酯树脂的末端羟基含量,用以对苯二甲酸丙二醇酯单元的总摩尔量为基础的摩尔百分比(摩尔%)来表示,W代表环状二聚物的再生成速率,是指对于熔融形态的粗聚对苯二甲酸丙二醇酯树脂的样品,在氮气气氛中于260℃测得的粗对苯二甲酸丙二醇酯树脂的每分钟环状二聚物含量(重量%)的增加(表示成绝对百分数值),其中熔融样品是如下获得的:将环状二聚物含量降低的粗聚对苯二甲酸丙二醇酯树脂样品熔化,该环状二聚物含量降低的样品具有降至0.1重量%或更低的环状二聚物含量;和
(2)通过减压挥发从熔融形态的粗聚对苯二甲酸丙二醇酯树脂中去除占粗聚对苯二甲酸丙二醇酯树脂重量的0.5重量%或更多的环状二聚物。
粗PTT树脂的末端羟基含量(M)是聚合物的末端羟基的摩尔量的基于与对苯二甲酸丙二醇酯单元的总摩尔量的百分比,其中末端羟基的摩尔量是通过下述方法测定的:将粗树脂溶于氘代六氟异丙醇溶剂,并对制得的溶液进行高分辨率傅里叶变换核磁共振(FT-NMR)谱分析。
环状二聚物再生成速率(W)是粗PTT树脂中环状二聚物生成速率的衡量标准。如下测定环状二聚物再生成速率(W)。例如,用索格利特提取器或类似设备对粗PTT树脂样品进行抽提,由此将粗树脂样品的环状二聚物含量降至0.1重量%或更低。然后,将制得的环状二聚物含量降低的样品置于一个容器内,例如玻璃安瓿,并用氮气吹扫该容器。然后,将容器内环状二聚物含量降低的样品在260℃下加热以使该样品在熔融形态下保持预定时间,并测量在样品熔化过程中再生成的环状二聚物的量(重量%,基于样品的重量),并将获得的重量%值除以样品保持熔融形态的时间(分钟),由此获得环状二聚物再生成速率(W)。根据环状二聚物的再生成速率调整使粗树脂样品保持熔融形态的时间,使得在加热以使粗树脂样品保持熔融形态后,粗树脂样品的环状二聚物含量不超过2重量%。其原因如下。当粗树脂样品的环状二聚物含量不超过2重量%时,再生成的环状二聚物的量与粗树脂样品保持熔融形态的时间成比例。也就是说,环状二聚物再生成速率(W)恒定,直至环状二聚物含量达到2重量%。然而,当粗树脂的环状二聚物含量超过2重量%时,环状二聚物再生成速率(W)会随环状二聚物含量的增加而逐渐降低。
粗PTT树脂的环状二聚物含量通常为0.5至3.6重量%,优选为1.0至2.8重量%,更优选为2.3至2.7重量%。
如上所述,经过本发明人的研究,已经发现,通过在PTT树脂含羟基的末端部分的回咬反应生成环状二聚物,而且当PTT树脂的末端羟基含量(M)高时,环状二聚物再生成速率(W)变高,而末端羟基含量(M)几乎与环状二聚物再生成速率(W)成比例。
此外,本发明人还发现,环状二聚物再生成速率(W)还极大地受到与PTT树脂的制造有关的其它因素(也就是,末端羟基含量(M)以外的因素)的影响(例如,聚合催化剂催化作为副反应的回咬反应的活性的程度),而且通过下述方法可以极大地抑制环状二聚物的再生成速率,例如,使用特定缩聚催化剂的方法或以特定方法制造高纯PTT树脂的方法。
在本发明中,使用环状二聚物生成指数(E)(=W/M)在环状二聚物再生成速率(W)和末端羟基含量(M)之间的关系方面评价粗PTT树脂形成环状二聚物的能力,其中环状二聚物再生成速率(W)如上所述不仅受到末端羟基含量的影响,还受到与PTT树脂的制造有关的其它因素(例如PTT树脂制造中使用的聚合催化剂的类型和粗PTT树脂的纯度)的影响。本发明人已经发现通过聚合催化剂的改进和通过高度提纯粗树脂,可以获得环状二聚物生成指数(E)低于0.066的粗PTT树脂,而且通过减压挥发从熔融形态的粗树脂中去除0.5重量%或更多(基于粗树脂的重量)的环状二聚物,可以获得下列优点(1)至(3)。
(1)尽管使用熔融聚合法制造PTT树脂,PTT树脂的环状二聚物含量可以明显降低。
(2)可以极大抑制在粗PTT树脂制造过程中挥发的环状二聚物的量,由此防止PTT树脂生产系统中所配管道的堵塞,该堵塞是由挥发出的环状二聚物在管道内壁的沉积引起的;和
(3)由该方法制造的PTT树脂(具有低环状二聚物含量)即使在该树脂熔化以进行熔融模塑时也能够抑制环状二聚物的形成,这样树脂的环状二聚物含量就不太可能恢复到对含羟基的末端部分处于环-直链平衡的PTT树脂测量的值(大约2.5至3.5重量%)。因此,可以不仅具有优异的可模制加工性,还可用于制造适合用涂料组合物或粘合剂涂布并表现出优异的粘合性能的成型制品的PTT树脂。通过使用固相聚合法使其环状二聚物含量暂时降低的PTT树脂不能获得如此优异的效果。
对于将环状二聚物生成指数(E)调整至低于0.066的值的方法,没有特别的限制。然而,作为调整环状二聚物生成指数(E)的方法的例子,可以提及下述方法(i)至(iii)。
(i)在其中制造具有高纯度的粗PTT树脂的方法:在该方法中,例如,通过使高纯对苯二甲酸与丙二醇在不存在催化剂的情况下反应来制造对苯二甲酸二羟丙酯(BHPT)之类的低分子量二醇酯。制得的低分子量二醇酯在真空中以230至270℃进一步聚合2至30个小时,由此获得环状二聚物生成指数(E)在本发明规定范围内的粗PTT树脂。
(ii)使用特定聚合催化剂的方法:在该方法中,如下详述,通过使用特定的聚合催化剂获得环状二聚物生成指数(E)在本发明规定范围内的粗PTT树脂。
(iii)在其中使聚合反应去活化的方法:在该方法中,制造具有高聚合度的粗PTT树脂,然后在该粗PTT树脂中加入使残余的聚合催化剂去活化的去活化剂(如下述),由此获得环状二聚物生成指数(E)在本发明规定范围内的粗PTT树脂。
上述方法(i)至(iii)可以单独或结合使用。此外,将上述方法(i)至(iii)的任何一种与用于降低粗PTT树脂的末端羟基含量的方法(也就是说,在该方法中,使用单官能共聚单体(例如苯甲酸)作为制造粗PTT树脂的聚合反应中的共聚单体,或者使粗PTT树脂与酸酐反应,由此降低粗PTT树脂的末端羟基含量)结合使用,可以抑制环状二聚物的生成。
对于环状二聚物生成指数(E),为了获得具有令人满意的低环状二聚物含量的PTT树脂,环状二聚物生成指数(E)必须小于0.066。环状二聚物生成指数(E)优选为0.050或更低,而且从降低环状二聚物挥发设备的载荷的角度考虑,环状二聚物生成指数(E)更优选为0.033或更低。从能够使本发明的PTT树脂再循环的角度考虑,环状二聚物生成指数(E)再优选为0.016或更低,最优选为0.010或更低。
在本发明的方法中,粗PTT树脂具有0.2至4dl/g的特性粘度[η]。为了使用下述通过挥发去除环状二聚物的装置有效地去除环状二聚物,特性粘度[η]优选为0.2dl/g或更高。另一方面,为了提高树脂的可模制加工性和测量齿轮泵中树脂量的简易性,特性粘度不应该过高。因此,特性粘度[η]必须为4dl/g或更低。可以根据通过挥发去除环状二聚物用的装置的类型适当地选择特性粘度[η]。特性粘度[η]优选为0.3至3.5dl/g,更有利为0.4至3dl/g,再有利为0.6至2dl/g。
作为本发明的制造PTT树脂的方法的一个优选例子,可以提及下述方法(方法(I)):其中本发明的方法的步骤(1)中提供的熔融形态的粗PTT树脂(预聚物)具有0.2至2dl/g的特性粘度[η],而且本发明的该方法的步骤(2)中的环状二聚物的去除是通过特定的方法(引导-润湿下落法)进行的,该方法包括将熔融形态的粗树脂(预聚物)连续加入含有穿孔板和至少一个与该穿孔板结合配备的引导部件的引导-润湿下落聚合器中,其中在等于或高于该预聚物的晶体熔点且不高于290℃的温度下减压使该预聚物沿着并接触着该聚合器中所配的引导部件表面下落,从而在该预聚物下落过程中同时实现该预聚物的聚合和环状二聚物的挥发,同时连续从聚合器中提取制成的对苯二甲酸丙二醇酯树脂。
作为本发明的制造PTT树脂的方法的另一优选例子,可以提及下述方法(方法(II)):其中本发明的方法的步骤(1)中提供的熔融形态的粗对苯二甲酸丙二醇酯树脂具有0.6至4dl/g的特性粘度[η],而且步骤(2)中环状二聚物的去除是利用配有叶片或螺杆的薄膜蒸发器在下述条件下进行的,其中:
(a)薄膜蒸发器中的压力为2.6千帕或更低的压力。
(b)通过叶片或螺杆在该薄膜蒸发器的内壁上形成熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜,同时进行粗聚对苯二甲酸丙二醇酯树脂的表面更新。
(c)就将与薄膜蒸发器内部的气相接触的粗聚对苯二甲酸丙二醇酯树脂的面积除以薄膜蒸发器中存在的粗聚对苯二甲酸丙二醇酯树脂的重量计算得到的值而言,熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜具有1平方厘米/克或更高的树脂-气体接触面积,和
(d)聚对苯二甲酸丙二醇酯树脂占据薄膜蒸发器不超过40%的内部空间。
上述方法(I)和(II)各自以下列任何方式实施:
二聚物的去除仅进行一次;
将用于去除环状二聚物的多个装置(也就是,上述引导-润湿下落聚合器或薄膜蒸发器)串联,以便重复进行环状二聚物的去除;和
将从用于去除环状二聚物的装置中提取出的树脂再循环到这些装置中以重复进行环状二聚物的去除。
方法(I)和(II)可以单独使用或结合并以任何顺序使用,其中方法(I)和(II)各自独立地以上述任何方式实施。此外,方法(I)和(II)各自可以与例如任何传统的制造聚酯的方法(例如固相聚合法、使用立式搅拌型聚合器的方法和使用卧式搅拌型聚合器的方法)和/或任何传统的使用排气式挤出机或闪蒸罐减压挥发处理结合使用。
在本发明中,必须从粗PTT树脂中去除粗PTT树脂重量的0.5重量%或更高的环状二聚物。优选从粗PTT树脂中去除粗PTT树脂重量的1重量%或更高,更有利地为1.5重量%或更高,再有利地为2重量%或更高的环状二聚物。
当从具有通过上述方法(I)和/或方法(II)调整至低于0.066的环状二聚物形成指数(E)的粗PTT树脂中去除环状二聚物时,粗树脂的环状二聚物形成速率变得低于环状二聚物的去除速率,因而尽管粗PTT树脂在上述方法(I)和(II)中熔化,也可以降低PTT树脂的环状二聚物含量。此外,通过使用具有调整至低于0.066的环状二聚物生成指数(E)的粗PTT树脂,可以通过仅去除少量环状二聚物来获得具有低环状二聚物含量的PTT树脂,由此抑制PTT树脂产率的降低。
为了将最终PTT树脂中的环状二聚物含量降至所需程度而从粗PTT树脂中去除的环状二聚物可以作为制造PTT树脂的原材料回收并再循环。
下面,将详细描述上述方法(I)(引导-润湿下落法)和方法(II)(使用薄膜蒸发器去除环状二聚物)。
(I)引导-润湿下落法
如上所述,传统上已经提出不含旋转驱动部件的聚合器作为制造PTT树脂以外的其它树脂的聚合器。然而,用于制造PTT树脂的熔融缩聚反应与用于制造其它类型的聚酯(例如PET和PBT)和用于制造聚酰胺的熔融缩聚反应差别很大。因此,不能简单地通过使用制造其它类型聚酯和聚酰胺用的聚合器来实现PTT的实际制造。下面将解释PTT和聚酰胺和其它类型的聚酯(例如PET和PBT)之间的重要差别。
首先,用于制造聚酰胺的熔融缩聚反应与用于制造其它类型聚酯(例如PET和PBT)的熔融缩聚反应都是平衡反应。然而,这两种反应的平衡常数互相差别很大。通常,用于制造聚酰胺的熔融缩聚反应的平衡常数约为102,而用于制造其它类型聚酯的熔融缩聚反应的平衡常数约为1。因此,尽管用于制造聚酰胺的反应与用于制造其它类型聚酯的反应都是缩聚反应,但用于制造其它类型聚酯的反应的平衡常数与用于制造聚酰胺的反应的平衡常数相比极小。当某种反应的平衡常数大时,即使没有从反应体系中有效去除副产物,反应也能继续进行。因此,容易增加聚酰胺的聚合度。对于其它类型的聚酯(例如PET和PBT),尽管用于制造PET和PBT的反应的平衡常数较小,但副产物可以容易地从反应体系中去除,这样也容易增加PET和PBT各自的聚合度。具体原因如下。在PET的情况下,PET具有令人满意的热稳定性,因此可以在比作为聚合反应副产物的乙二醇的沸点(198℃)高得多的温度(通常280至300℃)下进行制造PET的聚合反应。通过在如此高的温度下进行聚合,可以增加乙二醇的蒸气压,并因此可以容易地从反应体系中去除乙二醇。同样在PBT的情况下,作为制造PBT的聚合反应的副产物的1,4-丁二醇可以容易地从反应体系中去除。其原因还没有阐明,但被认为如下。在用于制造PBT的聚合反应体系中,1,4-丁二醇(其为具有高沸点的副产物)转化成低沸点物质,例如四氢呋喃(由水解形成)和丁烯(由热分解形成),这些低沸点物质可以容易地从反应体系中去除。
像在用于制造其它类型聚酯的聚合反应中那样,用于制造PTT的聚合反应具有低平衡常数,因此,需要从反应体系中有效地去除副产物丙二醇(TMG)以推动聚合反应。TMG具有高达214℃的沸点。另一方面,PTT易于热分解,因此用于制造PTT的聚合反应需要在低温下进行。因此,难以从反应体系中去除TMG。此外,当PTT的聚合度变高时,会导致下述缺点。PTT的粘度也会变高,因此变得难以从反应体系中去除TMG。此外,在这种情况下,会明显发生PTT的热分解,这样即使通过传统的用于制造其它类型聚酯(例如PET)和聚酰胺的聚合法(也就是通过使预聚物以纤维形式下落或沿着并接触着线材之类的引导部件下落来进行聚合的方法)也难以提高PTT的聚合度,因此PTT的聚合物开始降低。当在高温下进行聚合反应时(以便从反应混合物中去除TMG),会明显发生PTT的热分解,这样就更难提高PTT的聚合度。此外,在这种情况下,PTT的热分解产物可能会污染聚合器的内壁,因此不可能获得高质量的PTT产品(例如具有优异颜色的PTT产品)。
然而,经过本发明人的研究,意外地发现,当特性粘度在特定范围内的熔融PTT预聚物(粗PTT树脂)在减压和合适的温度下通过引导-润湿下落法聚合时,可以制造高质量的PTT树脂,同时不会导致伴随上述传统聚合物产生的问题,而且可以在聚合过程中通过挥发从预聚物中有效地去除环状二聚物。
对于引导-润湿下落法,可以参照,例如美国专利5,589,564、5,840,826、6,265,526和6,320,015。
下面将描述引导-润湿下落法的特征。
首先,为了仅通过熔融聚合获得具有高聚合度的PTT树脂,需要不仅抑制PTT树脂的热分解,还要有效去除TMG(制造PTT的反应的副产物)。在本发明的方法中,通过使预聚物在减压和适当的温度下沿着并接触着引导部件下落来进行聚合以增加预聚物的表面积,由此满足这些要求。此外,通过使预聚物沿着并接触着引导部件下落,可以防止产品质量的不利波动,其中这种波动是由于聚合器中聚合物流的中断而产生的,在通过使预聚物以纤维形式下落来进行聚合的方法中尤其会发生这种中断。
其次,为了防止因氧气和封闭液体进入聚合物而引起聚合物的变色,要求使用不含旋转驱动部件的聚合器。在引导-润湿下落法中,聚合器不需要含有旋转驱动部件,而且聚合器在高真空下表现出优异的密封能力,这样可以几乎完全防止因氧气渗漏进聚合器中引起的变色。此外,由于聚合器不含旋转驱动部件,不会产生封闭液体混入聚合物的情况,而且聚合器的维护很容易。因此,可以获得不存在不利的变色情况的高质量PTT。
第三,为了以工业规模稳定地制造PTT树脂,需要抑制加入聚合反应区的预聚物的发泡,以防穿孔板下表面和聚合器内壁的污染。在本发明的方法中,通过在特定温度下使具有在特定范围内相对较高特性粘度的预聚物聚合来满足这种要求。利用这种特征,可以抑制PTT树脂质量的降低,这种降低是由污染物混入或进入PTT树脂引起的。
第四,通过增加熔融形态预聚物的表面积,并减压进行预聚物的聚合,可以通过挥发有效地从预聚物中去除环状二聚物。在本发明的方法中,通过使具有特定环状二聚物生成指数(E)的粗PTT树脂(通过使用特定的催化剂或类似物获得)(预聚物)聚合,同时有效地从粗树脂中去除环状二聚物,第一次尽管通过熔融聚合法进行聚合也可以制造具有有利的低环状二聚物含量的PTT树脂。
因此,通过本发明的方法,可以解决伴随传统的进行熔融聚合反应以制造PTT树脂的技术产生的问题,而且可以以工业规模稳定地制造高质量PTT树脂(其具有高聚合度和低环状二聚物含量)。从传统的进行聚合反应以制造聚酰胺和其它类型聚酯的技术中意料不到这样的效果。
在上述方法(I)中,必须通过穿孔板的孔将熔融形态的粗PTT树脂(预聚物)加入温度等于或高于预聚物的晶体熔点且不超过290℃的聚合反应区,其中该预聚物具有0.2至2dl/g的特性粘度[η]。
在本发明中,术语“预聚物”是指分子量低于由其获得的最终PTT树脂的缩聚产物。
在本发明中,抑制预聚物在聚合反应区的分散是重要的,这种分散是由该预聚物的剧烈发泡引起的。在本发明中,为了抑制预聚物的分散,以及为了有效地从反应体系中去除副产物TMG,必须将上述具有特定特性粘度[η]的预聚物加入在上述特定温度下的聚合反应区。当通过穿孔板的孔加入聚合反应区的预聚物的剧烈发泡引起聚合物的分散时,聚合物会粘附到穿孔板的下表面和聚合器的内壁上,由此污染它们。粘附到穿孔板下表面和聚合器内壁上的预聚物长时间停留在聚合器内,因此产生热分解以形成变色的低分子量产品和/或变色的改性产品。当这种变色产品与最终PTT树脂混合时,树脂的质量降低。为了抑制由预聚物的剧烈发泡引起的预聚物的分散,该预聚物必须具有0.2或更高的特性粘度[η]。此外,为了恒定地制造具有低分子量分布的树脂,该预聚物优选具有相对较高的粘度。其原因如下。在本发明所用的引导-润湿下落法中,当预聚物粘度太低时,就可能会由于预聚物下落速度的波动和预聚物表面更新程度的波动而产生进行聚合的预聚物的聚合度波动。当产生预聚物的这种聚合度波动时,预聚物的下落速度的波动进一步提高,导致最终树脂的宽分子量分布。为了防止预聚物的这种下落速度波动和预聚物表面更新程度的波动,预聚物的粘度优选较高。
然而,另一方面,当预聚物具有过高的特性粘度时,就会变得难以从反应体系中有效去除副产物TMG。此外,当预聚物的特性粘度过高时,副产物TMG的量变得极小,这样就难以在聚合器中使预聚物在其下落过程中产生适度发泡,预聚物的这种适度发泡是本发明所用的引导-润湿下落法的一个重要特征。因此,就变得难以提高PTT树脂的聚合度。因此,为了防止这些不利情况,预聚物必须具有2dl/g或更低的特性粘度[η]。此外,预聚物优选具有0.3至1.8dl/g,更有利为0.4至1.5dl/g的特性粘度[η]。
此外,为了防止由预聚物的低粘度引起的而且会导致PTT树脂质量下降的不利情况(例如,预聚物的剧烈发泡和预聚物的热分解),加入聚合反应区的预聚物的温度必须为290℃或更低。另一方面,为了在不会使穿孔板的孔中的预聚物固化的情况下将预聚物均匀地加入聚合反应区,以及为了使预聚物总体上均匀地沿着并接触着引导部件下落而不会在其下落过程中部分固化,加入聚合反应区的预聚物的温度必须等于或高于预聚物的晶体熔点。
在本发明中,预聚物的晶体熔点是指在该温度下,在预聚物的差示扫描量热(DSC)图中观察到由晶体熔化产生的吸热峰,其中DSC图是在下列条件下通过输入补偿型差示扫描量热计(商品名:Pyris 1;由PerkinElmer,Inc.,U.S.A.制造并销售)获得的:
测量温度:0至280℃,和
温度升高速率:10℃/分钟。
加入聚合反应区的预聚物的温度优选比预聚物的晶体熔点高5℃或更多,但是不超过280℃,更优选比预聚物的晶体熔点高10℃或更多,但是不超过275℃,再优选比预聚物的晶体熔点高15℃或更多,但是不超过265℃。
在本发明中,优选熔融预聚物在其下落过程中的温度在上述范围内(也就是加入聚合反应区的预聚物的温度范围),而且聚合反应区内的温度(在上述范围内)和通过穿孔板加入聚合反应区的熔融预聚物的温度之间的差值为20℃或更低,更有利地为10℃或更低,再有利地为5℃或更低,最优选聚合反应区内的温度与加入聚合反应区的熔融预聚物的温度相同。可以通过聚合器内壁上的加热器或套管,或通过引导部件内部所配的加热器或加热介质,调节聚合反应区内的温度。
在本发明中,上述穿孔板是具有许多通孔的板,通过这些孔将预聚物加入聚合反应区中。对于穿孔板的厚度没有特别的限制。然而,穿孔板的厚度通常为0.1至300毫米,优选为1至200毫米,更优选为5至150毫米。穿孔板需要具有足以承受聚合器室内(熔融预聚物加入该室中)压力的强度。此外,当聚合器的聚合反应区中的引导部件从穿孔板上悬挂下来时,穿孔板必须能够承受引导部件和沿着并接触着引导部件表面下落的熔融预聚物的重量。因此,穿孔板优选用肋条或类似物加强。
穿孔板的孔的形状通常选自圆形、椭圆形、三角形、裂缝形、多边形、星形和类似形状。每个孔开口处的面积通常为0.01至100平方厘米,优选为0.05至10平方厘米,更优选为0.1至5平方厘米。此外,穿孔板的孔上可以连接喷嘴或类似物。在相邻孔的各自中心之间测量的穿孔板相邻孔之间的距离通常为1至500毫米,优选为25至100毫米。
对于穿孔板的孔数没有特别的限制。例如,需要以100千克/小时的速度制造PTT树脂时,穿孔板优选含有1至104个孔,更有利为2至102个孔。
如上所述,穿孔板的孔可以是通孔。或者,穿孔板可以含有与其相连的管道,这样管道的中空部分起到穿孔板的孔的作用。此外,穿孔板的孔可以具有锥形构造。优选确定孔的大小和形状使得当熔融形态的预聚物通过穿孔板时产生的压力损失为0.01至5MPa,更优选0.1至5MPa。当压力损失在上述范围内时,容易获得聚合度进一步提高的树脂(其原因尚不清楚)。通常,穿孔板的材料优选选自金属材料,例如不锈钢、碳钢、哈斯特镍基合金、镍、钛、铬和其它合金。
此外,优选在聚合器中预聚物的流路中位于穿孔板上游的位置配备过滤器。其原因在于可以使用该过滤器去除预聚物中所含的会造成穿孔板的孔堵塞的杂质(如果存在的话)。适当选择过滤器的类型,使得可以去除尺寸比穿孔板的孔的直径大的杂质,而且该过滤器不会由于聚合物的通过而承受过高的压力。
用于使熔融预聚物向下通过聚合器中所配的穿孔板并沿着并接触着引导部件下落的方法的例子包括:仅通过液体压头或通过重力使预聚物下落的方法,和通过使用螺杆、泵或类似物对穿孔板上的预聚物施压以使该熔融预聚物向下穿过穿孔板的方法。优选利用具有测量能力的泵,例如齿轮泵来抑制下落预聚物的量的波动。
在本发明中,通过穿孔板的孔加入聚合反应区的预聚物是通过使预聚物在减压下沿着并接触着聚合反应区中的引导部件下落来进行聚合的。本发明的方法中所用的引导部件可以是线材、链条、线材网(通过结合线材制造链条和线材网)、类似攀援架(jungle-gym)的物体(具有由线材构成的格架结构)、平面或弯曲薄板、穿孔板和填料柱(由规则或不规则地将填料堆积在一起形成的)。
为了有效地从反应体系中去除TMG和环状二聚物,优选不仅增加引导部件的表面积,还在引导部件的表面形成沿其长度排列的凹陷部分和/或凸出部分,以便促进沿着并接触着该引导部件表面下落的预聚物的搅动和表面更新。因此,引导部件优选含有选自凹陷部分、凸出部分和穿孔部分的至少一个部分。具体而言,优选使用在其表面(预聚物沿着该表面下落)上含有凹-凸部分的线材,或具有阻碍预聚物下落的结构的引导部件。此外,优选结合使用上述引导部件。
在本申请中,术语“线材”是指物体长度与物体的截面平均周长的比率非常大的物体。对于线材的截面面积没有特别的限制。但是,通常,截面面积为10-3至102平方厘米,优选为10-2至10平方厘米,更优选为10-1至1平方厘米。对于引导部件截面的形状没有特别的限制,其形状通常选自圆形、椭圆形、三角形、四边形、多边形、星形和类似形状。线材截面的形状可以一致或者沿线材的长度变化。线材可以是中空的。此外,线材可以由许多单丝构成,其中,例如,这些单丝扭绞在一起。线材的表面可以光滑,或者含有上述凹-凸部分、局部突出部分或类似部分。对于线材的材料没有特别的限制,但是材料通常选自,例如,不锈钢、碳钢、哈斯特镍基合金、镍、钛、铬和其它合金。如果需要,可以对该线材进行表面处理。表面处理的例子包括电镀、加衬、钝化和酸洗。
“线材网”是指结合上述线材以形成网格而制成的物体。这些线材可以是直的或弯曲的,而且结合的线材之间的角度可以适当地选择。对于线材网的线材与空隙的面积比(对该线材网的投影影像测量该比率)没有特别的限制,但是该面积比通常为1/0.5至1/1,000,优选为1/1至1/500,更优选为1/5至1/100。线材网的该面积比优选在线材网的水平方向上相对于在垂直方向上不变。此外,沿着线材网垂直长度的线材网的该面积比优选不变,或者其变化使得当该线材网作为聚合器中的引导部件时,在线材网较低处的每个空隙的面积变得比线材网较高处的小(这意味着在线材网较低处的面积比比在线材网较高处的大)。
在本发明中,“链条”是指将上述线材形成的环连接在一起构成的物体。这些环的形状可以是圆形、椭圆形、矩形、正方形或类似形状。这些环可以在一维、二维或三维方向上连接。
在本发明中,术语“类似攀援架的物体”是指下述材料,即其中上述线材在三维方向上互相结合以形成格架。所用线材可以是直的或弯曲的,而且结合在一起的线材之间的角度可以适当地选择。
在其表面(使预聚物沿着并接触着该表面下落)上含有凸出部分和/或凹陷部分的线材的例子包括:其上附有具有圆形或多边形截面的棒状物的线材,该棒状物与线材基本垂直延伸;和其上带有圆盘形或圆柱形体的线材,该线材穿透圆盘形或圆柱形物体的中心附近。凸出部分的高度优选比线材的直径大。作为具有凸出部分的线材的具体例子,可以提及其上以1至500毫米的间隔带有许多圆盘的线材,其中从每个圆盘的边缘到线材的距离比线材的直径大至少5毫米,而且不超过100毫米,每个圆盘的厚度为1至10毫米。
对于用作引导部件的链条、类似攀援架的物体和其表面上含有凹凸部分的线材,对引导部件的骨架(例如,用于构成引导部件的线材)与引导部件的空隙的体积比没有特别的限制。但是,一般而言,体积比为1/0.5至1/107,优选为1/10至1/106,更优选为1/102至1/105。向下延伸的引导部件的体积比优选在水平方向上不变。此外,向下延伸的引导部件的体积比沿着引导部件的长度不变,或者其变化使得当引导部件用在聚合器中时,在引导部件较低处的每个空隙的体积变得比引导部件较高处的小(这意味着在引导部件较低处的体积比比在引导部件较高处的大)。
引导部件可以单独或结合使用,这取决于引导部件的构造。当引导部件是线材或直链时,所用引导部件的数量通常为1至100,000,优选3至50,000。当引导部件是线材网、通过线材的二维结合形成的链条、薄板或穿孔板时,所用引导部件的数量通常为1至1,000,优选2至100。当引导部件是通过线材的三维结合形成的链条、类似攀援架的物体或填料柱时,引导部件的数量可以根据配备引导部件的聚合器和聚合反应区的大小适当地选择。当使用多个引导部件时,优选将这些引导部件排列成通过使用间隔物或类似物使这些引导部件不会互相接触。
在本发明中,一般而言,预聚物通过穿孔板的至少一个孔进入聚合反应区,在此使预聚物沿着并接触着引导部件下落。根据引导部件的形状适当地选择穿孔板的孔数。在本发明的方法中,可以使穿过穿孔板的单个孔的预聚物沿着并接触着多个引导部件下落。然而,为了使预聚物均匀地下落以恒定地获得具有窄分子量分布的最终树脂,引导部件(已经穿过穿孔板的单个孔的预聚物沿着该引导部件下落)的数量优选较小。例如,当引导部件是线材时,引导部件(已经穿过穿孔板的单个孔的预聚物沿着该引导部件下落)的数量优选为3个或更少。对于引导部件在聚合器中的位置没有特别的限制,只要预聚物可以沿着并接触着引导部件下落,并且引导部件可以配置成使引导部件穿过穿孔板的孔或悬挂在穿孔板的孔下方。
对于熔融形态(已经通过穿孔板的孔)的预聚物沿着并接触着引导部件的表面下落的距离,该距离优选为0.3至50米,更优选为0.5至20米,再优选为1至10米。
在本发明的方法中,预聚物的平均下落时间优选为10秒至100小时,更有利为1分钟至10小时,再有利为5分钟至5小时,最有利为20分钟至3小时。
通过穿孔板的孔的预聚物的下落速率优选为每穿孔板的孔10-2至102升/小时,更优选为穿孔板的每孔0.1至50升/小时。当预聚物的流速在上述范围内时,可以将聚合速率和最终树脂的生产率提高到优选水平。
在本发明使用的引导-润湿下落法中,如上所述,聚合反应(通过使预聚物沿着并接触着引导部件下落进行的)必须在减压下进行。通过减压进行聚合反应,有效地从反应体系中去除TMG和环状二聚物(它们是聚合反应过程中的副产物)以推动聚合反应。在减压下是指压力低于大气压。通常,聚合优选在100,000帕或更低,更优选10,000帕或更低,再优选1,000帕或更低,最优选100帕或更低的压力下进行。对于进行聚合时的压力的下限没有特别的限制。但是,从反应体系中用于降低压力的设备成本的角度考虑,该压力优选为0.1帕或更高。
此外,为了提高副产物TMG和环状二聚物的去除效率和最终树脂的聚合度,可以在减压下向反应体系中加入不会对聚合反应产生负面影响的惰性气体,以便以被载气带走的形式去除副产物TMG和环状二聚物。
传统上,已经了解,向缩聚反应体系中加入惰性气体降低了在缩聚反应过程中形成的副产物的分压,由此使反应平衡朝生成所需产物的方向移动。然而,在本发明中,通常,仅以非常小的量向反应区中加入惰性气体,并因此不能期望通过副产物分压的降低提高聚合速率。因此,从传统的理解上看,不能解释本发明中使用的惰性气体的作用。根据本发明人的研究,已经令人吃惊地发现,在聚合反应区中加入惰性气体导致引导部件上熔融预聚物的适度发泡,这样不仅熔融预聚物的表面积极大地增加,而且在不污染聚合器内壁的情况下有力地产生预聚物的表面更新。发明人认为,预聚物在其各个部分(包括内部和表面部分)的剧烈运动导致聚合速率的明显提高。
用于向聚合反应区中加入惰性气体的方法的例子包括:以下述方式将至少部分惰性气体加入聚合反应区——该部分气体的加入与向聚合反应区中加入对苯二甲酸丙二醇酯预聚物分开进行;和将至少部分惰性气体以吸收和/或包容在对苯二甲酸丙二醇酯预聚物中的形式加入聚合反应区,并且在聚合反应区中减压使惰性气体从预聚物中释放出来。这两种方法可以结合使用。此处,术语“吸收”是指惰性气体溶于预聚物中而且不以气泡形式存在于预聚物中。另一方面,术语“包容”是指惰性气体以气泡形式存在于预聚物中。当惰性气体以气泡形式存在于预聚物中时,优选每个气泡的尺寸尽可能地小。每个气泡的平均直径优选为5毫米或更低,更有利为2毫米或更低。
当以部分气体的加入与将预聚物加入聚合反应区分开进行的方式将惰性气体加入聚合反应区时,优选在远离穿孔板并靠近提取最终树脂的出口的位置将惰性气体加入聚合器。此外,优选在远离与真空气体排放管线相连的排气口的位置将惰性气体加入聚合器。
另一方面,使惰性气体被预聚物吸收和/或包容在预聚物中的方法的例子包括使用任何传统吸收装置,例如填充柱型吸收装置、包括塔盘的塔型吸收装置、含喷洒装置的塔型吸收装置(其中将液体喷在将吸收该液体的气体中)、湍流接触吸收装置、气-液交叉接触型吸收装置、高速环流型吸收装置和利用机械力的吸收装置,这些在“Kagaku Souchi Sekkei SousaShiriizu No.2,Kaitei Gasu Kyushu(Design and Operation Of ChemicalDevices,No.2,Gas Absorption(Revised Version))”,pp.49-54(由KagakuKogyosha Inc.,Japan在1981年3月15日出版)中有所描述;和在用于将预聚物输送到聚合器中的管道内将惰性气体注入预聚物中的方法。最优选的是使用下述装置的方法:在该装置中使预聚物在惰性气体气氛中沿着并接触着引导部件的表面下落,由此使预聚物在其下落过程中吸收惰性气体。在该方法中,将压力高于聚合器内部压力的惰性气体加入气体吸收装置。加入气体吸收装置的惰性气体的压力优选为0.01至1MPa,更优选为0.05至0.5MPa,再优选为0.1至0.2MPa。
作为加入聚合反应区的惰性气体,优选使用不会引起聚合物的变色、变性或分解的惰性气体。惰性气体的优选例子包括氮气、氩气、氦气、二氧化碳气体、低碳烃气体和上述气体的混合物。作为惰性气体,氮气、氩气、氦气和二氧化碳气体是更优选的,从可获得性角度考虑最优选使用氮气。
在本发明中,加入聚合反应区的惰性气体的量可能非常小。具体而言,惰性气体的量优选为0.05至100毫克/克从聚合反应区提取的最终树脂。通过以0.05毫克或更高/克从聚合反应区提取的最终树脂的量使用惰性气体,可以使预聚物令人满意地发泡以提高聚合速率,并提高挥发去除环状二聚物的效率。另一方面,通过以100毫克或更低的量使用惰性气体,变得易于保持聚合反应区中适当的减压。加入聚合反应区的惰性气体的量更优选为0.1至50毫克/克从聚合反应区提取的最终树脂,最优选0.2至20毫克/克从聚合反应区提取的最终树脂。
在本发明的方法中使用的引导-润湿下落法中,优选在聚合反应区中下落的至少部分预聚物处于发泡状态。尤为优选的是,在聚合反应区底部的预聚物处于发泡状态。不用说,最优选的是所有在聚合反应区中下落的预聚物都处于发泡状态。在本发明中,“发泡状态”包括形成的气泡立即破裂的状态和形成的气泡保持较长时间的状态。
在本发明中,可以通过将每一预聚物的特性粘度(在加入反应区之前)和反应区中的温度和压力控制在上述各自范围内来获得处于适当发泡状态(也就是说,所有在聚合反应区中下落的预聚物都处于发泡状态)的预聚物(在聚合反应区中下落)。然而,通过在聚合反应区中加入非常少量的惰性气体,可以获得处于更合适的发泡状态的预聚物。当反应区中的预聚物处于这种适当发泡状态时,预聚物表现出高流动性,尽管预聚物的熔体粘度由于预聚物聚合度的增加而增加(这种熔体粘度的增加可能导致流动性的降低),而且可以观察到,导致预聚物以球状沿着并接触着引导部件滚落(由于高流动性)。因此,发明人认为,在本发明所用的引导-润湿下落法中,预聚物的表面更新获得极大的改进。
在本发明所用的引导-润湿下落法中,将环状二聚物与副产物TMG一起从缩聚反应体系中提取出。环状二聚物在提取出的TMG中具有低溶解度,因此环状二聚物在TMG中沉淀。环状二聚物沉积在用于提取环状二聚物的管道内壁上,由此造成管道堵塞之类的问题。此外,当聚合器或管道含有低温部分时,存在环状二聚物沉积在该低温部分的危险。因此,PTT树脂的生产系统优选除主管道外还配有辅助管道,这样当主管道被环状二聚物堵塞时,通过关闭阀门来停止主管道中的流动以便从主管道中去除环状二聚物,同时打开用于使辅助管道中开始流动的阀门来使其开始流动。此外,优选将管道加热至250℃(也就是环状二聚物的熔点)或更高的温度,由此抑制因环状二聚物在管道内壁的沉积引起的管道堵塞,而且优选适当地控制聚合器的内部温度,使得在聚合器中几乎不形成低温部分,该低温部分可能会使环状二聚物沉积于其上。此外,从生产系统中提取出的副产物(包括环状二聚物)优选利用湿式洗涤器回收,而且优选利用分离器(例如离心分离器或沉降分离器)从提取出的副产物中回收环状二聚物(以固体形式)。
通过上述方法回收的环状二聚物可以不经任何提纯处理就作为制造PTT树脂的原材料直接再循环。或者,回收的环状二聚物可以例如通过再结晶提纯,然后作为制造PTT树脂的原材料再循环。具体而言,回收的环状二聚物可以进行开环聚合以制造PTT树脂,或者加入原材料混合物中或在PTT树脂生产的任何阶段加入聚合反应体系中。
(II)利用薄膜蒸发器去除环状二聚物
如上述条目(I)(引导-润湿下落法)中所述,PTT树脂与聚酰胺和其它聚酯(例如PET)相比易于热分解。树脂的热分解导致聚合度的降低和树脂质量的降低。经过本发明人的研究,已经发现,通过利用薄膜蒸发器在上述条件(a)至(d)下进行PTT树脂制造的方法可以有效地制造本发明的优异的PTT树脂。
在本发明的方法(II)中,当粗PTT树脂具有过低的特性粘度时,副产物TMG的量变高,由此产生会引起树脂分散的不利的剧烈发泡。分散的树脂粘附到薄膜蒸发器的内壁和薄膜蒸发器中所配的设备(例如旋转轴)上,从而将它们污染。这些分散的树脂与最终PTT树脂混合,从而降低树脂的质量。因此,为了防止这些不利情况,粗PTT树脂必须具有0.6dl/g或更高的特性粘度。
另一方面,当粗PTT树脂具有过高的特性粘度时,由于薄膜蒸发器中所配的叶片或螺杆的剪切力而产生的热量变得不利地大,这样就难以控制粗PTT树脂的温度,从而导致最终树脂分子量和质量的降低。因此,粗PTT树脂必须具有4dl/g或更低的特性粘度。当由剪切力产生的热量在使粗PTT树脂的温度易于控制的范围内时,由剪切力产生的热量的有利之处在于使熔融PTT树脂的薄膜(在薄膜蒸发器的内壁上形成)表面温度升高,这样可以有效地从树脂中去除环状二聚物。作为利用上述由剪切力产生的热量的优选方法的例子,可以提及下述方法:将分子量高于最终PTT树脂的理想分子量的粗PTT树脂加入薄膜蒸发器中以非常有效地去除环状二聚物(通过利用由剪切力产生的热量),同时将PTT树脂的分子量降至所需水平。加入薄膜蒸发器的粗PTT树脂优选具有0.7至3.9dl/g,更有地为0.8至3.8dl/g,再有利地为0.9至3.5dl/g,最有利地为1至3dl/g的特性粘度。
对于薄膜蒸发器的类型,没有特别的限制。例如,优选使用立式、圆筒形薄膜蒸发器,其中含有成膜旋转装置(例如其上连有叶片的旋转轴,或螺杆),使成膜旋转装置的中心轴穿过圆筒形薄膜蒸发器的中心,并且在旋转装置和薄膜蒸发器的内壁之间形成预定的间隙。此外,薄膜蒸发器含有液体分散装置,其通过机械力或离心力使熔融粗树脂(加入到薄膜蒸发器中)分散到蒸发器内壁。蒸发器内壁上存在的熔融粗树脂通过上述成膜旋转装置形成薄膜,同时进行薄膜的表面更新。此外,薄膜蒸发器在其底部含有最终树脂的提取口。
上述薄膜蒸发器最优选进一步配有用于加入熔融粗树脂的装置;提取已经从中去除了环状二聚物的熔融树脂用的装置;降低薄膜蒸发器的内部压力以挥发去除环状二聚物用的装置;防止与薄膜蒸发器相连的管道堵塞并回收环状二聚物用的装置;控制薄膜蒸发器和熔融树脂的温度用的装置。通过使用这种薄膜蒸发器,可以在相当短时间内,也就是从数十秒至数十分钟内极大地降低(改进)PTT树脂的环状二聚物含量,从而防止当长时间加热粗树脂时引起的PTT树脂变色。
在本发明的方法(II)中,可以使用与上述不同的装置,只要可以通过薄膜蒸发在上述条件(a)至(d)下进行环状二聚物的去除。例如,可以通过下述方法进行环状二聚物的去除:使用含有减压排气口的市售捏和机或含有减压排气口的挤出机的方法;使用其中含有盘式或带式运输机的薄膜蒸发器的方法,其中将熔融粗树脂放在旋转盘或移动带式运输机上并通过刮刀或类似物进行熔融粗树脂的表面更新;或使用其中含有一个或多个辊的薄膜蒸发器的方法,其中将熔融粗树脂放在辊上。在每一个这些方法中,当环状二聚物的去除需要长时间时,优选将装置紧密密封以防氧气渗漏到装置中,氧气的渗漏会导致最终PTT树脂的变色。
下面,详细描述上述条件(a)至(d)。
(a)薄膜蒸发器内的压力为2.6千帕或更低:
在本发明的方法(II)中,必须在减压下,也就是在2.6千帕或更低的压力下进行环状二聚物的去除。当在高于2.6千帕的压力下进行环状二聚物的去除时,环状二聚物的去除效率降低,这样就必须长时间进行环状二聚物的去除,从而导致PTT树脂的热分解和变色之类的不利情况。环状二聚物的去除优选在2.0千帕或更低的压力下进行,更有利在1.0千帕或更低,再有利在0.5千帕或更低,最有利在0.2千帕或更低的压力下进行。
此外,当在低于粗PTT树脂熔点的温度下进行环状二聚物的去除时,存在粗PTT树脂在薄膜蒸发器内固化的危险。另一方面,尽管环状二聚物的去除优选在尽可能高的温度下进行以有效去除环状二聚物,但是当温度超过350℃时,PTT树脂可能会产生热分解和变色。因此,环状二聚物的去除通常在230至350℃,优选235至330℃,更优选240至300℃,再优选245至280℃下进行。
作为用于提高环状二聚物去除效率并抑制粗PTT树脂热降解的方法的优选例子,可以提及下述方法:使用内部分成多个温度不同的区域的薄膜蒸发器,其中在高温区进行环状二聚物的去除,并将制成的PTT树脂转移到低温区以迅速降低树脂的温度以便抑制树脂的热降解;因薄膜蒸发器内所配的上述旋转装置的剪切力而产生的热量使熔融粗PTT树脂的薄膜表面温度升高,同时通过将薄膜蒸发器内壁的温度控制在相对较低的温度来抑制树脂的热分解。
对于进行环状二聚物去除的时间,没有特别的限制。然而,从抑制PTT树脂的热分解和变色的角度考虑,环状二聚物的去除通常在2小时内进行。另一方面,从去除占粗PTT树脂的0.5重量%或更高的环状二聚物的角度考虑,环状二聚物的去除通常进行0.5小时或更久。环状二聚物的去除优选进行1分钟至1.5小时,更有利2分钟至1小时,再有利3至30分钟。
(b)在薄膜蒸发器的内壁上形成熔融形态的粗聚对苯二甲酸丙二醇酯(PTT)树脂的薄膜,同时进行粗PTT树脂的表面更新:
如上文已经提及,方法(II)中所用的薄膜蒸发器中含有成膜旋转装置(例如其上连有叶片的旋转轴,或螺杆)。薄膜蒸发器内所配的旋转装置具有下列功能(1)至(4):
(1)通过调整旋转装置和薄膜蒸发器内壁之间的间隙,随后旋转旋转装置,可以在内壁上形成熔融树脂的薄膜。通常优选薄膜的厚度均一。然而,为了有效地去除由旋转装置的剪切力产生的热量。还优选使用下述方法:形成薄膜以使得薄膜的厚度从薄膜蒸发器的上部向下部逐渐降低;或者将薄膜蒸发器的内部分成多个温度不同的区域,并且根据区域的温度适当地调整每个区域内的薄膜厚度。或者,为了抑制由旋转装置的剪切力产生的热量,可以形成薄膜使得薄膜的厚度从薄膜蒸发器的上部向下部逐渐增加。
(2)通过使旋转装置旋转,可以进行熔融树脂的薄膜(在薄膜蒸发器的内壁上形成的)的表面更新,由此提高环状二聚物的去除效率。为了提高环状二聚物的去除效率,旋转装置的转速优选为1rpm或更高。另一方面,为了抑制由旋转装置的剪切力产生的热量(该热量导致最终PTT树脂质量的降低),旋转装置优选以5000rpm或更低的速度旋转。旋转装置的转速更优选为10至2000rpm,再优选为50至1000rpm,最优选为100至800rpm。
(3)旋转装置将熔融形态的粗PTT树脂从薄膜蒸发器的入口转移到薄膜蒸发器的出口。通常,粗PTT树脂的入口和用于提取最终PTT树脂的出口优选分别位于薄膜蒸发器的上部和底部,而且旋转装置(例如其上以螺旋形连有叶片的旋转轴,或螺杆)的旋转使得熔融PTT树脂以与重力相同的方向转移。然而,为了提高熔融PTT树脂在薄膜蒸发器内的停留时间,例如,还可以使用下述方法:使薄膜蒸发器倾斜的方法;使薄膜蒸发器的出口(最终PTT树脂用)的位置高于入口(粗PTT树脂用)的方法;在旋转装置的一个部分上使蒸发器内的熔融树脂的传送方向逆转(例如,在旋转装置(其上以螺旋形连有叶片的旋转轴,或螺杆)的一个部分上,呈螺旋形相连的叶片或螺杆的螺线的方向与旋转装置剩余部分的方向相反)的方法;或者在薄膜蒸发器的操作过程中使旋转装置的旋转方向逆转的方法。此外,为了使薄膜蒸发器内的熔融树脂的流动局部静滞,还可以使用含有下述部分的薄膜蒸发器:在此,旋转装置的叶片或螺杆与薄膜蒸发器的内壁之间的间隙很小。此外,为了防止粗PTT树脂的短路(shortpass)(也就是,熔融树脂通过薄膜蒸发器而没有形成薄膜),优选使用含有多级成膜区的薄膜蒸发器以确保所有的粗PTT树脂都形成薄膜。
(4)由旋转装置的剪切力产生热量。由该剪切力产生的热量的有利之处在于,它在熔融PTT树脂的薄膜表面部分生成,由此极大地提高了环状二聚物的去除效率。然而,为了抑制熔融树脂的热分解,优选控制由剪切力产生的热量以便控制熔融树脂的温度。控制由剪切力产生的热量以便控制熔融树脂的温度的方法的优选例子包括下述方法:在上述条目(2)所述的范围内调节旋转装置的转速的方法;和上述条目(1)中所述的方法,也就是调整旋转装置和薄膜蒸发器内壁之间间隙的方法;和上述条目(3)中所述的方法,也就是旋转装置含有在此使蒸发器内的熔融树脂的传送方向逆转的部分;和使用加热介质和冷却剂控制薄膜蒸发器的内壁和旋转装置的表面温度的方法。这些方法可以结合使用以极大地提高环状二聚物的去除效率,同时抑制熔融树脂的热分解。
(c)就将薄膜蒸发器内部与气相接触的粗PTT树脂的面积除以薄膜蒸发器内存在的粗PTT树脂的重量计算得到的值而言,熔融形态的粗聚对苯二甲酸丙二醇酯(PTT)树脂薄膜具有1平方厘米/克或更高的树脂-气体接触面积:
可以由熔融PTT树脂的薄膜厚度(可以通过旋转装置与薄膜蒸发器内壁之间的间隙调节该厚度)和薄膜蒸发器的尺寸通过几何学计算薄膜蒸发器内部与气相接触的粗PTT树脂的总面积。
当熔融PTT树脂的薄膜具有小于1平方厘米/克的树脂-气体接触面积时,环状二聚物的去除效率降低,这样进行环状二聚物去除的时间就变得太长,从而导致PTT树脂的热分解和变色之类的不利情况。薄膜优选具有1.5平方厘米/克或更高,更有利的2平方厘米/克或更高,再有利的2.5平方厘米/克或更高,最有利的3平方厘米/克或更高的树脂-气体接触面积。
对于熔融树脂薄膜的厚度(该薄膜在薄膜蒸发器的内壁上形成),从使熔融树脂的温度均匀以制造具有均匀质量的最终PTT树脂的角度考虑,薄膜厚度优选为均一的。可以通过薄膜蒸发器内所配的旋转装置与薄膜蒸发器内壁之间的间隙来调整薄膜的厚度。
为了提高树脂-气体接触面积,和/或去除由薄膜蒸发器内所配的旋转装置的剪切力产生的热量,优选在旋转装置的表面和/或薄膜蒸发器内壁上形成凹和/或凸部分或穿孔部分;优选在旋转装置的表面和/或薄膜蒸发器内壁上连有链条、线材网或类似攀援架的物体;或者优选在薄膜蒸发器中填入具有例如链条、线材网或类似攀援架的物体之类结构的填料。
(d)粗聚对苯二甲酸丙二醇酯(PTT)树脂占据薄膜蒸发器内部不超过40%的内部空间:
占据薄膜蒸发器内部空间的粗PTT树脂的量是指薄膜蒸发器中存在的粗PTT树脂的体积的基于薄膜蒸发器内部容积的百分比,其中如下计算薄膜蒸发器中存在的粗PTT树脂的体积:将加入薄膜蒸发器中的粗PTT树脂(熔融形态)的重量除以粗PTT树脂的比重,也就是1.15。
当粗PTT树脂占据薄膜蒸发器超过40%的内部空间时,粗PTT树脂就会发泡,使得粗树脂膨胀,这样该粗树脂形成大的团块。当形成这样大团的粗树脂时,就难以形成熔融粗树脂的均匀薄膜。此外,当粗树脂占据薄膜蒸发器超过40%的内部空间时,以气相存在的环状二聚物的分压增加,由此降低环状二聚物的去除效率。因此,就必须长时间进行环状二聚物的去除,由此造成PTT树脂的热分解和变色之类的不利情况。PTT树脂优选占据薄膜蒸发器不超过30%、更有利地不超过20%、更有利地不超过15%、最有利地不超过10%的内部空间。
在本发明中,对于薄膜蒸发器的材质没有特别的限制;不过,该材质通常选自由例如不锈钢、碳钢、哈斯特镍基合金、镍、钛、铬和上述之外的其它合金组成的组。如果需要,可以对薄膜蒸发器进行表面处理。表面处理的例子包括电镀、加衬里、钝化和酸洗。
此外,可以在薄膜蒸发器中加入不会对聚合反应产生负面影响的惰性气体,以便以被惰性气体夹带的形式去除环状二聚物,从而进一步提高环状二聚物的去除效率。当在薄膜蒸发器中加入惰性气体时,可以观察到熔融粗PTT树脂的适度发泡。据推测,当惰性气体的加入导致熔融粗树脂的适度发泡时,不仅熔融树脂的表面积极大增加,而且会在不污染薄膜蒸发器内壁的情况下剧烈地更新熔融树脂的表面。
向薄膜蒸发器中加入惰性气体的方法的示例包括下述方法:将至少部分惰性气体加入薄膜蒸发器,其方式为加入该部分气体与向薄膜蒸发器中加入熔融粗PTT树脂分开进行;和将至少部分惰性气体以吸收和/或包含在熔融粗树脂中的形式加入薄膜蒸发器,并且在薄膜蒸发器中在减压下使惰性气体从熔融粗树脂中释放出来。这两种方法可以单独或结合使用。
使惰性气体被吸收和/或包含在熔融形态的粗PTT树脂中的方法的例子包括:使用任何传统吸收装置的方法,例如填料塔型吸收装置、含塔盘的塔型吸收装置、含喷洒装置的塔型吸收装置(其中将液体喷在将被该液体吸收的气体中)、湍流接触吸收装置、气-液膜交叉接触型吸收装置、高速旋转流型吸收装置和利用机械力的吸收装置,它们在《化学装置的设计和操作,第2部分,气体吸收》“Kagaku Souchi Sekkei Sousa Shiriizu No.2,Kaitei Gasu Kyushu”(修订版)第49-54页(由Kagaku Kogyosha Inc.,Japan在1981年3月15日出版)中有所描述;和在用于将熔融粗树脂输送到薄膜蒸发器中的管道内将惰性气体注入粗树脂中的方法。最优选的是使用下述装置的方法:使用可使熔融粗树脂在惰性气体气氛中沿着并接触着引导部件的表面下落的装置,由此使熔融粗树脂在其下落过程中吸收惰性气体。在该方法中,将压力高于薄膜蒸发器内部压力的惰性气体引入气体吸收装置。加入气体吸收装置的惰性气体的压力优选为0.01至1MPa,更优选为0.05至0.5MPa,更优选为0.1至0.2MPa。
作为引入薄膜蒸发器的惰性气体,优选使用不会引起PTT树脂的变色、变性或分解的惰性气体。惰性气体的优选例子包括氮气、氩气、氦气、二氧化碳气体和低碳烃气体。在本发明中也可以使用上述气体的混合物。作为惰性气体,更优选使用氮气、氩气、氦气和二氧化碳气体。在这些气体中,从可供性角度考虑最优选使用氮气。
在本发明中,加入薄膜蒸发器中的惰性气体的量可以非常小。具体而言,惰性气体的量优选为每克从薄膜蒸发器中提取的最终树脂0.05至100毫克惰性气体。通过以每克从薄膜蒸发器中提取的最终树脂0.05毫克或更高的量使用惰性气体,可以使聚合物令人满意地发泡,以加快环状二聚物的去除。另一方面,通过以100毫克或更低的量使用惰性气体,易于保持薄膜蒸发器内适当的减压。加入薄膜蒸发器内的惰性气体的量优选为每克从薄膜蒸发器中提取的最终树脂0.1至50毫克,最优选0.2至10毫克。
在本发明中,当使用薄膜蒸发器进行环状二聚物的去除时,通过减压管道从薄膜蒸发器中提取环状二聚物。当薄膜蒸发器和/或管道含有低温部分时,存在着环状二聚物沉积在低温部分的危险,由此引发例如管道堵塞之类的问题。因此,优选薄膜蒸发器除主管道外还配有辅助管道,其中主管道和辅助管道可以互换;优选将管道加热至250℃(即环状二聚物的熔点)或更高的温度以抑制管道的堵塞;和/或优选适当地控制薄膜蒸发器的内部温度,以便在薄膜蒸发器中基本不形成低温部分,该低温部分可能会使环状二聚物沉积其上。
还可以利用湿式洗涤器,使用丙二醇(TMG)(TMG是制造PTT树脂的原材料)作为回收环状二聚物的溶剂,回收从薄膜蒸发器中提取出的环状二聚物。然而,环状二聚物在TMG中具有低溶度,这样环状二聚物就在TMG中沉淀。因此,优选通过分离器(例如离心分离器或沉积分离器)从TMG中分离并回收提取出的环状二聚物。
通过上述方法回收的环状二聚物可以作为制造PTT树脂的原材料直接再循环。或者,该环状二聚物可以通过例如再结晶提纯,然后作为制造PTT树脂的原材料再循环。具体而言,回收的环状二聚物可以进行开环聚合以制造PTT树脂,或者可以加入原材料混合物中或在PTT树脂生产过程中的任何时间加入聚合反应体系中。
接下来,详细描述改进(降低)环状二聚物生成指数(E)的具体方法。
如上所述,对于改进环状二聚物生成指数(E)的方法没有特别的限制。作为改进环状二聚物生成指数(E)的方法的例子,可以提及上述方法(i)(高纯粗PTT树脂的制造)、方法(ii)(特定聚合催化剂的应用)、和方法(iii)(聚合催化剂的去活化)。从以工业规模和高生产率稳定制造具有高聚合度和低环状二聚物含量的PTT树脂的角度考虑,优选使用特定的催化剂(方法(ii))。在该方法中,特定催化剂不仅催化所需的缩聚反应,还极大地抑制了形成环状二聚物的副反应。作为上述方法(ii)的尤为优选的例子,可以提及下述方法(A)和(B):
(A)一种方法,其中通过在存在下述催化剂的情况下进行的缩聚反应制造粗对苯二甲酸丙二醇酯(PTT)树脂,所述催化剂含有至少一种钛化合物和至少一种选自由磷酸、磷酸酯、亚磷酸、亚磷酸酯和下式(4)所示的磷化合物组成的组的磷化合物:
Figure A20048000179000571
其中m是1或2的整数,且
每一R独立地代表
其中n是0至3的整数,
其中所述至少一种钛化合物和至少一种磷化合物以各种可使磷/钛原子比为0.01至10的量使用;和
(B)一种方法,其中通过在含有至少一种不具有碳-锡键的锡化合物的催化剂的存在下进行的缩聚反应制造粗对苯二甲酸丙二醇酯(PTT)树脂。
以下详细描述上述方法(A)和(B)。
(A)使用含有钛化合物和磷化合物的催化剂的方法:
经过本发明人的研究,已经发现,当通过在存在含有钛化合物和特定磷化合物的催化剂的情况下进行的缩聚反应制造PTT树脂时,该催化剂不仅催化了所需的缩聚反应,还极大地抑制了形成环状二聚物的副反应,并由此可以将粗PTT树脂的环状二聚物生成指数(E)抑制在0.066以下。
上述钛化合物的例子包括钛四醇盐,例如四丁氧钛、四异丙氧基钛或四乙氧钛;三钛酸八烷基酯;和二钛酸六烷基酯。其中,从催化活性和制成树脂的颜色角度考虑,优选四烷氧基钛,尤其是四丁氧钛。这些钛化合物可以单独或结合使用。
所用钛化合物的量优选为作为制造PTT树脂的原材料的对苯二甲酸二甲酯(DMT)重量的10至6000ppm。然而,当使用对苯二甲酸作为原材料时,和/或当使用另一种双官能芳族化合物作为共聚单体时,上述ppm值是基于DMT、对苯二甲酸和另一种双官能芳族化合物的总重量,前提是对苯二甲酸和另一双官能芳族化合物的重量各自是在假定所用化合物(对苯二甲酸和/或另一双官能芳族化合物)是DMT的等摩尔量的情况下计算出的。钛化合物的量更优选为50至3000ppm,再优选为100至1000ppm。
上述磷化合物的例子包括磷酸;磷酸的缩合产物,例如多磷酸、三聚磷酸和焦磷酸;磷酸酯,例如磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三苯酯和磷酸三-2-羟乙酯;酸性磷酸酯,例如磷酸甲酯、磷酸二甲酯、磷酸乙酯、磷酸二乙酯、磷酸丁酯、磷酸二丁酯、磷酸苯酯和磷酸二苯酯;亚磷酸;亚磷酸酯,例如亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丁酯和亚磷酸三苯酯;和上式(4)所示的磷化合物。这些磷化合物可以单独或结合使用。
上式(4)所示的磷化合物的例子包括苯膦酸、甲基膦酸、乙基膦酸、丙基膦酸、异丙基膦酸、丁基膦酸、甲苯基膦酸、二甲苯基膦酸、联苯基膦酸、萘基膦酸、蒽基膦酸、2-羧苯基膦酸、3-羧苯基膦酸、4-羧苯基膦酸、2,3-二羧苯基膦酸、2,4-二羧苯基膦酸、2,5-二羧苯基膦酸、2,6-二羧苯基膦酸、3,4-二羧苯基膦酸、3,5-二羧苯基膦酸、2,3,4-三羧苯基膦酸、2,3,5-三羧苯基膦酸、2,3,6-三羧苯基膦酸、2,4,5-三羧苯基膦酸、2,4,6-三羧苯基膦酸、二苯基膦酸、二(2-羧苯基)膦酸、二(3-羧苯基)膦酸、二(4-羧苯基)膦酸、二(2,3-二羧苯基)膦酸、二(2,4-二羧苯基)膦酸、二(2,5-二羧苯基)膦酸、二(2,6-二羧苯基)膦酸、二(3,4-二羧苯基)膦酸、二(3,5-二羧苯基)膦酸、二(2,3,4-三羧苯基)膦酸、二(2,3,5-三羧苯基)膦酸、二(2,3,6-三羧苯基)膦酸、二(2,4,5-三羧苯基)膦酸、二(2,4,6-三羧苯基)膦酸。
从制成树脂的颜色角度考虑,苯基膦酸、2,5-二羧苯基膦酸和二苯基膦酸尤其优选作为上式(4)所示的磷化合物。
对于上述钛化合物和磷化合物的添加方法,可以提及方法(A-1),其中钛化合物与磷化合物反应,其中钛化合物与磷化合物的各自用量使得磷/钛原子比为0.01至10,而且使用制成的产物作为PTT树脂制造中的缩聚催化剂;和方法(A-2),其中在进行缩聚反应之前将钛化合物加入制造PTT树脂的原材料中,并在缩聚反应过程中将磷化合物加入反应混合物中,磷的加入量使得磷/钛原子比为0.01至10。
上述方法(A-1)和(A-2)都有效。然而,在方法(A-1)中,当过量的磷化合物与钛化合物反应时,缩聚反应速率可能降低。因此,在方法(A-1)中,钛化合物与磷化合物的各自用量优选使得磷/钛原子比为0.02至3,更有利地为0.03至1,更有利地为0.04至0.5。
在本发明中,可以例如通过下述方法进行钛化合物与磷化合物的反应:将部分或全部磷化合物溶于溶剂获得溶液,然后逐滴加入钛化合物,并使制得的混合物在0至200℃、优选20至100℃下进行反应10分钟或更久。在此方法中,可以在缩聚反应过程中的任何时间加入剩余的磷化合物(如果存在的话)。对于反应过程中的压力没有特别的限制,可以在超大气压、大气压或减压下进行反应。此外,对于溶剂类型也没有特别限制,只要磷化合物可以在该溶剂中溶解或细微分散即可。溶剂的例子包括甲醇、乙醇、乙二醇、丙二醇、丁二醇、苯和二甲苯。此外,在与磷化合物反应之前,钛化合物可以与多价芳族羧酸(例如,苯二甲酸、偏苯三酸、苯连三酸或1,2,4,5-苯四酸)或其酸酐反应。
在反应之后,制成的反应产物本身可以用作催化剂。或者,可以在用作催化剂之前通过适当的方法(例如用丙酮再结晶)提纯反应产物。由此制得的催化剂也可以用作制造对苯二甲酸双(羟丙基)酯(BHPT)(其为PTT树脂制造中的最初缩合产物)的缩合反应中的催化剂。因此,在使用上述催化剂制造BHPT后,可以使用相同的催化剂就地进行用于制造PTT树脂的BHPT缩聚反应。或者,在引发BHPT缩聚反应时加入催化剂。
当在本发明的方法中使用上述方法(A-2)(其中在进行缩聚反应之前将钛化合物加入原材料中,并在缩聚反应过程中将磷化合物加入反应混合物中)时,可以制造具有高聚合度的PTT树脂,而不会不利地降低缩聚反应速率;然而,在方法(A-2)中,磷化合物的所需量略大于方法(A-1)。具体而言,在方法(A-2)中,磷/钛原子比优选为0.02至8,更有利地为0.03至6,再有利地为0.04至4。也可以使用钛化合物作为制造BHPT的缩合反应的催化剂。因此,在使用钛化合物作催化剂制造BHPT之后,可以使用钛化合物就地进行制造PTT树脂的BHPT缩聚反应。或者,可以在引发BHPT缩聚反应时加入钛化合物。除了上述钛化合物,在本发明的方法中,必须在由钛化合物引发的缩聚反应的反应混合物中加入磷化合物,条件是在向本发明方法使用的最终反应器(finisher)(即引导-润湿下落聚合器或薄膜蒸发器)中加入制得的粗PTT树脂之前加入磷化合物。优选在从粗PTT树脂的末端羟基含量降至0.19mol%或更低时到正要将制得的粗树脂加入本发明所用的最终反应器之前这一时间段的任何时间加入磷化合物。
对于将磷化合物加入聚合器的方式没有特别的限制。例如,磷化合物可以以下列任何形态直接加入聚合器:熔融或固体形态、在适当溶剂中的溶液或分散体、和含有高含量磷化合物的所谓“母体聚合物”(或“母炼胶”)。或者,可以以例如下述方式将磷化合物加入聚合器:将熔融或固体形态或在溶剂中的溶液或分散体形态的磷化合物加入(例如通过注射、浸渍等)熔融形态、固态、或溶液或分散体形态的PTT树脂中,并将制得的混合物进行熔融混合。在本发明中,磷化合物可以一次性加入反应混合物中,也可以逐批加入反应混合物中。
(B)使用包含不具有碳-锡键的锡化合物的催化剂的方法:
经过本发明人的研究,已经发现,当通过在包含不具有碳-锡键的锡化合物的催化剂的存在下进行的缩聚反应制造PTT树脂时,该催化剂不仅催化了所需的缩聚反应,还极大地抑制了形成环状二聚物的副反应,并由此可以将粗PTT树脂的环状二聚物生成指数(E)抑制在0.066以下。
在上述方法(B)中,通过使用不具有碳-锡键的锡催化剂,可以不使用Hostaperm颜料(商品名)或钴之类的传统颜料而改进PTT树脂的颜色。此外,不具有碳-锡键的锡催化剂不存在使用传统的具有碳-锡键的有机锡催化剂伴随的问题,即当锡催化剂的用量超过DMT重量的525ppm时,会使PTT树脂的颜色受损。
不具有碳-锡键的锡催化剂的具体例子包括金属锡;二价或四价锡氧化物;二价或四价锡硫化物;二价或四价锡卤化物,例如氯化锡、溴化锡或碘化锡;二价或四价锡的羧酸盐,例如乙酸锡、丙酸锡、丁酸锡、2-乙基己酸锡、新十二烷酸锡、草酸锡和酒石酸锡;乙酰丙酮锡(II);六氟戊二酸锡(II);三氟甲烷磺酸锡(II);酞菁锡(II);酞菁氯化锡(IV);和二价或四价锡的醇盐,例如甲氧基锡、乙氧基锡、丙氧基锡和丁氧基锡。在这些锡催化剂中,从催化活性和最终PTT树脂颜色的改进角度考虑,优选二价或四价锡卤化物和二价或四价锡的羧酸盐,更优选丁酸锡、2-甲基己酸锡和新十二烷酸锡。最优选使用2-乙基己酸锡。这些锡催化剂可以单独或结合使用。
在方法(B)中,所用锡催化剂的量优选为用作制造PTT树脂的原材料的对苯二甲酸二甲酯(DMT)重量的20至6000ppm。当使用对苯二甲酸作为原材料时,和/或当使用另一种双官能芳族化合物作为共聚单体时,上述ppm值是基于DMT、对苯二甲酸和另一种双官能芳族化合物的总重量,前提是对苯二甲酸和另一双官能芳族化合物的重量各自是在假定所用化合物(对苯二甲酸和/或另一双官能芳族化合物)是DMT的等摩尔量的情况下计算出的。钛化合物的量更优选为50至3000ppm,再优选为100至1000ppm。
不具有碳-锡键的锡催化剂的有利之处不仅在于其在缩聚反应中表现出令人满意的催化活性,还在于其以适当量保留在制成的PTT树脂中,这样就抑制了由PTT树脂的热分解导致的副产物丙烯醛的生成,当PTT树脂在高温下长时间保持熔融形态时,这种热分解可能会产生。从抑制副产物丙烯醛生成的角度考虑,锡催化剂的用量优选为DMT重量的50至3000rpm,更有利地为100至1000rpm。此外,从制造具有高聚合度的PTT树脂的角度考虑,锡催化剂的用量优选为DMT重量的50ppm或更高。
在方法(B)中,锡催化剂可以通过喷嘴直接加入聚合器中;然而,锡催化剂优选预先与一部分制造PTT树脂用的原材料(例如,上述对苯二甲酸材料或上述丙二醇材料)反应以获得均质溶液,并将获得的均质溶液加入聚合器中。其原因在于锡催化剂的溶度和比重与原材料不同,这样当锡催化剂与原材料分别加入时,锡催化剂可能会在缩聚反应混合物中沉淀,因而缩聚反应混合物中的锡催化剂浓度可能变得不均匀。
此外,当锡催化剂与原材料反应获得均质溶液时,有利之处在于,一部分催化剂与一部分原材料互相反应形成羧酸锡或锡二醇氧化物(tinglycol oxide),这可以缩短最初阶段反应。例如,锡催化剂和原材料之间的反应可以如下确认。在2-乙基己酸锡与丙二醇进行反应的情况下,通过气相色谱法对游离2-乙基己酸的测定,可以确认2-乙基己酸锡的反应,并且可以通过红外光谱法确定羧酸锡和锡二醇氧化物的生成。对于上述反应,优选该反应在氮气气氛中进行,而且更优选在使氮气鼓泡进入溶液以去除溶液中的水和类似物的同时进行该反应。
作为制备上述均质溶液的方法的具体例子,可以提及下述方法:将丙二醇在50至200℃加热,同时搅拌,然后逐滴加入羧酸锡化合物(例如2-乙基己酸锡),并将制成的溶液边搅拌边另加热10分钟或更长时间以获得锡催化剂的均质溶液。
在本发明中,锡催化剂还可以用作制造对苯二甲酸双(羟丙基)酯(BHPT)(其为PTT树脂制造中的初期缩合产物)的催化剂。因此,在使用锡催化剂制造BHPT后,可以使用相同的锡催化剂就地进行用于制造PTT树脂的BHPT缩聚反应。或者,可以在引发BHPT缩聚反应时加入锡催化剂。
一些具有碳-锡键的有机锡化合物,例如丁基锡酸(butylstannoicacid)和二丁基氧化亚锡,在用于制造PTT树脂的缩聚反应中表现出高催化活性。然而,当在不使用传统颜料,例如Hostaperm颜料(商品名),或钴的情况下使用这种有机锡化合物作为催化剂时,或者当这种有机锡化合物的用量超过525ppm或更高(基于对苯二甲酸二甲酯的重量)以提高最终PTT树脂的聚合度时,最终PTT树脂的颜色会受损。此外,这种有机锡化合物是有毒的,因此不是优选的催化剂。
在本发明中,上述方法(A)中使用的催化剂可以与上述方法(B)中使用的催化剂结合使用。
下面,将详细描述本发明中使用的制造粗PTT树脂的方法的优选例子。
可以通过熔融聚合法或结合使用熔融聚合法和固相聚合法制造本发明中使用的粗PTT树脂。
在熔融聚合法中,使对苯二甲酸材料与丙二醇材料反应以获得对苯二甲酸酯和/或其低聚物,并使制成物进行缩聚反应。对苯二甲酸材料和丙二醇材料的例子包括市售材料、从制造PTT树脂的生产系统中回收的材料、以及从通过本发明的方法获得的最终PTT树脂中回收的材料。各种上述材料优选具有95%或更高、更有利地98%或更高的纯度。
在本发明中,对苯二甲酸材料(例如对苯二甲酸或其低级醇的酯)和丙二醇材料(例如,1,3-丙二醇)的各自用量优选使得对苯二甲酸材料/丙二醇酯材料的比率为0.8至3。当上述比率低于0.8时,难以促进对苯二甲酸材料和丙二醇材料之间的反应。另一方面,当该比率超过3时,会出现聚合物熔点降低的问题,这会导致PTT树脂白度的降低。对苯二甲酸材料/丙二醇材料比率更优选为1.4至2.5,再优选为1.5至2.3。
当由对苯二甲酸和1,3-丙二醇作为原材料制造粗PTT树脂时,不必总需使用促进它们之间酯化反应用的催化剂,而且可以获得具有极大降低的环状二聚物生成指数(E)的粗PTT树脂;然而,为了平稳地促进酯化反应,优选使用上述特定催化剂。
对苯二甲酸材料和丙二醇材料之间的酯化(或酯交换)反应可以在200至250℃、优选220至240℃进行,同时蒸馏出副产物水和副产物醇(例如甲醇)。通常,酯化(或酯交换)反应进行2至10个小时,优选2至4个小时。由此制得的反应产物是对苯二甲酸的1,3-丙二醇酯(例如对苯二甲酸双(羟丙基)酯)和/或其低聚物。
如果需要,可以使用两个或多个不同的反应器分步进行酯化反应(使用对苯二甲酸作原材料的情况)或酯交换反应(使用对苯二甲酸酯作原材料的情况),其中各个反应器可以连续操作。
对由此制得的对苯二甲酸的1,3-丙二醇酯和/或低聚物进行缩聚反应以制造粗PTT树脂。
在该缩聚反应中,酯化(或酯交换)反应中所用的上述催化剂本身可以用作缩聚催化剂。另一方面,如果需要,可以在缩聚反应开始时在反应混合物中加入与酯化(或酯交换)反应中所用催化剂不同的催化剂作为缩聚催化剂。这些其它催化剂的例子钛的醇盐,例如四丁氧钛和四异丙氧基钛;金属氧化物,例如无定形氧化钛的沉淀物、无定形氧化钛与二氧化硅的共沉淀物、和无定形氧化锆的沉淀物;和金属羧酸盐,2-乙基己酸锡。在这些催化剂中,钛化合物和锡化合物尤为优选,因为它们在酯化(或酯交换)反应和缩聚反应中都表现出催化活性。具体而言,这些化合物各自的有利之处在于,当使用这种化合物作为酯化(或酯交换)反应的催化剂时,在随后的缩聚反应中不需要加入这种化合物,或者仅加入少量该化合物就可以有效地进行缩聚反应。
在缩聚反应中,为了有效地从反应体系中去除在酯化(或酯交换)反应过程中生成的1,3-丙二醇和副产物(水和醇),优选在减压下,即在0.013至6700帕,更有利地在1.3至2700帕,再有利地在6.7至1400帕的压力下进行缩聚反应。
当需要制造含共聚单体单元的粗PTT树脂时,可以向原材料混合物中或在酯化(或酯交换反应)和缩聚反应过程中的任何时间向反应混合物中加入共聚单体,以便进行共聚反应。
关于制造本发明中使用的粗PTT树脂用的聚合装置,没有特别的限制。聚合装置的例子包括配有搅拌器的聚合器、盘环型反应器、笼型反应器、和设计成结合进行熔融聚合法和随后的固相聚合法的聚合装置。当以熔融形态获得粗PTT树脂(具有0.2dl/g或更高的特性粘度)时,该粗PTT树脂可以制成粒料,并随后加入引导-润湿下落聚合器和/或薄膜蒸发器,由此进行环状二聚物的去除。然而,从生产成本和最终树脂质量的角度考虑,优选将用于制造熔融形态的粗PTT树脂的聚合装置与引导-润湿下落聚合器和/或薄膜蒸发器相连,使得以熔融形态获得的粗PTT树脂(具有0.2dl/g或更高的特性粘度)连续进入引导-润湿下落聚合器和/或薄膜蒸发器以进行环状二聚物的去除,并连续从引导-润湿下落聚合器和/或薄膜蒸发器中提取出制得的具有降低的环状二聚物含量的PTT树脂。
对于改进粗PTT树脂的环状二聚物生成指数(E)的方法,不仅上述方法(i)(制造高纯度粗PTT树脂)和方法(ii)(使用特定的聚合催化剂)是有利的,上述方法(iii)(聚合催化剂的去活化)也是有利的。具体而言,在方法(iii)中,在环状二聚物去除之前使粗PTT树脂中所含的残余催化剂去活化,然后将粗PTT树脂加入引导-润湿下落聚合器和/或薄膜蒸发器中。
关于使粗PTT树脂中所含的残余催化剂去活化的方法,没有特别的限制。例如,可以提及使残余催化剂与极性化合物接触的方法。对于使残余催化剂与极性化合物接触的具体方法,没有特别的限制,只要极性化合物能使该残余催化剂部分或完全去活化即可。使残余催化剂与极性化合物接触的方法的例子包括下述方法:将极性化合物装入聚合装置或与其相连的管道;将粗PTT树脂(含有残余催化剂)置于极性化合物的气氛中;将极性化合物加入(通过注射、浸渍等)熔融或固体形态的或其溶液或分散体形态的粗PTT树脂中。为了有效地将残余催化剂去活化,优选在50℃或更高的温度下、更有利地在70℃或更高的温度下、再有利地在150℃或更高的温度下使粗树脂与极性化合物接触。该极性化合物可以是固体、液体、气体或已经达到其临界点的流体形式。此外,关于残余催化剂与极性化合物接触的时间,没有特别的限制;然而,当长时间进行接触时,就存在粗树脂的分子量降低和粗树脂产生分解和变色的危险。因此,接触时间优选尽可能短。接触时间通常不超过60分钟,优选不超过30分钟。
作为极性化合物,优选使用含杂原子(例如氧、氮、磷或硫)的化合物,而且更优选使用能够形成氢键的化合物。这种极性化合物的具体例子包括水;醇,例如甲醇、乙醇、丙醇、1,3-丙二醇、1,4-丁二醇、乙二醇、丙三醇和乙醇胺;磷化合物,例如磷酸、磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三苯酯、亚磷酸、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丁酯、亚磷酸三苯酯和苯基膦酸;酸,例如甲酸、乙酸、丙酸、盐酸和硫酸;和含氮化合物,例如氨、甲胺、二甲胺、乙二胺、三乙胺和吖丙啶。从处理性能和无毒性的角度考虑,水和磷化合物是优选的。
关于与粗树脂接触的极性化合物的量,没有特别的限制。一般而言,极性化合物的用量使极性化合物/粗树脂的比率为100,000/1至0.000001/1,优选1000/1至0.001/1。
在本发明中,如果需要,可以通过共聚或混合在PTT树脂中加入各种传统添加剂。添加剂的例子包括去光剂、热稳定剂、阻燃剂、抗静电剂、消泡剂、正色剂(orthochromatic agent)、抗氧化剂、紫外线吸收剂、成核剂和增白剂。这些添加剂可以在PTT树脂制造过程中的任何时间加入。从提高PTT树脂的白度和熔体稳定性并抑制丙烯醛和芳基醇生成的角度考虑,优选在PTT树脂制造中的适当阶段加入稳定剂,更优选在对苯二甲酸双(羟丙基)酯(BHPT)的缩聚之前向其中加入稳定剂。
这些稳定剂的优选例子包括五价或三价磷化合物和受阻酚化合物。
五价或三价磷化合物的例子包括磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三苯酯、苯基膦酸、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丁酯、亚磷酸三苯酯、磷酸和亚磷酸。在上述磷化合物中,磷酸三甲酯、苯基膦酸和磷酸尤为优选。当在PTT树脂制造的适当阶段、优选在BHPT的缩聚反应之前加入磷化合物时,磷化合物不仅起到稳定剂的作用,还防止聚合催化剂对形成环状二聚物的反应起到催化作用。此外,通过在本发明的方法(其中通过使用引导-润湿下落聚合器和/或薄膜蒸发器进行环状二聚物的去除)中使用磷化合物,可以进一步提高环状二聚物的去除效率。此外,磷化合物可以加入通过本发明的方法制得的最终PTT树脂中。
磷化合物的加入量按照PTT中所含的磷原子重量计优选为2至250重量ppm,更有利为5至150重量ppm,再有利为10至100重量ppm。
受阻酚化合物是在与酚式羟基相邻的位置含有表现出位阻的取代基并在分子中含有至少一个酯键的酚衍生物。受阻酚化合物的例子包括季戊四醇-四[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟苄基)苯、3,9-二{2-[3-(3-叔丁基-4-羟基-5-甲基苯基)-丙酰氧基]-1,1-二甲基乙基}-2,4,8,10-四氧杂螺[5,5]十一烷、1,3,5-三(4-叔丁基-3-羟基-2,6-二甲苯)间苯二酸、三乙基乙二醇-二[3-(3-叔丁基-5-甲基-4-羟苯基)-丙酸酯]、1,6-己二醇-二[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、2,2-硫代-二亚乙基-二[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]和十八烷基-3-(3,5-二叔丁基-4-羟苯基)-丙酸酯]。
在上示受阻酚化合物中、季戊四醇-四[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]是优选的。
受阻酚的加入量优选为最终PTT树脂重量的0.001至1重量%,更有利地为0.005至0.5重量%,再有利地为0.01至0.1重量%。不必说,上述稳定剂可以结合使用。
通过使用本发明的聚对苯二甲酸丙二醇酯树脂,可以以工业规模稳定地制造优异的成型制品。具体而言,使用本发明的PTT树脂制得的成型制品具有高强度和优异的色彩。此外,该成型制品不存在环状二聚物渗到成型制品表面的情况,这样,该成型制品就适合用涂料组合物或粘合剂涂布并表现出优异的粘合性。此外,通过本发明的方法,可以以工业规模、高生产率和低成本稳定地制造上述优异的PTT树脂。
本发明的最佳实施方式
下面,参照下列制造例、实施例和对比例更详细地描述本发明,它们不应该被认为是对本发明保护范围的限制。
在下列制造例、实施例和对比例中,通过下列方法进行各种测量和分析。
(1)特性粘度[η]
用奥斯瓦尔德(Ostwald)粘度计测量聚对苯二甲酸丙二醇酯树脂的特性粘度[η]。具体而言,在35℃测量具有不同树脂浓度[C](克/100毫升)的聚对苯二甲酸丙二醇酯树脂的各种邻氯苯酚溶液的相对粘度[ηsp]。以获得的[ηsp/C]值对上述溶液中的树脂浓度作图,并将所得斜率外推至零(0)浓度,从而获得树脂的特性粘度[η]。即通过下式计算树脂的特性粘度[η]:
                  [η]=lim(ηsp/C)
                        C→O
(2)结晶熔点
用差示扫描量热计(商品名:Pyris 1;由Perkin Elmer,Inc.,U.S.A.制造并销售)在下列条件下测量粗聚对苯二甲酸丙二醇酯树脂的结晶熔点:
测量温度:0至280℃,
温度升高速率:10℃/分钟。
具体而言,在获得的差示扫描量热(DSC)图中观察到因晶体熔融而产生吸热峰时的温度被定义为该树脂的结晶熔点,其中使用该量热计所附的分析软件进行该峰的测定。
(3)分子量分布
使用重均分子量(Mw)与数均分子量(Mn)的比率(Mw/Mn比率)评定聚对苯二甲酸丙二醇酯树脂的分子量分布。通过凝胶渗透色谱法(GPC)测定聚对苯二甲酸丙二醇酯树脂的Mw和Mn。具体而言,在下列条件下进行GPC:
装置:色谱模型HLC-8120(Tosoh Corporation,Japan制造并销售);
柱:HFIP804-803(30厘米)(Showa Denko K.K.,Japan制造并销售)(×2);
载体:六氟异丙醇;
测量温度:40℃;和
流速:0.5毫升/分钟。
使用标准聚甲基丙烯酸甲酯(PMMA)样品(Polymer LaboratoriesLtd.,U.K.制造并销售)获得Mn和Mw测定中使用的校正曲线。所用PMMA样品的分子量分别为620、1680、3805、7611、13934、24280、62591和186000。
(4)环状二聚物含量(重量%)
使用高分辨率傅里叶变换核磁共振(FT-NMR)设备(商品名:JNM-A400;JEOLLTD.,Japan制造并销售)通过1H(质子)NMR波谱测定聚对苯二甲酸丙二醇酯树脂的环状二聚物含量。
具体而言,如下测定环状二聚物含量。将10毫克聚对苯二甲酸丙二醇酯树脂完全溶于1毫升氘代六氟异丙醇溶剂(Aldrich Ltd.,U.S.A.制造并销售),由此获得样品溶液。然后,在25℃进行样品溶液的质子NMR分析,其中积分数为256次,由此获得样品溶液的质子NMR谱。根据获得的质子NMR谱,假定聚对苯二甲酸丙二醇酯树脂和环状二聚物(该树脂中所含的)的比重相同,计算属于环状二聚物中存在的苯环的质子峰(δ=7.66ppm)积分值占属于聚对苯二甲酸丙二醇酯树脂中存在的苯环的质子峰(δ=8.15)积分值与属于环状二聚物中存在的苯环的质子峰积分值的总和的百分比,并将获得的百分比值定义为聚对苯二甲酸丙二醇酯树脂的环状二聚物含量。
(5)末端羟基含量(M)
通过1H(质子)NMR波谱测定聚对苯二甲酸丙二醇酯树脂的末端羟基含量(M)(是指占对苯二甲酸丙二醇酯单元的总摩尔量的摩尔百分比),这是使用高分辨率FT-NMR设备(商品名:JNM-A400;JEOLLTD.,Japan制造并销售)进行的。
具体而言,如下测定末端羟基含量(M)。将10毫克聚对苯二甲酸丙二醇酯树脂完全溶于1毫升氘代六氟异丙醇溶剂(Aldrich Ltd.,U.S.A.制造并销售),由此获得样品溶液。然后,在25℃进行样品溶液的质子NMR分析,其中积分数为256次,由此获得样品溶液的质子NMR谱。根据获得的质子NMR谱,计算属于末端羟基α位上的亚甲基的质子峰(δ=3.68ppm)积分值1/2处的值占属于聚对苯二甲酸丙二醇酯树脂中存在的苯环的质子峰积分值1/4处的值的百分比,并将获得的百分比值定义为聚对苯二甲酸丙二醇酯树脂的末端羟基含量。
(6)环状二聚物再生成速率(W)
环状二聚物再生成速率(W)是指对于熔融形态的粗聚对苯二甲酸丙二醇酯树脂的样品,在氮气气氛中于260℃测得的每分钟粗对苯二甲酸丙二醇酯树脂中环状二聚物含量(重量%)的增加(表示成绝对百分比值),其中熔融样品是如下获得的:将环状二聚物含量降低的粗聚对苯二甲酸丙二醇酯树脂样品熔融。该环状二聚物含量降低的样品具有降至0.1重量%或更低的环状二聚物含量。
降低环状二聚物含量的方法
将粗聚对苯二甲酸丙二醇酯树脂压碎成粒子,各粒子具有不超过1毫米的粒径。然后,使用氯仿作为溶剂通过Soxhlet’s提取器将获得的粒子萃取8小时,由此去除粒子中的环状二聚物。在萃取后,测量粒子的环状二聚物含量以确定环状二聚物含量降至不超过0.05重量%。使用由此获得的粗聚对苯二甲酸丙二醇酯树脂粒子(环状二聚物含量不超过0.05重量%)作为环状二聚物含量降低的样品。
测量环状二聚物再生成速率(W)的方法
将0.5克如上的制得粗聚对苯二甲酸丙二醇酯树脂(即如上制得的环状二聚物含量降低的样品)置于10毫升玻璃细颈瓶中,并用氮气吹扫该玻璃细颈瓶。然后,将玻璃细颈瓶在温度为260℃的油浴中加热以使该粗树脂在熔融形态下保持使得粗树脂的环状二聚物含量不超过2重量%的时间。随后,用干冰粉使玻璃细颈瓶骤冷以使玻璃安瓿内的粗树脂固化。然后,测量固化样品的环状二聚物含量(重量%),计算固化样品的环状二聚物含量(重量%)与环状二聚物含量降低的样品(在260℃加热之前)的环状二聚物含量(重量%)的差值,并将获得的差值(重量%)除以环状二聚物含量降低的样品保持熔融形态的时间(分钟),由此获得环状二聚物再生成速率(W)。
(7)颜色(L-值和b*-值)
用测色电脑(SUGA TEST INSTRUMENTS Co.,Ltd.,Japan制造并销售)测量聚对苯二甲酸丙二醇酯的颜色(测量其L-值和b*-值)。
(8)油墨粘附性
使用尺寸为10厘米×10厘米×3毫米的模具通过加热至260℃的热压机将聚对苯二甲酸丙二醇酯树脂制成板形制品(熔融时间:15分钟,模制时间:5分钟,在70℃的冷却时间:30分钟)。用热风干燥器在100℃将获得的板形制品干燥48小时,然后在20℃和50%的相对湿度(RH)下保持24小时。
使用PET用的油墨(商品名:PET9107白;JUJO CHEMICAL CO.,LTD.,Japan制造并销售)(将其用慢干型Tetoron溶剂稀释)和T-270印刷板,在上述板形制品上进行印刷。然后,将印刷后的板形制品在100℃干燥80秒,然后在20℃和50%的RH下保持24小时。然后,用剃刀切割在板形制品上形成的墨膜,以便在板形制品上形成10×10墨膜格(相邻网格间距:1毫米)的方格形切割图案,并且如下进行粘胶带测试。将玻璃纸胶带贴到板形制品的印刷表面上以完全覆盖上述方格形的切割图案。然后,将玻璃纸胶带迅速撕掉,并数出板形制品上残留的墨膜格的数(A)。
此外,重复与上述基本相同的程序,只是使用热空气干燥器将印刷后的板形制品在100℃干燥100小时,获得板形制品上残留的墨膜格的数(B)。
制造例1
将40千克对苯二甲酸二甲酯、24千克1,3-丙二醇、和40克四丁氧钛加入配有带板形搅拌叶片的搅拌器的100升高压釜内,并进行酯交换反应,同时在220℃蒸馏去除高压釜中的甲醇。将去除的甲醇称重,并将其重量转化成摩尔量。根据去除的甲醇的摩尔量,通过下式计算酯交换比率,结果为95%。
在完成酯交换反应后,将11.5克磷酸加入高压釜,并将制成的混合物搅拌30分钟。然后,将混合物在260℃和减压下(即在40帕的压力下)进行缩聚反应4小时,同时从混合物中蒸馏去除1,3-丙二醇,由此获得粗聚对苯二甲酸丙二醇酯(PTT)树脂。
随后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.65dl/g的特性粘度、2.62重量%的环状二聚物含量、2.38的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中将环状二聚物含量降低的样品在260℃保持熔融形态30分钟。结果发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为样品树脂重量的0.36重量%,并且因此环状二聚物再生成速率(W)为每分钟0.012重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),为0.005。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中加入磷酸时,粗树脂的环状二聚物生成指数(E)被抑制到小至0.005的值。然而,不利的是,在该制造例1(使用传统的聚酯制造方法)中制得的PTT树脂的环状二聚物含量高,即高达2.62重量%。经过本发明人的研究,已经证实,在缩聚反应的最初阶段形成了由大约10个对苯二甲酸丙二醇酯单元构成的对苯二甲酸丙二醇酯低聚物,低聚物的环状二聚物含量变得高达2.5重量%或更高。其原因据推测是由于在该缩聚反应的最初阶段低聚物的末端羟基含量较高,因此以极高的速率形成环状二聚物直至缩聚反应达到环-直链平衡。此外,还发现即使当粗PTT树脂具有改进的(低的)环状二聚物生成指数(E)时,由于聚合器中液体反应混合物较大的深度,使用传统聚酯聚合器的环状二聚物的蒸发去除极其困难。
制造例2
将40千克对苯二甲酸二甲酯、24千克1,3-丙二醇、和48克2-乙基己酸锡加入配有带板形搅拌叶片的搅拌器的100升高压釜内,并进行酯交换反应,同时在220℃蒸馏去除高压釜中的甲醇。按照与制造例1中相同的方式计算酯交换比率,为99%。然后,将反应混合物在260℃和减压下(即在40帕的压力下)进行缩聚反应4小时,同时从反应混合物中蒸馏去除1,3-丙二醇,由此获得粗聚对苯二甲酸丙二醇酯(PTT)树脂。
随后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.71dl/g的特性粘度、2.61重量%的环状二聚物含量、2.08的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中将环状二聚物含量降低的样品在260℃保持熔融形态30分钟。由此,发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.00重量%,并且因此环状二聚物再生成速率(W)为每分钟0.033重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),为0.016。
从上面明显地看出,当使用包含不具有C-Sn键的锡化合物的催化剂进行制造粗PTT树脂的缩聚反应体系时,粗树脂的环状二聚物生成指数(E)可以抑制到小至0.016的值。此外,可以肯定该制造例中使用的催化剂(即2-乙基己酸锡)作为缩聚催化剂具有高催化活性。
制造例3
将40千克对苯二甲酸和24千克1,3-丙二醇加入配有带板形搅拌叶片的搅拌器的100升高压釜内,并在不存在催化剂的情况下进行酯化反应,同时在250℃蒸馏去除高压釜中的水。将去除的水称重,并将其重量转化称摩尔量。根据去除的水的摩尔量,通过下式计算酯化比率,为96%。
然后,将反应混合物在260℃和减压下(即在40帕的压力下)进行缩聚反应4小时,同时从混合物中蒸馏去除1,3-丙二醇,由此获得粗聚对苯二甲酸丙二醇酯(PTT)树脂。
随后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索压碎获得聚合物碎片。该粗树脂具有0.31dl/g的特性粘度、2.59重量%的环状二聚物含量、6.88的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中将环状二聚物含量降低的样品在260℃保持熔融形态30分钟。结果发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.17重量%,并且因此环状二聚物再生成速率(W)为每分钟0.039重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),为0.006。
从上面明显地看出,当在不存在金属催化剂的情况下进行制造粗聚对苯二甲酸丙二醇酯的缩聚反应时,粗树脂的环状二聚物生成指数(E)被抑制到小至0.006的值。
制造例4
将40千克对苯二甲酸二甲酯、24千克1,3-丙二醇和80克四丁氧钛加入配有带板形搅拌叶片的搅拌器的100升高压釜内,并进行酯交换反应,同时在220℃蒸馏去除制得的反应混合物中的甲醇。按照与制造例1相同的方式计算酯交换比率,获得98%的值。然后,将反应混合物在260℃和减压下(即在40帕的压力下)进行缩聚反应4小时,同时从反应混合物中蒸馏去除1,3-丙二醇,由此获得粗聚对苯二甲酸丙二醇酯(PTT)树脂。
随后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.72dl/g的特性粘度、2.61重量%的环状二聚物含量、和2.08的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当环状二聚物含量降低的样品在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,样品树脂的环状二聚物含量超过2重量%。因此,样品树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。结果发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为样品树脂重量的1.48重量%,并且因此环状二聚物再生成速率(W)为每分钟0.148重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.071的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗聚对苯二甲酸丙二醇酯树脂的缩聚反应体系中不加入磷酸时,粗树脂的环状二聚物生成指数(E)不利地变高,即高达0.071。
制造例5
按照与制造例1基本相同的方式制造粗聚对苯二甲酸丙二醇酯树脂,只是缩聚反应仅进行1.5小时。
在缩聚反应之后,将获得的粗聚对苯二甲酸丙二醇酯树脂以绳索状从高压釜底部挤出,并将获得的绳索压碎成聚合物碎片。该粗树脂具有0.19dl/g的特性粘度、2.63重量%的环状二聚物含量、和16.7的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中环状二聚物含量降低的样品在260℃保持熔融形态30分钟。当该粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,粗树脂的环状二聚物含量超过2重量%。因此,该粗树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。结果发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的0.84重量%,并且因此环状二聚物再生成速率(W)为每分钟0.084重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.005的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中加入磷酸时,尽管具有高的末端羟基含量(M)(其比制造例1中的含量高得多),但粗树脂的环状二聚物生成指数(E)被抑制到小至0.005的值(其与制造例1中的值相同)。
制造例6
按照与制造例5基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂的碎片。用压碎机使制得的碎片细碎,由此获得粒径不超过1毫米的粉末。将获得的粉末加入300升的转鼓式固相聚合器,并在205℃进行固相聚合30小时,同时使氮气以100升/小时的速度流入聚合器,由此获得粗聚对苯二甲酸丙二醇酯树脂。
获得的粗树脂具有1.03dl/g的特性粘度、0.98重量%的环状二聚物含量、和1.13的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中环状二聚物含量降低的样品在260℃保持熔融形态30分钟。结果发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的0.18重量%,并且因此环状二聚物再生成速率(W)为0.006重量%/分钟。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.005的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中加入磷酸时,尽管具有较低的末端羟基含量(M)(其比制造例1和5中的含量低得多),但粗树脂的环状二聚物生成指数(E)被抑制到小至0.005的值(其与制造例1和5中的值相同)。
然而,由于粗PTT树脂是通过固相聚合法制得的,该粗树脂具有宽至3.0的分子量分布,这远远宽于在使用熔融聚合法的制造例中制得的粗树脂的分子量分布。
制造例7
按照与制造例4基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是缩聚反应仅进行1小时。
在缩聚反应之后,将获得的粗聚对苯二甲酸丙二醇酯树脂以绳索状从高压釜底部挤出,并将获得的绳索压碎成聚合物碎片。该粗树脂具有0.18dl/g的特性粘度、2.62重量%的环状二聚物含量、和16.5的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当该粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,粗树脂的环状二聚物含量超过2重量%。因此,该粗树脂仅在260℃保持熔融形态5分钟以评测环状二聚物再生成速率(W)。然而,粗树脂的环状二聚物含量还是超过2重量%。因此,在制造例7中,无法评测粗树脂的环状二聚物再生成速率(W)和环状二聚物生成指数(E)。
制造例8
按照与制造例7基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂的碎片。用压碎机使制得的碎片细碎,由此获得粒径不超过1毫米的粉末。将获得的粉末加入300升的转鼓式固相聚合器,并在205℃进行固相聚合25小时,同时使氮气以100升/小时的速度流入聚合器,由此获得粗树脂。
获得的粗树脂具有1.02dl/g的特性粘度、0.92重量%的环状二聚物含量、和1.13的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当该粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,粗树脂的环状二聚物含量超过2重量%。因此,该粗树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。结果发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的0.80重量%,并且因此环状二聚物再生成速率(W)为每分钟0.080重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.071的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中不加入磷酸时,尽管具有较低的末端羟基含量(M)(其比制造例4中的含量低得多),但不利地是粗树脂的环状二聚物生成指数(E)很大,即大到与制造例4中的值相等的0.071。
此外,由于粗PTT树脂是通过固相聚合法制得的,该粗树脂具有宽至2.9的分子量分布,这比在使用熔融聚合法的制造例中制得的粗树脂的分子量分布宽得多。
制造例9
按照与制造例1中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是在完成酯交换反应后加入40克苯基膦酸代替磷酸。
在缩聚反应后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.67dl/g的特性粘度、2.64重量%的环状二聚物含量、2.26的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中将环状二聚物含量降低的样品在260℃保持熔融形态30分钟。结果发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.83重量%,并且因此环状二聚物再生成速率(W)为每分钟0.061重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.027的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中加入苯基膦酸时,该粗树脂的环状二聚物生成指数(E)被抑制到小至0.027的值。
制造例10
将20克苯基膦酸溶于1,3-丙二醇以获得溶液。将获得的溶液在180℃加热,并边搅拌边向其中逐滴加入40克四丁氧钛。然后,在180℃进行反应30分钟。如下所释,在粗聚对苯二甲酸丙二醇酯的制造中使用该制成的反应产物作催化剂。
按照与制造例1中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是使用上述反应产物作催化剂代替四丁氧钛。
随后,将制成的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.55dl/g的特性粘度、2.61重量%的环状二聚物含量、3.10的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当环状二聚物含量降低的样品在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,环状二聚物含量超过2重量%。因此,该样品树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率。结果发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的0.71重量%,并且因此环状二聚物再生成速率(W)为0.071重量%/分钟。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.023的值。
从上面明显地看出,当使用通过钛化合物与苯基膦酸的反应制备的催化剂进行制造粗PTT树脂的缩聚反应时,该粗树脂的环状二聚物生成指数(E)与制造例9中制得的粗树脂相比得到改进(降低)。然而,还发现,制造例10中所用的催化剂的催化活性略低于制造例9中使用的催化剂。
制造例11
按照与制造例1中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是在完成酯交换反应后加入60克2,5-二羧基苯基膦酸代替磷酸。
在缩聚反应后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.69dl/g的特性粘度、2.65重量%的环状二聚物含量、和2.15的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,该粗树脂的环状二聚物含量变得接近2重量%。因此,该粗树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。由此,发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的0.67重量%,并且因此环状二聚物再生成速率(W)为每分钟0.067重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.031的值。
从上面明显地看出,当在存在含有钛化合物的催化剂的用于制造粗PTT树脂的缩聚反应体系中加入2,5-二羧基苯基膦酸时,该粗树脂的环状二聚物生成指数(E)被抑制到小至0.031的值。
制造例12
按照与制造例2中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是将60克丁基锡酸代替2-乙基己酸锡加入高压釜中。
在缩聚反应后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.72dl/g的特性粘度、2.66重量%的环状二聚物含量、和2.08的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W),其中使该环状二聚物含量降低的样品在260℃保持熔融形态30分钟。由此,发现在样品树脂的30分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.56重量%,并且因此环状二聚物再生成速率(W)为每分钟0.052重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.025的值。然而,在该制造例中制得(粒料形式)的粗树脂(粒料)与在其它制造例中获得的粗树脂的情况相比具有严重的变色问题。
从上面明显地看出,当使用包含不具有C-Sn键的锡化合物的催化剂进行制造粗PTT树脂的缩聚反应时,该粗树脂的环状二聚物生成指数(E)被抑制到小至0.025的值。此外,可以肯定该催化剂在缩聚反应过程中表现出高催化活性。然而,可以肯定该制造例中制得的粗树脂具有严重的变色问题。
制造例13
按照与制造例4中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是将四丁氧钛(催化剂)的量改为40克。
在缩聚反应后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.68dl/g的特性粘度、2.62重量%的环状二聚物含量、和2.22的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当该粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,该粗树脂的环状二聚物含量超过2重量%。因此,该粗树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。结果发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.33重量%,并且因此环状二聚物再生成速率(W)为每分钟0.133重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.060的值。
从上面明显地看出,当减少四丁氧钛的量时,四丁氧钛的催化活性降低;然而环状二聚物生成指数(E)可以被抑制到0.060。
实施例14
按照与制造例4中基本相同的方式制造粗聚对苯二甲酸丙二醇酯(PTT)树脂,只是将四丁氧钛(催化剂)的量改为4克。
在缩聚反应后,将获得的粗PTT树脂以绳索状从高压釜底部挤出,并将获得的绳索切成粒料。该粗树脂具有0.44dl/g的特性粘度、2.61重量%的环状二聚物含量、和4.44的末端羟基含量(M)(单位是基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔百分比)。
此外,通过上面第(6)项中所述的方法测量环状二聚物再生成速率(W)。当该粗树脂在260℃保持熔融形态30分钟以评测环状二聚物再生成速率(W)时,该粗树脂的环状二聚物含量超过2重量%。因此,该粗树脂仅在260℃保持熔融形态10分钟以评测环状二聚物再生成速率(W)。由此,发现在样品树脂的10分钟熔融过程中再生成的环状二聚物的量为粗树脂重量的1.20重量%,并且因此环状二聚物再生成速率(W)为每分钟0.120重量%。根据环状二聚物再生成速率(W)和末端羟基含量(M),计算粗树脂的环状二聚物生成指数(E=W/M),并得到0.027的值。
从上面明显地看出,当由制造例13进一步减少四丁氧钛的量时,四丁氧钛的催化活性明显降低;然而环状二聚物生成指数(E)可以被抑制到小至0.027的值。
实施例1
使用图1所示的装置,如下进行聚对苯二甲酸丙二醇酯树脂B的制造。用挤出机在255℃下挤出制造例1中制得的粗聚对苯二甲酸丙二醇酯树脂(PTT预聚物)A,由此获得熔融形态的粗树脂A。用输送泵2将熔融形态的粗树脂A通过入口3加入聚合器1中。在聚合器1中,使熔融形态的粗树脂A在255℃(熔融预聚物的温度)通过穿孔板4的孔,且速度为每孔10克/分钟,然后使其在255℃的大气温度和在减压下(即在20帕的压力下)沿着并接触着引导部件5下落,该温度与熔融预聚物(即已经通过穿孔板4的孔的粗树脂A)的温度相同的,由此进行聚合以获得PTT树脂B。用取出泵9将获得的PTT树脂B从出口10中取出。穿孔板具有50毫米的厚度和9个孔,每个直径为1毫米,其中穿孔板的这些孔排列成当在穿孔板的表面上画出连接这些孔的线时会形成方格图案。引导部件是由不锈钢制成的线,该线具有圆形截面,而且直径为3毫米,长5米。引导部件5连到穿孔板4上,使得穿孔板4的每个孔都有一根引导部件5与其相连。使取出泵9运转,同时透过观察窗8观察聚合器内的聚合物,使得几乎没有聚合物聚集在聚合器底部。在上述聚合中,保留时间为60分钟。此处保留时间是指聚合器内的预聚物和聚合物的总量除以预聚物(粗树脂A)的进料速度计算得到的值。在温度为5℃的冷水中使获得的PTT树脂固化,然后将其切成粒料,每个重20毫克。聚合物粉末的量(粘附在粒料上的粉末)低至0.01重量%,而且这些粒料具有低至5%的结晶度。因此,获得的粒料坚韧而且易于处理。
关于穿孔板下表面的污染(这是因预聚物在刚刚低于穿孔板的孔的地方剧烈发泡引起的),污染程度很低。另一方面,在引导部件的较低部分观察到预聚物的适度发泡,这使得预聚物以球形沿着并接触着引导部件滚落。获得的PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。结果列示在表2中。
实施例2至7
在实施例2至7中,按照与实施例1中基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是聚合是在表2所示的条件下进行的。结果同样列示在表2中。
在实施例2至7中,关于穿孔板下表面的污染(这是因预聚物在刚刚低于穿孔板的孔的地方剧烈发泡引起的),污染程度很低。另一方面,在引导部件的较低部分观察到预聚物的适度发泡。
在实施例4中(其中使用通过固相聚合法制得的粗PTT树脂),当聚合器的内压力为20帕时,PTT树脂的聚合度变得如此高以致难以从聚合器1中取出最终PTT树脂。因此,在实施例4中,将聚合器1的内压力改为150帕,由此控制PTT树脂在聚合过程中的聚合度。此外,在实施例4中,通过从由固相聚合法制得的粗PTT树脂中去除环状二聚物,获得环状二聚物含量极低的PTT树脂,这样的树脂即使通过传统的固相聚合法也无法制得。
在实施例2至7中,获得的PTT树脂(粒料形式)具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。
对比例1至8
在对比例1至8中,按照与实施例1基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是聚合是在表2所示的条件下进行的。结果同样列示在表2中。
在对比例1中,用作预聚物的粗PTT树脂具有高至0.071的环状二聚物生成指数(E),因此无法获得具有低环状二聚物含量的PTT树脂。
在对比例2至3中,粗PTT树脂(预聚物)具有低至0.18至0.19dl/g的特性粘度,这样,在刚刚低于穿孔板的孔的地方就发生预聚物的剧烈发泡,由此明显污染穿孔板的下表面和聚合器的内壁。获得的PTT树脂含有大量的黑色杂质(热变质产物)。此外,获得的PTT具有低分子量,并因此无法制成粒料。
在对比例4中,使用制造例8中制得的粗PTT树脂作为预聚物,该粗PTT树脂具有低至0.92重量%的环状二聚物含量。然而,该预聚物具有高达0.071的环状二聚物生成指数(E),这样最终PTT树脂的环状二聚物含量不能降低,反而升高。
在对比例5中,通过使制造例12中制得的粗PTT树脂(预聚物)聚合来制造PTT树脂,其中在存在丁基锡酸作催化剂的情况下制造粗PTT树脂。获得的PTT树脂明显变色。此外,丁基锡酸有毒,因此不是优选的催化剂。
在对比例6中,加入聚合反应区的熔融预聚物的温度过高,这样预聚物在刚刚低于穿孔板的孔的地方发生剧烈的发泡,由此明显污染穿孔板的下表面和聚合器的内壁。获得的PTT树脂含有大量的黑色杂质(热变质产物)。此外,PTT树脂在加热时具有严重的变色问题。
在对比例7中,加入反应区的熔融预聚物的温度太低,使得预聚物固化,因此预聚物不能通过穿孔板的孔。
在对比例8中,在大气压下进行聚合器内的聚合。结果发现获得的PTT的聚合度和环状二聚物含量都没有改进。
实施例8
按照与实施例1基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是通过入口6向聚合器1中加入表2所示量的氮气。透过观察窗8观察到,在引导部件的几乎所有部分都发生适度的聚合物5’发泡(该发泡比实施例1剧烈),由此使得聚合物5,以球形沿着并接触着引导部件滚落。在此实施例中,获得的PTT树脂(粒料状)与实施例1中获得的PTT树脂相比具有高分子量和低环状二聚物含量。结果列示在表2中。
实施例9
按照与实施例1基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是喷嘴通过静态混合器连到将输送泵2与粗PTT树脂的入口3相连的管道上,并通过该喷嘴和静态混合器将表2所示量的氮气加入聚合器1中,其中使用静态混合器是为了提高聚合物5’对氮气的吸收。
在实施例9中,加入聚合器1的氮气的量与实施例8中相比极小;然而,与在实施例8中一样观察到适度的聚合物5’发泡,并且获得的PTT树脂具有与实施例8一样的高分子量和低环状二聚物含量。结果列示在表2中。
实施例10
使用图2所示的生产系统,每天连续制造130千克聚对苯二甲酸丙二醇酯(PTT)树脂,其中使用对苯二甲酸二甲酯和1,3-丙二醇作原材料。关于上述生产系统中使用的装置,酯交换反应器11、第一搅拌型聚合器15和第二搅拌型聚合器19各自是配有带桨型搅拌叶片的搅拌器(12、16或20)的立式搅拌型聚合器,而且位于第二搅拌型聚合器19下游的聚合器与实施例1中使用的聚合器1相同,只是引导部件变成类似攀援架的物体,其中线(各自直径为3毫米)互相三维连接,从垂直方向看间隔为30毫米,而从平行方向看间隔为50毫米。
具体而言,如下进行PTT树脂的制造。将对苯二甲酸二甲酯和1,3-丙二醇混合在一起(对苯二甲酸二甲酯/1,3-丙二醇的摩尔比=1/1.5),然后加入基于对苯二甲酸二甲酯重量的0.1重量%的四甲氧基钛,由此获得混合物(混合物C)。将获得的混合物C连续加入酯交换反应器11,并在表2和3所示的条件下进行聚合,由此获得聚对苯二甲酸丙二醇酯(PTT)树脂。在聚合过程中,在第一搅拌型聚合器15中以表3所示的量连续加入磷酸。此外,在生产系统的稳定运行过程中,从靠近入口3的采样喷嘴(未标示)取出粗聚对苯二甲酸丙二醇酯树脂(预聚物)A(在加入聚合器1之前),并评测取出的预聚物A的性能。结果列示在表2中。
将从聚合器出口取出的PTT树脂B在温度为5℃的冷水中固化,然后切成粒料,每个重20毫克。聚合物粉末的量(粘附在粒料上的粉末)低至0.01重量%,而且这些粒料具有低至5%的结晶度。因此,获得的粒料坚韧而且易于处理。
关于穿孔板下表面的污染(这是因预聚物在刚刚低于穿孔板的孔的地方剧烈发泡引起的),污染程度很低。另一方面,在引导部件的较低部分观察到聚合物5’的适度发泡,这使得聚合物5’以球形沿着并接触着引导部件滚落。
在上述条件下连续制造PTT树脂两周,发现在连续制造过程中该操作是稳定的。然后,检查将排气口7与真空泵相连的管道内部,有利的是,发现该管道内壁上沉积的环状二聚物的量很小,这样,沉积的环状二聚物不会造成管道堵塞。
在两周的连续制造过程中的某些时间点评测制成的PTT树脂的性能,发现稳定地获得了具有高分子量、窄分子量分布、低环状二聚物含量和优异颜色的PTT树脂。结果列示在表2中。
实施例11
按照与实施例10基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是在第一搅拌型聚合器15中连续加入表3所示量的磷酸。
在实施例11中,在与实施例10相同的条件下连续制造PTT树脂两周,发现在连续制造过程中该操作是稳定的。然后,检查将排气口7与真空泵相连的管道内部,有利的是,发现在该管道内壁上沉积的环状二聚物的量很小,这样,沉积的环状二聚物不会造成管道堵塞。
在两周的连续制造过程中的某些时间点评测制成的PTT树脂的性能,发现稳定地获得具有高分子量、窄分子量分布、低环状二聚物含量和优异颜色的PTT树脂。结果列示在表2中。
对比例9
将制造例1中获得的粗聚对苯二甲酸丙二醇酯(PTT)树脂粒料加入300升转鼓式固相聚合器,并在205℃下进行固相聚合72小时,同时使氮气以100升/小时的速度流入聚合器,由此获得PTT树脂。
分析获得的粒料,结果发现,制得的PTT树脂具有高分子量,低环状二聚物含量和良好的颜色。然而,该PTT树脂具有宽分子量分布。此外,通过固相聚合法获得的粒料不仅粘附在其上的聚合物粉末量高达1重量%,而且具有高达55%的结晶度,这样获得的粒料是易碎的。如果试图通过进料器或气动输送器转移获得的粒料,这些粒料会破碎,由此形成大量的聚合物粉末。
对比例10和11
在对比例10和11中,按照与实施例10基本相同的方式进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,只是在第一搅拌型聚合器15中连续加入表3所示量的磷酸。
在对比例10中,获得的PTT树脂具有高分子量、窄分子量分布和良好的颜色;但是,加入第一搅拌型聚合器15中的磷酸量太小,这样粗PTT树脂(预聚物)具有高达0.070的环状二聚物生成指数(E),因此,无法获得具有低环状二聚物含量的PTT树脂。此外,当在上述条件下连续制造PTT树脂两周时,发现将排气口7与真空泵相连的管道的内壁上沉积有环状二聚物,这会造成管道堵塞。因此,必须每5天从管道中去除沉积的环状二聚物。
在对比例11中,加入第一搅拌型聚合器15中的磷酸量太大,从而使聚合催化剂去活化。因此,获得的粗PTT树脂(预聚物)具有低至0.17dl/g的特性粘度,这样预聚物在刚刚低于穿孔板的孔的地方就产生剧烈发泡,由此明显污染穿孔板的下表面和聚合器的内壁。获得的PTT树脂含有大量黑色杂质(热变质产物)。此外,获得的PTT树脂具有低分子量并因此无法制成粒料。
实施例12
使用图3所示的装置,如下进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造。用挤出机在240℃下熔融挤出在制造例1中制得的粗聚对苯二甲酸丙二醇酯树脂A,获得熔融形态的粗树脂。用输出泵24以170克/分钟的速度将获得的熔融粗树脂通过入口25加入薄膜蒸发器23中。然后,其上以螺旋形连有叶片27的旋转轴26以300rpm的速度旋转,以便在薄膜蒸发器23的内壁上形成熔融粗树脂的薄膜28,同时进行薄膜28的表面更新,并通过在减压下(即在70帕的压力下)挥发以从薄膜28中去除环状二聚物,由此获得PTT树脂B。通过取出口30以170克/分钟(与粗树脂的进料速度相同)的速度从出口29取出获得的PTT树脂B。
薄膜蒸发器23是内径为15厘米且高度为70厘米的圆柱形装置。此外,薄膜蒸发器23在其顶部和底部有轴承,并且配有旋转轴26(其上连有三个叶片27,从轴26的顶部看,叶片以120°的间隔从旋转轴26中延伸出来),其中每个叶片27与薄膜蒸发器23的内壁之间的间隙为2毫米。
在PTT树脂B的制造中,保留时间为4.8分钟,而且薄膜蒸发器23中粗PTT树脂的体积与薄膜蒸发器23的内体积的比率为6.5%。此外,薄膜28的厚度为2毫米,而且薄膜28的树脂-气体接触面积为4.1平方厘米/克,这是将与薄膜蒸发器23内部的气相接触的薄膜28的面积除以薄膜蒸发器23中存在的粗树脂的重量计算得到的值,其中根据薄膜28的厚度计算薄膜28的面积和粗树脂的重量。
将从出口29取出的PTT树脂B在温度为5℃的冷水中固化,然后切成粒料,每个重20毫克。聚合物粉末的量(粘附在粒料上的粉末)低至0.01重量%,而且这些粒料具有低至5%的结晶度。因此,获得的粒料坚韧而且易于处理。
分析获得的粒料,结果发现获得的PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。结果列示在表4中。
实施例13至17
在实施例13至17中,按照与实施例12基本相同的方式进行环状二聚物的去除,只是环状二聚物的去除是在表4所示的条件下进行的。结果同样列示在表4中。
在实施例13至17中,分析获得的粒料,结果发现获得的PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。此外,在这些实施例中,在环状二聚物去除过程中,将排气口33与真空泵相连的管道内壁上几乎没有沉积的环状二聚物。
在实施例14中,从由固相聚合法制得的粗PTT树脂中,用薄膜蒸发器去除环状二聚物。由此,获得具有极低环状二聚物含量的PTT树脂,这是通过传统的固相聚合法无法获得的。
实施例18
按照与实施例12基本相同的方式进行环状二聚物的去除,只是通过惰性气体用的入口32向薄膜蒸发器23中加入表4所示量的氮气,由此获得粒料形式的PTT树脂。在该实施例中,获得的PTT树脂与实施例12中获得的PTT树脂相比具有高分子量和低环状二聚物含量。此外,可以肯定获得的PTT树脂具有窄分子量分布和优异的颜色。结果列示在表4中。
实施例19
结合使用图2所示的生产系统和图3所示的薄膜蒸发器进行聚对苯二甲酸丙二醇酯(PTT)树脂的制造,其中图2的生产系统的聚合器1的出口10通过温度为255℃的管道与薄膜蒸发器23的输送泵24相连,薄膜蒸发器位于聚合器1的下游。具体而言,使用图2所示的生产系统,在与实施例1中相同的条件下每天制造130千克聚对苯二甲酸丙二醇酯(PTT)树脂(熔融形态),并且用输送泵24将制成的熔融PTT树脂通过管道加入薄膜蒸发器23,并且在薄膜蒸发器23中将环状二聚物从PTT树脂中去除。
因此,在实施例19中,通过结合使用本发明的技术(即,使用特定的聚合催化剂通过引导-润湿下落法制造粗PTT树脂,并且使用薄膜蒸发器去除环状二聚物)来进行PTT树脂的制造。这种技术的结合能够仅通过使用熔融聚合法就制造出具有极低环状二聚物含量的PTT树脂(即使通过传统的固相聚合法也无法实现这一点)。
分析最终PTT树脂(即从薄膜蒸发器23中取出的PTT树脂),结果发现最终PTT树脂具有高分子量、窄分子量分布和优异的颜色。结果列示在表4中。
实施例20和21
在实施例20和21中,按照与实施例19基本相同的方式进行PTT树脂(粒料)的制造并从中去除环状二聚物,只是如表4所示改变薄膜蒸发器23中所配的旋转轴26(其上以螺旋形连有叶片27)的转速。通过提高该转速,获得环状二聚物含量进一步改进(降低)的PTT树脂。
更具体地,在实施例20和21中,分析获得的粒料,结果发现获得的PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。结果列示在表4中。
对比例12
按照与实施例12基本相同的方式进行环状二聚物的去除,只是使用制造例3中获得的粗PTT树脂(预聚物)。
该粗PTT树脂具有低至0.31dl/g的特性粘度,这样在薄膜蒸发器23中预聚物剧烈发泡,由此明显污染薄膜蒸发器23的内部。获得的PTT树脂含有大量黑色杂质(热变质产物)。此外,获得的PTT树脂具有低分子量并因此无法制成粒料。结果列示在表4中。
对比例13至15
按照与实施例12基本相同的方式进行环状二聚物的去除,只是采用表4所列的条件。结果列示在表4中。
在对比例13中,加入薄膜23中的熔融粗PTT树脂的温度太低,以致粗PTT树脂固化。因此,不可能形成粗PTT树脂的薄膜而且不可能从薄膜蒸发器23中取出PTT树脂。
在对比例14中,在高达3000帕的压力下进行环状二聚物的去除,这样PTT树脂的环状二聚物含量不能降至令人满意的程度。
在对比例15中,粗PTT树脂具有高达0.071的环状二聚物生成指数(E),这样PTT树脂的环状二聚物含量不能降至令人满意的程度。其原因被认为如下。当粗PTT树脂具有这样的高环状二聚物生成指数(E)时,在薄膜蒸发器23和取出PTT树脂的管道中高速生成环状二聚物,因此从薄膜蒸发器23中取出的PTT树脂含有大量的环状二聚物。此外,在对比例15中,大量的环状二聚物沉积在位于排气口33和真空泵之间的管道的内壁上。因此,据认为,如果长时间进行对比例15的操作,就必须去除沉积的环状二聚物。
实施例22
如下制造聚对苯二甲酸丙二醇酯(PTT)树脂。通过双螺杆挤出机(螺杆直径:30毫米φ,L/D=50.9)挤出在制造例1中制得的粗聚对苯二甲酸丙二醇酯(PTT)树脂(粒料形式),该挤出机含有两个排气口,以在其中提供两个减压区。具体而言,粗PTT树脂(预聚物)以3.5千克/小时的速度进入双螺杆挤出机,并以250℃(熔融预聚物的温度)熔融挤出,由此从粗PTT树脂中去除环状二聚物。两个减压区的压力各为1.3千帕。使用有色粒料评测熔融预聚物在两个减压区的停留时间,为2分钟。此外,发现挤出机中熔融预聚物的体积与挤出机内体积的比率为28%。此外,根据螺杆与挤出机内壁之间的空间的体积,计算树脂-气体接触面积(是指将与挤出机内部的气相接触的熔融聚合物的面积除以挤出机中存在的熔融聚合物的重量计算得到的值),为1.9平方厘米/克。对于所用挤出机,用高纯氮气密封粗树脂(粒料)用的进料斗和入口,并通过用耐热液态垫料涂覆来密封排气口部分。
将挤出的PTT树脂在5℃的冷水中固化,然后切成粒料,每个重20毫克。聚合物粉末的量(粘附在粒料上的粉末)低至0.01重量%,而且这些粒料具有低至5%的结晶度。因此,获得的粒料坚韧而且易于处理。
分析获得的PTT树脂粒料,并发现该PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。结果列示在表4中。
对比例16
按照与实施例22基本相同的方式进行环状二聚物的去除,只是将粗PTT树脂(预聚物)以10.0千克/小时的速度加入双螺杆挤出机,由此获得粒料形式的PTT树脂。预聚物(熔融形态)在两个减压区中的停留时间都是1.9分钟。此外,挤出机中熔融预聚物的体积与挤出机内体积的比率为50%。此外,根据螺杆与挤出机内壁之间的空间的体积,计算树脂-气体接触面积(是指将与挤出机内部的气相接触的熔融聚合物的面积除以挤出机中存在的熔融聚合物的重量计算得到的值),并发现其为1.5平方厘米/克。
分析获得的粒料,结果发现获得的PTT树脂的环状二聚物含量没有降至令人满意的程度。其原因尚不清楚,但是推测是由于熔融预聚物在挤出机中发泡并膨胀,这样,预聚物填充减压区,从而降低了环状二聚物的去除效率。
实施例23
如下制造聚对苯二甲酸丙二醇酯(PTT)树脂。将26克制造例1中制得的粗PTT树脂加入圆柱形高压釜。圆柱形高压釜具有10厘米的直径和10厘米的高度,并且配有旋转轴,该轴上连有刮刀形搅拌杆,该旋转轴从圆柱形高压釜的盖子上悬挂下来。此外,圆柱形高压釜上连有减压管。在250℃和减压下(即70帕的压力下)从粗PTT树脂中去除环状二聚物60分钟,同时以100rpm转动旋转轴,由此获得环状二聚物含量降低的PTT树脂。在环状二聚物去除过程中,为了防止氧气渗漏到高压釜中,将高压釜内部用高纯氮气吹扫10次。此外,使用耐热液态垫料在高压釜与盖子相连的部位密封高压釜。
在环状二聚物去除后,将高压釜中制得的聚合物(即,获得的具有降低的环状二聚物含量的PTT树脂)骤冷,并分析该聚合物。结果发现,获得的PTT树脂具有高分子量、窄分子量分布、低环状二聚物含量和优异的颜色。结果列示在表4中。
对比例17
按照与实施例23基本相同的方式进行环状二聚物的去除,只是使用157克在制造例1获得的粗PTT树脂。
分析获得的PTT树脂,结果发现获得的PTT的环状二聚物含量没有降至令人满意的程度。PTT树脂的环状二聚物含量不能降至令人满意的程度被认为是因为树脂-气体接触面积不够低。
实施例24
对上述制造例1、实施例1至4、11、12、15和21及对比例8、9和15中制得的聚对苯二甲酸丙二醇酯(PTT)树脂进行压模,以获得板形模制品(第一模制品),并评测第一模制品的油墨粘附性(通过上面第(8)条提到的方法进行模制和油墨粘附性的评测)。然后,将第一模制品压碎,获得用于再循环的聚合物碎片。对获得的聚合物碎片进行压模以获得另一板形模制品(第二模制品),并评测第二模制品的油墨粘附性(通过上面第(8)条提到的方法进行模制和油墨粘附性的评测)。
此外,测量上述每个模制品的环状二聚物含量。结果列示在表5中。
从表5明显看出,本发明的PTT树脂的每个模制品具有有利地低的环状二聚物含量,因为与通过固相聚合法制得的PTT树脂相比,本发明的粗PTT树脂在其模制过程中表现出有利地低的环状二聚物再生成速率。此外,当通过本发明的方法(其中通过挥发,即通过使用引导-润湿下落聚合器或薄膜蒸发器,从粗PTT树脂中去除环状二聚物)制造PTT树脂时,还可以从粗PTT树脂中去除环状二聚物以外的其它低分子量杂质。本发明PTT树脂的油墨粘附性得到极大提高,这被认为归因于本发明的PTT树脂的上述优异特征。
表1
催化剂 聚合法   特性粘度[η]   c.m.p·(℃)   环状二聚物含量(重量%) E值   分子量分布(Mw/Mn)
制造例1   Ti(OtBu)4,H3PO4 熔融聚合     0.65   230     2.62   0.005     2.2
制造例2   2-乙基己酸锡 熔融聚合     0.71   229     2.61   0.016     2.2
制造例3   未加入催化剂 熔融聚合     0.31   230     2.59   0.006     2.3
制造例4   Ti(OtBu)4 熔融聚合     0.72   229     2.61   0.071     2.2
制造例5   Ti(OtBu)4,H3PO4 熔融聚合     0.19   230     2.63   0.005     2.4
制造例6 Ti(OtBu)4,H3PO4 熔融聚合(短期) 1.03 230 0.98 0.005 3.0
制造例7 Ti(OtBu)4 熔融聚合(短期) 0.18 230 2.62   无法评测 2.4
制造例8   Ti(OtBu)4 固相聚合     1.02   230     0.92   0.071     2.9
制造例9   Ti(OtBu)4,苯基膦酸 熔融聚合     0.67   229     2.64   0.027     2.2
制造例10   Ti(OtBu)4,苯基膦酸的1,3-丙二醇溶液 熔融聚合     0.55   230     2.61   0.023     2.3
制造例11   Ti(OtBu)4,2,5-二羧基苯基膦酸 熔融聚合     0.69   230     2.65   0.031     2.3
制造例12   丁酸锡 熔融聚合     0.72   228     2.66   0.025     2.5
制造例13   Ti(OtBu)4(制造例4中用量的1/2) 熔融聚合     0.68   229     2.62   0.060     2.2
制造例14   Ti(OtBu)4(制造例4中用量1/20) 熔融聚合     0.44   230     2.61   0.027     2.2
注释:“c.m.p.”是指粗PTT树脂的晶体熔点。
表2(待续)
粗PTT树脂的制造 粗PTT树脂的性质(预聚物)     聚合条件 聚合器中粗PTT树脂的状态
特性粘度[η] E值 聚合器(引导部件)   温度(℃)   压力(帕)   氮气(毫克/克) 发泡 污染
实施例1   制造例1     0.65     0.005     线材   255   20     0     ○     ○
实施例2   制造例2     0.71     0.016     线材   255   20     0     ○     ○
实施例3   制造例3     0.31     0.006     线材   255   20     0     ○     ○
实施例4   制造例6     1.03     0.005     线材   250   150     0     ○     ○
实施例5   制造例9     0.67     0.027     线材   255   20     0     ○     ○
实施例6   制造例10     0.55     0.023     线材   255   20     0     ○     ○
实施例7   制造例11     0.69     0.031     线材   255   20     0     ○     ○
实施例8   实施例1     0.65     0.005     线材   255   30     6     ○     ○
实施例9   实施例1     0.65     0.005     线材   255   30     0.5     ○     ○
实施例10   连续聚合     0.62     0.043     格架   255   30     6     ○     ○
实施例11   连续聚合     0.43     0.006     格架   255   30     6     ○     ○
对比例1   制造例4     0.72     0.071     线材   255   20     0     ○     ○
对比例2   制造例5     0.19     0.005     线材   255   20     0     ×     ×
对比例3   制造例7     0.18     无法评测     线材   255   20     0     ×     ×
对比例4   制造例8     1.02     0.071     线材   250   150     0     ○     ○
对比例5   制造例12     0.72     0.025     线材   255   20     0     ○     ○
对比例6   制造例1     0.65     0.005     线材   295   20     0     ×     ×
对比例7   制造例1     0.65     0.005     线材   230   20     0     -     -
对比例8   制造例1     0.65     0.005     线材   255 大气压     0     ○     ○
对比例9   制造例1     0.65     0.005     固相聚合   205   20     0     -     -
对比例10   连续聚合     0.66     0.070     格架   255   30     6     ○     ○
对比例11   连续聚合     0.17     0.005     格架   255   30     6     ×     ×
表2(接上)
    最终PTT树脂的性能
特性粘度[η] 分子量分布(Mw/Mn) 环状二聚物含量(重量%)        颜色 结晶度(%)
    b*     L*
  实施例1     1.10     2.2     1.50     1     88     5
  实施例2     1.21     2.3     1.68     5     90     6
  实施例3     0.74     2.4     1.43     2     89     7
  实施例4     1.43     2.4     0.56     3     89     4
  实施例5     1.23     2.3     1.71     2     90     5
  实施例6     1.16     2.3     1.69     1     89     5
  实施例7     1.18     2.3     1.74     2     87     5
  实施例8     1.27     2.2     1.32     2     88     5
  实施例9     1.25     2.2     1.36     1     87     5
  实施例10     1.32     2.3     1.86     2     88     5
  实施例11     1.27     2.2     1.37     1     90     5
  对比例1     1.18     2.3     2.45     7     88     5
  对比例2     0.35     3.1     1.36     -     -     -
  对比例3     0.31     3.2     2.48     -     -     -
  对比例4     1.45     2.4     2.34     10     86     4
  对比例5     1.22     2.5     1.76     32     85     3
  对比例6     0.68     2.7     2.05     31     85     3
  对比例7     -     -     -     -     -     -
  对比例8     0.63     2.3     2.48     1     90     5
  对比例9     0.78     2.0     1.01     2     88     55
  对比例10     1.37     2.4     2.38     6     87     5
  对比例11     0.32     3.3     1.40     -     -     -
表3
    酯化反应器     第一搅拌型聚合器     第二搅拌型聚合器
温度(℃) 保留时间(min) 真空度(Pa) 温度(℃) 保留时间(min) 真空度(Pa) 特性粘度(dl/g) 磷酸加入量P/Ti原子比)   温度(℃) 保留时间(min) 真空度(Pa)
实施例10 230 200 大气压 250 60 4000 0.24 0.7 255 60 1000
实施例11   230     200 大气压     250     60   4000     0.19     1  255     60     1000
对比例10 230 200 大气压 250 60 4000 0.29 0.05 255 60 1000
对比例11   230     200 大气压     250     60   4000     0.10     11  255     60     1000
表4(待续)
粗PTT树脂的制造       粗PTT树脂的特性     薄膜蒸发器的使用条件
特性粘度[η] E值 蒸发器 被占据的内部空间(%) 树脂-气体接触面积(平方厘米/克)    转速(rpm)   进料温度(℃)   压力(帕)   氮气(毫克/克)
实施例12   制造例1   0.65  0.005   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例13   制造例2   0.71  0.016   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例14   制造例6   1.03  0.005   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例15   制造例13   0.68  0.060   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例16   制造例9   0.67  0.027   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例17   制造例11   0.69  0.031   薄膜蒸发器     6.5     4.1     300     240     70     0
实施例18   制造例1   0.65  0.005   薄膜蒸发器     6.5     4.1     300     240     70     6
实施例19   实施例11   1.27  0.005   薄膜蒸发器     6.5     4.1     300     255     70     0
实施例20   实施例11   1.27  0.005   薄膜蒸发器     6.5     4.1     50     255     70     0
实施例21   实施例11   1.27  0.005   薄膜蒸发器     6.5     4.1     500     255     70     0
实施例22 制造例1 0.65 0.005   配有排气口的挤出机 28 1.9 300 250 1300 0
实施例23   制造例1   0.65  0.005   圆柱形高压釜     3.8     3.0     100     250     70     0
对比例12   制造例3   0.31  0.006   薄膜蒸发器     6.5     4.1     300     240     70     0
对比例13   制造例1     0.65  0.005   薄膜蒸发器     6.5     4.1     300     220   -     -
对比例14   制造例1     0.65  0.005   薄膜蒸发器     6.5     4.1     300     240   3000     0
对比例15   制造例4     0.72  0.071   薄膜蒸发器     6.5     4.1     300     240   70     0
对比例16 制造例1 0.65 0.005   配有排气口的挤出机 50.0 1.5 300 250 1300 0
对比例17   制造例1     0.65  0.005   圆柱形高压釜     23.0     0.5     100     250   70     0
表4(接上)
                                           聚合物性质
特性粘度[η] 分子量分布(Mw/Mn) 环状二聚物含量(重量%)     颜色 结晶度(%)
    b*     L*
    实施例12     0.70     2.2     1.34     1     88     5
    实施例13     0.73     2.2     1.43     4     90     6
    实施例14     1.03     2.3     0.42     2     89     4
    实施例15     0.072     2.3     1.69     9     86     4
    实施例16     0.70     2.3     1.51     1     90     5
    实施例17     0.71     2.3     1.54     2     87     5
    实施例18     0.75     2.2     0.78     1     88     5
    实施例19     1.12     2.2     0.68     1     90     5
    实施例20     1.18     2.2     0.88     1     90     5
    实施例21     0.98     2.3     0.63     1     90     5
    实施例22     0.65     2.3     1.88     3     88     5
    实施例23     0.71     2.3     1.65     4     87     5
    对比例12     0.30     2.4     1.32     -     -     -
    对比例13     -     -     -     -     -     -
    对比例14     0.64     2.2     2.21     1     88     5
    对比例15     0.66     2.3     2.05     7     88     5
    对比例16     0.66     2.3     2.43     3     88     5
    对比例17     0.65     2.5     2.15     8     88     5
 表5
                                        实施例               对比例
制造例1 实施例1 实施例2 实施例3 实施例4 实施例11 实施例12 实施例15 实施例21 制造例8 对比例9 对比例15
                                                   <第一压模产品的性能>
    环状二聚物含量(重量%)     2.62     1.51     1.70     1.43     0.56     13.8     13.5     1.72     0.64     1.60     1.63     2.63
    油墨粘附性(A)     92     98     97     98     100     99     100     97     100     95     94     91
    油墨粘附性(B)     71     98     97     98     100     98     99     95     100     88     85     70
                                                        <第二压模产品的性能>
    环状二聚物含量(重量%)     2.62     1.54     1.74     1.46     0.59     1.42     1.39     1.79     0.68     1.82     1.94     2.62
    油墨粘附性(A)     83     98     97     98     100     98     100     96     100     88     85     83
    油墨粘附性(B)     66     97     95     97     99     97     99     93     100     72     68     65
工业应用性
通过使用本发明的聚对苯二甲酸丙二醇酯树脂,可以以工业规模稳定地制造优异的成型制品。具体而言,使用本发明的聚对苯二甲酸丙二醇酯树脂制得的成型制品具有高强度和优异的颜色。此外,该成型制品不存在环状二聚物渗到成型制品表面的情况,因此成型制品适合用涂料组合物或粘合剂涂覆并表现出优异的粘合性能。此外,通过本发明的方法,还可以以工业规模和高生产率稳定地制造优异的聚对苯二甲酸丙二醇酯树脂。

Claims (8)

1.一种聚对苯二甲酸丙二醇酯树脂,其含有:
60至100摩尔%的(a)对苯二甲酸丙二醇酯重复单元,和
0至40摩尔%的(b)至少一种由以下单体单元组成的组的单体单元:由不同于用于形成所述对苯二甲酸丙二醇酯重复单元的单体并可以与至少一种用于形成所述对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元,
(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,
所述聚对苯二甲酸丙二醇酯树脂具有下列特性(A)至(D):
(A)0.6至4dl/g的特性粘度[η];
(B)Mw/Mn比率为2至2.7的分子量分布,其中Mw代表所述聚对苯二甲酸丙二醇酯树脂的重均分子量,Mn代表所述聚对苯二甲酸丙二醇酯树脂的数均分子量;
(C)不超过2重量%的环状二聚物含量,所述环状二聚物如下式(1)所示:
(D)70至100的心理测量明度L-值和-5至25的心理测量色度b*-值。
2.按照权利要求1的聚对苯二甲酸丙二醇酯树脂,其为粒料形式,所述粒料具有40%或更低的结晶度(Xc),其中所述结晶度(Xc)如下式(2)所定义:
Xc(%)={ρc×(ρsa)}/{ρs×(ρca)}×100        (2)
其中ρa为1.300克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的无定形密度,ρc为1.431克/立方厘米,这是对苯二甲酸丙二醇酯均聚物的晶体密度,ρs代表所述粒料的密度(克/立方厘米)。
3.权利要求1或2的聚对苯二甲酸丙二醇酯树脂的制造方法,包括:(1)提供熔融形态的粗对苯二甲酸丙二醇酯树脂,该粗对苯二甲酸丙二醇酯树脂含有:
60至100摩尔%的(a)对苯二甲酸丙二醇酯重复单元,和
0至40摩尔%的(b)至少一种由以下单体单元组成的组的单体单元:由不同于用于形成所述对苯二甲酸丙二醇酯重复单元的单体并可以与至少一种用于形成所述对苯二甲酸丙二醇酯重复单元的单体共聚的共聚单体获得的单体单元,
(a)单体单元和(b)单体单元的总摩尔量为100摩尔%,
所述粗对苯二甲酸丙二醇酯树脂进一步含有下式(1)所示的环状二聚物:
Figure A2004800017900003C1
所述粗对苯二甲酸丙二醇酯树脂具有0.2至4dl/g的特性粘度[η]和低于0.066的环状二聚物生成指数(E),所述环状二聚物生成指数(E)如下式(3)所定义:
              E=W/M                         (3)
其中M代表所述粗对苯二甲酸丙二醇酯树脂的末端羟基含量,用基于对苯二甲酸丙二醇酯单元总摩尔量的摩尔%来表示,W代表所述环状二聚物的再生成速率,是指对于熔融形态的粗聚对苯二甲酸丙二醇酯树脂的样品,在氮气气氛中于260℃测得的粗对苯二甲酸丙二醇酯树脂中每分钟环状二聚物含量(重量%)的增加,表示为绝对百分数值,其中所述熔融样品是如下获得的:将环状二聚物含量降低的粗聚对苯二甲酸丙二醇酯树脂样品熔化,该环状二聚物含量降低的样品具有降至0.1重量%或更低的环状二聚物含量;和
(2)通过减压挥发从所述熔融形态的粗聚对苯二甲酸丙二醇酯树脂中去除占所述粗聚对苯二甲酸丙二醇酯树脂重量的0.5重量%或更多的所述环状二聚物。
4.按照权利要求3的方法,其中所述粗聚对苯二甲酸丙二醇酯树脂具有低于0.033的环状二聚物生成指数(E)。
5.按照权利要求3或4的方法,其中在所述步骤(1)中提供的所述熔融形态的粗对苯二甲酸丙二醇酯树脂具有0.2至2dl/g的特性粘度[η],而且在所述步骤(2)中所述环状二聚物的去除是通过下述方法进行的:该方法包括将所述熔融形态的粗对苯二甲酸丙二醇酯树脂连续加入具有穿孔板和至少一个与该穿孔板结合的引导部件的引导-润湿下落聚合器,其中在等于或高于所述粗对苯二甲酸丙二醇酯树脂的结晶熔点且不高于290℃的温度下在减压下使所述粗对苯二甲酸丙二醇酯树脂沿着并接触着该聚合器中配备的所述至少一个引导部件的表面下落,从而在所述粗对苯二甲酸丙二醇酯树脂的下落过程中实现所述粗对苯二甲酸丙二醇酯树脂的聚合和所述环状二聚物的挥发,同时连续从所述聚合器中取出制成的对苯二甲酸丙二醇酯树脂。
6.按照权利要求3或4的方法,其中在所述步骤(1)中提供的所述熔融形态的粗对苯二甲酸丙二醇酯树脂具有0.6至4dl/g的特性粘度[η],而且所述步骤(2)中所述环状二聚物的去除是利用薄膜蒸发器在下述条件下进行的:
(a)所述薄膜蒸发器中的压力是2.6千帕或更低的减压,
(b)在所述薄膜蒸发器的内壁上形成熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜,同时进行所述粗聚对苯二甲酸丙二醇酯树脂的表面更新,
(c)所述熔融形态的粗聚对苯二甲酸丙二醇酯树脂的薄膜具有1平方厘米/克或更高的树脂-气体接触面积,这是用与薄膜蒸发器内部的气相接触的所述粗聚对苯二甲酸丙二醇酯树脂的面积除以所述薄膜蒸发器中存在的粗聚对苯二甲酸丙二醇酯树脂的重量计算得到的值,和
(d)所述粗聚对苯二甲酸丙二醇酯树脂占据所述薄膜蒸发器不超过40%的内部空间。
7.按照权利要求3至6中任何一项的方法,其中通过在存在下述催化剂的情况下进行的缩聚反应制造所述粗对苯二甲酸丙二醇酯树脂,所述催化剂含有至少一种钛化合物和至少一种选自由磷酸、磷酸酯、亚磷酸、亚磷酸酯、下式(4)所示的磷化合物组成的组的磷化合物:
Figure A2004800017900005C1
其中m是1或2的整数,且
每一R独立地代表
Figure A2004800017900005C2
其中n是0至3的整数,
其中所述至少一种钛化合物和至少一种磷化合物以各种可使磷/钛原子比为0.01至10的量使用。
8.按照权利要求3至7中任何一项的方法,其中通过在含有至少一种不具有碳-锡键的锡化合物的催化剂的存在下进行的缩聚反应制造所述粗对苯二甲酸丙二醇酯树脂。
CNB200480001790XA 2003-01-22 2004-01-22 聚对苯二甲酸丙二醇酯树脂及其制造方法 Expired - Fee Related CN1324064C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP013902/2003 2003-01-22
JP2003013902 2003-01-22

Publications (2)

Publication Number Publication Date
CN1723230A true CN1723230A (zh) 2006-01-18
CN1324064C CN1324064C (zh) 2007-07-04

Family

ID=32767373

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480001790XA Expired - Fee Related CN1324064C (zh) 2003-01-22 2004-01-22 聚对苯二甲酸丙二醇酯树脂及其制造方法

Country Status (7)

Country Link
US (1) US7759450B2 (zh)
EP (1) EP1571171A4 (zh)
JP (1) JP4063844B2 (zh)
KR (1) KR100618004B1 (zh)
CN (1) CN1324064C (zh)
TW (1) TWI255821B (zh)
WO (1) WO2004065451A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131054A1 (zh) * 2010-04-22 2011-10-27 江苏中鲈科技发展股份有限公司 一种高收缩率聚对苯二甲酸丙二醇酯的制备方法
CN102421820A (zh) * 2009-03-03 2012-04-18 纳幕尔杜邦公司 低聚物减少的聚(对苯二甲酸丙二醇酯)粒料和测定低聚物减少度的方法
CN104774320A (zh) * 2015-03-27 2015-07-15 中国昆仑工程公司 复合催化剂及聚对苯二甲酸丙二醇酯制备方法
CN107400228A (zh) * 2017-07-21 2017-11-28 重庆华峰化工有限公司 一种生产聚酯多元醇的装备系统及其工作方法
CN108394060A (zh) * 2018-03-12 2018-08-14 常州晟润新材料科技有限公司 半连续珠粒发泡设备
CN109952334A (zh) * 2016-11-08 2019-06-28 伍德依文达菲瑟有限责任公司 用于通过薄膜蒸发器从粘性产物去除挥发性化合物的方法和聚丙交酯树脂
CN110272535A (zh) * 2013-04-26 2019-09-24 希乐克公司 将羟基羧酸加工成聚合物
CN110984932A (zh) * 2019-11-20 2020-04-10 中国海洋石油集团有限公司 一种调剖剂注入装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04011430A (es) * 2002-06-13 2005-02-14 Asahi Chemical Ind Resina de tereftalato de politrimetileno.
US7196159B2 (en) 2004-10-04 2007-03-27 Shell Oil Company Process for producing polytrimethylene terephthalate
EP1829912A4 (en) 2004-11-30 2012-07-25 Asahi Kasei Chemicals Corp METHOD AND DEVICE FOR PRODUCING A FORM BODY
US8148489B2 (en) * 2006-03-24 2012-04-03 E. I. Du Pont De Nemours And Company Thermoplastic resins containing PBT units, having reduced organic carbon emissions
JP5061930B2 (ja) * 2007-03-12 2012-10-31 東レ株式会社 ポリエステルの製造方法
WO2010077905A1 (en) * 2008-12-17 2010-07-08 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) polymer blends that have reduced whitening
WO2010077937A1 (en) * 2008-12-17 2010-07-08 E. I. Du Pont De Nemours And Company Reduction of whitening of poly(trimethylene terephthalate) parts by solvent exposure
US20100152411A1 (en) * 2008-12-17 2010-06-17 E.I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) with reduced whitening
JP5906778B2 (ja) * 2012-02-08 2016-04-20 東レ株式会社 ポリブチレンテレフタレートの製造方法および製造装置
KR102411222B1 (ko) 2015-03-02 2022-06-20 에보닉 오퍼레이션스 게엠베하 낮은 voc 및 흐림 값을 갖는 접착제
TR201905236T4 (tr) 2015-03-02 2019-05-21 Evonik Degussa Gmbh Düşük VOC ve buğulanma değerlerine sahip yapıştırıcılar.
US9738752B2 (en) * 2015-04-24 2017-08-22 Xerox Corporation Copolymers for 3D printing
CN111269404B (zh) * 2020-02-28 2022-04-01 浙江恒澜科技有限公司 一种适用于聚对苯二甲酸丙二醇酯合成的复合催化剂及聚对苯二甲酸丙二醇酯的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317569A (en) 1976-08-02 1978-02-17 Mitsubishi Chem Ind Ltd Apparatus for treating material of high viscosity
US5340909A (en) * 1991-12-18 1994-08-23 Hoechst Celanese Corporation Poly(1,3-propylene terephthalate)
JP3309502B2 (ja) * 1993-07-12 2002-07-29 大日本インキ化学工業株式会社 生分解性ポリエステル系ポリマーの連続製造法
US5599900A (en) * 1993-10-18 1997-02-04 E. I. Du Pont De Nemours And Company Polyesters production process
JP3483349B2 (ja) 1995-05-16 2004-01-06 日本エステル株式会社 熱可塑性ポリエステル樹脂
JP3685577B2 (ja) * 1997-02-10 2005-08-17 旭化成ケミカルズ株式会社 ポリ乳酸の製造方法
WO1999011709A1 (fr) * 1997-09-03 1999-03-11 Asahi Kasei Kogyo Kabushiki Kaisha Composition a base de resine polyester
JP3861493B2 (ja) * 1999-01-18 2006-12-20 富士ゼロックス株式会社 溶媒除去装置、溶媒除去システム、溶媒除去方法、及び静電荷像現像用トナ―の製造方法
EP1046662B1 (en) 1999-04-22 2003-03-12 Zimmer Aktiengesellschaft Process of producing polytrimethylene terephthalate (PTT)
WO2001014450A1 (en) * 1999-08-25 2001-03-01 E.I. Du Pont De Nemours And Company Preparation of poly(trimethylene terephthalate) with low level of di(1,3-propylene glycol)
JP4282205B2 (ja) 2000-03-30 2009-06-17 帝人ファイバー株式会社 ポリエステルの製造方法
MY127766A (en) * 2000-04-21 2006-12-29 Shell Int Research Optimum dipropylene glycol content polytrimethylene terephthalate compositions
US6576774B2 (en) * 2000-07-20 2003-06-10 Shell Oil Company Process for recycling polytrimethylene terephthalate cyclic dimer
CN1272357C (zh) 2001-02-07 2006-08-30 旭化成株式会社 聚对苯二甲酸1,3-丙二醇酯及其制备方法
JP2003012780A (ja) 2001-04-27 2003-01-15 Asahi Kasei Corp ポリトリメチレンテレフタレート重合体
DE10125677B4 (de) * 2001-05-25 2013-05-16 Lurgi Zimmer Gmbh Verfahren und Vorrichtung zur Herstellung von Polytrimethylenterephthalat
JP2003012730A (ja) * 2001-06-27 2003-01-15 Nippon Shokubai Co Ltd ビニルエーテル基含有重合体の製造方法および該重合体の取り扱い方法
TWI302154B (zh) * 2001-07-05 2008-10-21 Teijin Ltd
KR100544250B1 (ko) * 2001-10-11 2006-01-23 아사히 가세이 셍이 가부시키가이샤 폴리트리메틸렌 테레프탈레이트 펠릿 및 그의 제조 방법
US6657044B1 (en) * 2001-10-30 2003-12-02 Shell Oil Company Process for making polytrimethylene terephthalate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421820A (zh) * 2009-03-03 2012-04-18 纳幕尔杜邦公司 低聚物减少的聚(对苯二甲酸丙二醇酯)粒料和测定低聚物减少度的方法
WO2011131054A1 (zh) * 2010-04-22 2011-10-27 江苏中鲈科技发展股份有限公司 一种高收缩率聚对苯二甲酸丙二醇酯的制备方法
CN110272535A (zh) * 2013-04-26 2019-09-24 希乐克公司 将羟基羧酸加工成聚合物
CN104774320A (zh) * 2015-03-27 2015-07-15 中国昆仑工程公司 复合催化剂及聚对苯二甲酸丙二醇酯制备方法
CN104774320B (zh) * 2015-03-27 2018-12-14 中国昆仑工程有限公司 复合催化剂及聚对苯二甲酸丙二醇酯制备方法
CN109952334A (zh) * 2016-11-08 2019-06-28 伍德依文达菲瑟有限责任公司 用于通过薄膜蒸发器从粘性产物去除挥发性化合物的方法和聚丙交酯树脂
US11447604B2 (en) 2016-11-08 2022-09-20 Uhde Inventa-Fischer Gmbh Method for the separation of volatile compounds from viscous products by means of a thin-film evaporator, and polylactide resin
CN109952334B (zh) * 2016-11-08 2023-02-21 伍德依文达菲瑟有限责任公司 用于通过薄膜蒸发器从粘性产物去除挥发性化合物的方法和聚丙交酯树脂
CN107400228A (zh) * 2017-07-21 2017-11-28 重庆华峰化工有限公司 一种生产聚酯多元醇的装备系统及其工作方法
CN108394060A (zh) * 2018-03-12 2018-08-14 常州晟润新材料科技有限公司 半连续珠粒发泡设备
CN108394060B (zh) * 2018-03-12 2023-10-13 常州晟润新材料科技有限公司 半连续珠粒发泡设备
CN110984932A (zh) * 2019-11-20 2020-04-10 中国海洋石油集团有限公司 一种调剖剂注入装置

Also Published As

Publication number Publication date
TW200424231A (en) 2004-11-16
TWI255821B (en) 2006-06-01
US7759450B2 (en) 2010-07-20
KR100618004B1 (ko) 2006-09-01
CN1324064C (zh) 2007-07-04
EP1571171A4 (en) 2006-03-08
EP1571171A1 (en) 2005-09-07
KR20050091068A (ko) 2005-09-14
JPWO2004065451A1 (ja) 2006-05-18
JP4063844B2 (ja) 2008-03-19
WO2004065451A1 (ja) 2004-08-05
US20060128905A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
CN1324064C (zh) 聚对苯二甲酸丙二醇酯树脂及其制造方法
CN101068848A (zh) 聚酯树脂、其成型体及其制造方法
CN1867606A (zh) 生产聚对苯二甲酸烷基二醇酯的方法、生产聚对苯二甲酸烷基二醇酯成型制品的方法以及聚对苯二甲酸烷基二醇酯成型制品
CN1109703C (zh) 聚酯的制备方法
CN1646598A (zh) 非晶性聚酯切片及其制造方法、以及非晶性聚酯切片的保存方法
CN1280331C (zh) 使用管式反应器的聚酯工艺
CN1271111C (zh) 聚酯树脂及由它制成的成形品,以及聚酯树脂的制造方法
CN1235933C (zh) 聚酯嵌段共聚物的制备方法、聚酯嵌段共聚体组合物及其制备方法
CN1308374C (zh) 聚酰胺的连续制备方法
CN1194026C (zh) 聚酯聚合反应催化剂和通过使用它而制成的聚酯和聚酯生产方法
CN1511168A (zh) 聚酯聚合催化剂、利用其制得的聚酯和聚酯的制造方法
CN1077903C (zh) 聚碳酸酯的制备方法
CN1090642C (zh) 含有杂单元的聚碳酸酯及其制造方法
CN1667016A (zh) 用含锑化合物催化的高特性粘度熔融相聚酯聚合物
CN1308368C (zh) 聚对苯二甲酸亚丙基酯树脂
CN1388810A (zh) 制备聚酯的催化剂、聚酯的制备方法和聚酯
CN1630674A (zh) 聚酯树脂及聚酯制备用催化剂,用此催化剂制备聚酯树脂的方法,用此催化剂获得的聚酯树脂及含有此聚酯树脂的中空模制容器
CN1576292A (zh) 聚酯的制造方法、聚酯组合物和聚酯纤维
CN101044014A (zh) 低熔点聚酯聚合物
CN1902251A (zh) 聚对苯二甲酸乙二醇酯树脂以及聚酯树脂成型体的制造方法
CN101068854A (zh) 成型体的制造方法和制造装置
CN101068855A (zh) 缩聚聚合物及其成型体的制造方法和制造装置
CN1930216A (zh) 聚对苯二甲酸丁二醇酯颗粒、其复合制品和成型品及它们的制造方法
CN1177826C (zh) 1,3-二丁基-2-氯-咪唑啉鎓盐酸盐
CN1753930A (zh) 聚对苯二甲酸丁二酯及其制造方法以及其组合物和膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070704

Termination date: 20140122