CN1685610A - 压电振子、使用其的滤波器和压电振子的调整方法 - Google Patents

压电振子、使用其的滤波器和压电振子的调整方法 Download PDF

Info

Publication number
CN1685610A
CN1685610A CNA2003801001497A CN200380100149A CN1685610A CN 1685610 A CN1685610 A CN 1685610A CN A2003801001497 A CNA2003801001497 A CN A2003801001497A CN 200380100149 A CN200380100149 A CN 200380100149A CN 1685610 A CN1685610 A CN 1685610A
Authority
CN
China
Prior art keywords
mentioned
piezoelectric
thickness
dielectric film
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801001497A
Other languages
English (en)
Other versions
CN1685610B (zh
Inventor
佐佐木幸纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1685610A publication Critical patent/CN1685610A/zh
Application granted granted Critical
Publication of CN1685610B publication Critical patent/CN1685610B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02062Details relating to the vibration mode
    • H03H9/0207Details relating to the vibration mode the vibration mode being harmonic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02133Means for compensation or elimination of undesirable effects of stress
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/588Membranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明的压电振子的特征在于,是将氧化硅膜(3)作为电介质膜而设置的层叠结构。通过采取上述结构,减小了由于在压电板(1)的两主面上存在电介质膜的缘故而起因于长期的应力缓和的差的对压电板(1)或电介质膜起作用的内部应力的差,可尽可能减小翘曲。具有可减小因压电振子发生翘曲引起的压电振子的共振频率的变化的效果。

Description

压电振子、使用其的滤波器和压电振子的调整方法
技术领域
本发明涉及压电振子、使用了该压电振子的滤波器和压电振子的调整方法。
背景技术
作为使用了在固体中传播的波、即体波的压电振动元件,有作为各种电子机器等的时钟源使用的压电振子及在通信装置的频率抽出等中使用的压电滤波器。使用这些压电振动元件的频率区域近年来趋于高频化。作为主振动,大多利用了厚度滑移振动或厚度纵振动等的厚度振动,此外,因为该主振动的共振频率与压电板的厚度成反比例,故通过用薄膜材料等形成压电板,试验了在高频下的利用。在Marc-Alexandre Dubois和PaulMurant著的“氮化铝薄膜应用于压电传感器和微波滤波器的性质”,AppliedPhysics Letters,1999年5月17日,pp,3032~3034中公开了现有的压电振动元件。如图9中所示,现有的压电振动元件901使用氮化铝薄膜91作为压电板,成为在其表面背面上形成了激励用电极92、在一个主面一侧形成了由氮化硅膜93与氧化硅膜94的层叠膜构成的电介质膜的结构。此外,作成了在硅基板95上形成了压电振子整体的结构,以便容易处理操作非常薄的压电振子。
在上述现有例中示出的结构中,考虑了压电体薄膜与电介质薄膜的弹性系数和尺寸形状,以使在成膜后的初期中压电振子的共振频率的温度系数大致为零。但是,由于在现有例中虽然考虑了各薄膜的应力缓和但没有进行对于长期可靠性的考虑,故随着时间的流逝,压电体薄膜与电介质膜的应力缓和的差成为原因,作为压电振子整体的尺寸形状的变化(翘曲)与初期形状相比变大了。存在该翘曲导致共振频率的变化那样的课题。
发明内容
本发明是鉴于上述课题而进行的,其目的在于提供不发生因翘曲导致的共振频率的变化的压电振子、使用了该压电振子的滤波器和压电振子的调整方法。
为了解决该课题,本发明在压电板的极化方向朝向厚度方向的压电振子中,构成为在上述压电板的两主面上设置电极,进而在上述压电板的两主面上在夹住上述压电板呈大致点对称的位置上层叠大致呈相似形且厚度大致相同的电介质膜,上述压电板以厚度纵振动为主振动。利用该结构,由于在压电板的两主面上存在电介质膜,因此起因于长期的应力缓和的差的对压电板或电介质膜起作用的内部应力的差变小,可减小翘曲。于是,可减小因压电振子发生翘曲引起的压电振子的共振频率的变化。
附图说明
图1是示出本发明的压电振子的一实施方式的剖面图。
图2是示出电介质膜与压电板的厚度比与电机械耦合系数的关系的图。
图3是示出本发明的压电振子的另一实施方式的剖面图。
图4是示出使用了压电振子的梯型滤波器的电等效电路的图。
图5是示出本发明的梯型滤波器的实施方式的立体图。
图6是一般的2重模式压电滤波器的剖面图。
图7是一般的2重模式压电滤波器的剖面图。
图8是示出本发明的2重模式压电滤波器的一实施方式的剖面图。
图9是示出现有的压电振子的剖面图。
具体实施方式
使用图1~图8说明本发明的实施方式。
(实施方式1)
图1是说明使用氮化铝作为压电材料、极化方向朝向压电板厚度方向的、以厚度纵振动基本波为主振动的压电振子101的剖面图。压电振子101由用氮化铝构成的压电板1、相对于压电板1的两主面地设置的激励用电极2和作为电介质膜在压电板1的两主面上形成的氧化硅膜3构成。
用氮化铝构成的压电板1的厚度为1μm。此外,由于氧化硅膜3的厚度在上下都为0.4μm,而且,在压电板1的两主面上以成为大致相同的面积的方式来形成,故可减小起因于长期的应力缓和的差的对压电板1或氧化硅膜起作用的内部应力的差,可尽可能减小翘曲。即,可减小因压电振子发生翘曲引起的压电振子101的共振频率的变化。
此外,由于作为氧化硅膜3的材料使用的氧化硅具有负的频率温度系数,另一方面,作为压电板1的材料的氮化铝具有正的频率温度系数,故通过形成层叠了这些材料的结构,可大致抵消频率温度系数,可使频率温度系数变得良好。此外,使用氧化硅膜与氮化硅膜的层叠膜作为氧化硅膜3的材料以代替氧化硅膜,可得到同样的效果。
在本实施方式1中,使用了基本波作为主振动,如果与使用了2倍波的情况相比,则可使共振频率对于压电板1或氧化硅膜(电介质膜)3的厚度离散性的变化量大体为二分之一。于是,可高精度地使共振频率或电机械耦合系数与目标值相一致。
压电振子101的共振频率主要由压电板1的厚度或激励用电极2的厚度、然后是氧化硅膜3的厚度来决定。再者,已知作为电特性的重要的项目之一的电机械耦合系数也随这些厚度而变化。因此,对于使用氮化铝作为压电材料、压电板1的极化方向朝向厚度方向、作成了在压电板1的两主面上将相同的厚度的氧化硅膜3作为电介质膜设置的层叠结构的压电振子101来说,在图2的曲线图中示出使压电板1的一个主面一侧的氧化硅膜3的厚度与另一个主面一侧的氧化硅膜3的厚度的和ts与压电板1的厚度tp之比ts/tp变化了的情况的电机械耦合系数的变化。在图2中示出了厚度纵振动基本波和2倍波的情况的各自的电机械耦合系数。
从图2的模拟结果可知,在基本波或2倍波的任一种情况下,只要ts/tp处于0.7以上至2.0以下的范围内,电机械耦合系数的值就处于上述范围内的最小值的25%以内的变化量内。即,基本波的耦合系数在上述的范围内稳定于9.5~11.5%,二倍波的耦合系数在上述的范围内也稳定于12.0~14.0%。电机械耦合系数以这种方式稳定了的特点,成为在将压电振子用于电压控制振荡器(VCO)的情况或将多个压电振子组合起来构成压电滤波器的情况等中可得到稳定的特性的优点。如果ts/tp比2.0大,则由于对于厚度纵振动的质量负载太大,减小了也成为振动的容易程度的指标的机械品质系数,故是不实用的。
在使压电振子的共振频率与目标值相一致的频率调整工序中,在氮化铝的单方的主面一侧形成的氧化硅膜上或是再附加氧化硅膜、或是除去已形成的氧化硅膜来形成规定的厚度的氧化硅膜3。在本实施方式1的情况下,因为在压电板1的主面的表面一侧的氧化硅膜3的厚度与背面一侧的氧化硅膜3的厚度的和ts是0.8μm,由氮化铝构成的压电板1的厚度tp是1μm,故ts与tp的比ts/tp为0.8。因而,由于电机械耦合系数的变化处于小的ts/tp的范围(0.7以上至2.0以下),故在调整共振频率时,电机械耦合系数几乎不变化。即,根据本发明的实施方式1,可实现电机械耦合系数几乎不变化的频率调整工序。
在本实施方式1中,使用氮化铝作为压电材料进行了说明,但即使使用PZT或ZnO等的其它的压电材料,也可得到同样的效果。此外,说明了在构成压电振子101的一个主面一侧的氧化硅膜3的氧化硅膜上通过附加形成氧化硅膜来调整共振频率的方法,但也可对于在压电振子的另一个主面一侧或主面的两侧的氧化硅膜通过附加或除去氧化硅膜来调整共振频率。
(实施方式2)
图3是说明使用氮化铝作为压电材料、极化方向朝向压电板厚度方向的、以厚度纵振动二倍波为主振动的压电振子301的剖面图。压电振子301由用氮化铝构成的压电板1、在压电板1的两主面上相对地设置的激励用电极2、在压电板1的主面的背面一侧形成的作为第一电介质膜的氧化硅膜3和在压电板1的主面的表面一侧形成的作为第二电介质膜的氮化硅膜4构成,由硅构成的支撑基板5支撑压电振子301。
用氮化铝构成的压电板1的厚度为10μm。由于氧化硅膜3的厚度定为4μm,氮化硅膜4的厚度定为5μm,故是在压电板1的主面两侧存在大致相同的厚度的电介质膜的结构。此外,构成了下述结构:氧化硅膜3的面积与氮化硅膜4的面积大致为等同,即,处于0.8~1.2倍的范围内。因此,可减小起因于长期的应力缓和的差的对压电板1或电介质膜起作用的内部应力的差,可尽可能减小翘曲。即,可减小因压电振子301发生翘曲引起的压电振子的共振频率的变化。
此外,对于在本实施方式2中示出的压电振子来说,在由硅构成的支撑基板5上注入氮,在设置了氮化硅膜4的基础上,作成了使用氮化铝的压电振子301,之后为了将压电振子301的振动部作成中空结构,也可附加从背面起用化学蚀刻等除去支撑基板5的工序。此时,由于能使氮化硅膜4具有起到中止支撑基板5的刻蚀的作用,故可使压电振子301的作成工序变得简便。
此外,在本实施方式中,通过在主振动中使用二倍波,与使用基本波的情况相比,可得到大致2倍的高的共振频率。
如以上已说明的那样,在打算得到高的共振频率的情况下可使用二倍波,在共振频率的调整的容易程度为优先的情况下,可选择使用基本波。
(实施方式3)
已知通过组合多个压电振子可作成只能使特定的频带的信号通过的带通滤波器。一般来说,大多使用梯型滤波器,在该梯型滤波器中,将振子的共振频率或反共振频率作为滤波器特性的极,将共振频率与反共振频率之间作为通过区域来使用。在图4中示出使用2个压电振子11构成梯型滤波器的情况的电等效电路。
图5示出使用2个使用氮化铝作为压电材料、极化方向朝向压电板厚度方向的、以厚度纵振动基本波为主振动的压电振子11、如图4的等效电路那样连接而得到的梯型滤波器501。梯型滤波器51由压电振子11、输入用外部端子12、输出用外部端子13、接地用外部端子14和金属细线15构成。在梯型滤波器51中使用的2个压电振子11都是在压电板的两主面上设置了相同的厚度的电介质膜的层叠结构,由于呈现压电振子的共振频率或电机械耦合系数为稳定的特性,故可得到带宽稳定的滤波器特性。
(实施方式4)
作为梯型滤波器以外的滤波器,有在一片压电板上配置多个压电振子并通过使这些振动耦合来制作带通滤波器的多重模式滤波器。将这样的滤波器称为MCF(单片晶体滤波器),是积极地利用了被称为a_0模式或s_1模式等的不协调的谐波的振动的滤波器。在此,说明使用了s_0模式和a_0模式的2重模式滤波器。
在图6中示出通常的2重模式滤波器601的结构的一例。由于在压电板1的一个主面一侧隔开微小的间隔设置输入用电极21和输出用电极22,在压电板1的另一个主面一侧设置接地用电极23,故生成作为对称模式的s_0模式和作为斜对称模式的a_0模式,实现了带通滤波器。图6的接地用电极23是一例,而也可如图7中所示,分别设置与输入用电极21对置的接地用电极231和与输出用电极22对置的接地用电极232。
在图8中示出使用氮化铝作为压电材料、以厚度纵振动基本波为主振动的本发明的2重模式压电滤波器801。压电滤波器801由用氮化铝构成的压电板1、输入用电极21、输出用电极22、接地用电极23、在压电板1的主面的背面一侧形成的氮化硅膜24和在压电板1的主面的表面一侧形成的氧化硅膜25构成,由硅构成的支撑基板26支撑压电滤波器801。压电滤波器801的结构是在压电板1的两主面上设置了大致相同的厚度且大致同等的面积的电介质膜(氮化硅膜24和氧化硅膜25)的层叠结构,由于呈现二个振动模式的共振频率为稳定的特性,故可得到带宽稳定的滤波器特性。
                    产业上利用的可能性
如上所述,按照本发明,在压电板的极化方向朝向厚度方向的压电振子中,由于构成为在上述压电板的两主面上设置激励用电极,进而在上述压电板的两主面上在夹住上述压电板呈大致点对称的位置上层叠大致呈相似形且厚度大致相同的电介质膜,上述压电板以厚度纵振动为主振动,故减小了起因于长期的应力缓和的差的对压电板或电介质膜起作用的内部应力的差,可尽可能减小翘曲。于是,可得到能减小因压电振子发生翘曲引起的压电振子的共振频率的变化那样的有利的效果。

Claims (14)

1.一种压电振子,其特征在于,
由下述部分构成:
具有第一面和第二面、极化方向是厚度方向的压电板;
覆盖上述第一面的第一电极;
覆盖上述第二面的第二电极;
覆盖上述第一电极的第一电介质膜;以及
覆盖上述第二电极的第二电介质膜,
上述压电板以厚度纵振动为主振动,
上述第一电介质膜和上述第二电介质膜的面积大致相同并具有大致相同的厚度。
2.如权利要求1中所述的压电振子,其特征在于,
上述压电板由氮化铝构成。
3.如权利要求1中所述的压电振子,其特征在于,
上述第一电介质膜或上述第二电介质膜由氧化硅构成。
4.如权利要求1中所述的压电振子,其特征在于,
上述第一电介质膜或上述第二电介质膜由氮化硅构成。
5.如权利要求1中所述的压电振子,其特征在于,
第一或第二电介质膜中的至少一方由氧化硅和氮化硅的层叠膜构成。
6.如权利要求1中所述的压电振子,其特征在于,
上述主振动是厚度纵振动的基本波。
7.如权利要求1中所述的压电振子,其特征在于,
压电板的主振动是厚度纵振动的2倍波。
8.如权利要求1中所述的压电振子,其特征在于,
上述第一电介质膜的厚度与上述第二电介质膜的厚度的和相对于上述压电板的厚度之比为0.7以上2.0以下。
9.一种压电滤波器,其特征在于,具有压电振子,所述压电振子由下述部分构成:
具有第一面和第二面、极化方向是厚度方向的压电板;
覆盖上述第一面的第一电极;
覆盖上述第二面的第二电极;
覆盖上述第一电极的第一电介质膜;以及
覆盖上述第二电极的第二电介质膜,
上述压电板以厚度纵振动为主振动,
上述第一电介质膜和上述第二电介质膜的面积大致相同并具有大致相同的厚度。
10.如权利要求9中所述的压电滤波器,其特征在于,
是至少组合了2个上述压电振子的梯型滤波器。
11.如权利要求10中所述的压电滤波器,其特征在于,
使用上述第一电介质膜的厚度与上述第二电介质膜的厚度的和相对于上述压电板的厚度之比为0.7以上2.0以下的上述压电振子。
12.如权利要求9中所述的压电滤波器,其特征在于,
是在一片所述压电板上构成了多个上述压电振子的2重模式滤波器。
13.如权利要求12中所述的2重模式滤波器,其特征在于,
上述第一电极被分割为输入用电极和输出用电极,上述第二电极设为接地用电极。
14.一种压电振子的调整方法,其特征在于,
上述压电振子由下述部分构成:
具有第一面和第二面、极化方向是厚度方向的压电板;
覆盖上述第一面的第一电极;
覆盖上述第二面的第二电极;
覆盖上述电极的第一电介质膜;以及
覆盖上述第二电极的第二电介质,
上述压电板以厚度纵振动为主振动,
通过使上述第一电介质膜和上述第二电介质膜中的至少一方的厚度变化来调整上述第一电介质和上述第二电介质的面积大致相同并具有大致相同的厚度的压电振子的共振频率。
CN2003801001497A 2002-10-28 2003-10-24 压电振子、使用其的滤波器和压电振子的调整方法 Expired - Fee Related CN1685610B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP312444/2002 2002-10-28
JP2002312444A JP2004147246A (ja) 2002-10-28 2002-10-28 圧電振動子、それを用いたフィルタ及び圧電振動子の調整方法
PCT/JP2003/013633 WO2004038914A1 (ja) 2002-10-28 2003-10-24 圧電振動子、それを用いたフィルタ及び圧電振動子の調整方法

Publications (2)

Publication Number Publication Date
CN1685610A true CN1685610A (zh) 2005-10-19
CN1685610B CN1685610B (zh) 2010-10-06

Family

ID=32171126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003801001497A Expired - Fee Related CN1685610B (zh) 2002-10-28 2003-10-24 压电振子、使用其的滤波器和压电振子的调整方法

Country Status (7)

Country Link
US (1) US7414349B2 (zh)
EP (1) EP1557945B1 (zh)
JP (1) JP2004147246A (zh)
KR (1) KR100669088B1 (zh)
CN (1) CN1685610B (zh)
DE (1) DE60333774D1 (zh)
WO (1) WO2004038914A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874709A (zh) * 2014-01-17 2016-08-17 株式会社村田制作所 压电振子以及压电振动装置
CN106797207A (zh) * 2014-12-17 2017-05-31 株式会社村田制作所 压电振子以及压电振动装置
CN107026632A (zh) * 2015-12-25 2017-08-08 日本电波工业株式会社 压电振动片及压电装置
CN110753975A (zh) * 2017-06-14 2020-02-04 斯派德科技术公司 可连接至电气装置的电源线或信号线的附加单元或线缆
CN111079231A (zh) * 2019-11-13 2020-04-28 合肥工业大学 一种直线超声波电机多物理场综合设计方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275292B2 (en) 2003-03-07 2007-10-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Method for fabricating an acoustical resonator on a substrate
US7242270B2 (en) 2003-10-30 2007-07-10 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Decoupled stacked bulk acoustic resonator-based band-pass filter
US7332985B2 (en) * 2003-10-30 2008-02-19 Avago Technologies Wireless Ip (Singapore) Pte Ltd. Cavity-less film bulk acoustic resonator (FBAR) devices
US7388454B2 (en) 2004-10-01 2008-06-17 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using alternating frame structure
US8981876B2 (en) 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
US7202560B2 (en) 2004-12-15 2007-04-10 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Wafer bonding of micro-electro mechanical systems to active circuitry
US7791434B2 (en) 2004-12-22 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch and having a trench in the piezoelectric
US7369013B2 (en) 2005-04-06 2008-05-06 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using filled recessed region
JP4550658B2 (ja) * 2005-04-28 2010-09-22 富士通メディアデバイス株式会社 圧電薄膜共振器およびフィルタ
US7868522B2 (en) 2005-09-09 2011-01-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Adjusted frequency temperature coefficient resonator
US7737807B2 (en) 2005-10-18 2010-06-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating series-connected decoupled stacked bulk acoustic resonators
US7675390B2 (en) 2005-10-18 2010-03-09 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating single decoupled stacked bulk acoustic resonator
US7463499B2 (en) 2005-10-31 2008-12-09 Avago Technologies General Ip (Singapore) Pte Ltd. AC-DC power converter
US7746677B2 (en) * 2006-03-09 2010-06-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. AC-DC converter circuit and power supply
US20070210748A1 (en) * 2006-03-09 2007-09-13 Mark Unkrich Power supply and electronic device having integrated power supply
US7479685B2 (en) 2006-03-10 2009-01-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Electronic device on substrate with cavity and mitigated parasitic leakage path
US7851970B2 (en) * 2006-12-22 2010-12-14 The Charles Stark Draper Laboratory, Inc. Structures for crystal packaging including flexible membranes
JP2008206139A (ja) 2007-01-25 2008-09-04 Matsushita Electric Ind Co Ltd 二重モード圧電フィルタ、その製造方法、およびそれを用いた高周波回路部品および通信機器
US7791435B2 (en) 2007-09-28 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Single stack coupled resonators having differential output
JP5054491B2 (ja) * 2007-11-21 2012-10-24 パナソニック株式会社 圧電振動子およびその製造方法
US7855618B2 (en) 2008-04-30 2010-12-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator electrical impedance transformers
US7732977B2 (en) 2008-04-30 2010-06-08 Avago Technologies Wireless Ip (Singapore) Transceiver circuit for film bulk acoustic resonator (FBAR) transducers
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8248185B2 (en) 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8484823B2 (en) * 2009-08-28 2013-07-16 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for mounting a crystal
US8193877B2 (en) 2009-11-30 2012-06-05 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Duplexer with negative phase shifting circuit
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9083302B2 (en) 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9048812B2 (en) 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US8922302B2 (en) 2011-08-24 2014-12-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator formed on a pedestal
JP6110182B2 (ja) * 2013-03-29 2017-04-05 日本碍子株式会社 圧電/電歪素子
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) * 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
TWI638182B (zh) * 2013-09-13 2018-10-11 美商康寧公司 具有保留光學性質的防刮物件
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
JP6387289B2 (ja) * 2014-09-29 2018-09-05 新科實業有限公司SAE Magnetics(H.K.)Ltd. 薄膜圧電体素子およびその製造方法並びにそれを有するヘッドジンバルアセンブリ、ハードディスク装置、インクジェットヘッド、可変焦点レンズおよびセンサ
KR102591067B1 (ko) 2015-09-14 2023-10-18 코닝 인코포레이티드 높은 광 투과율 및 내-스크래치성 반사-방지 제품
US20210211115A1 (en) * 2017-11-14 2021-07-08 Anhui Yunta Electronic Technologies Co., Ltd. Piezoelectric resonator and manufacturing method of piezoelectric resonator
WO2020037042A1 (en) 2018-08-17 2020-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829211A (ja) 1981-08-13 1983-02-21 Nec Corp 薄膜圧電振動子
JPS58121815A (ja) 1982-01-14 1983-07-20 Murata Mfg Co Ltd 圧電共振子
JPS58137317A (ja) * 1982-02-09 1983-08-15 Nec Corp 圧電薄膜複合振動子
JPS58137318A (ja) 1982-02-10 1983-08-15 Nec Corp 薄膜圧電振動子
JPS60189307A (ja) * 1984-03-09 1985-09-26 Toshiba Corp 圧電薄膜共振器およびその製造方法
JPS6281807A (ja) 1985-10-05 1987-04-15 Toshiba Corp 圧電薄膜共振子
JP2657530B2 (ja) * 1988-09-09 1997-09-24 日本無線株式会社 薄膜共振子の製造方法
JPH06103823B2 (ja) 1989-07-19 1994-12-14 株式会社村田製作所 圧電共振子
US5692279A (en) * 1995-08-17 1997-12-02 Motorola Method of making a monolithic thin film resonator lattice filter
JP2000040931A (ja) 1998-07-23 2000-02-08 Matsushita Electric Ind Co Ltd 圧電共振子、圧電共振子の製造方法および圧電共振子の周波数調整方法
JP2000209063A (ja) * 1998-11-12 2000-07-28 Mitsubishi Electric Corp 薄膜圧電素子
JP3088407B2 (ja) * 1999-02-02 2000-09-18 日本電気アイシーマイコンシステム株式会社 インサーキットエミュレータおよびインサーキットエミュレーション方法
JP2001168674A (ja) 1999-12-09 2001-06-22 Murata Mfg Co Ltd 圧電共振子及び電子機器
EP1170862B1 (en) * 2000-06-23 2012-10-10 Murata Manufacturing Co., Ltd. Piezoelectric resonator and piezoelectric filter using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874709A (zh) * 2014-01-17 2016-08-17 株式会社村田制作所 压电振子以及压电振动装置
CN105874709B (zh) * 2014-01-17 2018-11-16 株式会社村田制作所 压电振子以及压电振动装置
CN106797207A (zh) * 2014-12-17 2017-05-31 株式会社村田制作所 压电振子以及压电振动装置
CN107026632A (zh) * 2015-12-25 2017-08-08 日本电波工业株式会社 压电振动片及压电装置
CN110753975A (zh) * 2017-06-14 2020-02-04 斯派德科技术公司 可连接至电气装置的电源线或信号线的附加单元或线缆
CN111079231A (zh) * 2019-11-13 2020-04-28 合肥工业大学 一种直线超声波电机多物理场综合设计方法
CN111079231B (zh) * 2019-11-13 2024-06-04 合肥工业大学 一种直线超声波电机多物理场综合设计方法

Also Published As

Publication number Publication date
US20050012569A1 (en) 2005-01-20
EP1557945B1 (en) 2010-08-11
DE60333774D1 (de) 2010-09-23
KR20040101214A (ko) 2004-12-02
JP2004147246A (ja) 2004-05-20
EP1557945A4 (en) 2005-07-27
KR100669088B1 (ko) 2007-01-15
CN1685610B (zh) 2010-10-06
EP1557945A1 (en) 2005-07-27
WO2004038914A1 (ja) 2004-05-06
US7414349B2 (en) 2008-08-19

Similar Documents

Publication Publication Date Title
CN1685610A (zh) 压电振子、使用其的滤波器和压电振子的调整方法
US7345410B2 (en) Temperature compensation of film bulk acoustic resonator devices
US7834524B2 (en) Micro-electromechanical devices having variable capacitors therein that compensate for temperature-induced frequency drift in acoustic resonators
EP1489740A3 (en) Electronic component and method for manufacturing the same
EP1385265A3 (en) Piezoelectric filter, duplexer, composite piezoelectric resonator, communication device and method for adjusting frequency of piezoelectric filter
US7320164B2 (en) Method of manufacturing an electronic component
JP2002043646A (ja) 薄膜、薄膜の製造方法および電子部品
JPH02312310A (ja) 圧電部品及びその製造方法
JP4055885B2 (ja) 圧電薄膜振動素子、及びこれを用いたフィルタ
JPH07297661A (ja) 圧電共振子及び圧電共振子の共振周波数調整方法
CN1156967C (zh) 层叠压电元件
US6759792B2 (en) Polarization method of a multi-layered piezoelectric body
US3566166A (en) Mechanical resonator for use in an integrated semiconductor circuit
CN1172437C (zh) 利用面积翘曲振动模式的三个端子滤波器
JP2002009579A (ja) 圧電共振子およびそれを用いた圧電フィルタ
JP2022511074A (ja) 薄膜sawデバイス
RU2397607C1 (ru) Сегнетоэлектрический акустический резонатор и способ перестройки его резонансной частоты
JP2002246871A (ja) 圧電振動子、この圧電振動子を用いた梯子型フィルタおよび2重モード圧電フィルタ
JP2003008391A (ja) 厚み縦圧電共振子及びその製造方法
JP2003158442A (ja) 圧電薄膜振動素子、及びこれを用いたフィルタ
JP2000278068A (ja) 弾性表面波装置の周波数調整方法
JPH05183379A (ja) 超音波遅延素子
WO2023155022A1 (en) Ultra-high frequency mems resonators with first and second order temperature-induced frequency drift compensation
JPH11284478A (ja) 圧電共振子およびラダー型フィルタ
GB2475639A (en) Piezoelectric vibrator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101006

Termination date: 20141024

EXPY Termination of patent right or utility model