CN1571790A - 化学气相淀积用的改良的前体 - Google Patents

化学气相淀积用的改良的前体 Download PDF

Info

Publication number
CN1571790A
CN1571790A CNA028204379A CN02820437A CN1571790A CN 1571790 A CN1571790 A CN 1571790A CN A028204379 A CNA028204379 A CN A028204379A CN 02820437 A CN02820437 A CN 02820437A CN 1571790 A CN1571790 A CN 1571790A
Authority
CN
China
Prior art keywords
precursor
och
mmp
ome
oet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028204379A
Other languages
English (en)
Other versions
CN100379745C (zh
Inventor
A·C·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Aldrich Co LLC
Original Assignee
Epichem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0125724A external-priority patent/GB0125724D0/en
Priority claimed from GB0129080A external-priority patent/GB0129080D0/en
Application filed by Epichem Ltd filed Critical Epichem Ltd
Publication of CN1571790A publication Critical patent/CN1571790A/zh
Application granted granted Critical
Publication of CN100379745C publication Critical patent/CN100379745C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

用于MOCVD技术的具有通式为OCR1 (R2)CH2X的配体的Ti,Zr,Hf和La的前体,其中R1是H或者一种烷基,R2是一种任意的取代烷基,X选自OR和NR2,其中R是一种烷基或者一种取代烷基。

Description

化学气相淀积用的改良的前体
本发明涉及化学气相淀积用的前体。本发明尤其,但不专门,涉及采用化学气相淀积生长氧化锆(ZrO2),氧化铪(HfO2),氧化锆/氧化硅(ZSO)和氧化铪/氧化硅(HSO)的前体。
ZrO2和HfO2以及相关硅酸盐ZSO和HSO的薄膜具有重要的技术应用。尤其的,它们具有高的介电常数,并且与硅接触时是相对稳定的,使得它们成为在集成Si电路的下一代MOSFET器件中代替SiO2作栅极介电层的首要候选。金属有机化学气相淀积(MOCVD)是一种具有吸引力的用来淀积这些物质的技术,提供了大面积生长,好的组成控制和膜均匀性的潜力,并且当器件尺寸小于2μm时具有优异的保形逐步覆盖性,这对于微电子应用是尤其重要的。
成功的MOCVD工艺的一个根本要求是前体的实用性,其要具有适合气相输运的合适的物理性能和适宜的淀积活性。在蒸发和分解之间必须要有一个充分的温度窗口,对于大多数的电子应用来讲,氧化物的淀积被限制在500℃的温度范围内,以防止下面的硅电路和金属互连的退化。
现有的Zr和Hf的CVD前体存在大量的问题,例如,卤化物ZrCl4和HfCl4是挥发性低的固体,这使得氧化物的淀积需要的衬底温度在800℃和800℃以上。金属β-二酮化物,例如[Zr(thd)4](thd=2,2,6,6-四甲基庚烷-3,5-二酮)为了生长氧化物也需要高的衬底温度(>600℃)。这些与电子工业的要求是不相容的。金属醇盐是更有吸引力的CVD前体,因为它们允许较低的淀积温度。然而,多数的[Zr(OR)4]和[Hf(OR)4]的配合物由于Zr(IV)和Hf(IV)有将它们的配位层扩展到六,七,八的强烈趋势而是挥发性有限的二聚物或者多聚物。为了抑制低聚反应,使用了空间要求高的配体,例如叔丁氧基,[Zr(OBut)4](D.C.Bradley,Chem.Rev.1989,89,1317)和[HF(OBut)4](S.Pakswer & P Skoug,in “Thindielectric oxide films made by oxygen assisted pyrolysis ofalkoxides”,The Electrochem.Soc.,Los Angeles,CA,USA,1970,619-636)已经成功的用于ZrO2和HfO2的CVD中。然而,这些单核前体包含未饱和的四配位金属中心,并且叔丁氧基配体在存在痕量的水时会发生催化分解反应。这使得它们对空气和湿气是高度敏感的,在CVD反应器中容易发生提前反应。它们的这种活性还会导致其存放寿命的极大缩短,特别是在溶液基的液体注射CVD应用中。
本发明的一个目的是提供适合用于化学气相淀积技术的稳定的挥发性的Ti,Zr和Hf的前体。
已经惊奇的发现,起给电子作用的烷氧基配体1-甲氧基-2-甲基-2-丙氧基[OCMe2CH2OMe,mmp]能够有效的抑制在Zr和Hf烷氧基配合物中的低聚反应,并且能够提高这些配合物的环境稳定性。
因此,本发明提供的用于MOCVD技术中的Ti,Zr,Hf和La的前体具有一种通式为OCR1(R2)CH2X的配体,其中R1是H或者一种烷基,R2是一种可选被取代的烷基,X选自OR和NR2,其中R是一种烷基或者一种取代烷基。
依据本发明的第一个优选实施方案的前体具有如下通式:
               M(L)x[OCR1(R2)CH2X]4-x其中M是一种选自Ti,Zr和Hf中的金属,L是一种配体,x是0-3之间的数,R1,R2和X按如上定义。
优选的配体L是一种具有1-4个碳原子的烷氧基,其中最优选的是叔丁氧基(OBut),尽管可以使用其它的基团,例如异丙氧基(OPri)。
优选的OCR1(R2)CH2X式子形式的配体是1-甲氧基-2-甲基-2-丙氧基(mmp),但其它的有给电子作用的烷氧基配体用于本发明中也能够起到所希望的在Zr,Hf和Ti的烷氧基化合物中抑制低聚反应的作用。这些包括,但不限于OCH(Me)CH2OMe,OCEt2CH2OMe,OCH(But)CH2OEt,OC(But)2CH2OEt,OC(Pri)2CH2OEt,OCH(But)CH2NEt2,OC(Pri)2CH2OC2H4OMe和OC(But)(CH2OPri)2
本发明进一步提供一种制造用于MOCVD技术的Ti,Zr和Hf前体的方法,包括使mmpH与相应的金属烷氧基化合物,或者金属烷基酰胺化物按合适的摩尔比发生反应。
通过按适当的摩尔比将mmpH加入到Zr(OBut)4和Hf(OBut)4中,已经合成了新的烷氧基配合物Zr(OBut)2(mmp)2,Zr(mmp)4,Hf(OBut)2(mmp)2和Hf(mmp)4。这些配合物具有适合于MOCVD的高的蒸汽压,并且与Zr(OR)4化合物相比,对空气和湿气的活性低的多,这里R是一种烷基,这使得它们易于处理并用到MOCVD中。这些新的Zr和Hf的配合物的降低了的空气敏感性源于[Zr(OBut)4]和[Hf(OBut)4]中的高湿气敏感的叔丁氧基被mmp配体所代替,mmp配体对水解的敏感度低的多。通过增加中心Zr或Hf原子的配位数,可以进一步提高这些配合物对水解的稳定性。
依据本发明的第二个优选的实施方案,本发明可以扩展到其它的金属,这些金属具有大的原子半径和高的正电荷,例如镧,此时优选的前体具有如下通式:
                La[OCR1(R2)CH2X]3其中R1是H或者一种烷基,R2是一种可选被取代的烷基,X选自OR和NR2,其中R是一种烷基或者一种取代烷基。
对于本发明的这一优选的实施方案,优选的配体是1-甲氧基-2-甲基-2-丙氧基[OCMe2CH2OMe],尽管可以使用其它的能够起到给电子作用的烷氧基配体。这些可以包括但不限于OCH(Me)CH2OMe,OCEt2CH2OMe,OCH(But)CH2OEt,OC(But)2CH2OEt,OC(Pri)2CH2OEt,OCH(But)CH2NEt2,OC(Pri)2CH2OC2H4OMe和OC(But)(CH2OPri)2
本发明还依据第二个优选的实施方案提供一种制造前体的优选方法,包括使mmpH与La{N(SiMe3)2}3按适当的摩尔比发生反应。
依据本发明的前体可以用来淀积单一的或者混和的氧化物层或者膜,采用传统的MOCVD时,将前体装在一个金属有机扩散器(metalorganicbubbler)中,或者采用液体注射MOCVD将前体溶解在一种合适的惰性有机溶剂中,然后用加热蒸发器蒸发成气相。这些前体也适用于通过其它的化学气相淀积技术来淀积氧化锆,氧化铪和氧化钛膜,例如原子层淀积(ALD)。
这些前体可以用于ZrO2,HfO2和TiO2,La2O3的MOCVD,并可以与其它的包含氧化锆,氧化铪和氧化镧的复氧化物,比如ZSO,HSO和La-硅酸盐的MOCVD的前体结合。
这些前体还可以结合用于复氧化物的MOCVD中,例子包括将Bi(mmp)3/Ti(OPri)2(mmp)2或者Bi(mmp)3/Ti(mmp)4结合用于铋-钛酸盐的MOCVD中。
现在,结合附图对本发明作进一步的描述,其中:
图1是M(OBut)2(mmp)2(M=Zr或Hf)的设想结构图;
图2是具有相似结构的Hf(mmp)4和Zr(mmp)4的分子结构图;以及
图3是通过液体注射MOCVD采用Zr(OBut)2(mmp)2或Hf(OBut)2(mmp)2生长的ZrO2和HfO2膜的激光拉曼谱。
现在通过下面的实施例对本发明作进一步的描述。
实施例1
Zr(OBut)2(mmp)2的制备
将2.8ml(2.69g,7.0mmol)Zr(OBut)4溶解在己烷(约40ml)中,逐滴加入mmpH(1.6ml,1.44g,13.9mmol),将该混和物加热回流,并进一步持续搅拌2小时。将此溶液冷却到室温,并在减压下通过蒸发去除挥发物。产物从己烷中重结晶出来,为白色的结晶固体。
M.pt.:96-101℃(未修正)
微量分析:计算C:48.71,H:9.10。发现C:46.32,H:8.77%
1H NMR:(400MHz,d8-tol)1.19(s,12H,OC(CH3)2CH2OCH3),1.37(s,18H,OC(CH3)3),3.23(s,4H,OC(CH3)2CH2OCH3),3.40(s,6H,OC(CH3)2CH2OCH3).
13C NMR:34.1(OC(CH3)2CH2OCH3),38.5(OC(CH3)3),65.4(OC(CH3)2CH2OCH3),78.6(OC(CH3)2CH2OCH3 and OC(CH3)3),90.5(OC(CH3)2CH2OCH3).
IR:(υcm-1,Nujol,NaCl)3588(w),3442(w),2725(m),2360(w),1356(s),1277(m),1227(m),1206(s),1177(s),1115(s),1080(s),1012(s),974(s),936(s),801(s),782(s),595(s).
Zr(OBut)2(mmp)2的设想结构如附图中的图1所示。
实施例2
Zr(mmp)4的制备
将2.0g(5.2mmol)Zr(OPri)4·PriOH溶解在己烷(约40ml)中。逐滴加入mmpH(2.6ml,2.35g,22.5mmol,将此混和物加热回流并持续搅拌2小时。将此混和物冷却到室温,并在减压下通过蒸发去除挥发物。得到的产物为白色的粘性油。(产量:2.4g,94%)。
Zr(mmp)4也可以从相应的锆烷基酰胺配合物Zr(NR2)4中合成出来。例如,通过将mmpH(6.9g,65.8mmol)逐滴加入到搅动的[Zr(NEt2)4](5.0g,13.2mmol)的己烷(50cm3)溶液中。将此混和物在回流下煮沸2小时,然后冷却到室温,在真空中除去挥发物,得到产物(产量6.25g,94%)。
微量分析:计算C:47.67,H:8.82发现:C:47.80,H:8.79%.
1H NMR:(400MHz,d8-tol):1.21(s,OC(CH3)2CH2OCH3),3.16(s,OC(CH3)2CH2OCH3),3.27(s,OC(CH3)2CH2OCH3)
13C NMR:(100MHz,d8-tol):32.1(OC(CH3)2CH2OCH3),64.8(OC(CH3)2CH2OCH3),76.0(OC(CH3)2CH2OCH3),88.5(OC(CH3)2CH2OCH3).
IR:(υcm-1,Nujol,NaCl)3589(w),3448(w,br),2724(m),2346(w),1377(s),1322(m),1279(m),1239(m),1176(s),1134(m),1114(s),1081(m),1018(s),996(m),982(s),958(m),937(m),917(m),845(m),804(m),784(m),594(s).
实施例3
Hf(OBut)2(mmp)2的制备
将3.5ml(4.0g,8.5mmol)Hf(OBut)4溶解在己烷(约40ml)中,得到一种黄色溶液。逐滴加入mmpH(2.0ml,1.79g,19.0mmol),将此混和物加热回流并持续搅拌2小时。将此溶液冷却,并在减压下通过煮沸去除挥发物。粗产物从己烷中重结晶出来,为白色的结晶固体。
(产量:4.4g,97%)。
M.Pt:100-104℃(未修正)
微量分析:计算C:40.71,H:7.61.发现C:38.93,H:7.30%
1H NMR:(400MHz,d8-tol):δ=1.18(s,12H,OC(CH3)2CH2OCH3),1.38(s,18H,OC(CH3)3),3.21(s,12H,OC(CH3)2CH2OCH3),3.42(s,12H,OC(CH3)2CH2OCH3)
13C NMR:(100MHz d8-tol):δ=34.4(OC(CH3)2CH2OCH3),38.6(OC(CH3)3),65.7,(OC(CH3)2CH2OCH3),78.0,79.1(OC(CH3)2CH2OCH3 andOC(CH3)3),90.9(OC(CH3)2CH2OCH3),
IR:(υcm-1,Nujol,NaCl):3441(w),2726(m),2256(w),1272(s),1177(s),1074(s),1016(s),976(s),802(s),782(s),593(s).
Hf(OBut)2(mmp)2的设想结构如附图中的图1所示。
实施例4
Hf(mmp)4的制备
将4.0ml(5.56g,11.9mmol)[Hf(NEt2)4]溶解在己烷(60ml)中。逐滴加入Hmmp(7.0ml,6.3g,60mmol),并将此混和物回流90分钟。在真空中去除挥发物,得到的产物是一种黄色粘性油。(产量:6.88g,97.5%)。
微量分析:计算C:40.63,H:7.52.发现C39.85,H7.32%
1H NMR:1.30(s,24H,OC(CH3)2CH2OCH3),3.28(s,8H,OC(CH3)2CH2OCH3),3.36(s,12H,OC(CH3)2CH2OCH3)
13C NMR:34.74(OC(CH3)2CH2OCH3),65.16(OC(CH3)2CH2OCH3),79.83(OC(CH3)2CH2OCH3),90.25(OC(CH3)2CH2OCH3)
IR:(Nujol/NaCl):3585(w),3450(w,br),2722(m),1366(s),1356(vs),1268(s),1242(s),1214(vs),1177(vs),1115(vs),1079(vs),1045(vs),1026(vs),996(vs),975(vs),936(vs),912(m),802(s),779(s),594(vs).
Hf(mmp)4的设想结构如附图中的图2所示。
实施例5
Zr(OPri)2(mmp)2的制备
将1.06g(2.75mmol)Zr(OPri)4·PriOH溶解在己烷(约40ml)中。逐滴加入1-甲氧基-2-甲基-2-丙醇[mmpH](0.65ml,0.57g,5.5mmol),将此混和物加热回流并进一步持续搅拌2小时。将此溶液冷却到室温并在减压下通过蒸发去除挥发物。分离出的产物为白色的粘性油。
微量分析:计算C:46.23,H:8.73.发现:C:44.17,H:8.47
1H NMR(400MHz,d8-tol):1.26(s,OC(CH3)2CH2OCH3),1.32(d,OCH(CH3)2),3.26(2,OC(CH3)2CH2OCH3),3.36(s,OC(CH3)2CH2OCH3),4.46(m,OCH(CH3)2).
13C NMR(100MHz,d8-tol):32.1(OC(CH3)2CH2OCH3),34.2(OCH(CH3)2),64.9(OC(CH3)2CH2OCH3),76.1,76.4(OCH(CH3)2 and OC(CH3)2CH2OCH3),88.6(OC(CH3)2CH2OCH3).
IR:(υcm-1,Nujol,NaCl)3589(w),3423(w),2724(w),2282(w),1239(w),1175(m),1115(m),1019(m),959(m).
实施例6
Ti(OPri)2(mmp)2的制备
将mmpH(2.81g,27mmol)逐滴加入到搅动的Ti(OPri)4(3.84g,13.5mmol)的己烷(20ml)溶液中。将此混和物在回流下煮沸11/2小时,然后冷却。然后在真空中将溶剂去除,得到无色油状的Ti(OPri)2(mmp)2
对TiC16H36O4的微量分析:(计算)C%51.61,H%9.75;(实验)C%51.20,H%9.92.
1H NMR(C6D5CD3,30℃)δ1.1(26H,d,(CH3)2CH;CH3OCH2(CH3)2C);δ3.2(10H,两个单峰,CH3OCH2(CH3)2C);δ4.5(2H,m,(CH3)2CH).
13C{1H}NMR(C6D5CD3,30℃):32(OC(CH3)2CH2OCH3),33.4(OCH(CH3)2),64.4(OC(CH3)2CH2OCH3),81.7(OC(CH3)2CH2OCH3 86.5(OCH(CH3)2),88(OC(CH3)2CH2OCH3).
IR(Nujol,cm-1)2972s,2928s,2869s,2625w,1463m,1376m,1360s,1331m,1277m,1126s,1001s,850s,778m.,629s.
实施例7
Ti(mmp)4的制备
将mmpH(4.41g,42mmol)逐滴加入到搅动的Ti(NEt2)4(2.85g,3ml,8.47mmole)的己烷(20ml)溶液中,得到淡褐色的溶液。将此混和物在回流下煮沸11/2小时,进行冷却,然后在真空中将挥发物去除,得到淡褐色的油状的Ti(mmp)4
对TiC20H44O8的微量分析:(计算)C%52.17,H%9.63;(实验)C%51.95,H%9.97.
1H NMR(C6D5CD3,30℃)δ1.3(24H,s,CH3OCH2(CH3)2C);δ3.2(20H,两个单峰,CH3OCH2(CH3)2C)。-50 to +50℃下的VT1H NMR显示出尖锐的清晰峰,没有明显的宽化。
13C{1H}NMR(C6D5CD3,30℃):31.9(OC(CH3)2CH2OCH3),64.5(OC(CH3)2CH2OCH3),81.7(OC(CH3)2CH2OCH3),87(OC(CH3)2CH2OCH3).
IR(Nujol,cm-1)2975s,2931s,2876s,2829m,2625w,1461m,1360s,1331m,1277m,12406m,1116s,1004s,850m.,796s,775s,625s.
实施例8
La(mmp)3的制备
将[La{N(SiMe3)2}3](2.89g,4.6mmol)溶解在甲苯(50ml)中,并在搅拌下逐滴加入mmpH(2.2ml,1.96g,18.7mmol)。在室温下进一步持续搅拌21小时,在真空中去除挥发物,得到的产物是一种褐色的粘性油(产量=1.8g,87%的La)。
对LaC15H33O6的微量分析(计算)C%40.18,H%7.43;(实验)C%40.01,H%7.38
实施例9
由Zr(OBut)2(mmp)2,Zr(mmp)4,Hf(OBut)2(mmp)2和Hf(mmp)4淀积氧化锆和氧化铪
发现所有四种配合物都是通过MOCVD淀积ZrO2和HfO2薄膜的优异前体。通过液体注射MOCVD采用下面表1中所示的相同的一般条件淀积了ZrO2和HfO2膜。
表1
采用液体注射MOCVD由Zr(OBut)2(mmp)2,Zr(mmp)4,Hf(OBut)2(mmp)4或Hf(mmp)4生长ZrO2或HfO2薄膜的生长条件
    衬底温度     350-650℃
    反应器压力     20-30mbar
    前体溶液浓度     0.1M,甲苯中
    前体溶液注射速率     4-8cm3 hr-1
    蒸发温度     130-150℃
    氩载气的流速     400-600cm3 min-1
    氧气流速     100-150cm3 min-1
    衬底     Si(100)
    氧化物生长速率     0.35-0.50μm hr-1
激光拉曼谱(参见图3)证实膜是ZrO2或HfO2。由Zr(OBut)2(mmp)2或Hf(OBut)2(mmp)2生长的ZrO2和HfO2膜的拉曼谱如图3所示。与块体结晶材料的数据比较表明这些膜主要是α-相或者单斜相。

Claims (17)

1.用于MOCVD技术的Ti,Zr,Hf和La的前体,其具有通式为OCR1(R2)CH2X的配体,其中R1是H或者一种烷基,R2是一种可选被取代的烷基,X选自OR和NR2,其中R是一种烷基或者一种取代烷基。
2.一种用于MOCVD技术的前体,其具有如下通式:
         M(L)x[OCR1(R2)CH2X]4-x
其中M是一种选自Ti,Zr和Hf的金属,L是一种配体,x是0-3之间的数,R1,R2和X按如上定义。
3.权利要求2中的前体,其中的配体L是一种具有1-4个碳原子的烷氧基。
4.权利要求3中的前体,其中的配体L选自叔丁氧基(OBut)和异丙氧基(OPri)。
5.权利要求1-4任意之一中的前体,其中OCR1(R2)CH2X式子形式的配体为1-甲氧基-2-甲基-2-丙氧基(mmp)。
6.权利要求1-4任意之一中的前体,其中OCR1(R2)CH2X式子形式的配体选自OCH(Me)CH2OMe,OCEt2CH2OMe,OCH(But)CH2OEt,OC(But)2CH2OEt,OC(Pri)2CH2OEt,OCH(But)CH2NEt2,OC(Pri)2CH2OC2H4OMe和OC(But)(CH2OPri)2.
7.Zr(OBut)2(mmp)2.
8.Zr(mmp)4.
9.Hf(OBut)2(mmp)2.
10.Hf(mmp)4.
11.一种用于MOCVD技术的Ti,Zr和Hf的前体的制造方法,包括使HOCR1(R2)CH2X与相应的金属烷氧基化合物或金属烷基酰胺化物按合适的摩尔比发生反应。
12.一种用于MOCVD技术的前体,其具有如下通式:
              La[OCR1(R2)CH2X]3
其中R1是H或者一种烷基,R2是一种可选被取代的烷基,X选自OR和NR2,其中R是一种烷基或者一种取代烷基。
13.权利要求12中的前体,其中的配体为1-甲氧基-2-甲基-2-丙氧基[OCMe2CH2OMe]。
14.权利要求13中的前体,其中的配体选自OCH(Me)CH2OMe,OCEt2CH2OMe,OCH(But)CH2OEt,OC(But)2CH2OEt,OC(Pri)2CH2OEt,OCH(But)CH2NEt2,OC(Pri)2CH2OC2H4OMe和OC(But)(CH2OPri)2.
15.La[mmp]3.
16.一种权利要求12中的前体的制造方法,包括使HOCR1(R2)CH2X与La{N(SiMe3)2}3按合适的摩尔比发生反应。
17.一种淀积单一的或者混和的氧化物层或膜的方法,采用传统的MOCVD时,将前体装在金属有机扩散器中,或者采用液体注射MOCVD时,将前体溶解在一种合适的惰性有机溶剂中,并用加热蒸发器将其蒸发成气相,其中这些前体中至少有一种是权利要求1-10和12-15任意一项中所定义的。
CNB028204379A 2001-10-26 2002-10-25 化学气相淀积用的改良的前体 Expired - Fee Related CN100379745C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0125724.5 2001-10-26
GB0125724A GB0125724D0 (en) 2001-10-26 2001-10-26 Improved precursors for metalorganic chemical vapour deposition
GB0129080.8 2001-12-04
GB0129080A GB0129080D0 (en) 2001-12-04 2001-12-04 Improved precursors for chemical vapour deposition

Publications (2)

Publication Number Publication Date
CN1571790A true CN1571790A (zh) 2005-01-26
CN100379745C CN100379745C (zh) 2008-04-09

Family

ID=26246699

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028204379A Expired - Fee Related CN100379745C (zh) 2001-10-26 2002-10-25 化学气相淀积用的改良的前体

Country Status (8)

Country Link
US (1) US7419698B2 (zh)
EP (1) EP1438315B1 (zh)
JP (1) JP4472338B2 (zh)
CN (1) CN100379745C (zh)
AT (1) ATE340800T1 (zh)
AU (1) AU2002337310A1 (zh)
DE (2) DE02772548T1 (zh)
WO (1) WO2003035926A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040620A (zh) * 2009-10-23 2011-05-04 气体产品与化学公司 用于含金属膜的第4族金属前体

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316797B1 (en) * 1999-02-19 2001-11-13 Advanced Technology Materials, Inc. Scalable lead zirconium titanate(PZT) thin film material and deposition method, and ferroelectric memory device structures comprising such thin film material
GB2391555A (en) * 2002-08-09 2004-02-11 Epichem Ltd Vapour phase deposition of silicate and oxide films
GB2399568B (en) * 2003-03-17 2007-03-21 Epichem Ltd Precursors for deposition of metal oxide layers or films
US20050056219A1 (en) * 2003-09-16 2005-03-17 Tokyo Electron Limited Formation of a metal-containing film by sequential gas exposure in a batch type processing system
US20070122947A1 (en) * 2003-12-25 2007-05-31 Adeka Corporation Metal compound, material for thin film formation, and process of forming thin film
CN100517608C (zh) * 2004-02-28 2009-07-22 三星电子株式会社 非晶电介质薄膜及其制造方法
KR100634532B1 (ko) 2005-01-19 2006-10-13 삼성전자주식회사 Ti 전구체, 이의 제조 방법, 상기 Ti 전구체를 이용한Ti-함유 박막의 제조 방법 및 상기 Ti-함유 박막
KR100657792B1 (ko) * 2005-01-24 2006-12-14 삼성전자주식회사 원자층 적층 방법과 이를 이용한 커패시터의 제조 방법 및게이트 구조물의 제조 방법
GB2432363B (en) * 2005-11-16 2010-06-23 Epichem Ltd Hafnocene and zirconocene precursors, and use thereof in atomic layer deposition
SG171683A1 (en) 2006-05-12 2011-06-29 Advanced Tech Materials Low temperature deposition of phase change memory materials
EP2029790A1 (en) 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
EP2511280A1 (en) 2006-11-02 2012-10-17 Advanced Technology Materials, Inc. Germanium amidinate complexes useful for CVD/ALD of metal thin films
JP5008379B2 (ja) * 2006-11-08 2012-08-22 株式会社Adeka 亜鉛化合物、該亜鉛化合物を含有してなる薄膜形成用原料及び薄膜の製造方法
KR100852234B1 (ko) * 2006-11-17 2008-08-13 삼성전자주식회사 금속 산화막의 형성 방법, 이를 이용한 게이트 구조물의제조 방법 및 커패시터의 제조 방법
US20120107491A1 (en) * 2007-01-16 2012-05-03 Alliance For Sustainable Energy, Llc High Permittivity Transparent Films
US20100112211A1 (en) * 2007-04-12 2010-05-06 Advanced Technology Materials, Inc. Zirconium, hafnium, titanium, and silicon precursors for ald/cvd
TWI425110B (zh) * 2007-07-24 2014-02-01 Sigma Aldrich Co 以化學相沉積法製造含金屬薄膜之方法
TWI382987B (zh) * 2007-07-24 2013-01-21 Sigma Aldrich Co 應用於化學相沉積製程的有機金屬前驅物
US7790628B2 (en) 2007-08-16 2010-09-07 Tokyo Electron Limited Method of forming high dielectric constant films using a plurality of oxidation sources
JP2010539709A (ja) 2007-09-14 2010-12-16 シグマ−アルドリッチ・カンパニー モノシクロペンタジエニルチタン系前駆体を用いる原子層成長によるチタン含有薄膜の作製方法
US20090087561A1 (en) * 2007-09-28 2009-04-02 Advanced Technology Materials, Inc. Metal and metalloid silylamides, ketimates, tetraalkylguanidinates and dianionic guanidinates useful for cvd/ald of thin films
KR101458953B1 (ko) 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
SG152203A1 (en) * 2007-10-31 2009-05-29 Advanced Tech Materials Amorphous ge/te deposition process
US7964515B2 (en) 2007-12-21 2011-06-21 Tokyo Electron Limited Method of forming high-dielectric constant films for semiconductor devices
US20090215225A1 (en) 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US7816278B2 (en) 2008-03-28 2010-10-19 Tokyo Electron Limited In-situ hybrid deposition of high dielectric constant films using atomic layer deposition and chemical vapor deposition
TW200949939A (en) * 2008-05-23 2009-12-01 Sigma Aldrich Co High-k dielectric films and methods of producing using titanium-based β -diketonate precursors
TWI467045B (zh) 2008-05-23 2015-01-01 Sigma Aldrich Co 高介電常數電介質薄膜與使用鈰基前驅物製造高介電常數電介質薄膜之方法
TW200951241A (en) * 2008-05-30 2009-12-16 Sigma Aldrich Co Methods of forming ruthenium-containing films by atomic layer deposition
WO2010065874A2 (en) 2008-12-05 2010-06-10 Atmi High concentration nitrogen-containing germanium telluride based memory devices and processes of making
KR101017897B1 (ko) 2009-03-13 2011-03-04 한국화학연구원 실리콘(ⅳ)알콕시알콕사이드 화합물 및 이의 제조 방법
WO2010123531A1 (en) * 2009-04-24 2010-10-28 Advanced Technology Materials, Inc. Zirconium precursors useful in atomic layer deposition of zirconium-containing films
EP2462148A1 (en) 2009-08-07 2012-06-13 Sigma-Aldrich Co. LLC High molecular weight alkyl-allyl cobalttricarbonyl complexes and use thereof for preparing dielectric thin films
US20110124182A1 (en) * 2009-11-20 2011-05-26 Advanced Techology Materials, Inc. System for the delivery of germanium-based precursor
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
KR101847953B1 (ko) 2010-08-27 2018-04-11 메르크 파텐트 게엠베하 몰리브덴(iv) 아미드 전구체 및 원자층 증착용으로서의 그것의 용도
US8927748B2 (en) 2011-08-12 2015-01-06 Sigma-Aldrich Co. Llc Alkyl-substituted allyl carbonyl metal complexes and use thereof for preparing dielectric thin films
JP6209168B2 (ja) 2012-01-26 2017-10-04 シグマ−アルドリッチ・カンパニー、エルエルシー モリブデンアリル錯体及び薄膜堆積におけるその使用
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure
US9663547B2 (en) 2014-12-23 2017-05-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films
US9499571B2 (en) 2014-12-23 2016-11-22 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Germanium- and zirconium-containing compositions for vapor deposition of zirconium-containing films
TWI753794B (zh) 2016-03-23 2022-01-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 形成含矽膜之組成物及其製法與用途
US10106568B2 (en) 2016-10-28 2018-10-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
EP3752655A1 (en) 2018-02-12 2020-12-23 Merck Patent GmbH Methods of vapor deposition of ruthenium using an oxygen-free co-reactant

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367759A (en) * 1965-09-30 1968-02-06 Chevron Res Alkali metal derivatives of alkanols in gasoline fuels
US4758682A (en) * 1983-03-17 1988-07-19 California Institute Of Technology Homogeneous coordination compounds as oxidation catalysts
US5344948A (en) * 1992-02-25 1994-09-06 Iowa State University Research Foundation, Inc. Single-source molecular organic chemical vapor deposition agents and use
FR2693727B1 (fr) * 1992-07-20 1994-08-19 Ceramiques Tech Soc D Polycondensat organo-minéral et procédé d'obtention.
GB9300934D0 (en) * 1993-01-19 1993-03-10 Bp Chem Int Ltd Metallocene complexes
DE4307663A1 (de) * 1993-03-11 1994-09-15 Hoechst Ag Flüchtige Metall-alkoholate bifunktioneller beta-Etheralkohole, Verfahren zu deren Herstellung und ihre Verwendung
GB9315771D0 (en) * 1993-07-30 1993-09-15 Epichem Ltd Method of depositing thin metal films
NL9302030A (nl) * 1993-11-24 1995-06-16 Ass Octel Vluchtige yttrium-organische verbindingen en werkwijze voor de bereiding van yttrium-bevattende gelaagde materialen uit deze verbindingen.
US5591483A (en) * 1994-08-31 1997-01-07 Wayne State University Process for the preparation of metal nitride coatings from single source precursors
MY112170A (en) * 1994-09-02 2001-04-30 Sec Dep For Defence Acting Through His Defence Evaluation And Research Agency United Kingdom Metalorganic compounds
GB9421335D0 (en) * 1994-10-22 1994-12-07 Epichem Ltd Chemical vapour deposition
US5527752A (en) * 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
US5508458A (en) * 1995-05-26 1996-04-16 Hoechst Celanese Corporation Chiral catalysts and processes for preparing the same
US5908947A (en) * 1996-02-09 1999-06-01 Micron Technology, Inc. Difunctional amino precursors for the deposition of films comprising metals
US6313035B1 (en) * 1996-05-31 2001-11-06 Micron Technology, Inc. Chemical vapor deposition using organometallic precursors
US5698022A (en) * 1996-08-14 1997-12-16 Advanced Technology Materials, Inc. Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films
GB9709639D0 (en) * 1997-05-14 1997-07-02 Inorgtech Ltd Chemical vapour deposition precursors
US6277436B1 (en) * 1997-11-26 2001-08-21 Advanced Technology Materials, Inc. Liquid delivery MOCVD process for deposition of high frequency dielectric materials
JP3680542B2 (ja) * 1998-02-09 2005-08-10 三菱マテリアル株式会社 Mocvdに適した有機チタン化合物
US6159855A (en) * 1998-04-28 2000-12-12 Micron Technology, Inc. Organometallic compound mixtures in chemical vapor deposition
GB9814048D0 (en) * 1998-06-30 1998-08-26 Inorgtech Ltd Novel precursors for the growth of heterometal oxide films by MOCVD
JP2000044240A (ja) * 1998-07-30 2000-02-15 Asahi Denka Kogyo Kk チタン酸ビスマス強誘電体膜
GB9917189D0 (en) * 1999-07-23 1999-09-22 Inorgtech Ltd Metalorganic chemical vapour deposition precursor
US6376691B1 (en) * 1999-09-01 2002-04-23 Symetrix Corporation Metal organic precursors for transparent metal oxide thin films and method of making same
US6623656B2 (en) * 1999-10-07 2003-09-23 Advanced Technology Materials, Inc. Source reagent composition for CVD formation of Zr/Hf doped gate dielectric and high dielectric constant metal oxide thin films and method of using same
JP2001181288A (ja) * 1999-12-24 2001-07-03 Asahi Denka Kogyo Kk 化学的気相成長用金属アルコキシド化合物及びこれを用いた複合金属酸化物薄膜
JP2001234343A (ja) * 2000-02-17 2001-08-31 Asahi Denka Kogyo Kk 金属化合物溶液及びこれを用いた薄膜の製造方法
JP4868639B2 (ja) 2000-06-12 2012-02-01 株式会社Adeka 化学気相成長用原料及びこれを用いた薄膜の製造方法
EP1184365A3 (en) * 2000-08-26 2003-08-06 Samsung Electronics Co., Ltd. Novel group IV metal precursors and chemical vapor deposition method using thereof
US6642567B1 (en) * 2000-08-31 2003-11-04 Micron Technology, Inc. Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices
US6416814B1 (en) * 2000-12-07 2002-07-09 First Solar, Llc Volatile organometallic complexes of lowered reactivity suitable for use in chemical vapor deposition of metal oxide films
US6552209B1 (en) * 2002-06-24 2003-04-22 Air Products And Chemicals, Inc. Preparation of metal imino/amino complexes for metal oxide and metal nitride thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040620A (zh) * 2009-10-23 2011-05-04 气体产品与化学公司 用于含金属膜的第4族金属前体
CN102040620B (zh) * 2009-10-23 2014-09-03 气体产品与化学公司 用于含金属膜的第4族金属前体

Also Published As

Publication number Publication date
DE02772548T1 (de) 2004-11-11
CN100379745C (zh) 2008-04-09
JP2005506387A (ja) 2005-03-03
DE60215034T2 (de) 2007-04-05
AU2002337310A1 (en) 2003-05-06
EP1438315A2 (en) 2004-07-21
US7419698B2 (en) 2008-09-02
WO2003035926A3 (en) 2003-06-12
ATE340800T1 (de) 2006-10-15
EP1438315B1 (en) 2006-09-27
US20050008781A1 (en) 2005-01-13
JP4472338B2 (ja) 2010-06-02
WO2003035926A2 (en) 2003-05-01
DE60215034D1 (de) 2006-11-09

Similar Documents

Publication Publication Date Title
CN1571790A (zh) 化学气相淀积用的改良的前体
US8962875B2 (en) Metal-enolate precursors for depositing metal-containing films
US8952188B2 (en) Group 4 metal precursors for metal-containing films
TWI339207B (en) Metal complexes of polydentate beta-ketoiminates
CN1176245C (zh) 钌或钌的氧化物薄膜的制备方法
JP5698161B2 (ja) 金属含有膜被着のための金属錯体
KR101720371B1 (ko) 인듐 클로르디알콕사이드의 제조 방법
WO2007015436A1 (ja) 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法
CN1113399C (zh) Bi层状结构强电介质薄膜的制造方法
CN102086513A (zh) 用于沉积含第4族金属的薄膜的液体前体
CN1309192A (zh) 金属化合物溶液以及用其制备薄膜的方法
KR100435816B1 (ko) 화학증착용 유기티탄 전구체 및 그의 제조 방법
US20110256314A1 (en) Methods for deposition of group 4 metal containing films
CN1280209A (zh) 利用化学蒸汽沉积法形成氧化铝膜的化合物和制备该化合物的方法
CN112794866B (zh) 一种系列2,3-二取代丁二酰亚胺铪或锆混配配合物及其制备方法和应用
CN101328188A (zh) 用于沉积多组分金属氧化物薄膜的第2族金属前体
CN112778353B (zh) 一种系列2,3-二取代丁二酰亚胺镧或钆混配配合物及其制备方法和应用
TWI275657B (en) Improved precursors for chemical vapour deposition
Terlecki et al. Organometallic single-source precursors to zinc oxide-based nanomaterials
JP3902957B2 (ja) チタン含有有機化合物前駆体及びその製造方法
CN117897518A (zh) 包含含有第四族金属元素的前体化合物的膜沉积组合物及使用其形成膜的方法
KR20240094131A (ko) 금속 산화물 박막 전구체, 이를 이용한 금속 산화물 박막 형성 방법 및 상기 금속 산화물 박막을 포함하는 반도체 소자
KR20040068027A (ko) 반도체 소자 박막용 유기금속 전구체(착물) 및 그의 제조방법
KR20040068028A (ko) 반도체 제조에 사용되는 졸-겔 용액 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SIGMA - OGEECHEE COMPANY

Free format text: FORMER OWNER: EPICHEM LTD.

Effective date: 20090828

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090828

Address after: American Missouri

Patentee after: Sigma Aldrich Co.

Address before: Merseyside, England

Patentee before: Epichem Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20181025

CF01 Termination of patent right due to non-payment of annual fee