CN1540040B - 反向脉冲电镀组合物和方法 - Google Patents

反向脉冲电镀组合物和方法 Download PDF

Info

Publication number
CN1540040B
CN1540040B CN2003101249742A CN200310124974A CN1540040B CN 1540040 B CN1540040 B CN 1540040B CN 2003101249742 A CN2003101249742 A CN 2003101249742A CN 200310124974 A CN200310124974 A CN 200310124974A CN 1540040 B CN1540040 B CN 1540040B
Authority
CN
China
Prior art keywords
current
negative electrode
compsn
seconds
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2003101249742A
Other languages
English (en)
Other versions
CN1540040A (zh
Inventor
L·R·巴斯泰德
T·巴克利
R·克鲁兹
T·古德里奇
G·哈姆
M·J·卡佩克斯
K·普莱斯
E·雷丁顿
W·索南伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIPOREI CORP
Original Assignee
SIPOREI CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32990583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1540040(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SIPOREI CORP filed Critical SIPOREI CORP
Publication of CN1540040A publication Critical patent/CN1540040A/zh
Application granted granted Critical
Publication of CN1540040B publication Critical patent/CN1540040B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种在基材上电镀金属的组合物和方法。组合物的氯离子与增亮剂的浓度比为20∶1到125∶1。使用该组合物的电镀方法使用了改善金属表面的物理性能的脉冲图形。

Description

反向脉冲电镀组合物和方法
技术领域
本发明涉及一种反向脉冲电镀(reverse pulse plating)组合物和方法。更准确地说,本发明涉及一种能减少增亮剂分解和减少电镀金属层缺陷的反向脉冲电镀细合物和方法。 
背景技术
在很多行业中,使用了多种用金属层或涂层电镀制品的组合物和方法。这些方法可包括在电镀组合物或溶液中的两个电极间通以电流,其中一个电极是要进行金属电镀的制品。用酸性铜电镀溶液来说明,电镀溶液可包括(1)溶解的铜(二价铜离子),通常是硫酸铜,(2)酸性电解液例如,数量足以赋予溶液电导率的硫酸,和(3)用来改善电镀反应效率以及金属沉积物质量的添加剂。例如,这样的添加剂包括表面活性剂、增亮剂、匀平剂、抑制剂和缓蚀剂。 
例如,可被电镀的金属包括铜、铜合金、镍、锡、铅、金、银、铂、钯、钴、铬和锌。电镀用金属溶液用于多种工业用途。例如,在汽车工业中,它们被用作后续的装饰和防腐涂层的底层。它们还可以用于电子工业,如制造印刷电路或印刷线路板,和半导体器件。为制备印刷电路板中的电路,将一种金属如铜电镀在印刷电路板表面的选定部分和穿过电路板基材表面的通孔壁上。将通孔壁金属化,以在板的每个表面的电路层之间提供电导性。 
早期制造印刷电路板的尝试是用为装饰电镀研制的电镀用金属溶液。然而,由于印刷电路板变得更加复杂和工业标准变得更严格,已发现用于装饰电镀的溶液已经不能适应印刷电路板的制造。在使用电镀用金属溶液中遇到的一个严重的问题包括通孔壁上厚度不均匀的涂层,金属在通孔的顶部和底部沉积得较厚,在中心较薄,这种情形在现有技术中被称为“八字试块”(dog boning)。在通孔中心处较薄的沉积物会导致电路的缺陷和印刷板的报废。 
八字试块被认为是由通孔上表面与通孔中心之间的电压降造成的。这种电压降随电流密度、通孔长度与通孔直径的比例(长宽比)和印刷板厚度变化。随着印刷板长宽比和厚度增加,由于印刷板表面和通孔中心的电压降,八字试块 变得更严重。这种电压降被认为是由几种因素综合造成的,包括溶液电阻、由传质带来的表面与通孔之间电位的差异,即溶液通过通孔的流动与溶液在印刷板表面的运动的差异,以及与表面相比通孔中由溶液添加剂浓度造成的电荷转移的差异。 
印刷电路板行业不断地寻求更高的电路密度。为了增加密度。该行业已经借助于具有通孔或通过多层的互连的多层电路。多层电路的制造导致印刷板厚度的整体增加和通过印刷板的互连长度的相应增加。这意味着增加的电路密度造成长宽比和通孔长度增加并增加了八字试块问题的严重性。对于高密度的印刷板来说,长宽比超过10∶1。 
在金属电镀中遇到的另一个问题是出现周期性的表面粗糙和被镀金属外观不均匀的缺陷。周期性的表面粗糙和外观不均匀被认为是由通过被镀印刷线路板表面不均匀电流分布造成的。不均匀的电流分布得到在印刷板表面不均匀的或不平坦的金属沉积物,从而导致了被镀金属层表面粗糙和外观不均匀。 
另外一个可以经常观察到的缺陷是形成树枝状晶体或“晶须”。晶须被认为是被镀金属的晶体并从电镀表面生长出。晶须的直径范围从小于1微米到几毫米。尽管晶须的形成原因还存在争论,但毫无疑问的是,对于各种电学、机械学和装饰原因,这种晶须是不受欢迎的。例如,晶须很容易分离并被冷空气流带到电子装置中,在电子设备外壳的内部和外部,在这里它们会造成短路破坏。 
电镀金属是一种在电镀液中涉及多种成分的复杂的过程。除了含有能提供金属源的金属盐、PH调节剂和表面活性剂或润湿剂外,很多电镀液还含有能够改善电镀过程的各个方面的化合物。这些化合物或添加剂是用来改善电镀金属亮度、被镀金属的物理性能尤其是延展性以及电镀溶液或镀液的电积能力的辅助电镀液成分。溶液的电积能力定义为流过通孔中心的电流密度与流过通孔表面的电流密度之比。当通孔中心的电流密度与通孔表面的电流密度一样的时候达到最佳的电积能力。然而,难以达到这样的电流密度。 
一个主要的关注是对表面金属沉积物的光亮饰面、均化和均匀度有影响的添加剂。将这种添加剂的镀液浓度维持在允许的严格范围内对得到高质量的金属沉积物是重要的。添加剂在金属电镀过程中的确发生了损耗。添加剂由于在阳极的氧化、在阴极的还原和化学降解而损耗。 
当在电镀过程添加剂发生损耗时,损耗产物可能导致金属层沉积物特性低于 工业标准的满意度。通常,添加剂的定期加入是基于本行业工作人员确立的经验法则来尝试并保持使用添加剂的最适宜浓度。然而,监控改善电镀的添加剂浓度仍是困难的,这是因为添加剂在镀液中的浓度很低,即溶液的百万分之几。因此,镀液中添加剂的量最后变得使添加剂浓度超出了可以接受的允许范围。如果添加剂的浓度大大超过可允许的范围,金属沉积物的质量降低且沉积物的外观无光和/或结构上易碎或粉化。其它的结果包括低的电积能力和/或低匀镀性的镀折。在制造多层印刷电路板中对通孔互连的电镀是要求优质电镀的一个例子。 
在反向脉冲电镀液和方法中发现了许多前述的问题。反向脉冲电镀是一种在电镀过程中电流在阴极电流(正向脉冲)和阳极电流(反向脉冲)之间交替变化的电镀工艺。典型的脉冲或波形的反向与正向电压比为3-1,正向波形的时间为10-20毫秒,反向波形的时间为0.5-1毫秒。然而,这样的波形经常会导致不理想的被镀金属外观层的周期性表面粗糙度和不均匀,尤其是电流密度为100amps/cm2时。 
反向脉冲电镀液的另一个问题是镀液使用期限短,它可能在几天内,即2-3天有最佳性能。优选的,最佳的镀液性能是持续的(6个月-至少一年)。镀液的最佳性能持续时间越长,电镀工艺就越经济。反向脉冲电镀液的使用期限短是由于添加剂的损耗,尤其是由于增亮剂副产物的增多。副产物的形成速率首先取决于增亮剂的浓度,其次取决于副产物在阳极表面形成的停留时间。反相脉冲电镀使用高的增亮剂浓渡,即超过1ppm,以防止或减少在均匀化、电积能力和边角开裂(corner cracking)的性能变差。差的电积能力导致金属表面粗糙和金属层不均匀。边角开裂是一种被镀金属层从被镀基质表面开始分离的情况。然而,高的增亮剂浓度会导致副产物的高浓度,它能缩短电镀液的使用期限。因此,需要一种改进的反向脉冲电镀组合物或镀液以及改进的反向脉冲电镀方法以解决前述问题。 
发明内容
本发明涉及一种包含氯化物和增亮剂的组合物,其中氯化物:增亮剂的浓度比为20∶1到125∶1,并且增亮剂的浓度为0.001ppm到1.0ppm。组合物可以用做在基材上电沉积金属的电镀溶液或镀液。除了氯化物和增亮剂外,该组合物还包含金属离子源。金属离子源可以是待在基材上电镀的金属的盐。 
本发明的组合物也可包括其它添加剂如,匀平剂、抑制剂、载体、表面活性剂、缓冲剂以及可用于电镀液中的其它成分。本发明的组合物可以有水或有机溶剂。 
本发明的另一个实施方案涉及一种方法,它包括(a)产生通过阴极、阳极和处于电连接(electrical communication)的组合物电动势,以在阴极、阳极和组合物周围产生电场,该组合物包括金属离子、增亮剂和氯离子,所述氯离子与增亮剂的浓度比为20∶1到125∶1;(b)变化阴极、阳极和组合物周围的电场以提供脉冲图形或一种脉冲图形的组合来在阴极上电镀金属,这种组合包括(I)阴极电流后跟着阳极电流;(II)阴极电流后跟着阳极电流,阳极电流后是阴极直流电流;(III)阴极电流后跟着阳极电流,后是达到平衡;或(IV)阴极电流后跟着阳极电流,后跟着阴极直流电流,然后达到平衡。 
有利的是,这种组合物和方法防止或至少降低了在金属电镀的基材上的树枝状结晶或晶须的生长、八字试块、以及周期性的表面粗糙度,并在基材上提供了均匀的金属层。其它优点包括改善的均匀化性能、改善的电积能力和降低了边角开裂。此外,添加剂分解降低,使电镀液具有更长的使用期限。 
本发明首要的目的是提供一种具有减少添加剂损耗的组合物。 
另一个目的是提供一种具有改善的电镀使用期限的组合物。 
本发明的再一个目的是提供一种能够减少电镀缺陷的在基材上电镀的方法。 
另一个目的是提供一种具有改善的电积能力的电镀方法。 
这些方法和组合物的其它目的和优点可以由本领域技术人员在阅读本发明公开的内容和附加的权利要求书后确定。 
具体实施方式
组合物包含氯离子和增亮剂,它们的浓度比是20∶1到125∶1,增亮剂的浓度是0.001ppm-1.0ppm。组合物还包括其它决定于组合物特定功能的添加剂,这种组合物可以用作在基材上进行电镀的电镀溶液。当组合物用做电镀液时,组合物包含被镀金属的金属离子以及有助于优化镀液性能的其它添加剂。 
组合物适用于通过反向脉冲进行的电镀。因此,本发明的另一个实施方案是一种在基材上电镀金属的反向脉冲电镀方法。由一种适合的电源产生电动势(emf),以在包括阳极、阴极和组合物的电镀设备周围产生电场,该组合物包含浓度比为20∶1到125∶1的氯离子和增亮剂以及金属离子。阳极、阴极和组 合物之间彼此处于电连接,以与电动势源提供一种闭合电路。典型的阴极是金属电镀的基材。 
在电镀金属的过程中,可以改变电镀设备周围的电场以产生(i)阴极电流(正向脉冲或波形),紧跟着阳极电流(反向脉冲或波形);(ii)阴极电流后跟着阳极电流(反向脉冲或波形),后面跟着阴极DC电流(直流电流);(iii)阴极电流后面跟着阳极电流(反向脉冲或波形),后面跟着平衡(断路);(iv)阴极后面跟着阳极电流(反向脉冲或波形),后面是阴极DC电流(直流电流),然后是平衡(断路);或者脉冲波形(i),(ii),(iii)或(iv)的组合,条件是脉冲电镀工艺净结果导致在待被镀基材上形成的金属层。每种图形或各种图形组合的净电流是在阴极或电镀方向上。在通阴极电流(AC或交流电)的时候,金属电镀在阴极上,而通阳极电流时,金属从阴极上移走或剥去。通阴极直流电流的时候,金属又被镀到阴极上,在平衡的时候,没有金属沉积在阴极上或从阴极剥去。在平衡的时候,没有沉积或剥去是因为电路是断路没有电动势来沉积或剥去。换句话说,工作人员选择特殊的脉冲图形或者脉冲图形组合以使结果在基材上,典型的是电镀设备的阴极上提供金属层。每个脉冲图形的特殊顺序和每个脉冲图形在电镀过程中的持续时间和它们各自的波形,DC电流和平衡可根据基材的尺寸和理想的金属层的厚度而变化。反向与正向电压比为1.5到5.5,优选的为2.5到3.5。与很多传统的脉冲电镀图形相比,该脉冲图形降低了周期性表面粗糙度和改善了均匀化的金属层。与很多传统的脉冲电镀图形相比,该脉冲图形还改善了电积能力。 
用做电镀基材的脉冲图形的例子包括脉冲图形(i)在全部电镀过程中的它本身;脉冲图形(i)和(ii)的组合;脉冲图形(i),(ii)和(iii)的组合;脉冲图形(i),(ii),(iii)和(iv)的组合;或是脉冲图形(i),(iii)和(iv)的组合。每个脉冲图形的特定顺序和持续时间包括各自的波形,DC电流和平衡可根据基材的尺寸和理想的金属层厚度而变。一些小型试验可用来决定脉冲图形的组合和脉冲图形的持续时间以最优化在给定基材上的电镀过程。这种小型化试验在电镀技术中用来最优化电镀过程是常见的。一个优选的脉冲图形是(i)阴极电流(正向脉冲或波形)后跟着一个阳极电流(反向脉冲或波形)。 
电流密度可以是5毫安(mA)/cm2到200mA/cm2,优选的是5mA/cm2到125mA/cm2,更优选的是5mA/cm2到50mA/cm2。对于脉冲图形(i)来说,正向脉冲时间范围从40毫秒(ms)到1秒,优选的是40毫秒到800毫秒,而反向脉冲时间从0.25毫秒到15毫秒,优选是0.25毫秒到5毫秒,更优选的是1毫秒到3毫秒。对于脉冲图形(ii)来说,正向脉冲从40毫秒到1秒,优选的是40毫秒到800毫秒,反向脉冲从0.25毫秒到15毫秒,优选的是1分钟到10毫秒,而DC电流从5秒到90秒,优选的是10秒到60秒。对于脉冲图形(iii),正向脉冲图形从40毫秒到1秒,优选的是从40毫秒到800毫秒,而反向脉冲变化从0.25毫秒到15毫秒,优选的是1分钟到10毫秒,而平衡是从5秒到90秒,优选是10秒到60秒。对于脉冲图形(iv),正向脉冲图形从40毫秒到1秒,优选的是从40毫秒到800毫秒,反向脉冲变化从0.25毫秒到15毫秒,优选的是1分钟到10毫秒,直流电流变化从5秒到90秒,优选是10秒到60秒,而平衡是从5秒到90秒,优选是10秒到60秒。
在本发明电镀金属的过程中,对于脉冲图形(ii),阴极电流是40ms到1秒,阳极电流是0.25分钟到15分钟,阴极直流电流是5秒到90秒。在另一个实施方式中,阴极电流是40ms到1秒,阳极电流是0.25分钟到15分钟,阴极直流电流是5秒到90秒,平衡是5秒到90秒。 
可以调节脉冲次数,脉冲图形和施加在阴极和阳极波形上的电压,以提供总体过程是阴极的,即在基材上形成金属净沉积。工作人员可以基于本发明工艺的公开内容来改变脉冲时间波形和它们的频率以实现特殊的应用。 
电镀组合物可用于电镀任何能在基材上电镀的金属。这样的金属的例子包括铜、锡、镍、钴、铬、镉、铅、银、金、铂、钯、铋、铟、铑、钌、铱、锌或它们的合金。该电镀组合物尤其适用于在基材上电镀铜和铜合金。组合物所包含作为可溶盐的金属。任何适合的金属盐都可以用来实现本发明,只要金属盐在组合物溶剂中是可溶的即可。适合的铜的化合物的例子包括的卤化铜、硫酸铜、烷基磺酸铜、烷醇磺酸铜或它们的混合物。这种铜的化合物是水溶性的。 
电镀组合物中含有足够量的金属盐,使各个金属离子的浓度为0.010克/升到200克/升,优选的是0.5克/升到100克/升。当使用的金属是铜时,使用足量的铜盐以使铜离子的浓度优选达到0.01克/升到100克/升,更优选的是0.10克/升-50克/升。电镀中所用的电镀组合物的溶剂可以是水或有机溶剂,如醇或其它适合的有机溶剂。也可以使用溶剂混合物。 
氯离子的来源包括任何适合的氯化物盐或其它可溶于电镀组合物溶剂中的氯化物源。这样的氯离子源的例子包括氯化钠、氯化钾、氯化氢(HCl),或它们的混合物。组合物中含有足够的氯离子源,以致氯离子的浓度范围是0.02ppm到125ppm,优选的是0.25ppm-60ppm,更优选的是5ppm-35ppm。 
本发明的细合物和方法中可用的增亮剂包括任何对被镀金属适用的增亮剂。 增亮剂可能对被镀金属来说是特定的。本领域的工作人员熟知对特定的金属所使用的特定增亮剂。增亮剂在组合物中的浓度范围是0.001ppm到1.0ppm,优选的是0.01ppm到0.5ppm,更优选的是0.1ppm到0.5ppm。因此,组合物中氯化物与增亮剂的浓度比为20∶1到125∶1,优选的是25∶1到120∶1,更优选的是50∶1到70∶1。这样的氯离子对增亮剂的比例范围适合电镀中尤其是电镀铜或铜的合金中减少或防止晶须的形成、边角开裂和增亮剂副产物的形成。这样的氯离子对增亮剂的比例也改善了电镀的均匀性和镀液电积能力,尤其是对铜或铜合金的电镜。 
适合的增亮剂的例子包括通式为S-R-SO3的含硫化合物,其中R是取代的或未取代的烷基,或取代的或未取代的芳基。更具体地说,适合的增亮剂的例子包括结构式为HS-R-SO3X、XO3-S-R-S-S-R-SO3X或XO3-S-Ar-S-S-Ar-SO3X的化合物,其中R是取代的或未取代的烷基,和优选的是含1-6个碳原子的烷基,更优选的是含有1-4个碳原子的烷基;Ar是芳基;如苯基或萘基;X是适合的反离子如钠或钾。这些化合物的具体例子包括n,n-二甲基二硫代氨基甲酸-(3-硫代丙基)酯,带有3-巯基-1-丙烷磺酸(钾盐)的碳酸二硫代-o-乙酯-s-酯,二硫代丙基二硫化物(BSDS)、3-(苯噻唑基-s-硫代)丙基磺酸(钠盐)、吡啶丙基磺化三甲铵乙内酯,或它们的混合物。美国专利号3,770,598;4,374,709;4,376,685;4,555,315和4,673,469中描述了其它适合的增亮剂。芳族季铵类和脂族季铵类也可加入到组合物中以改善金属亮度。 
其它适合的增亮剂的例子包括3-(苯噻唑基-2-硫代)-丙基磺酸钠盐,3-巯基丙烷-1-磺酸钠盐,亚乙基二硫代二丙基磺酸钠盐,双(对-磺基苯基)-二硫醚二钠盐,双(ω-磺基丁基)-二硫醚二钠盐,双(ω-磺基羟基丙基)-二硫醚二钠盐,双-(ω-磺丙基)-二硫醚二钠盐,双-(ω-磺丙基)-硫醚二钠盐,甲基-(ω-磺丙基)-二硫醚钠盐,甲基-(ω-磺丙基)-三硫醚二钠盐,o-乙基-硫代碳酸-s-(ω-磺丙基)-酯钾盐,氢硫基乙酸,硫代磷酸-o-乙基-双-(ω-磺丙基)-酯二钠盐,硫代磷酸-三-(ω-磺丙基)-酯三钠盐,N,N-二甲基二硫代氨基甲酸(3-磺丙基)酯钠盐(DPS),(O-乙基二硫代碳酸)-S-(3-磺丙基)-酯钾盐(OPX),3-[(氨基-亚氨基甲基)-硫代]-1-丙烷磺酸(UPS),3-(2-苯噻唑基硫代)-1-丙磺酸钠盐(ZPS),二磺基丙基二硫醚的硫醇(MPS)或它们的混合物。 
除了可溶金属化合物、氯离子和增亮剂外,本发明的组分还可以包括匀平剂、抑制剂(载体)、表面活性剂、缓冲剂和其它在常见电镀液中用的化合物。 
适合的匀平剂的例子包括烷氧基化的内酰胺,分子式为: 
Figure S031C4974220040422D000081
其中A代表烃基,如-CH2-,R1是氢或甲基,n是从2到10的整数,优选的为2到5,n’是从1到50的整数。这种化合物的例子包括β-丙内酰胺乙氧基化物,γ-丁内酰胺-六-乙氧基化物,δ-戊内酰胺-八乙氧基化物,δ-戊内酰胺-五-丙氧基化物,ε-己内酰胺-六-乙氧基化物,或ε-己内酰胺-十二-乙氧基化物。电镀组合物中所用的这种匀平剂的量为0.002到3克/升,优选为0.005到0.2克/升。 
另一种适合的匀平剂的例子包括聚亚烷基二醇醚,其分子式为: 
[R2-O(CH2CH2O)m(CH(CH3)-CH2O)p-R3]a,其中m是8到800的整数,优选14到90的整数,p是0到50的整数,优选0到20的整数,R2是(C1-C4)烷基,R3是脂族链或芳基,a是1或2。 
组合物中可能含有的聚亚烷基二醇醚的量为0.005到30克/升,优选的为0.02到8.0克/升。相对分子量为500到3500克/摩尔,优选的为800到4000克/摩尔。 
这样的聚亚烷基二醇醚在现有技术中是已知的,或者说是按照现有技术中已知的工艺通过烷基化剂如硫酸二甲酯或叔丁烯转化聚亚烷基二醇制得。 
这样的聚亚烷基二醇醚的例子包括二甲基聚亚乙基二醇醚,二甲基聚亚丙基二醇醚,二叔丁基聚亚乙基二醇醚,十八烷基一甲基聚亚乙基二醇醚,壬基苯酚一甲基聚亚乙基二醇醚,聚亚乙基聚亚丙基二甲基醚(混合聚合物或嵌段共聚物),辛基一甲基聚亚烷基醚(混合聚合物或嵌段共聚物),二甲基-二(聚亚烷基二醇)亚辛基醚(混合聚合物或嵌段共聚物),和β-萘酚一甲基聚乙二醇。 
用来实现本发明的另外的匀平剂包括含氮和硫的匀平剂,分子式为N-R4-S,其中R4是取代或未取代的烷基,或取代或未取代的芳基。烷基可以有1-6个碳 原子,典型的有1-4个碳原子。适合的芳基可以包括取代或未取代的苯基或萘基。例如,烷基或芳基的取代基团可以是烷基、卤素(halo)或烷氧基。具体的匀平剂的例子包括1-(2-羟乙基)-乙撑硫脲,4-氢硫基嘧啶,2-氢硫基噻唑啉,亚乙基硫脲,硫脲,和烷基化聚亚烷基亚胺。这些匀平剂的含量为500ppb或更少,优选的为100到500ppb。其它适合的匀平剂在美国专利号3,770,598;4,374,709;4,376,685;455,315和4,673,459中描述。 
任何用于电镀的抑制剂(载体)都可用于实现本发明。然而,一种电镀液中抑制剂的浓度与另一种电镀液的不同,抑制剂典型的浓度为100ppm或更高。这样的抑制剂的例子是多羟基化合物,如聚二醇,例如,聚乙二醇,聚丙二醇和它们的共聚物。优选的抑制剂的例子是聚乙二醇。聚乙二醇适宜的浓度为200ppm-2000ppm。聚乙二醇的分子量为1000-12000,优选为2500-5000。 
任何适合的缓冲剂或PH调节剂都可用于本发明。例如,这样的PH调节剂包括无机酸如硫酸、盐酸、硝酸、磷酸或它们的混合物。向组合物加入足够的酸,将pH调节为0-14,优选为0-8。 
在电镀过程中,组合物或镀液的温度变化范围为20℃-110℃。温度因具体的金属而变化,这种温度的范围在现有技术中是大家熟悉的。可以使铜电镀液保持在20℃-80℃的温度下,而酸性铜镀液在20℃-50℃(PH为0-4)。电镀要进行足够长的时间,以形成理想厚度的沉积物。电镀印刷线路板的时间为45分钟到8小时。制造电路板时,理想的厚度为62mils到400mils(0.001mils/inch和2.54cm/inch)。 
本发明的细合物和方法适用于电镀长宽比至少为10∶1和至少为0.16cm的通孔互联的多层电路板的通孔和盲孔(0.063cm)。本发明的组合物和方法除了其它的优点外,与很多传统的电镀方法相比,还减少或消除了八字试块。 
可以使用垂直和水平电镀工艺。在垂直工艺中基材,如印刷线路板,从垂直位置沉入装有本发明电镀液组合物的容器中。做为阴极的基材位于与至少一种可溶的或不可溶的阳极相对的垂直位置。基材和阳极连接到电源上,在基材、阳极和组合物之间产生电流或电场。可以用任何适合的电动势源。各种产生电动势的设备都是现有技术中大家熟悉的。通过输送设备如泵使电镀组合物连续流过带有阴极、阳极和电镀组合物的容器。任何适合于电镀工艺的泵都可以用于实现本发明。这样的泵在电镀工业中是熟知的并且是能够得到的。 
在水平电镀工艺中,将基材或阴极通过一个水平位置上具有水平运动的传送设备传送。通过喷嘴或溢流管将电镀组合物不断的从下面和/或上面连续喷射到基材上。阳极以距基材一定的间隔放置,通过适当的设备将其与电镀组合物接触。基材用滚筒或板传送。这种水平设备在现有技术中是熟知的。 
本发明的组合物和方法消除和降低了八字试块,增强了电积能力,减少或防止了边角开裂以及减少或防止了晶须的生成,并提供了改善的金属层表面和均匀性能。另外,本发明的组合物比常规的电镀组合物稳定得多。因此,本发明是对电镀技术的重大改进。 
尽管本发明以在印刷线路板工业的电镀为重点进行了描述,但本发明可以用于任何适用的电镀工艺。组合物和方法可用于制造电子设备如印刷电路和插线板、集成电路、电器接点表面和连接器,电解箔,微型芯片中用的硅片,半导体和半导体插件,引线框、光电子插件、和焊点,如在大晶片上的焊点。 
本申请书中所有数值范围都是包含端值在内的和可组合的。 
下面的实施例更详细地描述了本发明,并不是限制本发明的范围。 
实施例1 
减少或消除晶须的组合物 
制备了八份铜电镀液以证明在基材上电镀铜时,氯化物防止或降低在铜金属表面形成晶须(树枝状结晶)的作用。每份电镀组合物或电镀液都是水性的镀液,它含有80克/升作为金属离子源的硫酸铜五水化合物,225克/升的硫酸,保持镀液的PH为4.0。每份镀液中氯离子的浓度为25ppm。氯离子源是HCl。除了前述的成分外,每份镀液还含有其浓度为0.25ppm或1ppm的载体组分,和0.1ppm或0.2ppm的增亮剂(BSDS),以提供氯化物与增亮剂的比例为125∶1或250∶1。在下表中公开了每份溶液中所用的载体。下表中所列的所有载体都是嵌段共聚物。 
将每份电镀液放置在一个单独的标准1.5升Gornell电镀槽中,电镀过程中,将9.5cm×8.25cm的铜包覆板(阴极)放入带有空气循环和机械搅拌的每个电镀槽中。铜阳极用作辅助电极。电镀过程中的电流密度保持在32mAmps/cm2。每块板用10ms对0.2ms的正向对反向波形电镀60分钟。电源是Technu脉冲整流器。 
表 
Figure S031C4974220040422D000111
每个板电镀铜层后,将板从Gornell电镀槽取出并检测晶须。可以通过肉眼和触摸每个板的表面和数晶须采进行检测。 
在氯化物与增亮剂比为125的电镀液中电镀的板的晶须数是1或0(实施例2,4,6和8)。氯化物与增亮剂比为250的板的晶须数是6,大于5或2(实施例1,3,5和7).因此,氯化物和增亮剂的比为125的组合物能够减少或降低晶须数。 
实施例2 
晶须的减少 
制备了四份电镀液来证明脉冲图形对形成晶须(树枝状结晶)的作用。所有的四份镀液包含同样浓度的化学成分,所有的被镀基材使用同样的阳极和电镀槽装备.每次电镀试验之前,要新蚀刻阳极。每份镀液中无机成分的浓度是82克/升CuSO4·5H2O,216.5克/升H2SO4和Cl-与增亮剂的比为44。每份镀液中抑制剂的浓度为15ml/L。在一个l.5升的Haring电镀槽中,在每份镀液中使用表中所示的不同脉冲图形以10.7mA/cm2对一个15cm×6.3cm的铜包覆板进行电镀。电镀后,通过物理的方式扫描板上的晶须,见表。如表中所示,正向波越长,晶须数的减少越显著。这种效果在正向波达到50ms和更高时特别显著。 
  正向时间,毫秒   反向时间,毫秒   晶须数
  10   0.5   69
  20   1   37
  50   2.6   27
  100   5   21

Claims (3)

1.一种方法包括:
(a)通过处于电连接的阴极、阳极和组合物产生电动势,以在阴极、阳极和组合物周围产生电场,该组合物包含金属离子、增亮剂和氯离子,氯离子与增亮剂的浓度比为50∶1到125∶1,所述组合物还含有分子式为N-R4-S的化合物,其中R4是取代的或未取代的烷基,或取代的或未取代的芳基;
(b)变化阴极、阳极和组合物周围的电场以提供脉冲图形或多种脉冲图形的组合来在阴极上电镀金属,所述脉冲图形包括(i)阴极电流后跟着阳极电流,其中阴极电流是40ms到1秒,阳极电流是0.25ms到5ms;(ii)阴极电流后跟着阳极电流,后跟着阴极直流电流;(iii)阴极电流后跟着阳极电流,后跟着平衡;或(iv)阴极电流后跟着阳极电流,后跟着阴极直流电流,然后跟着平衡。
2.如权利要求1所述的方法,其中对于脉冲图形(ii),阴极电流是40ms到1秒,阳极电流是0.25毫秒到15毫秒,阴极直流电流是5秒到90秒。
3.如权利要求1所述的方法,其中阴极电流是40ms到1秒,阳极电流是0.25毫秒到15毫秒,阴极直流电流是5秒到90秒,平衡是5秒到90秒。
CN2003101249742A 2002-12-20 2003-12-19 反向脉冲电镀组合物和方法 Expired - Lifetime CN1540040B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43597602P 2002-12-20 2002-12-20
US60/435,976 2002-12-20
US60/435976 2002-12-20

Publications (2)

Publication Number Publication Date
CN1540040A CN1540040A (zh) 2004-10-27
CN1540040B true CN1540040B (zh) 2012-04-04

Family

ID=32990583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003101249742A Expired - Lifetime CN1540040B (zh) 2002-12-20 2003-12-19 反向脉冲电镀组合物和方法

Country Status (7)

Country Link
US (2) US20050016858A1 (zh)
EP (1) EP1475463B2 (zh)
JP (1) JP4342294B2 (zh)
KR (1) KR101085005B1 (zh)
CN (1) CN1540040B (zh)
DE (1) DE60336539D1 (zh)
TW (1) TWI296014B (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371311B2 (en) * 2003-10-08 2008-05-13 Intel Corporation Modified electroplating solution components in a low-acid electrolyte solution
DE602005022650D1 (de) * 2004-04-26 2010-09-16 Rohm & Haas Elect Mat Verbessertes Plattierungsverfahren
JP4973829B2 (ja) * 2004-07-23 2012-07-11 上村工業株式会社 電気銅めっき浴及び電気銅めっき方法
US7329334B2 (en) * 2004-09-16 2008-02-12 Herdman Roderick D Controlling the hardness of electrodeposited copper coatings by variation of current profile
DE102004045451B4 (de) 2004-09-20 2007-05-03 Atotech Deutschland Gmbh Galvanisches Verfahren zum Füllen von Durchgangslöchern mit Metallen, insbesondere von Leiterplatten mit Kupfer
JP4589695B2 (ja) * 2004-10-29 2010-12-01 ディップソール株式会社 錫又は錫合金めっき浴及びそれを用いためっき方法
JP2006131926A (ja) * 2004-11-02 2006-05-25 Sharp Corp 微細孔に対するメッキ方法、及びこれを用いた金バンプ形成方法と半導体装置の製造方法、並びに半導体装置
TW200632147A (zh) 2004-11-12 2006-09-16
JP4716760B2 (ja) * 2005-03-09 2011-07-06 国立大学法人信州大学 金めっき液および金めっき方法
JP4894990B2 (ja) * 2005-03-09 2012-03-14 奥野製薬工業株式会社 酸性電気銅めっき液
US20060226014A1 (en) * 2005-04-11 2006-10-12 Taiwan Semiconductor Manufacturing Co., Ltd. Method and process for improved uniformity of electrochemical plating films produced in semiconductor device processing
JP5497261B2 (ja) * 2006-12-15 2014-05-21 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. インジウム組成物
US20080271995A1 (en) * 2007-05-03 2008-11-06 Sergey Savastiouk Agitation of electrolytic solution in electrodeposition
US7905994B2 (en) * 2007-10-03 2011-03-15 Moses Lake Industries, Inc. Substrate holder and electroplating system
US20090188553A1 (en) * 2008-01-25 2009-07-30 Emat Technology, Llc Methods of fabricating solar-cell structures and resulting solar-cell structures
WO2010005773A1 (en) * 2008-06-23 2010-01-14 Brookhaven Science Associates Underpotential deposition-mediated layer-by-layer growth of thin films
US8262894B2 (en) 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
JP5568250B2 (ja) * 2009-05-18 2014-08-06 公立大学法人大阪府立大学 銅を充填する方法
WO2011020109A2 (en) 2009-08-14 2011-02-17 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
JP5542938B2 (ja) 2009-08-14 2014-07-09 サンーゴバン アブレイシブズ,インコーポレイティド 細長い物体に結合させた研磨粒子を含む研磨物品
JP5574912B2 (ja) * 2010-10-22 2014-08-20 ローム・アンド・ハース電子材料株式会社 スズめっき液
TWI466990B (zh) 2010-12-30 2015-01-01 Saint Gobain Abrasives Inc 磨料物品及形成方法
CN103857494B (zh) 2011-09-16 2017-07-11 圣戈班磨料磨具有限公司 研磨制品和形成方法
CN103842132A (zh) 2011-09-29 2014-06-04 圣戈班磨料磨具有限公司 包括粘结到具有阻挡层的长形基底本体上的磨料颗粒的磨料制品、及其形成方法
TW201404527A (zh) 2012-06-29 2014-02-01 Saint Gobain Abrasives Inc 研磨物品及形成方法
TWI477343B (zh) 2012-06-29 2015-03-21 Saint Gobain Abrasives Inc 研磨物品及形成方法
TW201402274A (zh) 2012-06-29 2014-01-16 Saint Gobain Abrasives Inc 研磨物品及形成方法
TW201441355A (zh) 2013-04-19 2014-11-01 Saint Gobain Abrasives Inc 研磨製品及其形成方法
CN103668370A (zh) * 2013-12-19 2014-03-26 潮州市连思科技发展有限公司 一种光盘脉冲电镀方法
US9681828B2 (en) * 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
US9725816B2 (en) * 2014-12-30 2017-08-08 Rohm And Haas Electronic Materials Llc Amino sulfonic acid based polymers for copper electroplating
TWI621505B (zh) 2015-06-29 2018-04-21 聖高拜磨料有限公司 研磨物品及形成方法
JP6813574B2 (ja) * 2015-10-06 2021-01-13 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH インジウムまたはインジウム合金の堆積方法および物品
KR101646160B1 (ko) * 2015-11-13 2016-08-08 (주)에스에이치팩 내식성이 우수한 크롬도금액
US20180030608A1 (en) * 2016-07-27 2018-02-01 Apple Inc. Plating having increased thickness and reduced grain size
CN106637308B (zh) * 2016-11-16 2019-07-09 山东金宝电子股份有限公司 电解无轮廓铜箔用混合添加剂及用其制备电解铜箔的方法
CN106782980B (zh) * 2017-02-08 2018-11-13 包头天和磁材技术有限责任公司 永磁材料的制造方法
JP7087760B2 (ja) * 2018-07-18 2022-06-21 住友金属鉱山株式会社 銅張積層板
US20210172082A1 (en) * 2019-12-10 2021-06-10 Rohm And Haas Electronic Materials Llc Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975159A (en) * 1988-10-24 1990-12-04 Schering Aktiengesellschaft Aqueous acidic bath for electrochemical deposition of a shiny and tear-free copper coating and method of using same
US5051154A (en) * 1988-08-23 1991-09-24 Shipley Company Inc. Additive for acid-copper electroplating baths to increase throwing power
WO2001021294A2 (en) * 1999-09-24 2001-03-29 Semitool, Inc. Pattern dependent surface profile evolution of electrochemically deposited metal
CN1337064A (zh) * 1999-01-21 2002-02-20 阿托特德国有限公司 生产集成电路时由高纯铜电镀形成导体结构的方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038161A (en) * 1976-03-05 1977-07-26 R. O. Hull & Company, Inc. Acid copper plating and additive composition therefor
US4132605A (en) * 1976-12-27 1979-01-02 Rockwell International Corporation Method for evaluating the quality of electroplating baths
US4666567A (en) 1981-07-31 1987-05-19 The Boeing Company Automated alternating polarity pulse electrolytic processing of electrically conductive substances
US4917774A (en) * 1986-04-24 1990-04-17 Shipley Company Inc. Method for analyzing additive concentration
US5068013A (en) * 1988-08-23 1991-11-26 Shipley Company Inc. Electroplating composition and process
US4932518A (en) * 1988-08-23 1990-06-12 Shipley Company Inc. Method and apparatus for determining throwing power of an electroplating solution
US4897165A (en) * 1988-08-23 1990-01-30 Shipley Company Inc. Electroplating composition and process for plating through holes in printed circuit boards
DE59700942D1 (de) 1990-03-19 2000-02-10 Atotech Deutschland Gmbh Wässriges, saures Bad zur galvanischen Abscheidung von glänzenden und rissfreien Kupferüberzügen und Verwendung dieses Bades
US5223118A (en) * 1991-03-08 1993-06-29 Shipley Company Inc. Method for analyzing organic additives in an electroplating bath
US5192403A (en) * 1991-05-16 1993-03-09 International Business Machines Corporation Cyclic voltammetric method for the measurement of concentrations of subcomponents of plating solution additive mixtures
DE4126502C1 (zh) 1991-08-07 1993-02-11 Schering Ag Berlin Und Bergkamen, 1000 Berlin, De
US5252196A (en) * 1991-12-05 1993-10-12 Shipley Company Inc. Copper electroplating solutions and processes
US5328589A (en) * 1992-12-23 1994-07-12 Enthone-Omi, Inc. Functional fluid additives for acid copper electroplating baths
US5486280A (en) 1994-10-20 1996-01-23 Martin Marietta Energy Systems, Inc. Process for applying control variables having fractal structures
CA2143606C (en) * 1995-02-24 1999-07-20 Peter Arrowsmith Method of making electronic housings more reliable by preventing formation of metallic whiskers on the sheets used to fabricate them
DE19545231A1 (de) 1995-11-21 1997-05-22 Atotech Deutschland Gmbh Verfahren zur elektrolytischen Abscheidung von Metallschichten
US5750017A (en) * 1996-08-21 1998-05-12 Lucent Technologies Inc. Tin electroplating process
US5972192A (en) * 1997-07-23 1999-10-26 Advanced Micro Devices, Inc. Pulse electroplating copper or copper alloys
US6071398A (en) 1997-10-06 2000-06-06 Learonal, Inc. Programmed pulse electroplating process
US6365033B1 (en) * 1999-05-03 2002-04-02 Semitoof, Inc. Methods for controlling and/or measuring additive concentration in an electroplating bath
JP4132273B2 (ja) 1998-08-25 2008-08-13 日本リーロナール有限会社 充填されたブラインドビアホールを有するビルドアッププリント配線板の製造方法
JP2000080494A (ja) * 1998-09-03 2000-03-21 Ebara Corp 銅ダマシン配線用めっき液
US6878259B2 (en) * 1998-10-14 2005-04-12 Faraday Technology Marketing Group, Llc Pulse reverse electrodeposition for metallization and planarization of semiconductor substrates
US6210555B1 (en) 1999-01-29 2001-04-03 Faraday Technology Marketing Group, Llc Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating
US6793796B2 (en) 1998-10-26 2004-09-21 Novellus Systems, Inc. Electroplating process for avoiding defects in metal features of integrated circuit devices
US6444110B2 (en) 1999-05-17 2002-09-03 Shipley Company, L.L.C. Electrolytic copper plating method
KR20010015297A (ko) 1999-07-12 2001-02-26 조셉 제이. 스위니 전기적 펄스 변조를 이용하는 고 종횡비 구조를 위한 전기화학적 증착
US6652727B2 (en) * 1999-10-15 2003-11-25 Faraday Technology Marketing Group, Llc Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
US6309528B1 (en) 1999-10-15 2001-10-30 Faraday Technology Marketing Group, Llc Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
EP1132500A3 (en) 2000-03-08 2002-01-23 Applied Materials, Inc. Method for electrochemical deposition of metal using modulated waveforms
US6491806B1 (en) * 2000-04-27 2002-12-10 Intel Corporation Electroplating bath composition
DE60113214T2 (de) * 2000-11-02 2006-06-08 Shipley Co., L.L.C., Marlborough Plattierungsbadanalyse
US6740221B2 (en) * 2001-03-15 2004-05-25 Applied Materials Inc. Method of forming copper interconnects
KR100877923B1 (ko) * 2001-06-07 2009-01-12 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 전해 구리 도금법
US6676823B1 (en) * 2002-03-18 2004-01-13 Taskem, Inc. High speed acid copper plating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051154A (en) * 1988-08-23 1991-09-24 Shipley Company Inc. Additive for acid-copper electroplating baths to increase throwing power
US4975159A (en) * 1988-10-24 1990-12-04 Schering Aktiengesellschaft Aqueous acidic bath for electrochemical deposition of a shiny and tear-free copper coating and method of using same
CN1337064A (zh) * 1999-01-21 2002-02-20 阿托特德国有限公司 生产集成电路时由高纯铜电镀形成导体结构的方法
WO2001021294A2 (en) * 1999-09-24 2001-03-29 Semitool, Inc. Pattern dependent surface profile evolution of electrochemically deposited metal

Also Published As

Publication number Publication date
DE60336539D1 (de) 2011-05-12
EP1475463B2 (en) 2017-03-01
TWI296014B (en) 2008-04-21
JP2004204351A (ja) 2004-07-22
US20060081475A1 (en) 2006-04-20
JP4342294B2 (ja) 2009-10-14
KR20040055684A (ko) 2004-06-26
EP1475463A3 (en) 2006-04-12
TW200424330A (en) 2004-11-16
CN1540040A (zh) 2004-10-27
KR101085005B1 (ko) 2011-11-21
EP1475463A2 (en) 2004-11-10
EP1475463B1 (en) 2011-03-30
US20050016858A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN1540040B (zh) 反向脉冲电镀组合物和方法
EP1308540B1 (en) Plating bath and method for depositing a metal layer on a substrate
CN1749442B (zh) 改进的电镀方法
CN101435094B (zh) 镀铜浴的配方
CA1285901C (en) Plating bath and method for electroplating tin and/or lead
US6610192B1 (en) Copper electroplating
CN101302635B (zh) 钢铁件酸性预镀铜电镀添加剂及预镀工艺
US6911068B2 (en) Plating bath and method for depositing a metal layer on a substrate
US6652731B2 (en) Plating bath and method for depositing a metal layer on a substrate
TWI399462B (zh) 酸性銅電鍍浴組成物
US20030066756A1 (en) Plating bath and method for depositing a metal layer on a substrate
EP0952242A1 (en) Electro deposition chemistry
WO2002055762A2 (en) Electrochemical co-deposition of metals for electronic device manufacture
WO2006057873A1 (en) Near neutral ph tin electroplating solution
US20040074775A1 (en) Pulse reverse electrolysis of acidic copper electroplating solutions
KR20120095888A (ko) 구리 전기 도금 조성물
EP1148156A2 (en) Copper Electroplating
KR20070025643A (ko) 인쇄회로기판 스루홀 도금용 산성 동전해 용액의 조성물
KR810000024B1 (ko) 아연 도금욕(渡金浴)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20120404