CN1511376A - 用于开关元件的过电流检测和保护设备 - Google Patents

用于开关元件的过电流检测和保护设备 Download PDF

Info

Publication number
CN1511376A
CN1511376A CNA028106733A CN02810673A CN1511376A CN 1511376 A CN1511376 A CN 1511376A CN A028106733 A CNA028106733 A CN A028106733A CN 02810673 A CN02810673 A CN 02810673A CN 1511376 A CN1511376 A CN 1511376A
Authority
CN
China
Prior art keywords
voltage
resistance
switch element
electrode
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028106733A
Other languages
English (en)
Other versions
CN1290261C (zh
Inventor
大岛俊藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Publication of CN1511376A publication Critical patent/CN1511376A/zh
Application granted granted Critical
Publication of CN1290261C publication Critical patent/CN1290261C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Abstract

一种用于保护开关元件(T11)免受过电流破坏的过电流检测/保护电路。当电流流经所述开关元件时,出现电压降。该设备将该电压降放大并且产生出第一电压(V15)。而且,该设备对在位于开关元件和负载之间的节点处的电压分压而产生出第二电压(V14)。如果所述第一电压超过第二电压,则该设备确定出现了过电流。由于开关元件的线路电感(L)和接通电阻(Ron),所以在出现过电流时所述第二电压下降。因此,该设备能够即刻检测出可能由完全短路引起的过电流,并且使所述开关元件断开,由此保护了开关元件和在所述开关元件和所述电源之间的线路。该设备没有采用分流电阻,因此小型而廉价。

Description

用于开关元件的过电流检测和保护设备
技术领域
本发明涉及一种用于检测流经半导体开关和布置在负载和电源之间的线路的过电流的过电流检测设备。
背景技术
负载例如安装在例如汽车中的灯泡或电机接受来自电池的工作DC电压。这种负载有时受到由电路损坏或故障引起的过电流。该过电流会使为负载设置的半导体开关以及将负载连接在电池上的导线过热并损坏。
为了迅速检测出过电流并且切断电源和负载之间的电路,  已经提出了各种过电流检测和断开电路。现有技术的过电流检测电路的一个示例涉及将一分流电阻布置在电源和负载之间的线路中,检测该分流电阻的端电压,并且如果所检测出的电压高于参考电压则使负载与电源断开。
如果过电流流向负载,则分流电阻的端电压升高。该现有技术检测出端电压,并且如果所检测出的电压高于参考电压,则切断将负载连接在电源上的继电器的自保持电路,由此防止过电流流向负载。
发明内容
现有技术的过电流检测电路需要用来检测分流电阻的端电压的检测电路。这种电路增加了检测电路的尺寸和成本。另外,由于流经该分流电阻的电流所产生的热量,所以旁路电路会造成能量损失。
本发明提供一种小型而低成本的过电流检测设备。根据本发明的第一方面,一种过电流保护电路防止开关元件(T11)出现过电流。该开关元件具有通过具有一内阻抗的导线(25)连接在电源(VB)上的第一电极和与负载(L1)连接的第二电极。过电流保护电路具有一电流检测电路,用来检测在开关元件的第一和第二电极之间流动的电流(I)和在开关元件的第一和第二电极之间的电阻电压,按照一放大因数使所检测出的电压放大并且提供一第一电压(V15)。该过电流保护电流还具有一电压检测电路(R22、R24),用来产生与在开关元件的第二电极处的电压成比例的第二电压(V14)。如果第一电压高于第二电压,则过电流保护电路确定出现了过电流并且使开关元件不工作。
本发明的第二方面扩展了第一方面。该过电流检测电路包括第一电阻(R23)、第二开关(T12)、第一比较器(CMP11)和第二电阻(R25)。第一电阻的第一端与开关元件的第一电极连接,第一电阻的第二端与第二开关的第一电极连接,开关元件的第二电极与第二电阻的第一端连接,并且第二电阻的第二端接地。第一比较器的第一输入端与第二开关的第一电极连接,并且第一比较器的第二输入端与开关元件的第二电极连接。第一比较器控制着流向第二开关的电流,从而在第一电阻(R23)处产生出的压降等于在开关元件(T11)的第一和第二电极之间产生出的压降。在第二电阻处的压降用作第一电压。
本发明的第三方面扩展了第二方面。包括第三电阻(R26)和第三开关(T13)的串连电路选择性地与第二电阻并联。电流检测电路在启动第三开关时采用了第一放大因数并且在第三开关不工作时采用大于第一放大因数的第二放大因数。
本发明的第四方面扩展了第一方面。过电流保护电路还包括一第二比较器(CMP12),用来将提供给第二比较器的第二输入端的第一电压(V15)与提供给第二比较器的第一输入端的第二电压(V14)进行比较,并且如果第一电压高于第二电压,则输出一电压以使开关元件不工作。一旦开关元件不工作并且在开关元件的第二电极处的电压下降,则(I)在第二比较器的第一输入端处的电压保持在预定数值或更高数值处;并且(ii)第二比较器输出能够激活开关元件的电压。
本发明的第五方面扩展了第三方面。当启动开关元件(T11)时,激活第三开关(T13)预定时间(t1)以按照第一放大因数产生出第一电压(V15)。当正常瞬态电流流向负载时,第一电压(V15)不会超过第二电压(V14)。
本发明的第六方面扩展了第五方面。在按照第一放大因数产生出第一电压(V15)的所述预定期间(t1)之后,使第三开关(T13)不工作以将第一放大因数改变为第二放大因数。如果之后第一电压超过第二电压,则启动第三开关以恢复所述预定时间(t1)的第一放大因数。如果在放大因数改变操作重复预定次数之后第一电压高于第二电压,则该开关元件(T11)保持不工作状态。
附图说明
图1为一电路图,显示出根据本发明第一实施方案的开关元件的过电流检测/保护电路;
图2显示出第一实施方案的操作原理;
图3为一电路图,显示出根据第一实施方案的切断流向开关元件(功率晶体管)的过电流的操作;
图4为一电路图,显示出根据第一实施方案的在切断过电流之后启动功率晶体管的操作;
图5为一电路图,显示出根据本发明第二实施方案的开关元件的过电流检测/保护电路;
图6为一曲线图,显示出在第一实施方案的过电流检测/保护电路中的电压和电流变化;并且
图7为一曲线图,显示出在第二实施方案的过电流检测/保护电路中的电压和电流变化。
具体实施方式
下面将参照这些附图对本发明的实施方案进行详细说明。图1为一电路图,显示出根据本发明第一实施方案的开关元件的过电流检测/保护电路,并且图2至4说明了第一实施方案的操作原理。
图2显示出控制开关T11例如半导体元件以停止过电流的操作原理,并且图3为一电路图,显示出第一实施方案的基本操作。电源VB通过开关元件T11连接在负载L1(阻抗ZL)上。电源VB和开关元件T11之间的线路具有由线路的电阻和电感引起的内阻抗Zi,其大小取决于线路的长度和直径。通过没有分流电阻的电流检测电路来检测出提供给负载L1的电流I。开关元件T11具有一接通电阻Ron。开关元件T11的电极之间的压降ΔVT表示为ΔVT=Ron·I。电流源30是一电压控制电流源,用来提供与由接通电阻Ron产生出的电压成比例的电流。电流源30具有一放大因数α,它取决于电阻R23(图3)并且表示为α=1/R23。电流源30向放大电阻Rs(图1的R25或R26)提供电流i2(=α·Ron·I)以产生出与电流I成比例的电压V15(=i2·Rs)。电流源30和电阻Rs形成电流检测电路。开关元件T11的第二电极与负载L1连接并且提供电压V12。电压V12经过分压器P1(在图3中的R22和R24)以提供电压V14。电压V12受到在内阻抗Zi中的电感分量L影响,因此存在一电流变化速率例如L·dI/dt,这将在下面进行说明。
如果流过过电流,则电压V15增加并且电压V12降低。比较器CMP12将代表电流i2的电压V15与代表电压V12的电压V14进行比较。如果电压V15高于电压V14,则确定存在过电流,并且控制器50(包括激励器12)在预定条件下控制开关元件T11,并且切断负载电流。
下面将参照图3和4对第一实施方案的工作原理进行详细说明。在图3中,开关元件T11位于电源VB和负载L1之间,并且进行工作或断开以向负载L1提供电源电压或停止提供电源电压。开关T11可以是半导体开关元件例如MOSFET和IGBT。
电源VB的正输出端通过具有内阻抗Zi的导线25连接在开关元件T11上,该阻抗通常由线路电阻Rw和线路电感L构成。导线25和开关元件T11的第一电极之间的节点p11通过第一电阻R23、第二开关T12(例如,半导体开关元件例如n型MOSFET)和第二电阻R25接地。第二开关T12的第一电极与电阻R23连接,并且第二开关T12的第二电极与电阻R25连接。电阻R23、第二开关T12(包括一控制元件CMP11)、电阻R25和电阻R26(图4)形成一电压放大电路。
第二开关T12和电阻R25之间的节点p15与第二比较器CMP12的倒相输入端连接。电阻R23和开关元件T12之间的节点p13与第一比较器CMP11的非倒相输入端连接。比较器CMP11是一差动放大器例如运算放大器。比较器CMP11的输出端通过电阻R29与第二开关T12的控制端(门)连接。
开关元件T11和负载L1之间的节点p12是一电流检测点,并且与比较器CMP11的倒相输入端连接。节点p12通过第四电阻R24和第五电阻R22接地,从而形成一分压器P1。电阻器R22和R24之间的节点p14与比较器CMP12的非倒相输入端连接。比较器CMP12是一具有集电极开路的普通比较器。比较器CMP12的输出端通过上拉电阻R13与5V电源连接。开关元件T11的控制端(控制极)通过电阻R30与激励器12连接。
下面将对图3的电路的工作进行说明。在图3中,VB为电源电压,I为电路电流(包括过电流),i2为用于检测电路电流I的辅助电流(电流源),Rw为包含在内阻抗(线路阻抗)Zi中并且可以通过从直到负载L1的总电阻(包括电源内阻)减去在开关元件T11的电源端和地电平之间的电阻来计算出,L为包含在内阻抗Zi中的电感(线路电感)和开关元件T11的接通电阻Ron。在图3中,主节点设有电压数值(例如,节点p11具有电压V11)。电压V14被称为第二电压,并且电压V15被称为第一电压。
在图3中,线路25的内阻抗Zi包括线路电阻Rw和线路电感L。这不会限制本发明。线路25可以包括其它阻抗因数。
电压转换和电路电流的放大
当启动开关元件T11时,它通过电流电流I,这产生压降ΔVT=V11-V12(=Ron·I)。将在节点p12处的电压V12提供给比较器CMP11的倒相输入端,并且将在节点p13处的电压V13提供给比较器CMP11的非倒相输入端。如果电压V13高于电压V12,则比较器CMP11提供高电平输出。
而且第二开关12的控制端电压(控制极电压VGs)增加,由此促动第二开关T12。这使得流经由电阻R23、第二开关T12和电阻R25构成的串联电路的电流增加。然后在电阻R23处的压降增加,并且电压V13降低。从而,将电压V13控制成等于电压V12。
如果电压V13低于电压V12,则比较器CMP11提供低电平输出以降低第二开关T12的控制电压,由此使开关T12不工作。这降低了流经电阻R23的电流,从而增加了电压V13。因此,将电压V13控制成等于电压V12。这样,在节点p13处的电压V13一直受到调节以满足V13=V12。流经电阻R23的电流i2被表示为i2=(V11-V13)/R23=(V11-V12)/R23。项(V11-V12)是在开关元件T11的第一和第二电极之间的压降ΔVT。将与压降VT成比例的电流i2(=ΔVT/R23)提供给电阻R25。如果参数n定义为n≡R25/R23,则在节点p15处的第一电压V15用下式表示:
V15=R25·i2=(V11-V12)·n=n·Ron·I  ...(1)
因此,通过开关元件T11的接通电阻Ron将电路电流I转换成电压Ron·I,并且所转换的电压在电阻R25的端处以参数n放大。因此,参数n为用来检测电流I的放大因数。电阻R23、第二开关T12、比较器CMP11和电阻R29形成电压控制电流源30,用来提供与电压ΔVT成比例的电流i2。如果电阻R23和R25分别为200Ω和6.2kΩ,则放大因数n为31。
过电流的确定
通过比较器CMP12来确定是否有过电流流向开关电路T11。在图3中,比较器CMP12的倒相输入端接收与电路电流I成比例的第一电压V15,并且其非倒相输入端接收通过用电阻器R22和R24将电压V12分压而获得的第二电压V14。电压V14用作用来感测过电流的参考电压。因此,检测与电路电流I相对应的电压V15以查看它是否超过电压V14,由此确定出电路电流I是否超过预定值。如果参数m被定义为m≡R22/(R24+R22),则V14=m·V12。电阻R22和R24形成用来提供与电压V12成比例的分压器P1。
电压V12用电源电压VB、线路电阻Rw、线路电感L、开关元件T11的接通电阻Ron以及电路电流I表示如下:
V12=VB-(Rw+Ron)·I-L·dI/dt,
V14=m·V12=m{VB-(Rw+Ron)·I-L·dI/dt}...(2)
从公式(2)中可以理解,用于感测过电流的电压V14是可变的。电压V14随着电路电流I增加或者随着电路电流I的增加速度增加而降低。因此,电压V14用来安全容易地检测过电流的出现是有效的。电压V15随着电路电流I增加而降低。这样,本发明对电路电流中的增加或瞬态变化实现了放大效果。这种放大效果被称为对用来确定过电流的参考电压上的压缩效果。
通过比较器CMP12对电压V14和V15进行相互比较提供了电压差ΔVc=V14-V15,由公式(1)和(2),其表示如下:
ΔVc=m·VB-{m·Rw+(n+m)·Ron}·I-m·L·dI/dt  ...(2′)
在公式(2′)中,右侧的第二项显示出由于参数n的放大效果和参数m的压缩效果所以的确可以检测出在电路电流I中的电平变化。右侧的第三项显示出可以根据参数m的压缩效果来检测出电路电流I的变化速度。必须指出的是,公式(2)和(2′)都不涉及负载L1的阻抗(电阻)。因此,本发明不用分流电阻并且无需采用负载L1作为分流电阻就能检测电路电流。
当第一电压V15超过第二电压V14从而造成ΔVc<0时,比较器CMP12的输出下降。因此,激励器12提供地电平输出以使开关元件T11不工作。
当使开关元件T11断开时,电压V12下降至地电平。因此,在开关元件T11的第二电极处的电压降至低于预定值,并且在到比较器CMP12的非倒相输入端的节点p14处的电压变为零。因此,比较器CMP12提供低电平输出。这时,如下面所述一样激励器12不工作。在这种状态中,不可能根据图1的开关控制电路再次启动开关元件T11。但是,该开关元件T11必须如下面所述一样重新起动。
启动开关元件的电路
图2显示出使处于不工作状态的开关T11启动的原理。当开关T11处于不工作状态时,检测出在V12中的电压下降(通过图4的二极管D13),切断来自电流源30的电流(即高阻抗输出),并且电压V15下降至地电平。响应于在V12中的电压下降,通常为接通(端子1)的第四开关SW4断开(端子2),通常为断开(端子1)的第五开关SW5(图4的二极管D12)接通(端子2),并且将与比较器CMP12的非倒相输入端连接从分压器P1切换至分压器P2(图4的电阻R21、R22和R28)。一旦在非倒相输入端处接收到分压器P2的输出电压,则比较器CMP12提供高电平输出以通过控制器50再次使开关T11工作。如果控制器50继续单独促动开关T11,则第四开关SW4、第五开关SW5和分压器P2对于过电流保护电路而言是不必要的。
图4显示出用来实现上述操作的电路。除了图3的电路之外,图4的电路具有用来重新启动开关元件T11的元件,例如第三开关T13、用作整流器的二极管D11至D13以及电阻R21、R26、R27和R28。第三电阻R26和第三开关T13与电阻R25并联布置。二极管D13布置在节点p13和p12之间。二极管D11布置在节点p14和电阻R24之间。二极管D12布置在节点p14和比较器CMP11的倒相输入端之间。
第六电阻R21布置在电阻R22和节点p11之间。第七和第八电阻R27和R28分别与比较器CMP11的两个输入端连接。
如果开关元件T11显示出高阻抗并且在图4中不工作,则使二极管D13处于工作状态。结果,施加在比较器CMP11的非倒相输入端上的电压V13通过负载L1被固定在地电平上。负载电阻相对于电阻R27(如下面所述一样其电阻为15kΩ)较小,因此使电压V13降低二极管D13的正向电压降(在硅二极管中大约为0.7V)。
另一方面,由于二极管D11和D12以及电阻R21和R28,所以即使电压V12下降至地电平,施加在比较器CMP11的倒相输入端上的电压V18也不会下降至低于电压V18最小
V18最小=R22·(R28·VB+R21·Vd)/(R21·R22+R21·R28+R22·R28)-Vd...(3)
其中Vd为每个二极管的正向电压。电压V18最小是通过用形成分压器P2的电阻R21以及并联电阻R22和R28将电源电压VB(或V11)分压而产生的。分压器P2的输出为电压V18最小和二极管D12的正向电压的总和。
如果开关元件T11处于工作状态,则用作第五开关的二极管D12处于非工作状态(断开),用作第四开关的二极管D11工作(接通),并且分压器P1与比较器CMP11的倒相输入端连接。如果开关元件T11处于不工作状态,则二极管D11不工作(断开),二极管D12工作(接通),并且分压器P2与比较器CMP1的倒相输入端连接。公式(3)也可以如下写出:
V18最小=R22·R28·VB·{1-(1+R21/R22)}(Vd/VB)/{R21(R22+R28)+R22·R28}...(3′)
在公式(3′)的分子中,由于Vd/VB<<1,所以V18最小大于零。如果在公式(3)中R21=R22=R28=10kΩ,则R24=24kΩ,Vd=0.7V,并且VB=12.5V。因此,公式(3)的数值将为3.7V。
如果开关元件T11不工作并且负载L1的端电压V12处于地电平,则偏流流过电阻R21、二极管D12和电阻R28。因此,施加在比较器CMP11的倒相输入端上的电压V18高于施加在其非倒相端上的电压V13。然后,比较器CMP11提供一低电平输出以关闭第二开关T12。因此,施加在比较器CMP12的倒相输入端上的电压V15下降至接近地电平。
另一方面,施加在比较器CMP12的非倒相输入端上的电压V14比公式(3)的电压高二极管D12的正向电压降。更精确地说,在图4的实施例中电压V14大约为4.4V。因此,比较器CMP12提供高电平输出以使开关元件T11准备启动。如下所述,如果比较器CMP12的输出较高,则可以启动开关元件T11。
如果将开关元件T11从工作状态切换至非工作状态,则电压V12将降低并且在节点p13处施加在比较器CMP11的非倒相输入端上的电压V13(=V12+0.7V)将降低至低于公式(3)的电压。即使在这种状态中,如果接收到激励信号即如果图1的开关SW11接通,则也可以启动开关元件T11。下面将对开关SW11进行说明。
改变放大因数
根据本发明,在公式(1)中的放大因数是可变的。例如,该放大因数n可以在两个数值之间变化。如下面所述一样,这是用来分两个阶段检测过电流。下面将对改变放大因数n进行说明。
为了改变在图4中的放大因数n。使由电阻R26和第三开关T13构成的串联电路与电阻R26并联连接。当第三开关T13正在工作时,节点p15和地面之间的电阻值从在第三开关T13断开情况下的R25改变成一组合电阻R25·R26/(R25+R26)=R25/(1+R25/R26)。即,该组合电阻值低于R25。因此,启动第三开关T13将放大因数n从R25/R23(=n2)降低至R25·R26/{(R25+R26)R23}=R25/{R23(1+R25/R26)}(=n1)。
当启动第三开关T13时,提供第一放大因数n1(较小),而当断开第三开关T13时,提供第二放大因数n2(n1<n2)。通过调节电阻R26的数值,从而可以随意设定第一放大因数n1。
过电流确定参考电压
下面将对用来确定过电流的参考电压进行说明。在图4中,在开关元件T11断开情况下的过电流确定参考电压V14′用下式表示:
V14′=(V11·R22·R24+V12·R21·R22-Vd·R21·R22)/(R21·R22+R21·R24+R22·R24)...(4)
如果V11=12.5V并且V12=12V,则公式(4)提供9.9V。通过用电阻R21以及并联电阻R22和R24(包括二极管D11)将电压VB(或V11)分压来产生出参考电压V14′。这些电阻形成分压器P1,因此电压V14′为分压器P1的输出。公式(4)可以用下式表示:
V14′=m″·V11+m′·V12-m′·Vd   ...(4′),
其中,m″=R22/{R22+R21·(1+R22/R24)},并且
m′=R22/{R22+R24·(1+R22/R21)}。
通过用电阻R21校正公式(2)的放大因数m来获得电压V12的系数m′。在公式(4)中的电压V11和V12用下式表示:
V11=VB-Rw·I-L·dI/dt  ...(5)
V12=VB-(Rw+Ron)·I-L·dI/dt    ...(6)。
公式(4)和(4′)显示出电压V14′随着电压V11和V12增加而增加。为了使电压V12在参考电压V14′上的影响(m′)大于电压V11在其上的影响(m″),第一实施方案将用于电压V12的系数R22/R21设置为大于用于电压V11的系数R22/R24。在图4中,R21=10kΩ,并且R24=2kΩ,因此用于电压V12的系数m′比用于电压V11的系数m″大5倍。因此,参考电压V14′受电压V12的影响比受电压V11的影响大,因此可以通过只考虑关于电压V12的项并且通过用m代替m′来估计出参考电压V14′的特征。可以用公式(2)的电压V14来近似参考电压V14′。
如果第三开关T13不工作,则在第二放大因数n2的情况下产生出第一电压V15。在该情况中,如果电压V15高于由公式(4)提供的数值,则感测到过电流。在图4的实施例中,如果第一电压V15超过9.9V,则感测到过电流。如果Ron=40mΩ,则与9.9V的第一电压相对应的电路电流I11用下式表示:
I11=V14·R23/R25/Ron
   =9.9V·200Ω/6.2Ω/40mΩ
   =8A  ...(7)
当在图4中第一电压基于第二放大因数n2,则将高于8A的电路电流检测为过电流。
如果Rw=50mΩ,则(Rw+Ron)·I=(50mΩ+40mΩ)·8A=0.7V。在正在检测小过电流时,电路电流的增加速度较小,因此L·dI/dt≈0。在正在用第二放大因数n2产生出第一电压的情况下(第三开关T13不工作)进行过电流确定的过程中,基本上没有任何压缩效果(由于线路电感L而导致的参考电压V14下降)作用在参考电压上。这时,过电流确定的精确性由开关元件T11的接通电阻Ron的精确度决定。
对确定过电流的参考电压的压缩效应
如果用在第一放大因数n1情况下(第三开关T13工作)产生出的第一电压V15检测过电流,则压缩效应作用在参考电压上。
如果在没有压缩效应的情况下参考电压V14′保持为9.9V,则通过用R25和R26的并联电阻代替公式(1)的电阻R25来如下表示要被确定为过电流的电路电流I12:
I12=V14·R23·(R25+R26)/(R25·R26)/Ron  ...(8)
I12=9.9V·200Ω·(6.2kΩ+1kΩ)/(6.2kΩ·1kΩ)/40mΩ=57.5A...(8′)
如果当在第一放大因数n1情况下产生出第一电压V15时出现过电流,则电路电流急剧上升。在图4中,L≈2.5μH并且dI/dt≈1.25A/μs,因此L·dI/dt=3.1V。这是反电动势使电压V11和V12下降。如果m=9.9V/12V=0.83,则由于电路电感L而导致的对参考电压的缩小量ΔV1(由于电路电流的增加速度导致的第二电压V14的降低)用下式表示:
ΔV1≡m·L·dI/dt=0.83·3.1V=2.57V  ...(9)
2.57V的电压对应于15A的电路电流。当电路电流流经线路电阻Rw时,电压V11和V12降低。该效果为ΔV2≡m·I·(Rw+Ron)。当电路电流流经开关元件T11的接通电阻Ron时,只有电压V12降低。
如上所述,电压V12对参考电压V14(第二电压)的影响比电压V11对该参考电压的影响高五倍。因此,用V14′≡V14-ΔV1-ΔV2来代替公式(8)的电压V14,并且如下估计出要确定为过电流的电路电流I1:
V14-ΔV1-m·I1·(Rw+Ron)=I1·Ron·(R25·R26)/(R25+R26)/R23...(10)
这可以改写为:
{1+m·(Rw+Ron)·R23·(R25+R26)/Ron/(R25·R26)}·I1
=R23·(R25+R26)/Ron/(R25·R26)(V14-ΔV1)    ...(11)
根据上述电路常数来用公式(11)对电流I1求解,从而获得I1=29.7A。与对参考电压V14(第二电压)没有任何压缩效应相比,该压缩效应使参考电压缩小了57.5A-29.7A=27.8A,这大约是在没有压缩效应情况下的48%。被压缩的部分对应于第三电压。
即使出现了造成大过电流的线路故障例如完全短路,本发明也能缩小参考电压,从而迅速切断半导体开关元件T1并且防止线路和开关元件T1被破坏。
下面将对第一实施方案的操作进行详细说明。
(i)基本操作
在图3中,将在半导体开关元件T11(功率晶体管)的端子处的电压(电压降)放大成第一电压V15。在开关元件T11的负载侧端子和地面之间的电压V12被分压以提供第二电压V14。将电压V15与电压V14进行比较。如果电压V15高于电压V14,则确定流经开关元件T11的电流I为过电流,并且使开关元件T11不工作。
(ii)第一放大因数
在开关元件T11刚刚启动之后,正常瞬态电流(涌流,rushcurrent)流向负载L1。为了避免将正常瞬态电流感测为过电流,在启动开关元件T11之后预定时间t内为第一电压V15设定较低的放大因数即第一放大因数n1。
(iii)第二放大因数和启动操作
当在开关元件T11启动之后经过了时间t1时,则施加在第一电压V15上的放大因数从第一放大因数n1改变成比该第一放大因数n1更大的第二放大因数n2。
正常瞬态电流的持续时间根据负载L1而不同,因此时间t1可以延长预定次数。更精确地说,在第一次的时间t1之后,设定第二放大因数n2。如果这时检测到过电流,则开关元件T11被断开一次并且迅速启动。这恢复了第一放大因数n1并且使之第二次保持时间t1。使恢复第一放大因数n1的操作重复预定次数(N1)。在重复进行该操作N1次之后,恢复第二放大因数n2。如果这时仍然检测到过电流,则使开关元件T11断开,并且持续该断开状态。因此,如果在t1·N1的时间内没有检测到任何过电流,则开关元件T11将连续工作。这防止了电流由于在启动电源时产生出的涌流而断开。
(iv)过电流的出现
如果当正常电流流向负载L1时在开关元件T11和负载L1之间出现线路异常,则将产生出过电流。如果线路异常是层间短路,即如果过电流不太大从而第二放大因数n2将检测出过电流而第一放大因数n1将检测不到任何过电流,则在该情况中,在经过t1·N1的时间之后使开关元件T11断开,并且保持该断开状态。在正在检测过电流期间,电路电流基本上没有改变,因此不会产生任何反电动势。在层间短路的情况中,过电流相对较小,并且第二电压V14取决于电源电压VB。而且,第二电压V14相对于过电流基本恒定,从而不会显示出任何压缩效应。
在该情况中,过电流的确定是根据第一电压V15的大小来进行。第一电压V15随着开关元件T11的接通电阻Ron增加而增加,因此过电流检测的精确度受到接通电阻Ron变化的影响。一般来说,半导体元件例如功率晶体管的接通电阻涉及各个变量,并且会随着温度变化。因此,采用接通电阻来检测过电流只对比正常电流大三至四倍的过电流有效。
(v)第一过电流检测
如果用第一放大因数n1来检测过电流,则连续地关闭和打开开关元件而不用等待时间t1。如果在预定次数(N1)内检测到过电流,则切断T11并且保持该切断(不工作)状态。一旦用第一放大因数n1检测到过电流,则也可以使开关元件T11保持不工作。这将在第二实施方案中进行说明。如果用第一放大因数n1检测到过电流,则该过电流与正常电流大大不同,因此即使在第一次检测时作出过电流确定,出现错误过电流确定的可能性也很小。
(vi)第二过电流检测
通过过电流的电路包括线路电感L,因此当电流突然增加时参考第二电压V14在由线路电感L所产生的反电动势的作用下缩小。当短路电阻下降时,过电流更迅速地上升,从而增加了第二电压V14的缩小程度。如果大电流流过,则开关元件T11的线路电路Rw和接通电阻Ron也使电压V14缩小。该压缩效应使得能够检测出任何大过电流数值。
因此,第一实施方案能稳妥地检测出由相对较大短路电阻(层间短路)引起的过电流,并且同时阻止了由相对较小短路电阻(完全短路)引起的大过电流。这对于过电流检测和保护而言是理想的特性。由于该压缩效应,即使半导体开关元件T11的接通电阻Ron变化,第一实施方案也肯定能检测出并且防止过电流。
这样,第一实施方案能够检测并且阻止从为正常电流三至四倍的较小过电流到由完全短路引起的较大过电流的任何过电流,由此保护了线路和半导体元件。
过电流检测设备的操作
下面将对根据本发明的过电流检测设备的一个具体实施例进行说明。图1显示出根据本发明第一实施方案的过电流检测设备及其外部设备。该设备11根据参照图2至4所述的原理进行操作。
该设备11具有一电路,用来接通/断开半导体开关元件T11、向负载L1提供/停止提供电源电压VB并且检测流经该半导体开关元件T11的过电流。如果出现了过电流,则该设备11迅速将它检测出,并且根据该过电流的大小切断在电源VB和负载L1之间的电路,从而保护了开关元件T11以及将该开关元件T11连接在电源VB上的线路。
该设备11包括一电源开关电路,用来为设备11提供表示启动和停止负载L1的开关SW11的接通/断开信息的逻辑信号。该电源开关电路包括连接在开关SW11和地面之间的电阻R32以及用来在开关SW11接通时防止抖动(chatter)的防抖动(anti-chattering)电路16。电源开关电路的输出侧连接在AND电路AND11和AND12上。该设备11还包括一闩锁(latch)DF11、一电荷泵13、一定时器14以及一计数器15。
定时器14包括用来限定第一时间t1=20ms的第一定时器和用来限定第二时间t2=200ms的第二定时器。计数器15计数预定次数(N1),并且当计数到该次数时,提供一信号以关闭闩锁DF11。根据第一实施方案,所要计数的预定次数为4。图1的其它部件与图4的那些相同,因此将不再赘述。
下面将对过电流检测设备11在电源VB启动时的操作进行说明。如果开关SW11断开,则闩锁DF11提供高电平输出,并且比较器CMP12也提供高电平输出。
如果开关SW11是接通的,则两个AND(与)电路AND11和AND12每个都提供高电平输出,因此激励器12提供一高电平信号以启动开关元件T11。
当AND(与)电路AND12提供该高电平输出时,则定时器14的第一定时器开始为第三开关T13提供时间为τ1=20ms的激励信号。
当启动开关元件T11时,将电源电压VB提供给负载L1。在电源启动时,涌流流向负载L1。第三开关T12由于该激励信号而接通。因此,在节点p15处的第一电压接收第一放大因数n1(较小)。即使出现涌流,该放大因数n1也较小以抑制第一电压15,该电压不会超过参考电压(第二电压)V14。因此,该比较器CMP12提供一高电平输出,AND(与)电路AND12保持该高电平输出,并且开关元件T11保持工作状态。
在经过第一次的时间τ1之后,定时器14中止向第三开关T13的控制端(控制极)提供激励信号。该第三开关13因此处于不工作状态并且提供高阻抗,并且在节点p15处的电压V15接收比第一放大因数n1更大的第二放大因数n2。因此,电压V15增加。如果电压V15低于第二电压V14,则比较器CMP12保持高电平输出,并且开关元件T11保持被启动状态。如果电压V15超过第二电压V14,则比较器CMP12提供低电平输出,AND(与)电路AND12提供低电平输出,激励器12停止产生激励信号,并且使开关元件T11处于不工作状态。
如果开关元件T11不工作,则二极管D13将在节点p13处的电压V13固定在大约0.7V。在节点p12处的电压V12接地。如在公式(3)中所示一样,施加在比较器CMP11的倒相输入端上的电压从来不会低于3.7V,因此比较器CMP11在开关元件T11不工作情况下提供低电平输出。
然后,在节点p15处的第一电压V15降低至低于低电平。因此,第一电压V15变得低于第二电压V14,并且比较器CMP12再次提供高电平输出。因此,激励器12提供激励信号以启动开关元件T11。同时,定时器14的第一定时器开始使第三开关T13启动一段时间τ1=20ms。
上述操作(打开第三开关T13一段时间τ1然后将它断开)重复N1(=4)次,并且计数器15关闭闩锁DF11。这样,上述操作在电源启动之后重复四次,从而即使在涌流流向负载L1的情况下也能保持开关元件T11的启动状态。可以根据正常涌流的周期来随意选择在第一实施方案中的时间τ1=20ms和次数N1=4。
层间短路时的操作
层间短路是一种较小的短路,它引起比正常电流大数倍的过电流。如果出现层间短路,则相当于上述涌流的过电流持续流过。即使在重复四次时间τ1=20ms之后,该过电流仍然存在。在该情况中,闩锁DF11关闭,并且因此使开关元件T11断开。因此,如果层间短路出现并且持续时间长于时间80ms(20ms×4),则使开关元件T11断开以保护在电源VB和负载L1之间的电路。
如果计数器15经过由定时器14的第二定时器设定的时间τ2=200ms仍然没有检测到在AND(与)电路AND12中有任何升高(切换至高电平),则计数器15重置。
图6为一曲线图,显示出当开关SW11接通时电压V12(曲线s1)、V14(曲线s2)和V15(曲线s3)以及流经该开关元件T11的电流I(曲线s4)的随时间的变化。
在时刻t0,开关SW11接通,并且过电流(涌流)流向开关元件T11和负载L1。这时,第三开关T13开始工作,并且电压V15接受第一放大因数n1。电压V15(曲线s3)低于电压V14(曲线s2)。当在启动开关SW11之后经过20ms之后,电压V15接受第二放大因数n2并且在时刻t1处超过电压V14。但是,电压V15迅速下降至低于电压V14。在时刻t0之后经过20ms的时刻t1处并且在时刻t1之后经过20ms的时刻t2处,曲线s3的电压V15瞬间超过曲线s2的电压V14并且返回至原始低电平。电压V15的这些瞬间变化在图6的曲线图中没有画出。
在时刻t3,具有第二放大因数n2的电压V15变得低于电压V14,比较器CMP12提供高电平输出,并且开关元件T11连续处于活动状态。这样,开关元件T11不会受到在电源启动时出现的涌流干扰并且保持正常的操作。
在完全短路时的操作
下面将对在出现完全短路时的操作进行说明。在例如电源VB和地面之间的直接短路引起非常大的过电流,它使电流数值突然改变。这时,线路电感L对参考电压(第二电压)V14提供压缩效应。从而,第二电压V14降低。
同时,过电流提高了在节点p15处的电压V15。因此,比较器CMP12提供一低电平输出以使开关元件T11断开。同时,使比较器CMP11的输出改变成较低。之后,再次启动开关元件T11,并且启动第三开关T13以使得降低电压V15的第一放大因数n1起作用。
这时,压缩效应使电压V14下降,并且过电流使得电压V15超过电压V14。因此,即使在启动第三开关T13来选择更低的放大因数n1情况下,电压V15也肯定超过电压V14。因此,计数器15即刻计数到四而不用等待20ms的时间,从而关闭闩锁DF11,由此使开关元件T11断开。这样,完全短路的出现即刻使得开关元件T11不工作以保护该电路。
如上所述,如果过电流是由层间短路引起的,则根据第一实施方案的过电流检测设备11使得过电流能够流动给定的时间,并且在经过给定时间之后切断该电路。在出现完全短路时,第一实施方案采用了由电路电流I快速升高而提供的压缩效应,从而即刻切断该电路。这样,第一实施方案必定能够保护该电路。
对参考电压V14的压缩效应能有效地安全迅速地断开电流而不管开关元件T11的接通电阻Ron的变化。
当启动电源VB时,第一实施方案为第一电压V15设定更低的放大因数n1,持续80ms(t1×N1=20ms×4),从而避免了开关元件T11由于涌流而断开。
第二实施方案
图5为一电路图,显示出根据本发明第二实施方案的过电流检测/保护设备21及其外围设备。除了第一实施方案的结构之外,第二实施方案采用了倒相电路NOT11、AND(与)电路AND13以及一OR(或)电路OR11。第二实施方案的其它部件与图1的第一实施方案相同。
在图5中,如果比较器CMP12的输出较低并且如果定时器14的第一定时器正在工作,则闩锁DF11关闭以迫使开关元件T11断开。如果比较器CMP12的输出较低并且如果第一定时器正在工作,则在电源VB和负载L1之间的电路由于完全短路而正在通过过电流。因此,立即使开关元件T11断开以保护该电路,且不需要计数器15计数到四。与第一实施方案相比,第二实施方案在出现完全短路时更迅速地切断该电路,由此迅速地保护该电路。
图7显示出图5的过电流检测/保护设备21的操作。例如,用作负载L1的每个为21W的两个灯泡同时打开。在时刻t10处,出现完全短路(例如在负载L1和电源VB之间的较大短路)。这时,电压V12沿着曲线s11变化,电压V14沿着曲线s12变化,电压V15沿着曲线s13变化,并且流经开关元件T11的电流I沿着曲线s14变化。与图6的曲线图不同,图7的曲线图在横坐标上采用了μs作为单位时间。
当在时刻t10出现完全短路时,电压V15急剧上升。由于线路电感L所以通过计数器电动势产生出电压“A”。该计数器电动势提供压缩效应以降低电压V14。在时刻t11,电压V15超过电压V14,并且比较器CMP12提供低电平输出。在时刻t12,比较器CMP12恢复高电平输出。
在时刻t13,比较器CMP12再次提供低电平输出,并且闩锁DF11提供低电平输出以切断开关元件T11。因此,完全短路即刻切断并且保护了开关元件T11。
本发明的效果
如上所述,根据本发明的用于半导体元件的过电流检测/保护电路由于流经半导体元件的电流而使电压降放大,从而产生出第一电压并且将第一电压与参考电压(第二电压)进行比较。如果第一电压高于第二电压,该设备确定存在过电流并且使半导体元件断开。该设备能够确保使半导体元件断开,而无需分流电路并且不会损坏该半导体元件。
如果流向半导体元件的电流突然改变,则将半导体元件连接在电源上的线路电感产生出反电动势,这降低了第二电压。如果流向半导体元件的电流进一步增加,则第二电压进一步降低。如果出现较大的短路例如完全短路电流,则第一电压增加并且第二电压降低。而且,第一电压迅速超过第二电压,以响应于完全短路迅速断开半导体元件。
对于第一电压,设定第一放大因数和大于该第二放大因数的第二放大因数。如果出现由于例如层间短路而导致的较小过电流,则第二放大因数可以感测到该过电流,而第一放大因数不能感测到任何过电流。如果在经过N1次时间τ1之后仍然感测到过电流,则使半导体元件不工作。这样,本发明能够响应于层间短路而确保使半导体元件不工作。
如果在电源启动时出现涌流,则该涌流将在N1次时间τ1内稳定,从而防止半导体元件由于该涌流而断开。

Claims (18)

1.一种用于保护开关元件免受过电流破坏的过电流保护电路,该开关元件具有通过带有内阻抗的导线与电源连接的第一电极和与在另一个端接地的负载连接的第二电极,该过电流保护电路包括:
一电流检测电路,用来检测由流经位于所述开关元件的第一和第二电极之间的电阻的电流引起的电压,用一放大因数将检测到的电流放大并且提供第一电压;并且
一电压检测电路,用来检测通过在开关元件的第二电极和地之间分压而产生的第二电压,其中
如果第一电压超过第二电压,则所述过电流保护电路确定存在过电流并且使所述开关元件不工作。
2.一种用于保护开关元件不受过电流破坏的过电流保护电路,该开关元件具有通过带有内阻抗的导线与电源连接的第一电极和与在另一个端接地的负载连接的第二电极,该过电流保护电路包括:
一电流检测电路,用来检测由流经位于所述开关元件的第一和第二电极之间的电阻的电流引起的电压,用一放大因数将检测到的电流放大并且提供第一电压;并且
一电压检测电路,用来检测通过将通过从电源电压中减去一个电压降而提供的电压分压而产生的第二电压,该电压降由流经导线内阻抗的过电流产生,其中
如果第一电压超过第二电压,则所述过电流保护电路确定存在过电流并且使所述开关元件不工作。
3.如权利要求1和2中任一项所述的过电流保护电路,其中:
所述电流检测电路具有一第一电阻、一第二开关、一差动放大器和一第二电阻;
第一电阻的第一端与所述开关元件的第一电极连接,所述第一电阻的第二端与所述第二开关的第一电极连接,所述第二开关的第二电极与所述第二电阻的第一端连接,并且所述第二电阻的第二端接地;
所述差动放大器的非倒相输入端与所述第二开关的第一电极连接,并且所述差动放大器的倒相输入端与所述开关元件的第二电极连接,并且所述差动放大器的输出端与所述第二开关的控制极连接;
所述差动放大器如此控制流向所述第二开关的电流,使得在第一电阻处产生的电压降等于在所述开关元件的第一和第二电极之间产生的电压降;并且
在所述第二电阻处的电压降用作所述第一电压。
4.如权利要求3所述的过电流保护电路,其中:
包括一第三电阻和一第三开关的串联电路选择性地与所述第二电阻并联连接;并且
所述电流检测电路在使第三开关不工作时采用第一放大因数,并且在使所述第三开关不工作时采用比所述第一放大因数更大的第二放大因数。
5.如权利要求1和2中任一项所述的过电流保护电路,还包括:
一比较器,用来以这样一种方式将所述第一电压与所述第二电压进行比较:第一电压输入给比较器的倒相输入端,而第二电压输入给比较器的非倒相输入端,其中
在所述比较器的输出电压下降至一低电平时使所述开关元件不工作,并且
即使所述开关元件的第二电极的电位在该开关元件不工作时下降至地电平,也可以将所述非倒相输入端保持在预定电位上,从而非倒相输入端的电位大于所述倒相输入端的电位,从而导致比较器的输出电压被强制上升至高电平。
6.如权利要求5所述的过电流保护电路,其中:
所述开关元件的第二电极与第四电阻的第一端连接,该第四电阻的第二端与第一二极管的阳极连接,该第一二极管的阴极与第五电阻的第一端连接,并且所述第五电阻的第二端接地;并且
所述开关元件的第一电极与第六电阻的第一端连接,所述第六电阻的第二端与所述第一二极管的阴极连接,并且第一二极管的阴极和第五电阻之间的节点与所述非倒相输入端连接。
7.如权利要求5所述的过电流保护电路,其中:
所述电流检测电路具有一第一电阻、一第二开关、一差动放大器以及一第二电阻;
所述第一电阻的第一端与所述开关元件的第一电极连接,所述第一电阻的第二端与所述第二开关的第一电极连接,所述第二开关的第二电极与所述第二电阻的第一端连接,并且所述第二电阻的第二端接地;
差动放大器的非倒相输入端与所述第二开关的第一电极连接,并且所述差动放大器的倒相输入端与所述开关元件的第二电极连接,而且所述差动放大器的输出端与所述开关的控制极连接;
所述差动放大器如此控制流向所述第二开关的电流,使得在第一电阻处产生的电压降等于在所述开关元件的第一和第二电极之间产生的电压降;
在所述第二电阻处的电压降用作所述第一电压;
一第七电阻插入在所述差动放大器的非倒相输入端和所述第二开关的第一电极之间;
一第二二极管插入在所述差动放大器的非倒相输入端和所述开关元件的第二电极之间,并且所述第二二极管的阳极与所述差动放大器的非倒相输入端连接;
一第八电阻插入在所述差动放大器的倒相输入端和所述开关元件的第二电极之间;并且
一第三电极插入在所述差动放大器的倒相输入端和所述比较器的非倒相输入端之间,所述第三二极管的阳极与所述比较器的非倒相输入端连接。
8.如权利要求4所述的过电流保护电路,其中:
当使开关元件工作时,使所述第三开关工作预定时间以用第一放大因数产生所述第一电压;并且由此使得
当正常瞬态电流流向负载时,该第一电压不超过所述第二电压。
9.如权利要求8所述的过电流保护电路,其中:
如果过电流流向所述开关元件从而使得用第一放大因数产生出的所述第一电压超过第二电压,则所述开关元件不工作并且使该开关元件的不工作状态保持。
10.如权利要求9所述的过电流保护电路,其中:
在其中用第一放大因数产生第一电压的预定期间过去之后,使第三开关不工作以将第一放大因数改变为第二放大因数;
如果之后所述第一电压超过所述第二电压,则启动第三开关以恢复所述预定期间的所述第一放大因数;并且
如果所述第一电压在重复进行放大因数改变操作预定次数之后高于第二电压,则使所述开关元件不工作。
11.如权利要求4所述的过电流保护电路,还包括:
一比较器,用来以这样一种方式将所述第一电压与所述第二电压进行比较:所述第一电压输入给比较器的倒相输入端,而第二电压输入给比较器的非倒相输入端,其中:
在所述比较器的输出电压下降至一低电平时使所述开关元件不工作,并且
即使所述开关元件的第二电极的电位在该开关元件不工作时下降至地电平,也将所述非倒相输入端保持在预定电位上,从而非倒相输入端的电位大于所述倒相输入端的电位,从而导致比较器的输出电压被强制上升至高电平;
所述开关元件的第二电极与第四电阻的第一端连接,所述第四电阻的第二端与第一二极管的阳极连接,所述第一二极管的阴极与第五电阻的第一端连接,并且所述第五电阻的第二端接地;并且
所述开关元件的第一电极与第六电阻的第一端连接,所述第六电阻的第二端与所述第一二极管的阴极连接,并且第一二极管的阴极和第五电阻之间的节点与非倒相输入端连接。
12.如权利要求4所述的过电流保护电路,还包括:
一比较器,用来以这样一种方式将所述第一电压与所述第二电压进行比较:所述第一电压输入给比较器的倒相输入端,而第二电压输入给比较器的非倒相输入端,其中:
在所述比较器的输出电压下降至低电平时使所述开关元件不工作,并且
即使所述开关元件的第二电极的电位在该开关元件不工作时下降至地电平,也将所述非倒相输入端保持在预定电位上,从而非倒相输入端的电位大于所述倒相输入端的电位,从而导致比较器的输出电压被强制上升至高电平;
一第七电阻插入在所述差动放大器的非倒相输入端和所述第二开关的第一电极之间;
一第二二极管插入在所述比较器的非倒相输入端和所述开关元件的第二电极之间,并且所述第二二极管的阳极与所述比较器的非倒相输入端连接;
一第八电阻插入在所述差动放大器的倒相输入端和所述开关元件的第二电极之间;并且
一第三二极管插入在所述差动放大器的倒相输入端和所述比较器的非倒相输入端之间,所述第三二极管的阳极与所述比较器的非倒相输入端连接。
13.如权利要求3所述的过电流保护电路,还包括:
一比较器,用来以这样一种方式将所述第一电压与所述第二电压进行比较:所述第一电压输入给比较器的倒相输入端,而第二电压输入给比较器的非倒相输入端,其中:
在所述比较器的输出电压下降至低电平时使所述开关元件不工作,并且
即使所述开关元件的第二电极的电位在该开关元件不工作时下降至地电平,也将所述非倒相输入端保持在预定电位上,从而非倒相输入端的电位大于所述倒相输入端的电位,从而导致比较器的输出电压被强制上升至高电平。
14.如权利要求13所述的过电流保护电流,其中:
所述开关元件的第二电极与第四电阻的第一端连接,所述第四电阻的第二端与第一二极管的阳极连接,所述第一二极管的阴极与第五电阻的第一端连接,并且所述第五电阻的第二端接地;并且
所述开关元件的第一电极与第六电阻的第一端连接,所述第六电阻的第二端与所述第一二极管的阴极连接,并且第一二极管的阴极和第五电阻之间的节点与非倒相输入端连接。
15.如权利要求3所述的过电流保护电路,还包括:
一比较器,用来以这样一种方式将所述第一电压与所述第二电压进行比较:所述第一电压输入给比较器的倒相输入端,而第二电压输入给比较器的非倒相输入端,其中:
在所述比较器的输出电压下降至低电平时使所述开关元件不工作,并且
即使所述开关元件的第二电极的电位在该开关元件不工作时下降至地电平,也将所述非倒相输入端保持在预定电位上,从而非倒相输入端的电位大于所述倒相输入端的电位,从而导致比较器的输出电压被强制上升至高电平;
一第七电阻插入在所述差动放大器的非倒相输入端和所述第二开关的第一电极之间;
一第二二极管插入在所述差动放大器的非倒相输入端和所述开关元件的第二电极之间,并且所述第二二极管的阳极与所述差动放大器的非倒相输入端连接;
一第八电阻插入在所述差动放大器的倒相输入端和所述开关元件的第二电极之间;并且
一第三二极管插入在所述差动放大器的倒相输入端和所述比较器的非倒相输入端之间,所述第三二极管的阳极与所述比较器的非倒相输入端连接。
16.一种用于保护开关元件不受过电流破坏的过电流保护电路,该开关元件具有通过带有内阻抗的导线与电源连接的第一电极和与负载连接的第二电极,该过电流保护电路包括:
一电流检测器,用来检测被提供给负载的电流并且产生出与所检测出的电流对应的第一电压,并且
所述电流检测器具有根据所述开关的第一和第二电极之间的电压差来控制的电流源,所述电流源的第一端与所述开关的第一电极连接,所述电流源的第二端通过第一电阻接地,由所述第一电阻而导致的电压降产生第一电压;
一电压检测器,用来产生出与在开关的第二电极处的电压相对应的第二电压;以及
一比较器,它具有用来接收所述第一电压的第一输入端和用来接收所述第二电压的第二输入端,其中:
当流经所述负载的电流上升时,所述第一电压增加并且所述第二电压降低;并且
响应于所述比较器的输出使所述开关工作或不工作。
17.如权利要求16所述的过电流保护电路,还包括:
一分压器,用来产生与在所述开关的第一电极处的电压相对应的电压,其中:
当在所述开关的第二电极处的电压低于参考电压时,则选择性地使所述分压器的输出连接到所述比较器的第二输入端,选择性地使所述第二电压与所述比较器的第二输入端断开;并且
使所述电流源的第二端与所述第一电阻断开。
18.一种用于保护开关不受过电流破坏的方法,所述开关具有通过带有内阻抗的导线与电源连接的第一电极和与负载连接的第二电极,该方法包括:
通过感测与在所述开关的第一和第二电极之间的电压差相对应的电流并且通过产生与所述感测到的电流成比例的第一电压,从而检测出提供给负载的电流;
检测出在所述开关的第二电极处的电压并且产生出与所检测到的电压相对应的第二电压,如果提供给负载的电流增加,则所述第一电压增加并且第二电压降低;并且
将所述第一和第二电压相互进行比较,并且根据比较结果使所述开关工作或不工作。
CNB028106733A 2001-05-25 2002-05-22 用于开关元件的过电流检测和保护设备 Expired - Fee Related CN1290261C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP157750/2001 2001-05-25
JP2001157750A JP3914004B2 (ja) 2001-05-25 2001-05-25 半導体素子の過電流検出・保護装置

Publications (2)

Publication Number Publication Date
CN1511376A true CN1511376A (zh) 2004-07-07
CN1290261C CN1290261C (zh) 2006-12-13

Family

ID=19001565

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028106733A Expired - Fee Related CN1290261C (zh) 2001-05-25 2002-05-22 用于开关元件的过电流检测和保护设备

Country Status (7)

Country Link
US (1) US7177130B2 (zh)
EP (1) EP1393443B1 (zh)
JP (1) JP3914004B2 (zh)
KR (1) KR100614423B1 (zh)
CN (1) CN1290261C (zh)
DE (1) DE60205248T2 (zh)
WO (1) WO2002097940A2 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047520A (zh) * 2008-04-10 2011-05-04 快捷半导体有限公司 具有零负载电荷泵的热插拔控制器
CN102057573A (zh) * 2008-06-04 2011-05-11 矢崎总业株式会社 负载电路的过电流保护装置
CN102057574A (zh) * 2008-06-05 2011-05-11 矢崎总业株式会社 负载电路的过电流保护装置
CN102064807A (zh) * 2009-11-12 2011-05-18 安电株式会社 具有过电流检测功能的开关电路
CN102124622A (zh) * 2008-08-14 2011-07-13 西门子公司 故障电流检测设备
US8315028B2 (en) 2007-05-14 2012-11-20 Yazaki Corporation Overcurrent protection apparatus
CN101803137B (zh) * 2007-10-30 2013-01-16 大金工业株式会社 漏电检测电路
CN103033678A (zh) * 2012-12-24 2013-04-10 上海电力学院 短路电流实测方法
CN101911474B (zh) * 2008-01-16 2013-05-08 矢崎总业株式会社 供电装置
CN106063129A (zh) * 2014-03-05 2016-10-26 株式会社自动网络技术研究所 防止装置
CN106526477A (zh) * 2016-12-29 2017-03-22 重庆市渝展电气有限公司 一种多路开关状态监控电路
WO2017113441A1 (zh) * 2015-12-31 2017-07-06 深圳市华星光电技术有限公司 液晶显示器
CN107251431A (zh) * 2015-02-26 2017-10-13 株式会社自动网络技术研究所 电力供给装置
CN107852155A (zh) * 2016-02-17 2018-03-27 富士电机株式会社 半导体元件的过电流保护装置
CN108233328A (zh) * 2018-03-02 2018-06-29 中国电子科技集团公司第二十九研究所 一种线性缓启动电路的短路保护方法
CN109921622A (zh) * 2017-12-13 2019-06-21 Ovh公司 实现被配置成用于防止火花的电源的电路和系统
CN111263889A (zh) * 2017-10-24 2020-06-09 大陆汽车有限责任公司 用于运行电池传感器的方法和电池传感器

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990218B2 (ja) * 2002-07-12 2007-10-10 矢崎総業株式会社 半導体素子の保護装置
TWI249090B (en) * 2003-01-16 2006-02-11 Shindengen Electric Mfg Switching circuit
JP2005224075A (ja) * 2004-02-09 2005-08-18 Sanyo Electric Co Ltd インバータ装置
DE102004007288A1 (de) * 2004-02-14 2005-09-08 Conti Temic Microelectronic Gmbh Schaltungsanordnung zum Überlastungsschutz eines ansteuerbaren Schaltelements
JP4278572B2 (ja) * 2004-06-16 2009-06-17 矢崎総業株式会社 半導体スイッチの制御装置
JP4398312B2 (ja) * 2004-07-06 2010-01-13 矢崎総業株式会社 半導体スイッチの制御装置
JP4158754B2 (ja) * 2004-09-30 2008-10-01 日産自動車株式会社 過電流検知方法および検知回路
JP4504222B2 (ja) 2005-02-21 2010-07-14 矢崎総業株式会社 過電流検出装置
CN100514788C (zh) * 2005-04-07 2009-07-15 崇贸科技股份有限公司 过功率保护装置
JP4713963B2 (ja) 2005-07-07 2011-06-29 矢崎総業株式会社 過電流検出装置
JP4701052B2 (ja) * 2005-09-21 2011-06-15 矢崎総業株式会社 過電流検出装置
JP4643419B2 (ja) * 2005-11-08 2011-03-02 矢崎総業株式会社 自己診断機能を備えた負荷駆動装置
JP4579292B2 (ja) * 2005-12-26 2010-11-10 株式会社オートネットワーク技術研究所 電力供給制御装置及びその閾値変更方法
US7738225B2 (en) * 2005-12-29 2010-06-15 Micrel, Incorporated Circuit and method for limiting power to a load
JP4688693B2 (ja) * 2006-02-22 2011-05-25 株式会社オートネットワーク技術研究所 電力供給制御装置
US7636227B2 (en) * 2006-04-21 2009-12-22 International Rectifier Corporation Noise immune over current protection with inherent current limiting for switching power converter
JP5054928B2 (ja) * 2006-04-24 2012-10-24 株式会社オートネットワーク技術研究所 電力供給制御装置
JP4762044B2 (ja) * 2006-04-27 2011-08-31 矢崎総業株式会社 負荷回路の保護装置
US7463079B2 (en) * 2006-05-05 2008-12-09 Honeywell International Inc. Short circuit protection by gate voltage sensing
JP4836694B2 (ja) * 2006-07-11 2011-12-14 株式会社オートネットワーク技術研究所 電力供給制御装置
US20080212246A1 (en) * 2006-12-31 2008-09-04 Texas Instruments Incorporated Systems and Methods for Detecting Shorts in Electrical Distribution Systems
DE102007038143A1 (de) * 2007-08-13 2009-02-19 Continental Automotive Gmbh Schaltsystem
JP5030717B2 (ja) * 2007-09-10 2012-09-19 矢崎総業株式会社 過電流保護装置
EP2131497B1 (de) * 2008-06-04 2012-05-02 Eberspächer Controls GmbH & Co. KG Halbleiterschalter mit Kurzschlussabschaltung
JP5185021B2 (ja) * 2008-08-26 2013-04-17 矢崎総業株式会社 負荷回路の保護装置
JP5448706B2 (ja) * 2009-10-15 2014-03-19 古河電気工業株式会社 電流検出装置及び電流検出方法
JP5351793B2 (ja) * 2010-02-05 2013-11-27 矢崎総業株式会社 過電流保護装置及び過電流保護システム
US8004354B1 (en) * 2010-02-12 2011-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Automatic level control
US8687333B2 (en) * 2011-06-16 2014-04-01 Hamilton Sundstrand Corporation Overcurrent limiting for high side solenoid switch controls
DE102012000557A1 (de) * 2012-01-16 2013-07-18 Micronas Gmbh Überwachungseinrichtung und Verfahren zur Überwachung eines Leitungsabschnittes mit einer Überwachungseinrichtung
US9705394B2 (en) 2012-05-01 2017-07-11 Shunzou Ohshima Overcurrent protection power supply apparatus
CN103575964B (zh) * 2012-07-19 2016-03-23 快捷半导体(苏州)有限公司 一种功率开关管的过流检测电路和方法
US9411349B2 (en) * 2013-11-14 2016-08-09 Litelfuse, Inc. Overcurrent detection of load circuits with temperature compensation
KR102262578B1 (ko) * 2015-07-21 2021-06-09 현대자동차주식회사 전자식 스위치 모니터링 장치 및 그 방법
WO2017134824A1 (ja) 2016-02-05 2017-08-10 俊蔵 大島 電源装置
US20170248645A1 (en) * 2016-02-29 2017-08-31 Infineon Technologies Ag Method and Device for Short Circuit Detection in Power Semiconductor Switches
US10254327B2 (en) 2016-02-29 2019-04-09 Infineon Technologies Ag Method and device for short circuit detection in power semiconductor switches
JP6696314B2 (ja) * 2016-06-17 2020-05-20 株式会社デンソー 電源電圧異常判定装置
US11228306B2 (en) * 2017-07-27 2022-01-18 Diodes Incorporated Power switch over-power protection
KR102267589B1 (ko) * 2017-12-14 2021-06-18 주식회사 엘지에너지솔루션 전류 측정 장치 및 방법
TWI720610B (zh) * 2019-09-10 2021-03-01 新唐科技股份有限公司 帶隙參考電壓產生電路
CN112763886A (zh) * 2019-10-21 2021-05-07 瑞昱半导体股份有限公司 突波发生点检测装置及方法
KR102228008B1 (ko) * 2019-10-31 2021-03-12 현대오트론 주식회사 로우사이드 드라이버의 보호 장치 및 이를 이용한 기생성분 동작 지연방법
KR102322489B1 (ko) * 2019-12-11 2021-11-08 주식회사 유라코퍼레이션 과전류 보호 회로 및 이를 이용한 과전류 보호 방법
US11867762B1 (en) * 2022-11-18 2024-01-09 Infineon Technologies Ag Techniques for measuring voltage over a power switch using zero current detection point

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796278A (en) * 1996-04-26 1998-08-18 Delco Electronics Corporaiton Circuitry for controlling load current
ITMI981217A1 (it) * 1997-06-05 1999-12-02 Denso Corp Struttura perfezionata per un circuito di misura di corrente
US6011403A (en) * 1997-10-31 2000-01-04 Credence Systems Corporation Circuit arrangement for measuring leakage current utilizing a differential integrating capacitor
JP3706515B2 (ja) * 1998-12-28 2005-10-12 矢崎総業株式会社 電源供給制御装置および電源供給制御方法
JP2000299924A (ja) * 1999-02-14 2000-10-24 Yazaki Corp 電源供給制御装置及び方法
JP2000312143A (ja) * 1999-02-26 2000-11-07 Yazaki Corp スイッチング・デバイス

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315028B2 (en) 2007-05-14 2012-11-20 Yazaki Corporation Overcurrent protection apparatus
CN101803137B (zh) * 2007-10-30 2013-01-16 大金工业株式会社 漏电检测电路
CN101911474B (zh) * 2008-01-16 2013-05-08 矢崎总业株式会社 供电装置
CN102047520A (zh) * 2008-04-10 2011-05-04 快捷半导体有限公司 具有零负载电荷泵的热插拔控制器
CN102047520B (zh) * 2008-04-10 2014-10-08 快捷半导体有限公司 具有零负载电荷泵的热插拔控制器
CN102057573A (zh) * 2008-06-04 2011-05-11 矢崎总业株式会社 负载电路的过电流保护装置
CN102057573B (zh) * 2008-06-04 2013-11-06 矢崎总业株式会社 负载电路的过电流保护装置
CN102057574B (zh) * 2008-06-05 2013-06-19 矢崎总业株式会社 负载电路的过电流保护装置
CN102057574A (zh) * 2008-06-05 2011-05-11 矢崎总业株式会社 负载电路的过电流保护装置
CN102124622A (zh) * 2008-08-14 2011-07-13 西门子公司 故障电流检测设备
CN102124622B (zh) * 2008-08-14 2014-02-05 西门子公司 故障电流检测设备
CN102064807B (zh) * 2009-11-12 2014-11-05 安电株式会社 具有过电流检测功能的开关电路
CN102064807A (zh) * 2009-11-12 2011-05-18 安电株式会社 具有过电流检测功能的开关电路
CN103033678B (zh) * 2012-12-24 2015-09-30 上海电力学院 短路电流实测方法
CN103033678A (zh) * 2012-12-24 2013-04-10 上海电力学院 短路电流实测方法
CN106063129A (zh) * 2014-03-05 2016-10-26 株式会社自动网络技术研究所 防止装置
CN106063129B (zh) * 2014-03-05 2019-03-22 株式会社自动网络技术研究所 防止装置
CN107251431A (zh) * 2015-02-26 2017-10-13 株式会社自动网络技术研究所 电力供给装置
WO2017113441A1 (zh) * 2015-12-31 2017-07-06 深圳市华星光电技术有限公司 液晶显示器
CN107852155B (zh) * 2016-02-17 2021-04-20 富士电机株式会社 半导体元件的过电流保护装置
CN107852155A (zh) * 2016-02-17 2018-03-27 富士电机株式会社 半导体元件的过电流保护装置
CN106526477A (zh) * 2016-12-29 2017-03-22 重庆市渝展电气有限公司 一种多路开关状态监控电路
CN106526477B (zh) * 2016-12-29 2023-05-12 重庆市渝展电气有限公司 一种多路开关状态监控电路
CN111263889B (zh) * 2017-10-24 2022-06-21 大陆汽车有限责任公司 用于运行电池传感器的方法和电池传感器
CN111263889A (zh) * 2017-10-24 2020-06-09 大陆汽车有限责任公司 用于运行电池传感器的方法和电池传感器
CN109921622A (zh) * 2017-12-13 2019-06-21 Ovh公司 实现被配置成用于防止火花的电源的电路和系统
CN109921622B (zh) * 2017-12-13 2021-08-13 Ovh公司 实现被配置成用于防止火花的电源的电路和系统
CN108233328B (zh) * 2018-03-02 2019-04-23 中国电子科技集团公司第二十九研究所 一种线性缓启动电路的短路保护方法
CN108233328A (zh) * 2018-03-02 2018-06-29 中国电子科技集团公司第二十九研究所 一种线性缓启动电路的短路保护方法

Also Published As

Publication number Publication date
US7177130B2 (en) 2007-02-13
JP2002353794A (ja) 2002-12-06
DE60205248T2 (de) 2006-05-24
KR100614423B1 (ko) 2006-08-21
KR20040007608A (ko) 2004-01-24
EP1393443A2 (en) 2004-03-03
JP3914004B2 (ja) 2007-05-16
CN1290261C (zh) 2006-12-13
WO2002097940A2 (en) 2002-12-05
US20040207967A1 (en) 2004-10-21
DE60205248D1 (de) 2005-09-01
EP1393443B1 (en) 2005-07-27
WO2002097940A3 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
CN1290261C (zh) 用于开关元件的过电流检测和保护设备
CN1885698A (zh) 开关控制电路和自激dc-dc转换器
CN1713525A (zh) 半导体开关控制装置
CN1719730A (zh) 半导体开关控制装置
JP4777730B2 (ja) Dc−dcコンバータ
CN1738202A (zh) 半导体器件
CN1065990C (zh) 具有电压驱动开关元件的功率转换器
CN1262384C (zh) 具有减少开关损耗的元件的电弧加工电源
JP5656072B2 (ja) Dc−dcコンバータ
CN1538584A (zh) 马达控制设备
CN1162970C (zh) 半导体开关器件及过电流切断方法
CN1097337C (zh) 用于电压驱动开关元件的栅极控制电路
CN1950981A (zh) 过流检测电路及配置有过流检测电路的电源设备
CN1930768A (zh) 电源设备
CN101043151A (zh) 用于控制dc-dc转换器的电路和方法
CN1380737A (zh) 开关电源
CN1551485A (zh) 电动机驱动设备和电机驱动的动力转向系统
CN1453917A (zh) 逆变器电路的过流保护装置及装有该装置的混合集成电路
CN1896898A (zh) 恒压电路,设有多个恒压电路的电源系统装置及其控制方法
EP2560283A1 (en) Short-circuit protection method
CN1806382A (zh) 开关电源装置和电子设备
CN1499704A (zh) 开关电源设备
JP2009213305A (ja) 電力変換装置
JP2012147583A (ja) 電子装置
CN1303748C (zh) 过电流输出保护电路和包括此电路的稳压开关式电源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20210522