CN1511247A - 确定包括体积力作用的层状和渐变结构的大形变和应力 - Google Patents

确定包括体积力作用的层状和渐变结构的大形变和应力 Download PDF

Info

Publication number
CN1511247A
CN1511247A CNA028106008A CN02810600A CN1511247A CN 1511247 A CN1511247 A CN 1511247A CN A028106008 A CNA028106008 A CN A028106008A CN 02810600 A CN02810600 A CN 02810600A CN 1511247 A CN1511247 A CN 1511247A
Authority
CN
China
Prior art keywords
curvature
plane
stress
function
plate structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028106008A
Other languages
English (en)
Other versions
CN1231749C (zh
Inventor
S・苏雷什
S·苏雷什
I·布莱赫
罗赛克斯
A·J·罗赛克斯
煽歧曷逅
A·吉纳科珀洛斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of CN1511247A publication Critical patent/CN1511247A/zh
Application granted granted Critical
Publication of CN1231749C publication Critical patent/CN1231749C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

用于确定层状的或者渐变的结构(1710)的大形变的接受,包括均匀分布在结构(p)上的如重力,静电的或者电磁力,和其它力的体积力,支撑力,和集中力(P)的作用。还公开了实时应力监视系统(1700)以在大形变分析方法的基础上提供器件的现场监视。例如可以在这种系统中包括相干梯度传感模块(1730)。

Description

确定包括体积力作用的层状和渐变结构的大形变和应力
本申请要求美国第60/293,562号,申请日为2001年5月25日的临时申请的利益,该公开在这里以参考的方式全部引入。
背景技术
本申请涉及一种在基片上制造具有特征部件(features)的器件中的应力(stresses)测量和分析。
由适当的固态材料形成的基片可以用作平台以支撑不同的结构,如在其上形成的具有层状结构或者涂层的大面板和集成在基片上的微结构。例如大面板其中包括航空和航海部件和结构。例如基于基片的具有一层或多个层或者膜的集成器件,一层或多个层或者膜,其中包括集成电子线路,集成光学器件,微机电系统,平板显示系统,或者上述器件中的两种或者多种的组合。
在上述和其它结构(structures),元件(components),及器件(devices)中,通常在相同基片上形成不同的材料或者不同的结构,并且相互接触。一些器件也可以使用复合的多层(multilayer)或者连续渐变的(continuously graded)几何形状。因此,在每一特征部件中,由于材料性能和在不同的制造条件和环境因素(例如,温度的变化和波动)下相互连接的结构不同,不同材料和不同结构的连接(interfacing)可引起复杂的应力情况。在集成电路的制造中,例如,在制造过程中相互连接导线的应力情况可能被薄膜的沉积,快速热循环,化学—机械抛光和制造工艺中的钝化所影响。由这些和其它因素引起的应力不利于器件的性能和可靠性,并且甚至导致器件的失效(failure)。
因此,应力变化以及基片和在基片上制造的特征部件的形变的测量和分析在不同工业领域具有非常重要的应用。例如,需要测量在基片上形成的不同特征部件的应力,以改进器件的结构设计,材料选择,制造工艺,和器件的其它方面,以便增加器件的产量,加强器件的性能,和改善器件的可靠性。应力测量可用于估计和评价针对由如应力迁移和电移(electromigration),无应力和隆起(hillock)的形成这些现象导致的失效材料可靠性。应力测量还可以用于在晶片的制造设备中在大规模生产期间促进电路芯片的机械完整性和机电功能的质量控制。另外,应力测量可以用于改进不同制造工艺和技术的设计,如热处理(例如,在钝化和退火期间温度偏移)和化学与机械处理(例如抛光)以减少在最后器件中的残余应力。
发明内容
本申请包括用于确定层状结构或者渐变结构的大的形变的技术,包括体积力(body forces),如重力,静电或者电磁力,负荷或者支撑力,和其它均匀分布在结构上的力,并且力的作用集中在结构的一定位置上。
在一个实施例中,该技术包括如下步骤。由一种或多种材料形成的板结构用于代表具有一层或多层不连续层,连续渐变结构,或者两者结合的器件。每一材料假设呈现线弹性形变。一第一空间变化函数在所述板结构的一个平面内是均匀的并沿垂直于所述平面的方向变化,以表示作用在器件上影响器件曲率(curvature)评价的体积力。一第二空间变化函数,该函数在所述平面中是均匀的并沿垂直于该平面的方向和随着所述器件温度的变化,以表示所述器件中热应力的作用。在所述平面内位置的非线性函数,分别表示器件在所述平面内两个主方向的位移,和垂直于平面的第三个主方向上的位移,以包括大形变的作用。
接着,在第一和第二空间变化函数和位移的非线性函数的基础上计算器件的总势能(total potential energy)。最小化在平面内分别沿两个主方向相对主曲率和轴向拉伸的所述总势能,以获得在引起器件曲率演变的有效力和沿两个主方向的主曲率之间的分析性关系。
上述分析方法可以与测量表面曲率的技术结合,来确定包括多层器件的具有板结构的器件中的应力。例如光学相干梯度传感(CGS)的方法可以用于提供全区域,实时,和非破坏性反射表面的曲率测量,以在大形变的分析方法下进行分析。应力监视系统可以基于在如平板和半导体电路器件的制造期间结合提供原位监视而制造。
附图的简要说明
图1表示用于分析板结构的大形变分析方法的一个实施例。
图2表示图1所示分析方法的一个应用。
图3表示一个在所选坐标系中的板结构,其中作为图1所示分析方法的操作说明的一个例子,板结构被水平支撑在三个支撑点上。
图4表示板结构和相关坐标系的侧视图,其中曲线表示弯曲的板结构。
图5A表示对于直角板(Lx>Ly)的边界层的演变。
图5B表示在临界曲率发生分支的板结构的中心(x=0,y=0)处曲率的受激励演变。
图6表示在顶部形成有一层薄膜的正方几何形的板结构。
图7表示在顶部形成一层薄膜的圆形几何形的板结构。
图8表示特定圆形板结构基于本大形变分析方法和数值有限元方法的已测量数据和相关的受激结果,其中示出适合于Stoney分析的小形变区域I,大形变区域II和在大形变下的分支区域III。
图9表示一个用于测量玻璃板的大形变的示例性的系统。
图10,11,12,和13表示数值有限元的结果和基于本发明的大形变分析方法之间的比较。
图14和15表示分别在仅以重量和以重量及沉积薄膜的垂直位移轮廓,由有限元计算的结果,并以毫米表示
图16表示本大形变分析方法的结果和由California Instituteof Technology的Lee和Rosakis作出的实验结果之间的比较。
图17表示根据实施例的基于大形变分析方法的测量系统。
图18表示作为图17中曲率测量模块的一个实施的光学全场(full-field)相干梯度感测(CGS)系统。
图19表示图18所示的CGS系统的工作。
图20表示在一个表面中沿两个不同方向同时测量曲率的CGS系统的一个实施例。
具体实施方式
涉及在均匀板或者多层结构中的应力和相关曲率。这种相互关系可用于研究应力和曲率的演变或者由应力引起的表面形变。当应力引起的结构的平面外(out-of-plane)偏转(deflection)与结构的总的厚度相比较小时,可以使用各种近似技术,以获得曲率和应力之间的相互关系。一个例子是Stoney公式:
σ f = E bi h 2 6 h f K Stoney - - - - - ( 1 )
其中σf是在厚度为h的基片上,厚度为hf的薄膜中的均匀等双轴(equibiaxial)应力,并具有曲率Kstoney和Ebi是基片的双轴弹性模量。参照Stoney,G.G,Proc.Royal Soc.London,1909,A82,172。
当在层状或者渐变材料中平面外偏转变成与层的总厚度可相比时,如上述Stoney公式的小形变方法变为不准确,因此需要大形变的平板分析,以解释与大形变相关的各种效果。这样,许多小形变分析的结果可能在大形变下显著偏离实际的应力,几何形状和曲率。为了在不同应用中更准确的应力分析和估算,甚至在小应变占优势时,已开发了各种大形变分析。例如大形变分析的应用的例子包括器件的制造和设计,但不限于此。更具体地,由具有300毫米(12英尺)或者更大直径的硅晶片基片制造的计算机芯片和具有薄膜沉积的平面显示器产生了对基片—膜系统的大形变和几何的不稳定性的研究的兴趣。
基于数值计算用有限元法可分析大形变。在层状或者渐变板中有限元分析和实际测量表明,基片曲率和形状可不是均匀的,并且可显示径向或者在平面内从边缘到内部的变化。通常,有限元法复杂并对计算要求苛刻,因此在需要实时测量以提供动态的,原位响应的一些应用中是不实际的。
本应用提供一个一般性的大形变的分析方法,以在包括多层的和渐变材料的不同结构中量化大形变,而没有有限元法的复杂性和计算的负担。详细的,设计本大形变的分析方法以解释任何体积力在层状或者渐变结构中的作用,该作用包括重力作用和电磁场的作用。在不同情况下,这种力能够在薄膜,多层的和渐变的系统中对曲率形状和几何不稳定性开始产生的条件具有显著影响。本大形变的分析方法还解释由这种系统在曲率测量期间的机械支撑方式引起的作用,和平面外法线相对体积力的方向的取向预期会对测量的曲率具有显著作用。大形变分析方法提供在层状或者渐变结构中体积力和失配应变(mismatch strain)之间相互作用,如它们共同影响大形变响应的研究。
事实上,如重力,对基片曲率演变和几何的稳定性的体积力的作用在不同技术应用中的层状或者渐变结构制造和服务上相当感兴趣。基片的重力将影响大形变的例子包括但不限于:在大Si基片,例如当前300毫米的面内尺寸的基片上薄膜的沉积和平面化,希望在下一个十年内其尺寸将增加到500毫米,和如600mm×600mm×1.1mm一样大的沉积有薄膜的玻璃平板的平板显示器的生产。
如下所述,该大形变分析方法提供直接与体积力作用和热应力相对于在如平面内相互垂直的x和y方向的两个主方向上的曲率的相关公式。因此,在能测量曲率的情况下,本大形变分析方法可以基于测量的曲率,直接计算由不同体积力和随空间变化的热应力引起的应力作用。该分析公式保证计算是直接的并且当使用如计算机的适当的数字处理器时能够实现高速计算。详细地,当高速测量曲率时,本大形变分析方法能够提供层状或者渐变结构应力的实时测量。因此,在制造期间,这种实时曲率测量和大形变分析方法可以结合以提供动态的和原位测量,允许通过适当的反馈和控制机构实时控制制造条件。
图1表示用于分析具有均匀厚度的层状的或者连续渐变的板结构的大形变分析方法的一个实施例。该板结构包括一个由固体材料形成的基片,如有机或者无机固体材料。基片可以沿与基片表面垂直的方向是均匀的或者渐变的。基片材料的例子包括,但不限于:电介质(例如氧化物和氮化物),玻璃材料,金属效率,半导体,和聚合物。可以在基片上形成一层或多层或者膜。每层或膜可以沿垂直于基片表面的方向是均匀的或者渐变的。对于每层或膜的材料可以是有机的或者无机的。例如在板结构中这些层或膜的适合的材料包括,但不限于:电介质(例如氧化物和氮化物),玻璃材料,金属效率,半导体,聚合物,生物材料膜和多种液体膜。
值得注意的是,本大形变分析方法认识到如重力,静电力,和电磁力等均匀体积力,在平面外偏转大时对曲率的形成,形状和不稳定性有显著作用。因此,在本方法中包括这些均匀体积力和集中负荷力的作用。假设板结构在小应变和适度的旋转时显示出各向同性的,线弹性(linear elastic)形变。层状的或者渐变材料的热和机械性能允许沿垂直于板结构的方向变化,以对于多层和渐变材料获得一个一般性结果。获得明确的在曲率分支出现时的临界曲率和临界“有效负荷”的分析表达式。
在本实施例中,为板结构建立坐标系,以在板结构的平面内有两个不同的坐标方向和垂直于该平面的第三坐标方向。例如,在xyz笛卡尔坐标系中两个平面内方向可以是相互垂直的x和y轴和第三方向是z轴。接着,在板结构中热应力和体积力的作用由随空间变化的函数表示。例如,沿x和y方向一致分布,但沿z方向改变的体积力表示作用于板上的不同体积力的作用,这些力从一层到另一层变化,包括重力和电磁力。另外,在垂直于xy平面的方向的板结构的重心(center of gravity)的负荷也可以包括在体积力中。关于热应力,本征应变用于表示作用于板结构上的可以从一层到另一层变化的热应力作用。假设本征应变沿x和y方向均匀分布但沿z方向变化。进一步假设本征应变是温度的函数。
大形变分析方法的本实施例还使用x和y的非线性函数,以分别表示沿x,y和z方向的位移。具体地,假设沿z方向的平面外位移取决于沿x和y方向的主曲率。这种沿x,y和z方向的位移然后被用于分别计算在x和y方向的总的轴向应变,和在xy平面中总的剪切应变,以解释非线性大形变的作用。
假设在板结构中的每种材料是各向同性的及线弹性的,本实施例下面基于在层状的或者渐变的板结构中不同层的线弹性性能,如杨氏模量和泊松比,以及在x和y中的总的轴向应变和在xy中的平面内剪切应变,进行计算在x和y方向的轴向应力和在xy平面的总的剪切应力。上述在x和y方向的轴向应力和在xy平面的总的剪切应力然后用于计算层状的或者渐变板结构的总的势能。
最后,层状的或者渐变的板结构的总的势能相对分别沿x和y方向的主曲率和分别沿x和y方向的轴向拉伸被最小化,以获得引起层状的或者渐变的板结构的曲率演变的有效力和沿x和y方向主曲率之间的分析性关系。该分析性关系接着在大形变下用于分析板结构的应力状态,而不用有限元的数值计算方法。如下面详细说明,大形变的一个结果是在曲率达到临界值时曲率演变的不稳定性。具体地,在临界曲率值处几何形状分支为有限元数值计算方法所验证。值得注意的是,当形变相对板的总厚度小时,可使用各种小的近似方法,本大形变分析方法的结果本质上与那些小的近似方法一致。因此,本大形变分析方法可以用于小和大形变的状况。
图2表示上述大形变分析方法的一个示范性的应用。对给定层状的或者渐变的板结构,可以使用适当的方法测量主曲率,例如沿两个垂直的x和y方向。接着,在大形变分析方法的分析性关系,可以基于测量的主曲率计算引起层状的或者渐变的板结构的曲率演变的有效力并基于测量的曲率确定曲率演变的分支。当使用足够快的测量技术时,本系统可以用于提供实时监视和板应力状况的控制。在图2所示的最后步骤中,在大形变分析方法下基于实时测量和应力状况的评价可以调节板的环境状况,以将板设定在理想的应力状况下。上述步骤可以是连续重复的,以实时动态控制板结构的应力状况。例如,上述技术可以用于板结构的制造过程中,来监视和调节制造状况,以减少板结构中的应力使其低于一定的阈值,从而保证最终产品的可靠性。
下面的部分详细描述图1所示的大形变分析方法的实施例,及其具体应用到正方形,矩形,和圆形几何形状的具体板结构例子。另外,描述了一个用于实时,原位监视热应力的系统,其可被用于执行图2中的方法。更具体地,相干梯度感测技术可以用于提供全场,实时的,原位的,非破坏性的表面曲率测量。另外,大形变分析方法可以用于为如平面的板结构设计适当的支撑结构,以在该结构的操作环境下基本上减少或者最小化结构中的应力。
图3表示一个板结构和相关的笛卡儿坐标系,用于图示图1概述的大形变分析方法的应用。推导出对于三点支撑的,位于该三个支撑点间的任意空间的清楚的分析表达式,如下:(a)在分支前,发生分支时和分支后层状的或者渐变的板的对称中心的曲率,(b)在分支发生时的临界失配应力,(c)在自由边缘附近的曲率,(d)层状的或者渐变的板边缘的机械支撑和曲率中心之间距离的作用,和(e)在多层中在边缘和中心曲率上不同层的堆叠顺序的作用。还分析在大形变的中心处施加法向负荷的作用。这些分析预测然后与包括小和大应变和旋转的全部三维有限元分析,和包括板元素的二维模拟比较。分析和计算结果被在沉积有氮化硅薄膜的玻璃平面板上曲率和形状演变的详细实验观察检验,并被现有的在具有金属膜的Si基片的大形变的实验结果检验,其中可以忽略重力作用。
层状和渐变板的水平布置
考虑最初的平面,如图3,层状的或者渐变的板在其平面中参考坐标由x和y表示。假设板是具有平面尺寸LX×LY的矩形,沿z轴均匀厚度为h。板在距其中心距离为 a, b和 c处被均衡地支撑,如图3所示。仅约束垂直位移的这些法向支撑假设无摩擦。
由于均匀分布的力p(即相对平面坐标(x,y)是均匀的力p)板经受最初形变。这种力可以是重力,静电力,静磁力,或者电磁力。也可以包括如支撑力的其它力。在重力的情况下,该力可以表示为
p=g·<ρ(z)>,                              (2)
其中ρ(z)是材料的质量密度,g是由重力(它的正向与z方向相反)引起的加速度,以及<>表示z方向的积分。
除了重力,可沿板的厚度方向变化的热应力产生无应力(stress-free)应变(本征应变):
e(z,T)=α(z,T)ΔT(z),                     (3)
其中α是热膨胀系数,它是沿厚度和温度T的z位置的显函数,ΔT是产生本征应变的温度变化。在这里分析的最一般情况中,e(z,T)还能包括任何类型的单调递增的本征应变(例如由收缩,吸湿,或者相变引起的)。最后,集中在板的重心的法向施加的负荷P可以另外包括在本分析中,并且如后面部分指出的能够用于改进本结果。当如图4所示的指向,量p和P是正的。在该假设下,不同层具有不同的热应力。例如,在其上沉积有一层或者多层膜的基片中,等式(3)可以包括一个由于一个膜中热应力的贡献和由于基片中热应力的另一不同的贡献。
图4所示的笛卡儿坐标系跟随板中心的垂直位移。在板中心的平面外位移近似为:
w 0 = 1 2 ( K 1 x 2 + K 2 y 2 ) , - - - - - - - - ( 4 )
其中K1和K2是沿x和y方向的主曲率,并假设径向恒定;如图4中所指示的w0,K1和K2是正的。在矩形板的最一般的情况下,等式(4)可能不是很好的近似,因为形变的结构不能表达能够在分支后演变获得圆柱形或者圆锥形表面的可展面积(除非K1=0或者K2=0)。这将在本申请的后面部分进一步讨论。根据Harper和Wu,在1990年第26卷Int.J.Solids and Struct.第511页中所述,平面内分别沿x和y方向的位移近似为:
u 0 = c 1 x - 1 6 K 1 2 x 3 - 1 4 K 1 K 2 xy 2 ,
v 0 = c 2 y - 1 6 K 2 2 y 3 - 1 4 K 1 K 2 yx 2 , - - - - - - ( 5 )
其中c1和c2分别是板沿x和y方向的轴向伸展。在上述近似中,形变取决于4个变量,K1,K2,c1和c2,它们是重力负荷,本征应变,和任意集中的机械力的非线性函数。
在板中部(z=0)的膜应变和位移的关系是公知的非线性关系。采用小至适当的旋转,总的应力能够从等式(4)和(5)近似为:
&epsiv; x = &PartialD; u 0 &PartialD; x + 1 2 ( &PartialD; w 0 &PartialD; x ) 2 - z &PartialD; 2 w 0 &PartialD; x 2 = c 1 - K 1 K 2 4 y 2 - - - ( 6 a )
&epsiv; y = &PartialD; u 0 &PartialD; y + 1 2 ( &PartialD; w 0 &PartialD; y ) 2 - z &PartialD; 2 y 0 &PartialD; x 2 = c 2 - K 1 K 2 4 x 2 - - - - ( 6 b )
&gamma; xy = &PartialD; u 0 &PartialD; y + &PartialD; v 0 &PartialD; x + &PartialD; w 0 &PartialD; x &PartialD; w 0 &PartialD; y - 2 z &PartialD; 2 w 0 &PartialD; x &PartialD; y = 0 . - - - - - - ( 6 c )
具有杨氏模量E和泊松比v的材料被认为是各向同性和线弹性的。忽略扭转(twisting),应力写成:
&sigma; x = E 1 - v 2 ( &epsiv; x + v&epsiv; y ) - E 1 - v e .
&sigma; y = E 1 - v 2 ( &epsiv; y + v&epsiv; x ) - E 1 - v e .
&sigma; xy = E 2 ( 1 + v ) &gamma; xy , - - - - - - ( 7 )
所有材料的性能(即E,v和α)可以是z和T的显函数。注意应变假设是连续的沿厚度与界面相交(即在层间没有分层或者相对滑移)。表达式中的后项对于等式(7)中的σx和σy代表在层状的或者渐变的板中等双轴热应力。注意双轴模量由Ebi=E/(1-v)表示,平面应变模量由Epe=E/(1-v2)定义。
能量最小化公式
从静态平衡可建立在均匀板(参见图3和4)简单支撑处的反作用力:
R 1 = p L x L y 2 [ 1 + ( a &OverBar; / b &OverBar; ) ] 2 - - - R 2 p L x L y ( a &OverBar; / b &OverBar; ) 1 + ( a &OverBar; / b &OverBar; ) - - - - - - ( 8 )
总势能V是
Figure A0281060000165
( &sigma; x 2 + &sigma; y 2 - 2 v &sigma; x &sigma; y + 2 ( 1 + v ) &sigma; xy )
dzdxdy + p L 1 L 2 24 ( K 1 L x 2 + K 2 L y 2 )
- p L x L y 2 ( 1 - a &OverBar; / b &OverBar; ) [ K 1 a &OverBar; ( a &OverBar; + b &OverBar; ) + K 2 c &OverBar; 2 ] . - - - - - - - - ( 9 )
注意通过等式(7)给出的本构成关系包括了热应变。从总势能的稳态平衡被满足,得出
&PartialD; V &PartialD; c 1 = 0 . &PartialD; V &PartialD; c 2 = 0 . &PartialD; V &PartialD; K 1 = 0 . &PartialD; V &PartialD; K 2 = 0 . - - - - - ( 10 )
对于正方形板分析的结果
首先考虑LX=LY=L的正方形板的情况。对于正方形板解平衡等式(10),得出
c 1 = ( E bi &CenterDot; e ) ( E bi ) + K 1 K 2 48 L 2 + K 1 A 1 + K 2 A 2 . - - - - - ( 11 a )
c 2 = ( E bi &CenterDot; e ) ( E bi ) + K 1 K 2 48 L 2 + K 1 A 2 + K 2 A 1 . - - - - ( 11 b )
其中,如前面所指出的,方括号<>表示沿板的厚度所包括数值的积分。常数A1和A2只包含弹性材料性能,并由下式给出
A 1 = &lang; E pe &CenterDot; ( vz ) &rang; &CenterDot; &lang; E pe &rang; - &lang; E pe &CenterDot; z &rang; &lang; E pe &CenterDot; v &rang; &lang; E pe &CenterDot; ( 1 - v ) &rang; &CenterDot; &lang; E bi &rang; . - - - - - - - ( 12 )
A 2 = &lang; E pe &CenterDot; z &rang; &CenterDot; &lang; E pe &rang; - &lang; E pe &CenterDot; ( 1 - v ) &rang; &lang; E pe &CenterDot; v &rang; &lang; E pe &CenterDot; ( 1 - v ) &rang; &CenterDot; &lang; E bi &rang; . - - - - - ( 13 )
从等式(12)和(13)中,可以看出A2>A1从等式(10),曲率K1和K2必须满足下式:
2 K 1 K 2 2 L 4 A 3 - K 1 A 4 + K 2 A 5 + f e = 0 . - - - - ( 14 a )
2 K 1 2 K 2 L 4 A 3 - K 2 A 4 + K 1 A 5 + f e = 0 . - - - - - - - - ( 14 b )
其中常数A3,A4和A5仅包含弹性性能,fe对于曲率的演变代表有效“驱动力”,该曲率演变包括失配应变,集中的机械负荷和重力。这些参数由下式定义:
A 3 = 1 1440 &lang; E pe &rang; . - - - - - ( 15 )
Figure A0281060000178
f e = 2 &lang; E bi &CenterDot; ( ez ) &rang; - 2 &lang; E bi &CenterDot; e &rang; &CenterDot; &lang; E bi &CenterDot; z &rang; &lang; E bi &rang; - p 12 L 2
+ p a &OverBar; ( a &OverBar; + b &OverBar; ) + c 2 1 + a &OverBar; / b &OverBar; - - - - - - - - ( 18 )
没有明确指出假定fe的所有分量同时施加。
等式(14)有两个可能的实解。第一个相当于K1=K2,第二个为K1≠K2。系统的稳定性通过检查下式的符号得出,
Figure A0281060000181
如果D>0,那么K1≠K2,并且K1+K2=-fe/A2。有两个代表平面外形变的两个可能模式的形式解:
K 1 f e = - 1 2 A 4 &PlusMinus; 1 2 D 2 A 3 A 4 L 4 ,
在负荷或者几何形状(例如在长度或者厚度上的小变化)中最初的缺陷促使平面外形变遵从这些可能的模式中的一个,有在板较长方向上曲率增加及另一个在板较短方向上降低。
如果D<0,(即当A4-A5>0时)
其中
A 6 = ( A 4 + A 5 ) A 3 L 4 , A 7 = f e A 3 L 4 . - - - - ( 22 )
和(A2 7/4+A3 6/27>0)。这两等式在分支开始之前为平板的非线性球形曲率提供了分析表达式。
在最初的线性响应的限制的情况下,获得下面小形变的结果:
K 1 = K 2 = K &ap; - f e A 4 + A 6 ; | K 1 K 2 | < < 1 L 2 , - - - - ( 23 )
c 1 = c 2 = c &ap; &lang; E bi &CenterDot; e &rang; &lang; E bi &rang; + K 1 ( A 3 + A 2 ) . - - - - - - ( 24 )
另外如果,p,P→0,等式(23)和(24)对于层状的或者渐变的板等于Freund在1993年第132卷341页J.Crystal Growth中,Giannakopoulos等在1995年第43卷1335页Acta Material中,和Suresh等在1994年第42卷979页J.Mech.Phys.Sol ids,中所述的小形变结果。
随着负荷增加时,板的形变从曲率相对所有负荷因素的最初线性变化改变为强的非线性变化,而仍坚持板的球形。在对于这些情况,如等式(21)所述D<0,K1=K2。当负荷进一步增加时,在D>0以上存在一个临界“驱动力”。在该转变点,板的形状变成非球形,且如等式(19)和(20)所述K1≠K2。在该转变点,D=0,解分成两支。由下式给出在分支点的临界有效负荷水平
| f e | cr = 2 | A 4 | | A 4 - A 5 | 2 A 3 L 4 . - - - - - - ( 25 )
重力,失配应变和触发分支的集中的机械负荷的临界结合反映在等式(18)所示的fe上。相应的临界曲率写作
| K cr | = | A 4 - A 5 | 2 A 3 L 4 . - - - - - - - - - ( 26 )
临界曲率与重力和其它体积力负荷无关,并且反映平面内机械应变的基本的相容性条件。
具有足够对称性的板在高失配应变和/或机械负荷时在其平面外形变中经受分支。在这种情况下实际形变路径由初始几何形状或者材料缺陷(例如在厚度上的小变化或者材料性能,成分上的小偏离,或者外部边界的不规则性)控制。
注意临界曲率的值,等式(26)不取决于重力或者失配应变;可是,在分支发生处的临界机械力或者力矩受重力和失配应变的强烈影响。能够结合e和p使得fe=0,因此总而言之基本上保持板水平并克服分支问题(K1=K2=0)。如果板在边缘被夹住可出现这种情况。还要注意多个曲率的演变和分支受相对于板的重心和多层的和渐变的板中不同层的相对位置的三个支撑点的相对位置强烈影响(因为热和机械性能的整个厚度的变化是各层的相对位置的函数)。
对于圆板的分析结果
在2.3部分获得的结果对于正方形板(边长为L)能够延伸到半径为R的圆板上,用πR2代替L2。在圆板中常数A1,A2,A3,A4和A5保持相同。
对于圆板的关键结果概述如下。反作用力由下式给出,
R 1 = p&pi; R 2 2 [ 1 + ( a &OverBar; / b &OverBar; ) . R 2 = p&pi; R 2 ( a &OverBar; / b &OverBar; ) 1 + ( a &OverBar; / b &OverBar; ) . - - - ( 27 )
负荷水平是
参数D表征出形状演变为
Figure A0281060000204
最初,D<0,在圆板中心处的曲率由等式(21)给出具有,其中
A 6 = ( A 4 + A 5 ) A 3 &pi; 2 R 4 , A 7 = f e A 3 &pi; 2 R 4 . - - - - - ( 30 )
在分支点,D=0,临界负荷水平和临界曲率是
| f e | cr = 2 | A 4 | | A 4 - A 5 2 A 3 &pi; 2 R 4 . - - - - ( 31 )
| K cr | = | A 4 - A 5 | 2 A 3 &pi; 2 R 4 . - - - - - - ( 32 )
在分支后,D>0,中心处的曲率遵从一种可能的形变模式,根据
K 1 f e - 1 2 A 4 &PlusMinus; D 2 A 3 A 4 2 &pi; 2 R 4 ,
Figure A0281060000209
对于矩形板的分析结果
现在考虑矩形板更一般的情况,其中Lx≠Ly。对于矩形板,应用来自2.2部分的平衡等式,以下面的方法的改进等式(19),(25)和(26):
| f e | cr = 2 | A 4 | | A 4 - A 5 | A 3 ( L x 4 + L y 4 ) . - - - ( 35 )
| K cr | = | A 4 - A 5 | A 3 ( L x 4 + L y 4 ) . - - - - - ( 36 )
从这些等式,可以看到无论何时(A3(L4 x+L4 y)f2 e>>64Ay2 4|A4-A5|)(它是在板极细长的情况下Lx>>Ly),D≈A3(L4 x+L4 y)。在这些条件下,D>0,|fe|>|fe|cr,和等式(20)变成
K 1 &ap; - f e A - 4 . K 2 &ap; 0 . - - - - - ( 37 )
它是从板应变束分析(plane strain beam analysis)所预期的结果。上述渐近结果是依照所预期的形变以免主曲率之一占优势(即在长方向上的曲率,K1)。该分析预示对无重力下经历大形变的矩形板还原为有限元的结果。
对于D>0,|fe|>|fe|cr,图5a所示对于矩形板可以进行边界层分析。这种分析(详细看附件B)提供沿矩形板的长度和宽度方向上的曲率预示,以及在板自由边附近的边界层区域的尺寸。由附件B的推导,可发现边界层的宽度为 3.066 h min ( | K 1 | , | K 2 | ) 其中K1和K2是在板中心(x=0,y=0)处的曲率。对于正方形板从等式(21)和(22)得出K1,并代入 L = L x L y , 得到长度方向的曲率,而对于矩形板沿y方向的横向曲率变成
K 2 &ap; K 1 &lang; E pe &CenterDot; v &rang; &lang; E pe &rang; . - - - - - - - ( 38 )
图5b所示结果,K1为沿长度方向的最大主曲率和K2是横向的最小主曲率。
匀质平面的极限情况
对于具有匀质弹性性能的板可做进一步的简化(其中E和v是空间不变量)。在这种情况下,等式(12),(13)和(15)-(17)化简为:
A 1 = A 2 = 0 . A 5 = v A 4 = v E pe h 3 6 . A 3
= h 1440 E pe , - - - - - ( 39 )
对于正方形板(Lx=Ly=L)临界曲率简化为
| K cr | = h L 2 120 ( 1 - v ) . - - - - ( 40 )
再注意临界曲率与膜的重力和几何形状及材料的性能无关。“临界负荷”简化为
| f e | cr = | 2 &lang; E bi &CenterDot; ( ex ) &rang; - p 12 L 2
+ p ( 1 + a &OverBar; / b &OverBar; ) [ a &OverBar; ( a &OverBar; + b &OverBar; ) + c &OverBar; 2 ] |
Figure A0281060000226
对于基片上的薄膜分析极限
对基片上的薄膜情况,可以从上述一般解中可得出一些有用的分析结果。图4表示沉积有薄膜的正方形和圆形基片示意图。
膜的热膨胀系数,杨氏模量和泊松比分别是αf,Ef,和vf,而基片的热膨胀系数,杨氏模量和泊松比分别是α,E,和v。薄膜厚度是hf,而基片的厚度是h。
正方形基片上的膜
对于具有薄膜的正方形基片临界曲率再由等式(40)给出。因为hf<<h,注意,薄膜厚度hf和薄膜的弹性性能不影响临界曲率的结果,并且对于匀质平面与2.6部分的那些推导结果相同。在薄膜极限中,有效临界负荷,等式(41)简化为
Figure A0281060000227
+ p 1 + a &OverBar; / b &OverBar; [ a &OverBar; ( a &OverBar; + b &OverBar; ) + c &OverBar; 2 ] |
= E 1 - v 2 h 4 3 L 2 120 ( 1 - v ) . - - - - ( 42 a )
与等式(40)和(41)结合,临界曲率依据|fe|cr被写成:
| K cr | = 3 h 3 &CenterDot; 1 - v 2 E | f e | cr - - - - - ( 42 b )
该结果对于在分支处的临界曲率明显与临界有效负荷相关时的大形变是“Stoney型”等式。如果形变仅包括热应力(p=0),那么相应的临界本征应变为
| e | cr = | ( &alpha; - &alpha; f ) &Delta;T | cr
= E ( 1 - v f ) E r ( 1 - v 2 ) h 3 3 L 2 h f 120 ( 1 - v ) . - - - - ( 43 )
上述结果与Masters和Salamon在1994年第61卷872页J.Appl.Mech.的结果相同。
对于极薄的膜的极限情况,hf<<h,小应变分析简化为Stoney的结果(为等双轴应力修正):
Figure A0281060000234
Figure A0281060000235
其中σf=Ef·e/(1-vf)是膜中等双轴失配应力。对热失配应力的具体情况下为
&sigma; f = E f 1 - v f e = E f 1 - v f ( &alpha; - &alpha; f ) &Delta;T . - - - - ( 45 )
由等式(42)在分支开始处的膜中临界热应力变成
在圆基片上的薄膜
其上沉积有薄膜(hf<<h)的半径为R,厚度为h的圆基片,也可以用的3.1部分的结果分析,其中L2=πR2。在分支处正规化的临界曲率是
R cr = K cr R 2 4 h = 0.8717 1 - v . - - - - - ( 47 )
临界曲率与薄膜的重力和几何形状及材料的性能无关。因此,该结果能够与匀质板的近似的,大形变理论比较,所述板给出较低的边界估值: Kcr=0.5358。如果形变仅通过失配应力(p=0)导出,那么相应临界本征应变为
| e &OverBar; | cr = | e | cr 3 R 2 h f E f 2 h 3 E = 1.7435 1 - v . - - - - - - - ( 48 )
等式(47)和(48)与Masters和Salomon在1995年第32卷473页Int.J.Solids and Struct.和Freund在2000年第48卷1159页J.Mech.Phys.Solids中描述的结果接近:
K &OverBar; cr = K cr R 2 4 h = 1 1 - v - - - - - - - - ( 49 )
如果曲率通过小形变球型曲率(即Stoney曲率,Stoney)正规化,且本征应变通过临界应变|e|cr正规化,那么对于圆板,曲率的普通演变可建立,如图8所示。图8能够相对随着薄膜本征应变的曲率演变分成3个不同的区域,e。在区域I中,0≤|e|/|e|cr<0.2,小应变(Stoney型)曲率的精确度在10%内。(对于0≤|e|/|e|cr<0.1Stoney型曲率精确度在5%内)。在区域II中,0.2<|e|/|e|cr<1,在曲率和本征应变之间是强非线性关系。在区域III中,1<|e|/|e|cr曲率突然分成两支。在本征应变的值非常大时,|e|/|e|cr>2,形变接近圆柱形,且一个主曲率回到小应变Stoney型估值,另一接近零。主曲率的方向相互垂直,并强烈取决于几何形状和负荷缺陷。在|e|=|e|cr,Kcr=0.5KStoney/(1+v)。
理论与实验和计算:玻璃板
实验方法
重力对大形变的影响已用其上沉积有和不沉积Si3N4薄膜的大矩形玻璃板进行了实验研究。薄膜具有两个不同的厚度hf=0.60和0.73mm。玻璃板是矩形,长度Lx=650mm;宽Ly=550mm;和厚度h=1.1mm。
图9表示测量系统900的一个实施例的示意图,其中要测量的每一玻璃板901水平放置,并由支撑球在三个点910上支撑。支撑点910的位置由参数 a, b和 c表示,如图3所示。如铝基座的支撑基座920可用于支撑其上放置玻璃板901的所述三个钢支撑球。支撑杆922安装在支撑基座920上,用于保持以行和列排列的LED的LED阵列920,它们在玻璃板上部(例如约1m)并与玻璃板901平行,用于照明玻璃板901,如LED阵列924可以有中心孔径和照相机930,如具有CCD感测阵列或者其它适合的感测阵列的数码照相机,用于通过孔径捕获玻璃板901中心区域的图像。数码照相机930测量反射的LED位置。数码照相机930连到信号处理单元,如计算机,其处理捕获的信号。
表1概括了两个不同玻璃板#1和#2的信息。注意h>>hf,并且作为结果,膜的弹性性能不受这里考虑的形变特征影响。
              表1平板实验中所用的板构形
构形     膜     基片     支撑点
    Hf(μm)     h(mm)    Lx(mm)   Ly(mm)      a      b
  #1   #(a)     0.60     1.09    6.50   5.50     177.8     152.4
  #(b)     0.73
  #2   #(a)     0.60     1.09    6.50   5.50     50.8     25.4
  #(b)     0.73
因为层的相对位置能够强烈影响大形变反应,进行两个不同设置的实验:(a)放在三个支撑点上的平板,平板的薄膜侧朝上(即“薄膜朝上”,薄膜位于z=h/2),和(b)放置平板,平板的薄膜侧朝下(即“薄膜朝下”,薄膜位于z=-h/2)。表2给出基片和薄膜的相关性质。在一定情况下,通过放置重物,在板的中心处施加集中的法向负荷P。
用改进的“栅格反射技术”测量玻璃板的形状,所述“栅极反射技术”在Finot等于1997年第81卷3457页的J.Appl.Phys中描述。由位于一个铝基座上的三个钢球支撑平板(图9)。一个17×23的针孔阵列,每个针孔直径为0.41mm,在铝板上制成,接着其被进行黑色阳极氧化处理。发光二极管(LED)位于每一小孔的后面,形成LED阵列。平行安装在铝基座上的LED阵列(图9)同时照射。具有1024×1368像素分辨率的数码照相机用于捕获从玻璃板反射的二极管的图像。图9中的虚线表示由数字照相机记录的二极管之一的光束路径。
照相机镜头的像差由拍摄的代替玻璃板的被标度的(ruled)栅格测量。下一步是再一次用平的标准反射镜代替玻璃样品的位置,从平的标准反射镜测量反射的二极管图像的位置。玻璃的形状通过比较从玻璃到那些反射镜的反射的比较而计算。
对于由于垂直形变引起反射角的变化通过迭代解法构成容差,直到获得自洽(self-consistent)的结果。这是通过最初没有垂直形变,寻找角度,计算垂直形变并在第二次计算中使用第一次计算中得到的角度,从而得到第二套形变结果。结果发现解收敛很快,并在所有情况下只要一次迭代就足够了。
板在没有任何薄膜的情况下进行第一测试,然后沉积薄膜。在“薄膜朝上”和“薄膜朝下”的位置进行测试。通过将两个位置(玻璃的形状通过减去位移并除以2求出)的位移相比较而减去重力对板形状的作用。板的厚度在平面内有小于20μm的变化,使这种减法具有意义。当沿板的长轴从板观察时,靠近观察者的右角比左角低,即靠近观察者的短边具有一个负的斜率,从左到右倾斜,所有板都是以该方式稍微失真。长度超过650mm,失真约为2.5mrad,产生的失真间距(twist pitch)约为2.5km。
计算模拟
板的大形变行为首先通过板的小应变和小旋转动力学及有限元法(FEM)进行分析。使用ABAQUS通用目的有限元法代码(version 5.5,1996,Hibbitt,Karlsson and Sorenson,Pawtuchet,Rhode Island)。初始构形被认为是理想地平整。在沉积期间,薄膜形成一个均匀的失配应力σf。调节薄膜应力的值,以使所计算的位移密切匹配的实验上获得的垂直形变。由于重力加速度,g=9.81m/s2,所施加的失配应力增加,直到其幅值产生的形变匹配所有实验观察。
                          表3自重的反作用
  支撑     R1(N)     R2(N)     2R1+R2(N)
  FEM 分析等式(8a)   FEM 分析等式(8b)     FEM     分析
    #1   3.519   3.517   3.520     3.517   10.558   10.550
    #2   2.808   2.840   4.812     4.869   10.428   10.550
由于形变不对称的可能性,塑造整个板(Ly/2≥y≥-Ly/2,Lx/2≥x≥-Lx/2)。使用四节点板单元(elements)的网格(mesh),并且每一节点包括3个正中平面位移和两个中平面旋转的自由度。由于泊松作用板单元允许跨厚度的形变。连续网格精化导致392个四节点单元和453节点的网格,在板中几乎均匀分布,在此点的收敛被认为是可接受的。数值计算的精度通过与FEM和表3中由于重力的分析性的反作用,等式(8)的比较而得到评价。重力和失配应变以等于10的增量同时地施加。在所选的例子中,法向负荷P随后被施加到板的中心。该计算显示出许多可能的形变模式,并且其中将能量最小化的一个是可接受的结果。强调由于存在适当的旋转是重要的,不容许负荷叠加并且在分析中负荷的顺序非常重要(因为每一负荷施加后总的刚性矩阵(stiffness matrix)被更新)。由于失配应变和重力的同时强迫,发现该分析形式很好地达到计算值。数值结果显示出下面的一般的趋势,和理论一致:
1.对于支点远离中心的板(构形#1),由于施加集中的法向力在中心处的主曲率几乎与膜在板的下表面引起的主曲率相同。在这种情况下,板的形变是稳定的,并且曲率随着集中的负荷的幅度变化不大。相反膜在板的上表面时也成立。在约2.33N时曲率激增,表示开始不稳定。总之,支点远离板中心的构形对重力方向敏感如理论预期,等式(18)。
2.当支撑点靠近板的中心(构形2)时,形变是圆柱形的(沿板的最长边弯曲),如分析预测的,等式(37)。膜在板的上表面时,总的形变是互反曲面的(anticlastic),假定膜处于紧张状态。由于膜中的失配应力,曲率变化不强烈依靠膜在板的上或下表面的位置,这是因为重力负荷控制并强迫板基本保持圆柱形。另外为了检查分析的不同假设的真实性,进行包括三维有限元离散化的模拟。这些分析允许具有大应变和大旋转的超弹性形变,而上述两维模式为小应变和适度旋转给出亚弹性响应。对于足够薄的板(h/max(Lx,Ly)<0.05)亚弹性和超弹性的结果本质上相同。亚弹性结果估计低于超弹性结果顶多3%,特别是对于相对厚的板。甚至对于适度的厚板(h/max(Lx,Ly)<0.1),分析结果在计算结果的7%内。从有限元结果,证实在分支发生之前剪应力基本上为零(典型地厚度远离自由边),并且等双轴应力状态占优势(σx≈σy)。在分支后,板绕x轴卷曲,Cauchy剪应力具有的量级是σxy≈σx/10和σy≈σx/2。
                       表4只有重力的负荷(构形#1)
                                垂直位移
    座标(mm)     w0(mm)
    x     y     实验     FEM
    0     0     +0.52     +0.96
    325     0     -1.53     -1.35
    325     275     -3.01     -2.57
    0     275     -1.00     -1.25
    -325     275     -1.80     -1.75
    -325     0     -1.00     -1.48
                     板中心处(x=0,y=0)的曲率
              K1(m-1)     K2(m-1)
    实验     FEM     实验     FEM
    -0.0551     -0.0561     -0.0201     -0.0217
与有限元结果比较
在表4-7,和在图10-13中,有限元计算与实验结果比较。发现在实验中作出的不同观察与计算结果相比较是有利的。如预料的,结果似乎对负荷和几何形状扰动(perturbations)对于构形#1特别敏感,构形#1中支撑点比构形#2远离板的重心。
由于自重,构形#2变成圆柱形,如理论分析所预示,并由实验及FEM证实,图14和15。最初圆柱形构形在总形变中占优势。因为它是稳定的构形,这是能应用负荷叠加的唯一情形。在这种情况下,在本征应变的影响下(比较图14和图15),平板形变,好像它是一个宽束(wide beam)。P对于总的平面外板形变的影响在这种情况下可忽略不计,因为支撑点靠近P的施加中心。
           表6由于重力的负荷且膜朝下(构形#1(a))
                           垂直位移
    座标(mm)     w0(mm)
    x     y     实验     FEM
    0     0     -0.77     -0.83
    325     0     +0.50     +0.91
    325     275     +0.00     +0.48
    0     275     -0.10     -0.29
    -325     275     +1.42     +1.00
    -325     0     +0.75     +0.80
                板中心处(x=0,y=0)的曲率
    K1(m-1)     K2(m-1)
    实验     FEM     实验     FEM
    +0.0701     +0.0191     +0.0191     +0.0104
                表7由于重力的负荷且膜朝上(构形#1(a))
                               垂直位移
    座标(mm)     w0(mm)
    x     y     实验     FEM
    0     0     +0.79     +0.38
    325     0     -1.50     -1.06
    325     275     -4.84     -4.96
    0     275     -1.50     -2.09
    -325     275     -1.00     -1.48
    -325     0     -0.50     -0.45
    板中心处(x=0,y=0)的曲率
    K1(m-1)     K2(m-1)
    实验     FEM     实验     FEM
    +0.0291     +0.0238     +0.0661     +0.0951
构形#1用于预测临界集中负荷Pcr,它引起平面翘曲;注意平面已经由于重力和膜中的残余应力形变。下面由Biezeno和Grammeld对浅球形壳的翘曲分析,获得临界负荷接近形式的表达式:
Pcr≈0.918Eh3K:(K≈K1≈K2>0)               (51)
假设板(远离中心被支撑)由于重力和/或热应变经受几乎等双轴弯曲(K≈K1≈K2>0),随后一个法向负荷P=Pcr的施加引起最初形变的构形(已经形变的平面迅速到0.64K的曲率,即形变的板变得更平)的翘曲。从等式(51)的分析结果与实验吻合得非常好,如表8所示。
        表8只有重力和集中的负荷P的影响(构形#1)
    条件     P(N)     K(m-1)
    分析     实验     分析     实验
    初始     0     0   -0.0430   -0.0398
    分支     2.30(=Pe)     2.24   -0.0275   -0.0268
薄应力σf在表9中给出。它们由连续的增量计算,为了在所有情况下(上或下薄膜)获得最佳实验的表面形变和支撑构形,如表1所示。由于沉积膜和在缺少重力,应力的实验估量也被给出以供比较。
              表9膜应力
    构形 在无重力下从硅上沉积层的估值σr(Mpa)     FEM
    #1(a)     370     315
    #2(b)     560     560
板的高斯(Gauss)曲率(即平均曲率,(K1+K2)/2)相对形变路径是恒定的,并且取决于最终负荷条件。对于支撑点相距很远的板(构形#1)和无薄膜沉积的平板,给出重力负荷(K1+K2)/2=-0.0376l/m。对于相同支撑构形,但具有膜朝下的平板(膜#1(a)),(K1+K2)/2=-0.0446l/m。对于相同构形,但具有膜朝上的平板,(K1+K2)/2=-0.0476l/m。获取差异,Stoney公式,等式(1),对于膜朝上的情况预测薄膜应力是σf=322Mpa,对于膜朝下的情况是σf=2650Mpa。计算的实际值是σf=315Mpa(拉伸的)。注意对于膜朝上的情况Stoney估计接近计算值,因为在这种构形中,膜应力产生的曲率与那些在重力负荷下所看到的曲率类似。可是,对于膜朝下情况的Stoney结果完全超出范围。因此该例表示在细长板上薄膜形变方面体积力的重要作用。
例子:薄膜在硅基片上
Fiont等报告了在其上沉积Al-Cu(hf=0.9μm)或W薄膜的圆形Si晶片(直径为2R=150mm,厚度为h=337.5μm)上的曲率测量。Fiont等在1997年第81卷3457页Journal of Applied Physics上描述。
Si的弹性性能是E=130GPa,v=0.28,其密度为ρ=2.33g/cm2。用本理论比较他们的结果,我们用等边长L=132.9mm的正方形横截面,给出与圆形晶片相同的表面面积。注意薄膜的性能未加入分析。等式(40)给出0.133m-1的临界曲率,与Fiont等的0.14m-1的实验测量值吻合很好。在这种情况下忽略重力导致小于4%的误差。曲率的实验值与薄膜分析结果相符,Fiont等引证文章的图4所示。
Lee等在沉积在半径为R=25.4mm薄的圆形Si晶片(h=105μm和v=0.22)上的Al薄膜(hf=6μm)中,用相干梯度传感器技术用于监视曲率进行实验研究曲率变化。2001年第89卷6116页Journal ofApplied Physics。这些晶片经受热负荷过程。这里这样的几何形状以致在大形变上重力的作用可以忽略。在从膜沉积温度冷却期间,他们观察在ΔT=-22.5℃时曲率分支。
图16表示本理论的预测和Lee等的计算和实验结果。对于Lee等在2001年第89卷6116页J.Appl.Phys中使用的材料和几何形状,设定p=0以消除重力的作用,该图示出正规化的曲率, K=KR2/(4h),和正规化的失配应变 e=3e R2hfEf/(2h3E)。注意本理论预测对硅上铝膜在分支前和分支后,与实验和有限元模拟吻合。也应注意,如理论预测,在分支点,等式(47)和(48),和下面参考中的结果吻合。Salamon等在1995年第32卷473页和Freund在2000年第48卷1159页Int.J.Mech.Phys.Solids。
上述说明提供了重力对承受热和机械结合的负荷的薄膜和层状的/渐变的平板的大形变特性影响的详细的分析。为了分析假设了小应变和适当的旋转。允许材料性能和本征应变在厚度方向任意地变化。使用能量最小化的方法获得近似解。检查曲率分支的可能性,并且对于临界曲率和在分支处临界有效负荷获得显式的闭合形式解。根据分析一个有意思的结果是临界曲率不依靠失配应变和重力。另一方面,临界有效负荷水平受相对重力和集中负荷(来自支撑点和施加在重力中心的集中负荷的反作用)的方向和幅度的曲率凸度的影响。对于均质平板和基片上的薄膜的极限情况还检查具有重力的大形变解。
需要考虑边界层的兼容性,以使形变模式接近板的边缘。边界层分析基于可展表面和主曲率的泊松耦合的理论。分支的闭合形式预测和边界层方法学与板的大旋转有限元分析,和3-D超弹性分析比较。在所有情况下,发现分析形式是定性的,并且在量上与计算结果相符,并发现获得问题的所有本质特征。
为了评价本理论的真实性,在具有和没有薄膜的平板上进行一系列系统的实验。发现对于曲率和分支演变的预测的趋势与理论一致。另外,在具有支撑点和薄膜的不同几何布置的板中,实验测量的位移/曲率的径向分布与计算结果合理的一致。对于在Si基片上的薄膜的大形变可得到的实验结果也与本分析结果的相比,也支持本分析结果。
下面描述在大形变分析方法下,在板结构中集中施加的法向力的作用。在板的重心集中的法向施加的负荷P可另外包括在本分析中,如图3和4所示。从简单平衡发现在简单支撑处的反作用力
R 1 = P + p L x L y 2 [ 1 + ( a &OverBar; / b &OverBar; ) ] , R 2 = ( P + p L x L y ) ( a &OverBar; / b &OverBar; ) 1 + ( a &OverBar; / b &OverBar; ) - - - - - - ( A 1 )
总势能V是
V = &Integral; - L y / 2 L y / 2 &Integral; - L x / 2 L x / 2 &Integral; - h / 2 h / 2 1 2 E ( &sigma; x 2 + &sigma; y 2 - 2 v &sigma; x &sigma; y + 2 ( 1 + v ) &sigma; xy ) dzdxdy +
p L x L y 24 ( K 1 L x 2 + K 2 L y 2 ) - P + p L x L y 2 ( 1 + a / b ) [ K 1 a &OverBar; ( a &OverBar; + b &OverBar; ) + K 2 c &OverBar; 2 ] - - - - - - - ( A 2 )
如正文中采取相同的一般方法求解:
f e = 2 &lang; E bi &CenterDot; ( ez ) &rang; - 2 &lang; E bi &CenterDot; e &rang; &CenterDot; &lang; E bi &CenterDot; z &rang; &lang; E bi &rang; - p 12 L 2 + { p + P L 2 } { a &OverBar; ( a &OverBar; + b &OverBar; ) + c &OverBar; 2 1 + a &OverBar; / b &OverBar; } . - - - - - - ( A 3 )
对于在本文中给出的特殊情形,fe的后来的结果可以按照等式(A3)修改。
在板结构中边界层的作用也可以用上述大形变分析方法分析。Finot和Suresh在1996年第44卷683页J.Mech.Phys.Solids中验证了Salamon和Masters在1995年第32卷473页的Inte.J.Solidsand Struct.中的预测,即在残余应力下矩形板的曲率在板的长度和宽度上是不均匀的。他们进一步证明对 L x > 6 h / | K cr | , 一般化的板应变问题的解对于矩形板长度方向的曲率给出一个好的近似。这些结果基本上说明了在薄板大形变期间发生的边界层现象。边界层是一个在板的边缘附近的区域,此处的形变可以通过忽略弯曲刚度(flexuralrigidity)和假设只有膜应力发展而被近似确定。如果平面外偏转比板的厚度大该近似是有效的。膜应力的非线性作用仅被限制在边界层内,在边界层外,膜应力行为遵从小应变板理论外。这里我们用由Fung和Wittrick为匀质板开发的方法进行边界层分析。
假设经受大偏转的矩形板形成边界层,如图5a所示,不失一般性,我们沿y=-Ly/2集中自由边界。施加的轴向力和力矩在该边界是零。建立在边界上的另一坐标系平行和垂直于圆柱形表面的发生器。在初始坐标系和新坐标系之间的坐标变换为Y=y+Ly/2,X=x和Z=z。沿X方向的曲率半径是1/K1。在边界层中,每单位长度(Nx,Ny和Nxy)的法向和剪切膜力需要满足平衡。令YBL为边界层的宽度。板的总的平面外偏转划分为
w0=w*+ξ,                    (B1)
其中ξ是来自形变w*的圆柱形形式的偏差。该形变的圆柱形部分w*在z方向满足平衡。在边界层中,如果
Nx=-<E>ξK1,Nγ=0.          (B2)
则在X和Y方向的平衡得到满足。
为了完成解,我们在Y→+∞和Y→0处使用正则条件ζ→0,如从小应变理论获得的结果,力矩和剪切力必须为零(圆柱形解)。那么
ξ(Y)=C1e-δY(sin(Yδ)-cos(Yδ)),(B3)
其中
C 1 = &lang; E pe &CenterDot; v &rang; K 1 2 &delta; 2 &lang; E pe &rang; , - - - - - - - - ( B 4 )
和边界层强度为
&delta; + = &lang; E &rang; K 1 2 4 &lang; E pe &CenterDot; z 2 &rang; - - - - - - - - ( B 5 )
ξ在自由边的最大绝对值是ξ(0)=-C1。在边界层中的膜张力Nx与纵向曲率结合提供每单位有效力K1Nx,该力的方向垂直于边缘。这些薄膜张力产生一个横向弯曲力矩,其由下式给出
M y = - K 1 &lang; E pe &CenterDot; v &rang; &lang; E pe &rang; &lang; E pe &CenterDot; z 2 &rang; . - - - - - - - - ( B 6 )
代入My=-K2<Epe·z2>,等式(B6)直接导出等式(38)。因此,边界层函数的重要作用是在圆柱形中间区域提供横向弯曲力矩,其足够阻止横向曲率。
为了发现边界层的深度,我们取由等式(A3)给出的ζ(Y)函数的第二零点YBL。边界层的宽度随v→0降低,或者对δ的低值(例如小曲率半径1/K1),随v-0.5增加,或者对δ的高值(例如大曲率半径1/K1)。对于v=0.33, Y BL = 3.066 h / K 1 . 如果最小值Lx,Ly≤2YB,和上面引用的Finot和Suresh的数值结果一致,边界层完全控制解且矩形板表示为一个梁(beam)。
上述部分描述了大形变分析方法的不同特征。下面进一步描述上述方法的一个应用。
图17表示基于上述大形变分析方法的实时样品监视系统1700的一个实施例。系统1700包括一个样品座1720,以支撑和保持层状的或者渐变的板器件或者结构1710的样品。在一些应用中,如半导体加工中的膜沉积,样品座1720可以包括在真空条件下的密闭腔。曲率测量模块1730用于在实时测量样品1710,以使曲率测量可以在持续时间小于样品1710的热和机械状况显著改变的时间段内完成。可连接例如一个微处理器或者其它数字处理装置的数据处理模块1740,以接收来自模块1730测量的曲率的信息,并且基于上述大形变分析方法编制程序进行计算和分析,而没有复杂的数值计算。
曲率测量模块1730可以不同的配置实现。示例性的实施包括一个扫描激光系统,其中激光光束扫描一个表面以测量曲率,一个多波束光学感测系统,和一个光栅反射系统。这些光学系统是非破坏性的,并因此能够保护被测量的表面。
优选地,曲率测量模块1730的探测机构能执行对整个被测区域的曲率的全场测量以在同一时间获得被测区域内的所有位置的曲率,而无需传统的点到点扫描测量。只要应力变化比处理时间慢,实际上在实时测量下,全场曲率探测和大形变分析方法的快速分析处理结合能够产生该区域应力分布的空间映像。
模块1730可以是一个光学探测模块,其产生并引导照射光束到达样品1710的表面,然后接收并探测反射的或者散射的光束。模块1730的光学实施的一个例子是在Rosakis等的美国专利第6,031,611号中公开的相干梯度传感器(“CGS”)系统。图17表示CGS系统1700的一个实施例,该系统1700使用一个来自光源110的准直的相干光束112作为光探针,以获得图17中在样品1710上镜面反射表面130表现出的曲率信息。光源110可以是一个如激光的相干光源或者如产生白光束的白光光源的非相干光源。可以使用如分束器的光学元件120,来引导光束112到达表面130。当反射表面130弯曲时,反射的探测光束132的波阵面被失真,然后反射的探测光束132获得和被测量的表面130的曲率相关的光路差异或者相位变化。该系统在表面130上被照射区域中的每点上产生一个“快照(snapshot)”,并因此在被照射区域内沿任意方向能够获得任意点的曲率信息。本方法通过利用扫描系统能够消除对于以连续的方式一次测量一点的需要。
相互隔开的两个光栅140和150被置于反射探测光束132的光路中,以操纵失真的波阵面用于曲率的测量。通过使用如透镜的光学元件160,结合由第二光栅150产生的两个不同的衍射成分和由第一光栅140产生的两个不同的衍射成分,使其相互干涉。两个光栅140和150的衍射在两个所选衍射成分之间实现相对空间位移,即相移。当其它光栅参数不变时,该相移是两个光栅140和150之间间隔的函数。空间滤光器170相对光学单元160设置,以透射所选衍射成分的干涉图案,且阻挡来自第二光栅150的其它阶的衍射。
被透射的干涉图案然后由图像传感器180捕获,所述图像传感器180包括感测像素的阵列,如CCD阵列,以产生一个与干涉图案相应的电信号。一个信号处理器190,它可以是图17中系统1700的处理模块1740的一部分,处理电信号以选出由反射表面130曲率引起的相变的空间梯度。反过来该空间梯度进一步被处理以获得曲率信息,并因此获得表面130上被照射区域的曲率映像。对干涉图案进行单个空间微分,以测量表面梯度。当表面的曲率变化是逐渐的时,即当平面外位移小于薄膜、线或者基片的厚度时,该技术能够提供精确的表面曲率测量。该技术与一些其它干涉测量的技术相比是不灵敏的刚体运动和环绕振动,因为不需要外部参考光束用于产生干涉图案,并且CGS系统使用两个光栅140和150产生其自身的参考用于干涉。
通常两个光栅140和150一般可以任何光栅,它们相互在任意角度具有不同光栅周期和取向的光栅。优选地两个光栅可以以相同方向互相取向,并且可以具有相同的光栅周期,以简化数据处理。在这种情况下,基本由相对空间位移(剪切)的方向设定光栅的方向,所述空间位移是在由于光栅140和150的双衍射中所选的两个衍射分量之间的位移。
图18表示在二维中通过使用两个相互对准平行的相同的光栅140和150的图17所示的CGS系统的工作原理。考虑笛卡儿坐标系(x1,x2,x3),其中x2与两个光栅140和150的栅线平行。
光栅140(G1)衍射反射的探测光栅132成数个衍射波,表示为E0,E1,E-1,E2,E-2等。为了说明的目的,仅表示前3级衍射,即零级波144(E0),+1级142(E1),和-1级波146(E-1)。这些波阵面的每一个由第二光栅150(G2)进一步衍射,产生多个波阵面。例如,+1级142(E1)被衍射产生波阵面142a(E1,1),142b(E1,0),142c(E1,-1)等;零级144(E0)被衍射产生波阵面144a(E0,1),144b(E0,0),144c(E0,-1)等;和-1级146(E-1)被衍射产生波阵面146a(E-1,1),146b(E-1,0),146c(E-1,-1)等。
来自光栅140产生的不同衍射级的由光栅150产生的一定衍射光束是平行的,因为两个光栅140和150相同。当两个光栅140,150的光栅周期的比是整数时也可以发生这种现象。在这种条件下,透镜可以被方便地用作光学元件160,以覆盖来自光栅150的相互平行的衍射光束的各种设置,或者在滤光板170的附近以形成多个衍射点。这些衍射点具有由于重叠光束的干涉产生的干涉条纹。该干涉条纹具有表现出所反射的探测光束132相位失真梯度的信息。
例如,来自光束142的零级衍射光束142b(E1,0)平行于来自光束144的+1级衍射光束144a(E0,1)。这两个光束142b和144a由透镜160聚焦在滤光板170的点174(D+1)上。同样,衍射光束142c和144b重叠并相互干涉,形成光斑D0,光束144c和146b重叠并相互干涉,形成光斑D-1
在反射的探测光束132的波阵面,任何这些光斑的干涉图案具有所反射的探测光束132的相位失真梯度的信息,并能够用于确定样品表面130的曲率。在图18的例子中表示光斑174(D+1)被滤光板中的孔172选择。
假设所反射的探测光束132的波阵面近似平面,并具有局部相变S(x1,x2)。由光栅140和150产生的衍射的净效应是沿光栅方向,即x2方向,产生入射波阵面的横向偏移,或者“剪切”。例如,衍射光束142b(E1,0)的波阵面沿x2方向,与衍射光束144a(E0,1)的波阵面相比的位移量为ω,以使光束142b和光束144a的波阵面分别由S(x1,x2+ω)和S(x1,x2)给出。波阵面偏移平行于光栅的主轴,即如图18所示,如果栅线沿x1取向,则其沿x2方向。
所反射的探测光束132的光波阵面与样品表面130的拓扑形状有关,如下所述。镜面反射样品表面130可以由下面的函数表示:
F(x1,x2,x3)=x3-f(x1,x2)=0.              (X1)
弯曲表面F(x1,x2,x3)任意点(x1,x2)的单位表面法向矢量N能够由下式确定:
N = &Delta;F | &Delta;F | = f , 1 e 1 - f , 2 e 2 + e 3 1 + f , 1 2 + f , 2 2 , - - - - - - - - ( X 2 )
其中f,a表示平面内样品表面x3=f(x1,x2)的梯度分量,ei代表沿xi轴(i=1,2,3)的单位矢量。根据美国专利第6,031,611号,曲率张量能够由下面的分析式表示:
&kappa; &alpha;&beta; = f , &alpha;&beta; 1 + f , 1 2 + f , 2 2 , &alpha; , &beta; &Element; { 1,2 } . - - - - - - - - ( X 3 )
对于小曲率,上述等式可以近似成,
&kappa; &alpha;&beta; ( x 1 , x 2 ) &ap; &PartialD; 2 f ( x 1 , x 2 ) &PartialD; x &alpha; &PartialD; x &beta;
&ap; p 2 &Delta; ( &PartialD; n ( &alpha; ) ( x 1 , x 2 ) &PartialD; x &beta; ) , n ( &alpha; ) = 0 , &PlusMinus; 1 , &PlusMinus; 2 , . . . - - - - - - - - ( X 4 )
其中p是光栅140和150的光栅周期,Δ是光栅140和120之间的间距,n(α)是整数标识的为沿x1或x2方向的剪切观察的干涉条纹,和α,β∈{1,2}。因此,曲率张量场(curvature tensor fields)可以在小形变近似下从具有等式(X4)的CGS干涉图的梯度直接计算。对于具有确定参数p和Δ的给定的CGS系统,在样品表面任意位置的曲率可以通过测量在所需方向上每单位长度条纹的数值确定。因此,CGS干涉图提供全场技术,用于确定在任意点(x1,x2)处的样品曲率张量的瞬时值。
当形变大时,例如当斜率分量可与一(unity)相比时,等式(X4)的近似变得不精确,可使用等式(X3)的分析公式基于从两个CGS干涉图中获得的表面梯度分量计算具有大形变的曲率。该大形变曲率然后用在大形变分析方法中,以确定应力条件。
该CGS技术的一个值得注意的特点是它的工作不依赖照射光的波长。因此,可以使用任意适合的相干辐射光束,包括UV,可见光,和IR光谱范围。对于照射适合的波长可根据应用的需要选择。例如,当表面具有小特征部件(small feature)或者表面粗糙,引起在UV或者可见光光谱范围光照射光束的散射或者漫反射,波长的较长,例如为了CGS系统正确工作,可使用比特征部件尺寸的大小或者表面粗糙度大的IR波长,以达到从这种表面光学镜面反射。因此具有特征部件或者粗糙的表面实际上被认为是照射光束的IR波长均匀照射的。因此,在一个实施中,首先确定表面粗糙度或者特征部件尺寸。然后,选择适当的照射波长,以大于特征部件尺寸或者粗糙度,从而达到镜面反射。该照射光束然后用于进行CGS测量。大形变分析方法也可以在这里应用,以近似分析表面的应力条件。
某些应用需要在两个不同方向的空间剪切,来获得全场二维曲率测量,如一些在表面具有大形变的应用。当样品表面130在第一取向时,通过使用图17中的CGS系统进行第一测量,并且随后当样品表面130旋转到第二取向(例如垂直于第一取向)时,进行第二测量。另外,一个两臂CGS系统如图20所示,可以实现在两个不同方向双光栅的两个单独的设定,以在两个不同的空间剪切方向同时产生干涉图案。因此,在两个剪切方向上在曲率分布中能够获得时变效应。
上述CGS系统可以用于直接或者间接地测量在基片上形成的各种特征部件和元件的曲率。在直接测量中,在CGS中的探测光束能够直接发送到这些器件的顶表面,以获得曲率信息。这通常需要该表面特征部件和元件以及它们周围的区域是尽可能光滑的和光学反射的。另外,希望特征部件和元件以及它们周围的区域的特性而不是它们的曲率,显著贡献于波阵面的失真。因此,波阵面失真能够用作一个由光学探测光束照射区域曲率的指标(indicator)。例如,一些制成的集成电路具有顶部钝化层,该顶部钝化层通常由不导电的介质材料制成,覆盖基片上的电路元件,以保护下面的电路。顶部钝化层的表面通常是光滑的,并且对CGS测量具有足够的反射性。
可是,上述条件不适合其它一些基于基片的器件。例如,特征部件和元件形成在基片的正面,或者它们周围的区域不是光学反射性的。在正面的特征部件和元件可以由于并不是曲率的其它因素而使反射的波阵面失真,其它因素如特征部件或者元件与其周围区域的高度不同。在这些情况下,特征部件或者元件的曲率可以通过从在基片背面相反表面相应位置的曲率测量的干涉间接地测量。这是可能的,因为形成在基片上的不连续特征部件和元件的应力能够引起基片变形,并且形成在基片上的薄膜通常与基片表面一致。
当确定特征部件的高度与其周围不同时,对于每一特征部件所反射的探测光束的波阵面的相位失真,包括至少部分由高度差异所贡献和部分由曲率所贡献。除了使用基片的背面用于CGS测量之外,CGS测量也可以通过照射正面实现。如果高度的信息是已知的,在曲率计算中通过除去高度不同的影响而能够提取曲率信息。
本大形变分析方法假定在每一xy平面,层状的或者膜在x和y方向是均匀的。当表面制造有特征部件时,通过使用均匀表面以近似表示具有特征部件表面的平均性能,仍可应用该方法。CGS和大形变分析方法结合可以用于评价应力条件。
除了完全基于基片的器件的曲率测量,CGS技术也可以用于在基于基片器件的每一制造步骤期间,对基片和每一层或者特征部件制造过程中进行原位曲率测量。该CGS技术能够实现这一点在于其能在照射区域中所有位置同时测量曲率的全场性能。因此,能够在短时间内完成每一次测量,而不中断连续制造。因为该CGS技术使用光学探测光束作为探头,以获得曲率信息,测量不是破坏性的,并当光学探测光束的强度适当地保持低于可接受的水平时,不干扰制造工艺。另外,光学探测光束和从基片反射的光束在处理腔中通过一个或者多个在处理腔中的光学窗能够方便地被引导基片上并从其上导出。
因此,在每一层薄膜层和各种特征的制造期间,可以用CGS技术实时和现场监视形成在每一层中的每一层和每一特征的曲率和相关应力。该现场应力监视机构可以应用于包括薄膜沉积和热循环的基片制造的各方面。
例如,该现场应力监视机构可以用于在全部制造过程完成之前的制造期间的任意中间阶段,挡开有缺陷的一批已处理的基片。制造过程和相关的热循环能够在制造的特征中引入应力是公知的。例如,在升高的温度下进行不同的金属喷镀处理。同时,层可以显示不同的机械、物理和热性能,由于例如在不同材料之间的热膨胀和收缩量的失配,这些性能导致在相互连接结构中的高应力。这些应力能够引起包括空隙和界面间断裂或者分层中的其它的、不希望的应力。并且有助于应力偏移和电偏移。另外,应力引起基片断裂、空隙、应力偏移、电偏移,基片断裂是在集成电路中导致损坏的因素。
在制造期间在中间步骤之后由于应力引起一些缺陷。当在不同部分应力超出预定的可接受的值时,器件是不合格的。实时现场应力监视能够用于在制造期间在选择的阶段或者连续测量曲率和应力。所测量的曲率和应力与可接受的值比较。如果所测量的曲率或者应力大于其可接受的值。那么与在表面上的区域形成缺陷的可能性一致。因为最终器件是不合格的制造过程结束。因此,剩下的步骤不需要进行。这避免在一些传统制造方法中只在全部制造过程完成之后测试器件的缺陷的无用和无效操作。
本现场应力监视结构的另一示范性的应用是调节和优化在制造中的处理参数和条件,以降低基片中的应力。因为CGS技术能够用于在制造期间现场监视应力,通过在每一处理步骤监视应力有助于识别来自不同处理步骤的应力。另外,可以独立地或者参照其它处理步骤的处理参数调节每一处理步骤的处理参数(例如,热平衡的温度,持续时间或者工作循环),来降低应力。通过CGS技术在每一调节上测量对应力的影响,以建立参数和应力之间的关系。调节处理参数和测量合成应力的步骤可以在迭代过程中进行,直到合成的应力降低到满意的水平为止。因此,能够控制处理步骤来增加制造的纵产量。
回来参照图5B和8,当应力增加,板结构的曲率从小形变状态演变到大形变区域,并最终成分支状态。如上所述,大形变分析方法可在3个状态下应用。因此,大形变分析方法用于消除板结构中的应力条件,以将应力条件控制在特定的范围内,例如小形变范围,或者避免分支。
具体地,如平板的板结构通常在器件和系统中安装有支撑结构。如上述模式证明的,由板结构上的支撑点产生的力对板结构中的应力条件具有相当大的影响。因此,大形变分析方法可以用于提供支撑设计,以在应用板结构的器件或者系统的实际操作中达到理想的应力条件。如图3,4和9所示的3点支撑的例子,支撑参数a,b和c可以选择以产生理想的应力条件。通常,大形变分析方法可用于选择支撑构形,来降低器件中的最终应力或者避免分支点。另外,可以故意引入均匀体积力或者集中的力作用在板的重力中心,以获得理想的应力条件。在器件和系统中设计板结构的支撑系统时这些技术可以结合使用。
仅描述了一些实施例。可是,可以理解在没有脱离下面权利要求将包含的构思下可以做出变化和改进。

Claims (22)

1.一种方法,其包括:
提供板结构以代表一个器件;
使用第一随空间变化的函数,该函数在所述板结构的平面中是均匀的并沿垂直于所述平面的方向变化,以表示作用在所述器件上影响所述器件曲率演变的体积力;
使用第二随空间变化的函数,该函数在所述平面中是均匀的并沿垂直于该平面的方向和随着所述器件温度的变化,以表示所述器件中热应力的作用。
使用所述平面内位置的非线性函数,分别表示所述器件在所述平面内两个主方向的位移,和垂直于所述平面的第三个主方向上的位移,以包括大形变的作用。
基于所述第一和第二随空间变化函数和位移的非线性函数,计算所述器件的总势能;和
在所述平面内分别沿两个主方向相对主曲率和轴向拉伸最小化所述总势能,以获得在引起所述器件曲率演变的有效力和沿所述两个主方向的主曲率之间的分析性关系。
2.如权利要求1所述的方法,还包括使用所述分析性关系,来确定在所述器件分支的几何形状处的临界曲率。
3.如权利要求1所述的方法,还包括:
测量所述器件的曲率;和
在测量的曲率基础上使用所述分析性关系确定所述器件中的应力。
4.如权利要求3所述的方法,其中所述曲率是由下面测量的:
投射一个光学探测光束到所述器件的表面上;
收集来自所述表面的所述光学探测光束的反射光;和
处理所述反射光,以获得所述曲率的信息。
5.如权利要求4所述的方法,其中所述处理包括:
获得对于在由所述光学探测光束照射的所述表面上的区域的所述反射光中相干干涉图案的梯度;和
使用所述梯度计算所述区域的所述曲率。
6.如权利要求5所述的方法,其中所述测量在所述器件的制造期间进行,以在所述制造期间监视应力变化。
7.如权利要求4所述的方法,其中所述测量在所述器件的制造期间进行,以在所述制造期间监视应力变化。
8.如权利要求3所述的方法,其中所述测量在所述器件的制造期间进行,以在所述制造期间监视应力变化。
9.如权利要求1所述的方法,还包括:在所述总势能的计算中包括作用于所述器件重力中心的负荷。
10.如权利要求1所述的方法,其中所述体积力包括作用于所述器件上的重力。
11.如权利要求1所述的方法,其中所述体积力包括作用于所述器件上的静电力。
12.如权利要求1所述的方法,其中所述体积力包括作用于所述器件上的电磁力。
13.如权利要求1所述的方法,还包括:
提供多个支撑点以支撑所述板结构;和
在所述总势能中包括在所述板结构上由所述支撑点产生的支撑力的作用和作用于所述板结构上的重力,以获得所述分析性关系。
14.如权利要求13所述的方法,还包括:
选择所述支撑点的几何构形和所述支撑力,以降低所述器件中的应力。
15.如权利要求13所述的方法,还包括:
选择所述支撑点的几何构形和所述支撑力,当所述板结构的曲率演变出现分支时,以保持在所述器件中的形变低于临界形变条件。
16.如权利要求1所述的方法,其中所述板结构包括一个基片和形成在所述基片上的至少一层薄膜,其中所述第二随空间变化的函数包括在所述膜中的热应力和在所述基片中的热应力。
17.一种系统,其包括:
一样品座,以支撑具有板结构的器件;
一曲率测量模块,其相对所述样品座设置,以测量所述板结构的曲率;和
一处理模块,其从所述曲率测量模块接收所测量的曲率,并可操作计算所述板结构中的应力,以包括根据分析公式作用在所述板结构上的力的作用。
18.如权利要求17所述的系统,其中所述处理模块被编程以进行下面操作:
使用第一随空间变化的函数,该函数在所述板结构的平面中是均匀的并沿垂直于所述平面的方向变化,以表示作用在所述器件上影响所述器件曲率演变的体积力;
使用第二随空间变化的函数,该函数在所述平面中是均匀的并沿垂直于该平面的方向和随着所述器件温度的变化,以表示所述器件中热应力的作用。
使用所述平面内位置的非线性函数,分别表示在所述平面内两个主方向上所述器件的位移,和垂直于所述平面的第三个主方向上的位移,以包括大形变的作用。
基于所述的第一和第二随空间变化的函数和所述的位移非线性函数计算所述器件的总势能;和
分别相对于所述平面内沿两个主方向的主曲率和轴向拉伸,最小化在所述平面内的所述总势能,以获得引起所述器件曲率演变的有效力和沿两个所述主方向的主曲率之间的分析性关系。
19.如权利要求17所述的系统,其中所述曲率测量模块产生并引导光学探测光束到所述板结构上,并处理由所述板结构反射的所述光学探测光束的反射光,以测量所述曲率。
20.如权利要求19所述的系统,所述曲率测量模块包括:
在所述反射光的光路中相互间隔放置的第一和第二光栅,并经配置以在所述反射光的波阵面上构成产生预定相位控制,其中所述预定相位控制是由所述第一和第二光栅的衍射产生的;
定位一个光学单元,以接收来自所述第一和第二光栅的所述反射光,并经配置以选择和结合两个来自所述第二光栅的衍射分量,以产生干涉图案,其中所述所选择的两个衍射分量由所述第二光栅衍射来自所述第一光栅的两个不同的衍射分量产生;和
相对所述光学元件设置的光学感测器件,接收所述光栅干涉图案,并产生指示所述干涉图案的电信号。
21.一种方法,其包括:
确定表面上一个或多个特征部件的尺寸;
选择相干探测光束的波长,使其大于所述尺寸,以允许所述表面镜面反射所述相干探测光束;
将所述相干探测光束照射到所述表面上,以产生反射的探测光束,
通过使用第一光栅产生所述反射的探测光束的第一套衍射分量;
通过使用与所述第一光栅间隔预定距离的第二光栅产生所述反射的探测光束的第二套衍射分量,其中第一套衍射分量的每一个被所述第二光栅衍射,以产生多个衍射分量;
结合由所述第二光栅衍射从第一套衍射分量中选择的两个不同衍射分量而产生的两个衍射分量,以产生一个干涉图案;和
处理所述干涉图案,以确定所述表面的曲率信息。
22.如权利要求21所述的方法,还包括使用分析公式,在所述曲率信息的基础上,确定所述表面中的应力,其中所述分析公式由下面获得:
使用一第一随空间变化的函数,该函数在所述板结构的平面中是均匀的并沿垂直于所述平面的方向变化,以表示作用在所述表面上影响所述表面曲率演变的体积力;
使用一第二随空间变化的函数,该函数在所述平面中是均匀的并沿垂直于该平面的方向和随着所述表面温度的变化,以表示所述表面中热应力的作用。
使用所述平面内位置的非线性函数,分别表示所述表面在所述平面内两个主方向的位移,和垂直于所述平面的第三个主方向上的位移,以包括大形变的影响。
在所述第一和第二随空间变化的函数和位移的非线性函数的基础上计算所述表面的总势能;和
相对于所述平面内沿两个所述主方向的主曲率和轴向拉伸,最小化所述的总势能,以获得所述主曲率和引起所述表面曲率演变的有效力间的分析性关系。
CNB028106008A 2001-05-25 2002-05-28 用于分析板结构的曲率和应力信息的系统和方法 Expired - Fee Related CN1231749C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29356201P 2001-05-25 2001-05-25
US60/293,562 2001-05-25

Publications (2)

Publication Number Publication Date
CN1511247A true CN1511247A (zh) 2004-07-07
CN1231749C CN1231749C (zh) 2005-12-14

Family

ID=23129582

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028106008A Expired - Fee Related CN1231749C (zh) 2001-05-25 2002-05-28 用于分析板结构的曲率和应力信息的系统和方法

Country Status (7)

Country Link
US (1) US6781702B2 (zh)
EP (1) EP1390691A2 (zh)
JP (1) JP4504010B2 (zh)
KR (1) KR100601120B1 (zh)
CN (1) CN1231749C (zh)
AU (1) AU2002346685A1 (zh)
WO (1) WO2002099373A2 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805258B2 (en) 2007-02-16 2010-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for film stress and curvature gradient mapping for screening problematic wafers
WO2011155862A1 (ru) * 2010-06-08 2011-12-15 Щлюмберже Холдингс Лимитед Способ определения напряженно-деформированного состояния слоистой среды
CN104344804A (zh) * 2014-10-23 2015-02-11 上海卫星工程研究所 卫星模拟零重力状态单机指向精度测量方法
TWI511218B (zh) * 2011-03-02 2015-12-01 Soitec Silicon On Insulator 評估多層晶圓之非均勻形變的系統及方法
US9733075B2 (en) 2010-01-25 2017-08-15 Sony Semiconductors Solutions Corporation System and method for assessing inhomogeneous deformations in multilayer plates
CN109540666A (zh) * 2018-11-06 2019-03-29 宁波用躬科技有限公司 一种土层对管片实际荷载特性的模拟加载系统及加载方法
TWI673476B (zh) * 2018-10-04 2019-10-01 財團法人工業技術研究院 軟性基板之應變量測與應力優化之方法、裝置、回授系統與電腦可讀取記錄媒體
CN110514111A (zh) * 2019-08-30 2019-11-29 北京理工大学 一种外接式相位定量检测装置与方法
CN111457856A (zh) * 2020-05-28 2020-07-28 合肥工业大学 一种完全消除重力影响的薄基片变形测量装置
CN111699380A (zh) * 2017-12-11 2020-09-22 法国电力公司 用于处理晶体材料的衍射图像的方法、装置和程序
CN113074854A (zh) * 2021-03-31 2021-07-06 天津中环电炉股份有限公司 陶瓷涂层高温内应力的评价方法
CN113237583A (zh) * 2021-05-13 2021-08-10 中南大学 一种镁合金筒形件残余应力评估预测方法
CN114474896A (zh) * 2022-03-03 2022-05-13 中国工程物理研究院流体物理研究所 一种组合飞片及其制备方法、应用
CN114608475A (zh) * 2022-02-28 2022-06-10 南京中安半导体设备有限责任公司 卡盘、相移式干涉仪及晶圆形貌干涉测量方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041195A2 (en) * 2000-11-17 2002-05-23 Battelle Memorial Institute Structural stress analysis
US20030229476A1 (en) * 2002-06-07 2003-12-11 Lohitsa, Inc. Enhancing dynamic characteristics in an analytical model
US20050007601A1 (en) * 2003-01-27 2005-01-13 Rosakis Ares J. Optical characterization of surfaces and plates
WO2004068554A2 (en) * 2003-01-27 2004-08-12 California Institute Of Technology Analysis and monitoring of stresses in embedded lines and vias integrated on substrates
JP2006516737A (ja) * 2003-01-28 2006-07-06 オラキシオン パネル、基板、およびウエハーの表面特性の全領域光計測
US7363173B2 (en) * 2004-06-01 2008-04-22 California Institute Of Technology Techniques for analyzing non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
US7487050B2 (en) * 2004-06-01 2009-02-03 California Institute Of Technology Techniques and devices for characterizing spatially non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
US7966135B2 (en) * 2004-06-01 2011-06-21 California Institute Of Technology Characterizing curvatures and stresses in thin-film structures on substrates having spatially non-uniform variations
US7289256B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US7574338B1 (en) * 2005-01-19 2009-08-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates
JP4418390B2 (ja) * 2005-03-22 2010-02-17 三菱重工業株式会社 3次元形状処理装置及び曲面生成プログラム並びに方法
KR100655446B1 (ko) * 2005-10-14 2006-12-08 삼성전자주식회사 웨이퍼 휨 시뮬레이션 방법
US7636151B2 (en) * 2006-01-06 2009-12-22 Qualcomm Mems Technologies, Inc. System and method for providing residual stress test structures
FR2898410B1 (fr) * 2006-03-07 2008-05-09 Airbus France Sas Procede de caracterisation de la tenue en fatigue d'une piece a partir de son profil de surface
WO2007103566A2 (en) * 2006-03-09 2007-09-13 Ultratech, Inc. Determination of lithography misalignment based on curvature and stress mapping data of substrates
JP2007241018A (ja) * 2006-03-10 2007-09-20 Epson Toyocom Corp 全反射ミラー
US20080228452A1 (en) * 2007-01-15 2008-09-18 Sangpil Yoon Hybrid Finite Element Method for Simulating Temperature Effects on Surface Acoustic Waves
US20080182344A1 (en) * 2007-01-30 2008-07-31 Steffen Mueller Method and system for determining deformations on a substrate
WO2008105221A1 (ja) * 2007-02-28 2008-09-04 Keio University 構造解析数値計算装置
US7930113B1 (en) 2007-04-17 2011-04-19 California Institute Of Technology Measuring stresses in multi-layer thin film systems with variable film thickness
US7990543B1 (en) 2007-08-31 2011-08-02 California Institute Of Technology Surface characterization based on optical phase shifting interferometry
US8103328B2 (en) * 2007-10-01 2012-01-24 Quantum Applied Science And Research, Inc. Self-locating sensor mounting apparatus
US7716999B2 (en) * 2007-10-31 2010-05-18 3M Innovative Properties Company Test method for determining microstructure deformation resistance of a microstructured film
WO2009134501A2 (en) * 2008-02-11 2009-11-05 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
KR20100121498A (ko) * 2008-02-11 2010-11-17 퀄컴 엠이엠스 테크놀로지스, 인크. 디스플레이 구동 체계가 통합된 표시소자의 감지, 측정 혹은 평가 방법 및 장치, 그리고 이를 이용한 시스템 및 용도
US8115471B2 (en) * 2008-02-11 2012-02-14 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8027800B2 (en) * 2008-06-24 2011-09-27 Qualcomm Mems Technologies, Inc. Apparatus and method for testing a panel of interferometric modulators
US8035812B2 (en) * 2009-03-24 2011-10-11 Qualcomm Mems Technologies, Inc. System and method for measuring display quality with a hyperspectral imager
CN101799285B (zh) * 2010-03-12 2011-12-28 清华大学 钢框架梁柱连接节点转角的计算机辅助测量方法
CN101832766B (zh) * 2010-03-12 2012-02-08 清华大学 钢框架梁柱端板连接节点转角的计算机辅助测量方法
FR2978864B1 (fr) * 2011-08-02 2014-02-07 Soitec Silicon On Insulator Procede de correction de desalignement de positions sur une premiere plaque collee sur une deuxieme plaque
WO2013154816A1 (en) 2012-04-10 2013-10-17 Bridgestone Americas Tire Operations, Llc System and method for determining statistical distribution of a rolling tire boundary
EP2836946A4 (en) 2012-04-11 2015-12-09 Bridgestone Americas Tire SYSTEM AND METHOD FOR THE EQUALITY STATUS SIMULATION OF A ROLLING TIRE
US8842273B2 (en) 2013-02-14 2014-09-23 United Sciences, Llc Optical measurement of drilled holes
US9188775B2 (en) 2013-08-28 2015-11-17 United Sciences, Llc Optical scanning and measurement
US9377412B2 (en) 2014-04-16 2016-06-28 Apple Inc. Electronic device having components with stress visualization features
CN103994747B (zh) * 2014-05-30 2016-08-17 武汉理工大学 梁形结构拉伸弯曲复合变形场的无基准分布式测量方法
AU2015271638A1 (en) * 2014-06-05 2017-01-19 Commonwealth Scientific And Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
US10101498B2 (en) * 2014-09-05 2018-10-16 Schlumberger Technology Corporation Well survivability in multidimensional geomechanical space
US10024654B2 (en) * 2015-04-06 2018-07-17 Kla-Tencor Corporation Method and system for determining in-plane distortions in a substrate
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
NL2017860B1 (en) * 2015-12-07 2017-07-27 Ultratech Inc Systems and methods of characterizing process-induced wafer shape for process control using cgs interferometry
WO2017100695A1 (en) 2015-12-10 2017-06-15 Velo3D, Inc. Skillful three-dimensional printing
US20170239719A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US20180095450A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
US20180126460A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US20180250745A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
RU2650741C1 (ru) * 2017-03-10 2018-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре
US10553623B2 (en) * 2017-04-20 2020-02-04 Applejack 199 L.P. Non-contact measurement of a stress in a film on a substrate
KR102194843B1 (ko) * 2017-09-07 2020-12-23 주식회사 엘지화학 모노 프레임의 구조해석 툴 및 모노 프레임 설계방법
US10468230B2 (en) * 2018-04-10 2019-11-05 Bae Systems Information And Electronic Systems Integration Inc. Nondestructive sample imaging
US11105611B2 (en) * 2018-05-15 2021-08-31 Applejack 199 L.P. Non-contact measurement of a stress in a film on substrate
CA3148849A1 (en) 2019-07-26 2021-02-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects
US11340179B2 (en) 2019-10-21 2022-05-24 Bae Systems Information And Electronic System Integration Inc. Nanofabricated structures for sub-beam resolution and spectral enhancement in tomographic imaging
CN112179541B (zh) * 2020-09-02 2021-07-16 大连理工大学 一种基于变形反推的初始残余应力调整方法
TWI771820B (zh) * 2020-12-04 2022-07-21 財團法人金屬工業研究發展中心 曲面塊材的殘留應力量測方法
CN113092040B (zh) * 2021-04-16 2022-10-25 重庆大学 横向均布载荷下环形薄膜最大应力的确定方法
CN114112145B (zh) * 2021-11-10 2022-10-14 中国科学院半导体研究所 薄膜本征应力测量方法、电子设备及介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643925B2 (ja) * 1986-11-29 1994-06-08 株式会社日立製作所 複合材料の残留応力の測定方法
JPH0351729A (ja) * 1989-07-19 1991-03-06 Nec Corp 内部応力測定装置
US5134303A (en) * 1990-08-14 1992-07-28 Flexus, Inc. Laser apparatus and method for measuring stress in a thin film using multiple wavelengths
JP2936709B2 (ja) * 1990-11-29 1999-08-23 大同特殊鋼株式会社 薄板材の残留応力測定方法および装置
US5232547A (en) * 1992-07-01 1993-08-03 Motorola, Inc. Simultaneously measuring thickness and composition of a film
US5572323A (en) * 1993-12-27 1996-11-05 Ricoh Company, Ltd. Infinitesimal displacement measuring apparatus and optical pick-up unit
US5814729A (en) * 1996-09-09 1998-09-29 Mcdonnell Douglas Corporation System for in-situ delamination detection in composites
US6031611A (en) * 1997-06-03 2000-02-29 California Institute Of Technology Coherent gradient sensing method and system for measuring surface curvature
JP2000009553A (ja) * 1998-06-26 2000-01-14 Toshiba Corp 薄膜評価装置、薄膜評価方法、半導体シミュレーション装置、半導体シミュレーション方法、薄膜評価プログラムを格納したコンピュータ読み取り可能な記録媒体、及びシミュレーションプログラムを格納したコンピュータ読み取り可能な記録媒体
US6025918A (en) * 1998-07-07 2000-02-15 Brown University Research Foundation Apparatus and method for measurement of the mechanical properties and electromigration of thin films
US6600565B1 (en) * 2000-04-25 2003-07-29 California Institute Of Technology Real-time evaluation of stress fields and properties in line features formed on substrates

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805258B2 (en) 2007-02-16 2010-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for film stress and curvature gradient mapping for screening problematic wafers
US9733075B2 (en) 2010-01-25 2017-08-15 Sony Semiconductors Solutions Corporation System and method for assessing inhomogeneous deformations in multilayer plates
WO2011155862A1 (ru) * 2010-06-08 2011-12-15 Щлюмберже Холдингс Лимитед Способ определения напряженно-деформированного состояния слоистой среды
TWI511218B (zh) * 2011-03-02 2015-12-01 Soitec Silicon On Insulator 評估多層晶圓之非均勻形變的系統及方法
CN104344804A (zh) * 2014-10-23 2015-02-11 上海卫星工程研究所 卫星模拟零重力状态单机指向精度测量方法
CN111699380B (zh) * 2017-12-11 2023-11-17 法国电力公司 用于处理晶体材料的衍射图像的方法、装置和程序
CN111699380A (zh) * 2017-12-11 2020-09-22 法国电力公司 用于处理晶体材料的衍射图像的方法、装置和程序
TWI673476B (zh) * 2018-10-04 2019-10-01 財團法人工業技術研究院 軟性基板之應變量測與應力優化之方法、裝置、回授系統與電腦可讀取記錄媒體
CN109540666A (zh) * 2018-11-06 2019-03-29 宁波用躬科技有限公司 一种土层对管片实际荷载特性的模拟加载系统及加载方法
CN109540666B (zh) * 2018-11-06 2021-04-30 宁波用躬科技有限公司 一种土层对管片实际荷载特性的模拟加载系统及加载方法
CN110514111A (zh) * 2019-08-30 2019-11-29 北京理工大学 一种外接式相位定量检测装置与方法
CN111457856A (zh) * 2020-05-28 2020-07-28 合肥工业大学 一种完全消除重力影响的薄基片变形测量装置
CN113074854A (zh) * 2021-03-31 2021-07-06 天津中环电炉股份有限公司 陶瓷涂层高温内应力的评价方法
CN113237583A (zh) * 2021-05-13 2021-08-10 中南大学 一种镁合金筒形件残余应力评估预测方法
CN113237583B (zh) * 2021-05-13 2022-03-15 中南大学 一种镁合金筒形件残余应力评估预测方法
CN114608475A (zh) * 2022-02-28 2022-06-10 南京中安半导体设备有限责任公司 卡盘、相移式干涉仪及晶圆形貌干涉测量方法
CN114474896A (zh) * 2022-03-03 2022-05-13 中国工程物理研究院流体物理研究所 一种组合飞片及其制备方法、应用
CN114474896B (zh) * 2022-03-03 2023-04-25 中国工程物理研究院流体物理研究所 一种组合飞片及其制备方法、应用

Also Published As

Publication number Publication date
WO2002099373A2 (en) 2002-12-12
AU2002346685A1 (en) 2002-12-16
EP1390691A2 (en) 2004-02-25
KR20040023604A (ko) 2004-03-18
JP2004532984A (ja) 2004-10-28
JP4504010B2 (ja) 2010-07-14
KR100601120B1 (ko) 2006-07-19
CN1231749C (zh) 2005-12-14
US6781702B2 (en) 2004-08-24
US20030106378A1 (en) 2003-06-12
WO2002099373A3 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
CN1231749C (zh) 用于分析板结构的曲率和应力信息的系统和方法
CN100345252C (zh) 成像状态调节系统、曝光方法和曝光装置以及程序和信息存储介质
CN1237574C (zh) 半导体器件的制造方法
CN1146717C (zh) 共焦干涉显微镜的背景补偿
CN1879063A (zh) 微分临界尺寸和覆盖计量装置以及测量方法
CN101069092A (zh) 检查系统和设备
CN1751378A (zh) 最佳位置检测式的检测方法、对位方法、曝光方法、元器件制造方法及元器件
CN1841211A (zh) 光刻装置和采用数据过滤的器件制造方法
CN1350185A (zh) 用于euv的多层反射镜、其波前光行差校正法及包含它的euv光学系统
CN1782662A (zh) 分光计测装置
CN1732372A (zh) 复杂层结构的厚度分解的方法及设备
CN1275030C (zh) 用于样品椭圆偏振光二维显示的装置,显示方法及具有空间分辨率的椭圆偏振光测量方法
Hwang et al. Extracting plastic properties from in-plane displacement data of spherical indentation imprint
CN1910110A (zh) 微致动器以及具有微致动器的装置
Kang et al. Prediction of clamping deformation in vacuum fixture–workpiece system for low-rigidity thin-walled precision parts using finite element method
CN1538242A (zh) 光刻装置中质量体的位置控制
Faehnle Process optimization in optical fabrication
Chen et al. Three-axial cutting force measurement in micro/nano-cutting by utilizing a fast tool servo with a smart tool holder
Guo et al. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA
Chernoff et al. Multilaboratory comparison of traceable atomic force microscope measurements of a 70-nm grating pitch standard
CN1309759A (zh) 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备
Qi et al. A novel 2-DOF compound compliant parallel guiding mechanism
Liao et al. Influence of material removal programming on ion beam figuring of high-precision optical surfaces
CN1595047A (zh) 形状测定装置和方法、形状解析装置及程序和记录媒体
De Biasio et al. Determination of stress in silicon wafers using Raman spectroscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee