CN1309759A - 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备 - Google Patents

使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备 Download PDF

Info

Publication number
CN1309759A
CN1309759A CN 99808770 CN99808770A CN1309759A CN 1309759 A CN1309759 A CN 1309759A CN 99808770 CN99808770 CN 99808770 CN 99808770 A CN99808770 A CN 99808770A CN 1309759 A CN1309759 A CN 1309759A
Authority
CN
China
Prior art keywords
light beam
image
spatial filtering
detecting light
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 99808770
Other languages
English (en)
Inventor
亨利·A·希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zetetic Institute
Original Assignee
Zetetic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/089,105 external-priority patent/US6091496A/en
Application filed by Zetetic Institute filed Critical Zetetic Institute
Publication of CN1309759A publication Critical patent/CN1309759A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02042Confocal imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0056Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0068Optical details of the image generation arrangements using polarisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/14Heads, e.g. forming of the optical beam spot or modulation of the optical beam specially adapted to record on, or to reproduce from, more than one track simultaneously

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一物体(112)内和/或上的一区域的在焦图象通过以下方法被从离焦图象分离出来,从而既减小了该物体的图象信息中的误差:从一个宽带点光源(90)产生一个探测光束(P22B)和一个参考光束(R22B);产生参考光束的反对称空间性质(R32B);把探测光束通过第一色散元件以将该探测光束转换成聚焦至该物体内/或上的一线的一光束;产生一个在焦返回探测光束;产生在焦返回探测光束的反对称空间性质(P32B);空间滤波在焦返回探测光束(P42A);通过一色散元件以将该探测光束(P42C)聚焦至一检测器系统的一检测器平面中的一线;空间滤波该参考光束(R42A)并通过一色散元件以将该参考光束(R42C)聚焦至该检测器平面中的一线;空间滤波来自一离焦图象点的一光束(P62A)并通过该色散元件(P62C);使在该检测器平面中的的空间滤波的参考光束(R42C)与来自该离焦图象点的在检测器平面中的空间滤波的光束(P62C)发生干涉及与在该检测器平面的空间滤波的在焦返回探测光束(P42C)发生干涉;通过检测器系统(114)检测在检测器平面的空间滤波的参考光束与在检测器平面的空间滤波的(R42C)在焦返回探测光束之间的一个干涉项作为该空间滤波的在焦返回探测光束的一振幅,从而在检测器平面的空间滤波的离焦图象光束(P62C)的振幅与在检测器平面的空间滤波的参考光束(R42C)的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统(114)所产生的表示该物体的图象信息的数据中的误差。

Description

使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的 的方法和设备
本发明的领域
本发明涉及光学和声学成橡,包括利用这些图图象来对生物样品、晶片、集成电路、光盘和其他样品进行光学数据存储和抽取,及精密测量。
本发明的背景
本发明涉及快速、精确地产生一个物体或其截面的在焦图象的技术,其中来自离焦前景和/或背景光源的光信号对统计误差和系统误差的影响大部分已被消除。
共焦显微镜和共焦干涉显微镜例如在生命科学、生物样品研究、工业检验和半导体计量等领域有许多应用。这是因为这些仪器具有独特的三维成图象能力。
或许当离焦图象造成的背景明显强于在焦图象信号时将遇到最困难的多维成图象。当研究厚样品时,特别是当共焦系统工作于反射模式而不是透射模式时,这种情况常常会出现。
有两种一般的方法可以确定三维显微镜样品的体特性。这两种方法是基于普通显微镜和共焦显微镜的。一般地说,相对于共焦显微镜方法而言,普通的显微镜方法获取三维图象的数据所需的时间较短,但处理这些数据所需的时间较长。
在普通的成图象系统中,当被成图象物体的某一部分沿轴向偏离其最佳聚焦位置时,图象的对比度将下降但其亮度却保持不变,所以图象中的偏离、非聚焦部分将对物体的聚焦部分的观察产生干扰。
如果已知系统的点扩散函数,并且获得了物体每个独立断面的图象,则可以对这些图象应用已知的计算机算法来有效地除去离焦光所贡献的信号,产生仅含在焦数据的图图象。这些算法叫做“计算机退卷积”,有几种不同的类型,为了获得所希望的统计精度,一般需要昂贵的计算机设备,很长的计算时间和大量的数据。
宽场方法(WFM)利用一个普通的显微镜相继地获取整个感兴趣体积内的一组相邻焦平面的图象。每个图象都用一个致冷的电荷耦合器件(CCD)图图象传感器记录,其中包含同时来于在焦图象面和离焦图象面的数据。关于WFM请参见:D.A.Agard(阿加德)和J.W.Sedat(塞达特)的论文“three-dimensional Analysis of BiologicalSpecimens Utilizing Image Processing Techniques(利用图图象处理技术对生物样品的三维分析)”,Proc SPIE,264,110-117,1980;D.A.Agard、R.A.Steinberg(斯坦伯格)和R.M.Stroud(史屈劳德)的论文“Quantitative Analysis of Eletrophoretograms:AMathematical Approach to Super-Resolution(电泳图的定量分析:一种超分辨的数学方法)”,Anal Biochem 111,257-268,1981;D.A.Agard、Y.Hiraoka(希拉奥卡)、P.Shaw(肖)和J.W.Sedat的论文“Fluorescence Microscopy in Three Dimensions(三维荧光显微镜)”,Methods Cell Biol 30,353-377,1998;D.A.Agard的论文“Optical Sectioning Microscopy:Cellular Architecture inThree Dimensions(光学层析显微镜:三维蜂窝体系)”,Annu.Rev.Biophys.Bioeng.13,191-219,1984;Y.Hiraoka、J.W.Sedat和D.A.Agard的论文“The Use of a Charge-Coupled Device forQuantitative Optical Microscopy of Biological Structure(利用电荷耦合器件的生物结构定量光学显微镜)”,Sci,238,36-41,1987;以及W.Denk(邓克)、J.H.Strickler(史曲列克勒)和W.W.Webb(韦伯)的论文“Two-Photon Laser Scanning FluorescenceMicroscopy(双光子激光扫描荧光显微镜)”,Sci.248,73-76,1990。关于致冷的CCD图图象传感器请参见J.Kristian(克里斯汀)和M.Blouke(勃鲁克)的论文“Charge-coupled Devices in Astronomy(天文学中的电荷耦合器件)”,Sci.Am.247,67-74,1982。
激光计算层析技术已用普通显微镜实现。S.Kawata(卡瓦塔)、O.Nakamura(那卡姆拉)、T.Noda(挪达)、H.Ooki(奥基)、K.Ogino(奥其诺)、Y.Kuroiwa(克劳依瓦)、和S.Minami(米那米)等人的论文“Laser Computed Tomography microscope(激光计算层析显微镜)”(Appl.Opt.29,3805-3809,1990)中所讨论的系统基于一种与X射线计算层析技术紧密相关的原理,但它不是采用二维分层重建,而采用了三维体重建。一个厚的三维样品的一些投影图图象由一个修改成带有倾斜照明系统的普通透射式显微镜获取,而样品内部的三维结构则由计算机重建。其中获取数据所需的时间短于处理三维图象数据所需的时间。S.Kawata等人的上述论文中的一个实验表明,对于80×80×36体图象素(voxel)的重建需要几分钟的时间来获取全部投影图和把它们送于微型计算机。其后,为了获得重建的数字图图象约需30分钟,虽然他们使用了一个速度为每秒2千万次浮点运算(20MFLOPS)的矢量处理器。
在普通的点或针孔共焦显微镜中,来自一个点光源的光被聚焦在一个称之为斑(spot)的十分小的空间内。显微镜把由这个斑反射、散射、或透射的光聚焦到一个点状检测器上。在反射型点共焦显微镜中,入射光被样品的位于斑中的那一部分反射或后向散射。样品的位于斑外的部分所反射或后向散射的光都不能聚焦在检测器上,于是这些光将弥散,使得点检测器只接收到这些反射或后向散射光的一小部分。在透射型点共焦显微镜中,除了在样品的斑部分被散射或吸收之外,入射光将被透射。通常,点光源和点检测器可以分别用在普通的光源和普通的检测器前面放置一个带针孔的掩膜来近似。
类似地,在普通地狭缝共焦显微镜系统中,来自一个线光源的光被聚焦在一个十分狭长的空间内,这个空间也叫做斑。狭缝共焦显微镜把自这个斑反射、散射、或透射的光聚焦在一个线检测器上。线光源和线检测器可分别用在普通的光源前面放置一个带狭缝的掩膜和一排普通的检测器来近似。或者,线光源也可以用一个聚焦激光束扫描被成图象或被检验物体来近似。
由于只有物体的一小部分被共焦显微镜成图象,所以为了获得足够的图图象数据来产生物体的完整二维或三维影图象,被成图象物体必须运动,或者光源和检测器必须运动。以往,为了获得二维图象数据的相继各线,狭缝共焦显微镜使物体沿着垂直于狭缝的方向线性运动。另一方面,为了获取二维图象数据只有一个针孔的点共焦系统必需按二维方式运动;而为了获取一组三维图象数据它必须按三维方式运动。典型地,先把原始图图象数据存储下来,然后再对它们进行处理以获得被检验或被成图象物体的二维截面(two-dimensionalsection)或三维图象。由于相对于普通显微镜来说离焦图象的敏感度被降低,所以对于一定量的数据,统计精度得到了改善,并且与处理由普通显微术方法获得的数据相比,所需的处理操作被大为简化。
在一种称之为“串联扫描光学显微镜(TSOM)”的系统中,在一个尼普科(Nipkow)圆盘上蚀刻了照明和检测器针孔的一个螺旋形图形,当该圆盘旋转时,整个静止的物体将被二维扫描,请参见M.Pe’tran(杯特兰)和Hadravsky(哈德拉夫斯基)的论文“Tandem-Scanning Reflected-Light Microscope(串联扫描反射光显微镜)”,J.Opt.Soc.A.58(5)661-664(1968);和G.Q.Xiao(肖)、T.R.Corle(考尔)和G.S.Kino(基诺)的论文“Real-Time ConfocalScanning Optical Microscope(实时共焦扫描光学显微镜)”,Appl.Phys.Lett.53,716-718(1988)。从光学处理的角度看,TSOM基本上是一个单点共焦显微镜,其中带有一个能有效地逐点扫描一个二维截面的装置。
从下述两项工作中可以发现两种能减少用共焦系统获取二维图象所需的扫描量的技术的例子:H.J.Tiziani(梯齐尼)和H.-M.Uhde(乌德)的论文“three-dimensional Analysis by a Microlens-ArrayConfocal Arrangement(用微透镜阵列共焦布局进行三维分析)”,Appl.Opt.33(4),567-572(1994);以及P.J.Kerstens(克尔斯登斯),J.R.Mandeville(曼德维尔)和F.Y.Wu(吴)的专利“Tandem LinearScanning Confocal Imaging Systems With Focal Volumes atDifferent Heights(具有不同高度处的聚焦体积的串联线性扫描共焦成图象系统)”,美国专利No.5,248,876,发布于1993年9月。上述Tiziani和Uhde论文中的微透镜共焦布局的离焦图象鉴别能力与在一个共焦系统中使用多针孔光源和多元素检测器的情况相同。这种系统可以同时检测多个点,但其代价是降低鉴别离焦图象的能力。微透镜的密度愈大,系统鉴别离焦图象的能力愈差。从而为得到三维图象所需的计算机退卷积的复杂程度和成本将愈大。此外,Tiziani和Uhde上述论文的系统在轴向范围上受到严重限制。这个范围不能超过微透镜的焦距,而在一定的数值孔径下该焦距是正比于微透镜的直径的。因此,随着微透镜密度的增大,所容许的轴向范围将相应地减小。
在上述Kerstens等人的专利的系统中,为了能同时检测多个点,需在共焦布局中引入多个针孔和多个相匹配的针孔检测器。然而,如上一段所指出的,这一得益的代价是降低对离焦图象的鉴别能力,结果将使后续计算机退卷积所需的复杂程度和成本增大。针孔的密度愈高,系统鉴别离焦图象的能力将愈差。最高鉴别能力只能在仅使用一个针孔时才能达到。
在T.Zapf(柴普夫)和R.W.Wijnaendts-van-Resandt(维纳恩茨、凡、雷森特)的论文“Confocal Laser Microscope For SubmicronStructure Measurement(用于亚微米结构测量的共焦激光显微镜)”,Microelectronic Engineering 5,573-580(1986);以及J.T.Lindow(林多)、S.D.Bennett(贝内特)和I.R.Smith(史密斯)的论文“ScannedLaser Imaging for Integrated Circuit Metrology(用于集成电路测量的激光扫描成图象)”,Proc.SPIE,565,81-87(1985)中,建议应用共焦显微镜来检验电子电路。共焦系统所具有的轴向鉴别能力使它们可使用于半导体制造领域。例如,这种系统能改善与高度有关的特性的检测,例如,脱层、起泡、以及结构和镀层的厚度等。不过,用共焦成图象系统检测电子电路也会引起一些问题。例如,单针孔系统需要太长的时间来对物体进行两个方向的扫描。用于使激光束对物体进行扫描的光系统太复杂;而且以往TSOM所采用的旋转盘方法有对准和维护问题。
所需不同深度断面的数目(从而所需收集的图图象数据的量)取决于必需测量的高度范围以及所希望的高度分辨率和光学系统性能。对于典型的电子电路检测,一般需要10至100个不同深度断面的图图象。此外,为了区分不同的材料,可能还需要有几个颜色波段下的数据。在共焦成图象系统中,对于每一个希望的高度都需要一次独立的二维扫描。如果希望有多个颜色波段,则对每个高度还需要多次二维扫描。通过移动聚焦点高度,可以从一些相邻平面得到类似的数据,从而获得一组三维强度数据。
这样,没有一种以往技术的共焦显微镜系统可以被设计得能实现快速的和/或可靠的三维层析成图象,在检测或成图象领域中更是如此。
虽然共焦方法是比较直接和工作较好的,例如被着色的结构有高浓度时的共焦荧光工作,但普通的显微术方法仍然有一些实际优点。其中最重要的是,后者可以使用由紫外(UV)范围辐射激发的染料,它们常常显得比由可见光激发的染料更为稳定和更为高效。虽然可以用UV激光器作为共焦显微镜的光源,或者用“双光子”技术由红外(IR)光激发UV染料,但这些技术需要昂贵的成本并存在实际困难。关于使用UV激光器作为光源请参见二M.Montag(蒙塔格)、J.Kululies(科罗列斯)、R.Jorgens(约更斯)、H.Gundlach(贡德拉赫)、M.F.Trendelduberg(特莱恩德伦堡)、和H.Spring(史泼林)的论文“Working with the Confocal Scanning UV-LaserMicroscope:Specific DNA Localization at High Sensitivity andMultiple-Parameter Fluorescence(共焦扫描UV激光显微镜的使用:高灵敏度和多参数荧光下的特定DNA的定位)”,J.Microsc(Oxford)163(Pt.2),201-210,1991;K.Kuba(库巴)、S-Y.Hua(华)和M.Nohmi(诺米)的论文“Spatial and Dynamic Changes inIntracellular Ca2+Measured by Confocal Laser-ScanningMicroscopy in Bullfrog Sympathetic Ganglion Cells(用共焦激光扫描显微镜在牛蛙交感神经细胞中测得的细胞内Ca2+离子的空间和动态变化),”Neurosci,Res,10,245-249,1991;C.Bliton(勃列登)、J,Lechleiter(莱史赖特)、和D.E.Clapham(克莱法姆)的论文“OpticalModifications Enabling Simultaneous Confocal Imaging With DyesExcited by Ultraviolet-and Visible-Wave-length light(能用由紫外和可见波长光激发的染料实现同时共焦成图象的光学修改)”,J,Microsc.169(Pt.1),15-26,1993。关于双光子技术红外光激发请参见前述W.Denk等人的论文。
此外,普通显微系统中所使用的致冷CCD检测器是并行地采集数据,而不是图象共焦显微镜系统中的光电倍增管(PMT)那样串行地采集数据。因此,如果能使CCD更快速地读出数据而不降低其性能,那末尽管计算机退卷积计算所需的时间意味着在把数据转换成能实际看到的三维图象这前还可能会有一个额外的时间延迟,普通显微镜系统的三维数据记录速度也仍可明显高于共焦显微镜系统。
当在用来并行地记录二维数据阵列的CCD与狭缝或针孔共焦显微镜之间作出决时,关系到统计精度的信噪比也是必需要考虑的。二维CCD图象素的阱容量为20万个电子的量级。与其他诸如PMT或光电压效应器件这类光(电子)发射检测器所能达到的统计精度相比,这个量级限制了单次曝光CCD所能达到的统计精度。结果,对于那些离焦背景贡献远大于在焦图象信号的应用情况,如果所有其他方面的考虑都相同的话,则关于信噪比的考虑将导致这样的结论:狭缝共焦显微镜中的一维并行数据记录将优于标准显微镜中的二维数据记录;或者,单针孔共焦显微镜中的逐点数据记录将优于狭缝共焦显微镜中的一维并行数据记录。
虽然关于以信噪比度量的统计精度的考虑将影响系统的选择,例如狭缝共焦显微镜优于标准显微镜,或单针孔共焦显微镜优于狭缝共焦显微镜,但所选系统中来自离焦图象的剩余信号仍可能相近于或大于在焦信号。例如当以光学波长检测生物样品深部时因光辐射的散射远大于吸收,就会出现上述情况。在这种情形下将会需要长时间的计算机退卷积,也就是说该时间要长于获取数据所需的时间。应该指出,不论对于单针孔共焦显微镜还是狭缝共焦显微镜,在寻找远小于剩余离焦图图象信号的在焦图图象信号时,都会出现上述情况。
虽然使来自CCD检测器的信号精确地数字化要比来自PMT的信号容易,但PMT是一个能被精确标定特性的单一器件而CCD则实际上是一个许多分立检测器的大阵列,而且还存在着与校正标志其工作特性的图象素间的灵敏度和偏置差异相关的附加噪声。其中关于CCD信号数字化问题请参见J.B.Pawley(泡利)的论文“Fundamental andPractical Limits in Confocal Light Microscopy(共焦光显微术中的基本限制和实际限制)”,Scanning 13,184-198,1991);关于附加噪声问题请参见前述Y.Hiraoka等人的论文;J.E.Wampler(汪普勒)、和K.Kutz(库茨)的论文“Quantitative Fluorescence MicroscopyUsing Photomultiplier Tubes and Imaging Detectors(采用光电倍增管和成图象检测器的定量荧光显微术)”,Methods CellBiol.29,239-267,1989;Z.Jericevic(日里塞维奇)、B.Wiese(维斯)、J.Bryan(勃莱恩)和L.C.Smith(史密斯)的论文“Validationof an Imaging System:Steps to Evaluate and Validate a MicroscopeImaging System for Quantitative Studies(一种成图象系统的实现:评价和实现用于定量研究的显微镜成图象系统的步骤)”,MethosCell Biol 30,47-83,1989。
应该指出,由于致冷CCD检测器是最适合于那些利用旋转盘上的一些孔来完成扫描功能的共焦显微镜的光检测器,所以不应该认为上述用于三维显微术的两种方法中的两类光检测器之间的差异是完全的。
另一种称之为“光学相干域反射测量术”(OCDR)的技术已被用来获取关于一个系统的三维性质的信息。这个方法在以下论文中有所描述:(1)R.C.Young quist(扬奎斯特)、S.Carr(卡尔)、和D.E.N.Davies(戴维斯)的“Optical Coherence-DomainReflectometry:A New Optical Evaluation Technique(光学相干域反射测量术:一种新的光学评估技术)”,Opt.Lett.12(3),158-160(1987);(2)K.Takada(塔卡达)、I.Yokohama(约科哈马)、K、Chida(契达)、和J.Noda(挪达)的“New Measurement System for FaultLocation in Optical Waveguide Devices Based on anInterforometric Technique(用于测量光波导器件错位的一种基于干涉测量术的新测量系统)”,Appl.Opt.26(9),1603-1606(1987);(3)B.L.Danielson(丹尼尔逊)和C.D.Whittenberg(威吞伯格)的“Guided-Wave Reflectometry with Micrometer Resolution(具有微米分辨率的导波反射测量术)”,Appl.Opt.26(14),2836-2842(1987)。OCDR方法与相干光学时域反射测量术(OTDR)技术的区别在于,前者使用一个短相干长度的宽带连续波光源来替代后者的脉冲光源。光源发出的光束进入一个干涉仪,该干涉仪的一臂含有一个可动反射镜,由此反射镜反射的光形成参考光束,而干涉仪的另一臂则包含了待测光学系统。来自两个臂的相干混合反射光中的干涉信号用通常的外差方法探测,产生希望得到的关于该光系统的信息。
OCDR技术中后向散射信号的外差探测是用“白光干涉术”完成的,其中光束被分解到干涉仪的两个臂中,分别被可调反射镜和后向散射地点反射,再被相干地结合。这个方法利用了这样一个事实:仅当两个臂之间的光程差小于光束的相干长度时才会在重新结合的光束中出现干涉条纹。上述参考文献(1)和(3)中所描述的OCDR系统利用了这一原理,并且文献(3)示出了通过扫描可调反射镜和测量重新结合信号的强度所得到的关于被测系统内光纤缝隙的干涉图。文献(1)还描述了一种经修改的方法,其中让参考臂中的反射镜以可控的频率和振幅振荡,以引起参考信号中的多普勒频移,同时重新结合的信号则被导入一个滤波电路,以探测拍频信号。
文献(2)中说明了该技术的另一种变体,其中参考臂反射镜位置固定,而且两臂之间的光程差可以超过相干长度、然后结合的信号被导入第二个迈克耳逊干涉仪,其中有两个反射镜,一个的位置固定,而另一个则是可移动的。扫描该可移动反射镜,使得当它位于一些对应于各个散射地点的分立位置处时,第二干涉仪两臂间的光程差将会补偿前述后向散射信号与参考信号之间的相位延迟。实际上是利用光纤中的一个压电换能调制器对来自后向反射地点的信号加上一个确定频率的振荡相位变化,从而引导到上述补偿地点。来自第二迈克耳逊干涉仪的输出信号被馈送给一个锁相放大器,后者同时探测压电换能器调制和由扫描反射镜运动所引起的多普勒频移。这一技术已被用来测量玻璃波导中的不规则性,分辨率高达15μm。请参见K.Takaca、N.Takato、J.Noda、和Y.Noguchi的论文“Characterization ofSilica-Based Wave guides with a Interferometric OpticalTime-Domain Reflectometry System Using a 1.3μm-WavelengthSuperluminescent Diode(借助于采用1.3μm波长超发光二极管的干涉光学时域反射测量术系统的硅基波导特性标定)”,Opt.Lett.14(13),706-708(1989)。
OCDR的另一种变体是双光束部分相干干涉仪(PCI),它已被用来测量眼睛中各个底层的厚度,请参见W.Drexler(德莱克斯勒)、C.K.Hitzenberger(希陈伯格)、H.Sattmann(萨特曼)、和A.F.Fercher(费歇尔)的论文“Measurement of the Thickness of Fundus Layersby Partial Coherence Topography(用部分相干层析术测量眼底层厚度)”,Opt.Eng.34(3),701-710(1995)。在Drexler等人所用的PCI中,一个外部的迈克耳逊干涉仪把一个具有高空间相干性但相干长度十分短(15μm)的光束分解成两部分:参考光束(1)和测量光束(2)。在该干涉仪的出口处,这两个成份又被合成一个共轴的双光束。这两个具有两倍于干涉仪臂长差的光程差的光束用来照明眼睛并在几个眼内界面处被反射,其中,这些界面是不同折射率媒质之间的分界面。因此每个光束成份(1和2)都被这些界面的反射进一步分解成一些子成份。被反射的各个子成份在一个光检测器上叠加。如果眼内两个界面之间的光学距离等于干涉仪臂长差的两倍,则有两个成份将经历了相同的总光程长度,结果发生干涉。每当观察到干涉图案时,所对应的干涉仪臂长差的值将等于一个眼内光学长度。如果附近没有强的反射,则这些界面的绝对位置能在眼的自然状态下以5μm的精度确定。可是,PCI因物体在三维扫描所需时间内的运动而受到限制。
OCDR的另一种变体叫做光学相干层析术(OCT),它已被报导用于现场网膜成图象,请参见E.A.Swanson(史汪逊)、J.A.Izatt(依扎F)、M.R.Hee(希)、D.Huang(黄)、C.P.Lin(林)、J.S.Schuman(舒曼)、C.A.Puliafito(普里阿费托)、和J.G.Fujimoto(富士莫托)的论文“In Vivo Retinal Imaging by Optical Coherence Tomography(利用光学相干层析术的自然状态网膜成图象)”,Opt.Lett.18(21),1864-1866(1993)和E.A.Swanson、D.Huang、J.G.Fujimoto、C.A.Puliafito、C.P.Lin、和J.S.Schuman的美国专利“Method andApparatus for Optical Imaging with Means for Controlling theLongitudinal Range of the Sample(利用控制样品纵向范围的装置的光学成图象方法和设备),”美国专利号No.5,321,501,1994年6月14日颁发。上述所引起的专利描述了用来对一个样本进行光学成图象的一种方法和设备,其中,在样品中的纵向扫描或定位是通过改变导向样品和导向一个参考反射镜的相对光程长度,或者通过改变设备光源的输出的光学特性来实现的。对样品的一维或二维横向扫描是这样实现的。提供样品与一个探测模块之间在横向方向上的受控相对运动,和/或把探测模块内的光辐射导向一个所选的横向位置。所报告的高灵敏度时的空间分辨率<20μm(动态范围100dB)。不过,该OTC因物体在三维扫描所需的时间内的运动而受到限制。
当需要非接触测量方法时,光学干涉轮廓仪被广泛用来测量物体表面的三维轮廓。典型地,这些轮廓仪采用移相干涉测量(PSI)技术,并且速度快、精度高和重复性好,但它要求被测表面相对于光源平衡波长来说是光滑的。由于干涉的循环性质,使用单波长测量将不能唯一地求得大于四分之一波长(典型地约为150nm)的表面不连续性。多波长测量可以扩大这一范围,但对波长精度和环境稳定性的要求将是严格的,见美国专利No.4,340,306:1982年7月20授予N.Balasubramanian(巴拉苏巴拉曼尼恩),标题为“Optical System forSurface Topography Measurement(用于表面形状测量的光学系统)”。
基于扫描白光干涉仪(SWLI)的轮廓仪在测量粗糙或不连续表面方面克服了普通PSI轮廓仪的限制性。许多文献详细地说明了这个技术,例如见L.Deck(德克)和P.de Groot(德格鲁特)在Appl.Opt.33(31),7334-7338(1994)上发表的论文中的参考文献2-7。这些轮廓仪典型地是一边轴向地移动一个被宽带光源照明的等光程干涉仪的一臂,一边记录某一对比参考特征(即峰值对比或峰坑点)的位置。这种技术的一个共同问题是,为了实时地计算每一点的对比需要大量的计算。由于分立的采样间隔,仅仅计算对比往往是不够精确的,这使得不是必需增加采样密度就是必需采用插值技术,总之将进一步减慢获取过程。相干探测显微镜(CPM)是这类轮廓仪的一个例子,请参见于1989年4月4日授予M.Davidson(戴维逊)的美国专利No.4,818,110,标题为“Method and Apparatus of Using aTwo Beam Interference Microscope for Inspection of IntegratedCircuits and the Like(利用双光束干涉显微镜检测集成电路等的方法和设备)”;M.Davidson、K.Kaufman(考夫曼)、I.Mazor(马佐)和F.Cohen(科恩)的论文“An Application of InterferenceMicroscope to Integrated Circuit Inspection and Metralogy(干涉显微镜应用于集成电路检验和测量)”,Proc SPIE,775,233-247(1987);以及1992年5月12日授予M.Davidson、K.Kaufman和I.Mazor的美国专利No.5,112,129,标题“Method of ImageEnhancement for the Coherence Probe Microscope with Applicationsto Integrated Circuit Metrology(相干探测显微镜应用于集成电路测量时的图图象增强方法)”。一般地说轮廓仪,以及特殊地说CPM,它们都不能对三维物体工作;带有普通干涉显微镜所典型具有的背景;对振动敏感;以及需要大量的计算机分析。
基于三角测量的轮廓仪也克服了常规的PSI轮廓仪的许多限制但也具有高度及水平空间分辨率降低的缺点且具有形成图象外的大背景。这种技术的应用请参见G.Hausler(豪斯勒)和D.Ritter(瑞特)的论文“Parallel Three-Dimensional Sensing by ColorcodedTriangulation(通过彩色编码的三角测量的平行三维检测)”Appl.Opt.,32(35),7164-7169(1993)。G.Hausler和D.Ritter使用的该方法是基于以下原理:一白光的彩色频谱通过来自某一方向的照明而被成象到物体上。自不同于该照明方向的一观察方向,该物体通过一彩色TV被观察。各象素的色彩(色相)是其距一基准平面的距离的量度。该距离可通过一电耦合器件(CCD)照相机的三色(红-绿-蓝)输出信道而被估算且该估算可实时地在TV内被实现。然而,高度和一水平空间维度中的分辨率被显著地减低到用PSI和SWLI实现的分辨率之下,有一大背景,且该三角测量轮廓仪具有非干涉测量技术的噪声特性。而且,该三角测量轮廓仪被限制于表面轮廓成型。
白光干涉测量术(WLI)所遇到的问题之一是相位不确定性问题。针对相位不确定性问题的一种已受到人们注意的轮廓测量方法是J.Schwider(史维德尔)和L.Zhou(周)在一篇标题为“DispersiveInterferometric Profilemeter(色散干涉轮廓仪)”(Opt.Lett.19(13),995-997,1994)的论文中所提出的色散干涉轮廓仪(DIP)方法。关于WLI的一种类似方法也还被U.Schuell(史奈耳)、E.Zimmermann(齐末曼)和R.Dandliker(但德里克)在标题为“AbsoluteDistance Measurement with Synchronously Sampled White-LightChannelled Spectrum Inter-ferometry(利用同步采样白光沟通光谱干涉测量术的绝对距离测量)”(Pure Appl.Opt.4,643-651,1995)的论文中作过报导。
一般而言,相位不确定性问题完全可以通过使用DIP来避免。在DIP设备中,一个来自白光光源的平行光束垂直地入射到一个位于消色差显微物镜前方的菲索(Fizeau)干涉仪的真实光楔板上。菲索干涉仪由该参考平板的内表面和物体表面形成。然后光被反射回到一个光栅光谱仪的狭缝上,光栅光谱仪将使当时尚看不见的干涉条纹图集发生色散,并把光谱投射到一个线性阵列检测器上。在该检测器上将呈现出由光谱仪狭缝所选出的表面上每个点的菲索干涉仪空气隙的色散光谱。可以利用博里叶变换和滤波方法来评估条纹图案,以从楔形干涉图的强度分布得到相位信息。
虽然使用了DIP可以避免相位不确定性问题,但DIP并不适合于那些需要检测三维物体的应用。这是因为在DIP中必然存在由离焦图象所产生的较大的背景。这一背景问题与试图利用标准干涉显微镜产生三维图象时所面临的背景问题是相当的。
在授予A.E.Dixon(迪克森),S.Damaskinos(德马斯科诺斯)及J.W.Bowron(勃洛恩)等人的题为“Apparatus and Method forSpatially-and Spectrally-resolved Measurements(用于空间及光谱分辨的测量的设备和方法)”的美国专利号No.5,192,980中公开了一种用于进行自一样品反射、发射或散射的光的光谱分辨的测量的设备和技术。在Dixon等人的该设备和方法的一组实施例中,一样品的特性通过自该样品反射、发射或散射的光的强度而被特征化,其中该设备和方法包括非相干、非共焦型,在检测器前有一扩散元件。Dixon等人的该组实施例具有标准的显微镜固有的离焦象大背景,该组实施例是非共焦型的。
Dixon等人的设备和方法还包括一非相干共焦实施例,其允许带有背景减少的测量。然而,该对共焦实施例以及非共焦实施例进行强度测量有所限制,使用非相干技术的后果严重限制了可从反射的或散射的光获得的有关样品的信息。强度测量提供了有关由该样品反射的或散射的光的一幅度量值的平方信息,结果是丢失了有关该反射的或散射的光的幅度相位的信息。Dixon等人的设备和方法还包括一实施例:在一非共焦成图象系统中结合有一傅里叶变换分光仪。Dixon等人的傅里叶变换分光仪实施例具有非共焦成图象系统所固有的离焦图象较大背景的缺陷。
在1996年7月授予G.Xiao的题为“Single Aperture ConfocalImaging Suetem(单孔针孔焦成图象系统)”的美国专利号No.5,537,247中公开了用一非相干共焦成图象系统进行同时多波长测量的设备。Xiao的该设备包括对于来自光源的入射光和来自物体的返回光仅利用一针孔的一共焦扫描成图象系统和用于选择地将差分波长的返回光分别引导至一序列检测器的光学波长滤波器。该Xiao的设备具有一优点:以不同的波长和一共焦成图象系统相对于减少的离焦图象产生的背景的若干特征同时进行测量。然而,对进行强度测量有所限制,使用非相干技术的后果严重限制了可从反射的或散射的光获得的有关样品的信息。强度测量提供了有关由该样品反射的或散射的光的一幅度量值的平方信息,结果是丢失了有关该反射的或散射的光的幅度相位的信息。
在G.Q.Xiao,T.R.Corle(科勒)和G.S.Kino(凯诺)所著的题为“实时共焦扫描光学显微镜”Appl.Phys.Lett.,53(8),716-718(1988)的论文中指出当在共焦显微镜中使用白光时,目镜的色差确保来自样品中的不同高度的图象全部呈现且全部在焦点上但是以不同的颜色。Xiao等人通过以四个不同的波长产生一硅集成电路的图象证明了这一点。H.J.Tiziani(蒂在尼)和H.-M.Uhde(豪达)在题为“Three-Dimensional Image Sensing by Chromatic ConfocalMicroscopy(通过彩色共焦显微镜的三维图象感测)”Appl.Opt.,33(10),1838-1843(1994)的论文中描述了一白光、非相干、共焦显微镜,其中为了不实际地扫描该物体地获得高度信息,色差被故意引入显微镜目镜。带有黑和白膜的照相机实际上用三个选择的彩色滤波器组合了各目标点的色强和色调。尽管在Xiao等人和Tiziani及Uhde的论文中使用了共焦显微镜且因此减少了离焦图象背景,它们仍受到限制来进行强度测量。对进行强度测量有所限制,使用非相干技术的后果严重限制了可从反射的或散射的光获得的有关样品的信息,如在Dixon等人和Xiao的论文中所述的。
在G.S.Kino和S.C.Chim所著的题为“Mirau CorrelationMicroscope(相关显微镜)”,Appl.Opt.,26(26),3775-3783(1990)和S.S.C.Chim(钦)和G.S.Kino(科诺)所著的基于Mirau干涉仪结构的“Three-Dimensional Image Realization in InterferenceMicroscopy(采用干涉显微术实现三维图象)”Appl.Opt.,31(14),2550-2553(1992)的论文中描述了一种干涉显微镜。该Kino和Chim的设备采用了带有空间和时间不相参的光源的一干涉、非共焦显微镜且使用自物体反射的光束和自反射镜反射的光束之间的相关性信号作为检测的输出信号。该Kino和Chim的设备可能测量自该物体反射的光束的幅度和相位。然而,该Kino和Chim的干涉设备具有一严重的背景问题缺陷:离焦图象背景水平是在标准的相干、非共焦显微系统中的典型的背景水平。
在1996年10月15日授予A.Knuttel(康纳泰欧)的题为“Stationary Optical Spectroscopic Imaging in Turbid Objects bySpecial Light Focusing and Signal Detection of Light with VariousOptical Wavelengths(通过特别的光聚焦和带有各种光学波长的光的信号检测在不透明物体中的静态光学光谱成图象)”的美国专利号No.5,565,986中公开了一种干涉设备以获得一物体的光谱图象,在水平方向上的空间分辨率和深度方向上的视场。Knuttel所述的设备具有一非共焦成图象系统且通常包括在一干涉仪的一臂中的一色散光学元件和一彩色目镜。该色散光学元件使得可能以不同的光学波长记录有关散射的光幅度的信息,干涉仪的使用使得可能记录有关反射的或散射的光的幅度的大小和相位,且彩色目镜的使用使得可能记录有关深度方向上的一视场的信息。然而,Knuttel的干涉设备具有一严重的背景问题,背景的水平是在标准的相干、非共焦显微系统中发现的典型的背景水平。
Knuttel所述的设备的一实施例的主要目的之一是能够通过使用在一区段板的部分中包括的一彩色目镜的两不同级而在深度维度上同时成图象一物体的两区域。结果,由该实施例的检测器记录的信号包括来自该物体中的两分开的深度位置的叠加的图象。因此,除了存在如上指出的离焦图象生成的一高背景外,必须由计算机执行一复合反向计算以从该叠加的在焦图象抽取一给定深度的图象。用Knuttel的参考实施例获取的叠加图象所需的该种反向计算存在有一严重问题:反向计算的结果在接近物体的表面的附近是相对精确的而随着样品中的深度的增大则快速劣化。在该检测器该物体仅有一点在焦时,反向计算中通常不会遭遇该问题。
在D.K.Hamilton(哈密尔顿)和C.J.R.Sheppard(雪派德)的论文“A Confocal Interference Microscope(一种共焦干涉显微镜)”(Optic Acta 29(12),1573-1577,1982)中,描述了共焦显微镜的一种干涉型形式,其中减少了干涉显微镜中所遇到的上述背景问题。该系统的基础是共焦显微镜,其中的物体被相对于一个聚焦激光斑扫描,而该激光斑的位置与一个点检测器的后向投射图象相重合。该反射型共焦显策镜的干涉形式是一种改型的迈克耳逊干涉仪,其中的一个光束被聚焦在物体上。该系统的一个重要特性是能减少共焦干涉显微系统所固有的离焦图象背景。上述Hamilton和Sheppard论文中的共焦干涉显微镜一次只测量三维物体中的一个点的反射信号,使得系统敏感于样品在获取所需三维数据的扫描期间内的运动。
在有效利用高性能计算机中的重要的一主元件是存储器。因为这些设备的巨大的数据存储要求,需要紧凑、低成本、非常高容量、高速的存储器来处理通过并行计算所所承受的高数据量。这样的数据存储要求可通过一三维存储器被提供。
在一二维存储器中,最大理论存储密度(与1/λ2成正比)是3.5×108位/cm2,λ=532nm,而在三维存储器中最大存储密度是6.5×1012位/cm3。这些最大值代表当在各存储器点使用一单个位二进制格式时对存储容量的上限。这些上限可通过使用一记录介质而被提高,在该记录介质上记录有不同级的振幅或振幅与相位信息。在相位记录媒介中进行全息记录是后面模式的一个例子。
在记录的不同模式中,在各存储器点,单位二进制格式的模式,在基本N格式中的振幅或在(基本N)×(基本M)格式中的振幅和相位,在可被使用的一存储器点的一体图象素的大小,且因此存储密度受到可被获得的信噪比的限制,该信噪比通常与该体图象素的体积成正比。具体地,对于振幅或振幅与相位记录模式,可被存储在一体图象素中的单独段信息的数量也受到可获得的信噪比的限制。
所需要的是,一个系统应能结合以下各项特性:图图象数据对离焦图象的敏感度被减小到小于以往技术共焦和共焦干涉显微系统所固有的敏感度,图图象数据对离焦图象的敏感度的减小将导致系统误差和统计误差的减小;与减小的离焦图象敏感度相关连的对计算机退卷积的要求的降低;可能达到共焦干涉显微系统所固有的高信噪比;平行记录轴向和横向的数据的能力以及,可能测量散射和/或反射光束或声束的复振幅。
本发明的概述
因此,本发明的目的是提供用于在一光盘内的不同深度的位置记录信息的方法和设备。
本发明的一个目的是提供用于在一光盘内的多个深度的位置记录信息的方法和设备。
本发明的另一个目的是提供用于在一光盘内的多个深度的位置同时记录信息的方法和设备。
本发明的另一个目的是提供用于在一光盘内或上的多个迹道的位置记录信息的方法和设备。
本发明的另一个目的是提供用于在一光盘内或上的多个迹道的位置同时记录信息的方法和设备。
本发明的另一个目的是提供用于在一光盘内或上的多个迹道的位置和在这些迹道上的多个位置同时记录信息的方法和设备。
本发明的另一个目的是提供用于在一光盘内的多个深度和多个迹道的位置同时记录信息的方法和设备。
本发明的另一个目的是提供用于将信息写至在一光盘内的多个深度的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在一光盘内的多个深度的位置的方法和设备。
本发明的另一个目的是提供用于将信息写至在一光盘内或上的多个迹道的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在一光盘内或上的多个迹道的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在一光盘内的多个深度和多个迹道的位置的方法和设备。
本发明的另一个目的是提供用于将信息写至在具有更高密度的一光盘内的多个深度的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在具有更高密度的一光盘内的多个深度的位置的方法和设备。
本发明的另一个目的是提供用于将信息写至在具有更高密度的一光盘内或上的多个迹道的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在具有更高密度的一光盘内的多个深度的位置的方法和设备。
本发明的另一个目的是提供用于将信息同时写至在具有更高密度的一光盘内的多个深度和多个迹道的位置的方法和设备。
本发明的另一个目的是提供快速、可靠的一维、二维、及三维层析X射线复振幅成象。
本发明的另一个目的是提供避免上述现有技术缺陷的一种改进的层析X射线复振幅成象技术。
本发明的另一个目的是提供一种方便地减少或消除来自离焦图象点的光的统计误差效应的层析X射线复振幅成象技术。
本发明的另一个目的是提供一种层析X射线复振幅成象技术,其中离焦光图象的系统误差效应被大大地减少或消除。
本发明的另一个目的是提供一种层析X射线复振幅成象技术,其允许在多个图象点的一物体的基本上同时成象。
本发明的另一个目的是提供一种用于在一、二、和三维中层析X射线复振幅成象以获得用一干涉系统可实现的图象的信噪比的方便技术。
本发明的另一个目的是提供一种层析X射线复振幅成象系统和技术,其避免了求解非线性差分方程的计算难度。
本发明的另一个目的是提供一种用于一物体中的线段或两维部分的层析X射线复振幅成象而不管其运动的方便技术。
以下描述的实施例及其变型落在五组实施例中。
第一组实施例的这些实施例及其变型中的某些生成基本上与由第二组实施例的这些实施例及其变型中对应的一些生成的一维图象相正交的一维图象。一维图象中的信息同时地被获取,带有背景减少和补偿。第一组实施例的这些实施例及其变型中的另外一些生成基本上与由第二组实施例的这些实施例及其变型中对应的一些生成的二维图象相正交的二维图象。二维图象中的信息同时地被获取,带有背景减少和补偿。
第三组实施例的这些实施例及其变型中的某些生成基本上与由第四组实施例的这些实施例及其变型中对应的一些生成的一维图象相正交的一维图象。一维图象中的信息同时地被获取,没有背景减少和补偿。第三组实施例的这些实施例及其变型中的另外一些生成基本上与由第四组实施例的这些实施例及其变型中对应的一些生成的二维图象相正交的二维图象。二维图象中的信息同时地被获取,没有背景减少和补偿。
第五组实施例的这些实施例及其变型生成作为一序列单点图象的多维图象,这些单点图象被获取,带有背景减少和补偿。
简明地说,且根据一实施例,本发明自第一组实施例提供了一种用于通过将来自一宽带空间非相干点光源的光辐射聚焦到一源针孔上而从一离焦图象的复振幅中鉴别出一在焦图象的复振幅。自该源针孔辐射的光线被准直且引导至第一移相器。该被准直的光线的第一部分的相位通过该移相器被移动以产生第一量移相的光线。该被准直的光线的第二部分的相位通过该移相器被移动以产生第二量移相的光线。该第一和第二量移相的光线被聚焦到第一光点。
自该光点辐射的第一量移相的光线的光线被准直且引导至一分束器。该被准直的光线的第一部分通过该分束器以形成一探测光束的第一量且该被准直的光线的第二部分通过该分束器被反射以形成一参考光束的第一量。自该光点辐射的第二量移相的光线的光线被准直且引导至一分束器。该被准直的光线的第一部分通过该分束器以形成一探测光束的第二量且该被准直的光线的第二部分通过该分束器被反射以形成一参考光束的第一量。
该探测光束的第一和第二量的光线被引导至第二移相器。该探测光束的第一量光线被移相以形成该探测光束的第三量且该探测光束的第二量光线被移相以形成该探测光束的第四量。由第一和第二移相器对该探测光束的第三和第四量所产生的净移相是相同的。该探测光束的第三和第四量通过第一探测透镜被聚焦以在一物体材料中形成一线图象,从而照明该物体材料。该线图象近似地沿第一探测透镜的光轴被对准且该线图象沿该光轴的长度由例如可被调节的该第一探测透镜的焦深和色差及该光源的光学带宽的若干因素的组合所确定。
该参考光束的第一和第二量光线被引导至第三移相器。该参考光束的第一量光线被移相以形成该参考光束的第三量且该参考光束的第二量光线被移相以形成该参考光束的第四量。由第一和第三移相器对该参考光束的第三和第四量所产生的净移相是相同的。该参考光束的第三和第四量通过一参考透镜被聚焦到一参考反射镜上的一光点。
沿该探测透镜的方向从被照明的物体辐射的该探测光束的第三和第四量的反射和/或散射光线形成一散射的探测光束并通过该探测透镜被准直且引导至第二移相器。该被准直的光线的第一部分的相位被移动以产生移相光线的第一散射的探测光束量,且该被准直的光线的第二部分的相位被移动以产生移相光线的第二散射的探测光束量。该第一和第二散射的探测光束量的光线被引导至该分束器。第一散射的探测光束量的一部分和第二散射的探测光束量的一部分通过该分束器被反射以分别形成该散射的探测光束的第三和第四量。该散射的探测光束的第三和第四量的准直的光线通过一空间滤波器透镜被聚焦到一空间滤波器针孔上。
沿该参考透镜的方向自该参考反射镜上的该光点辐射的反射光线形成一反射的参考光束且通过该参考透镜被准直且引导至第三移相器。该被准直的光线的第一部分的相位被移动以产生移相光线的第一反射的参考光束量且该被准直的光线的第二部分的相位被移动以产生移相光线的第二反射的参考光束量。该第一和第二反射的参考光束量的光线被引导至该分束器。该第一和第二反射的参考光束量的一部分通过该分束器被透射以分别形成该反射的参考光束的第三和第四量。该反射的参考光束的第三和第四量的准直的光线通过该空间滤波器透镜被聚焦到该空间滤波器针孔上。
该散射的探测光束的第三量的一部分和第四量的一部分通过该空间滤波器针孔以分别形成散射的探测光束的空间滤波的第三和第四量。该散射的探测光束的空间滤波的第三和第四量通过一色散元件透镜被准直和引导到一色散元件,最好是一反射衍射光栅。
该反射的参考光束的第三量的一部分和第四量的一部分通过该空间滤波器针孔以分别形成空间滤波的反射的参考光束的第三量和第四量。该空间滤波的反射的参考光束的第三量和第四量通过该色散元件透镜被准直和引导到该色散元件。
从该色散元件辐射的散射的探测光束的各空间滤波的第三和第四量的一部分通过一检测器透镜分别形成散射的探测光束的波数滤波的、空间滤波的第三和第四量。该散射的探测光束的波数滤波的、空间滤波的第三和第四量通过该检测器透镜被聚焦以在包含检测器针孔的一线性阵列的一平面上形成一线图象。从该色散元件辐射的反射的参考光束的各空间滤波的第三和第四量的一部分通过该检测器透镜以分别形成反射的参考光束的波数滤波的、空间滤波的第三和第四量。该反射的参考光束的波数滤波的、空间滤波的第三和第四量通过该检测器透镜被聚焦以在包含该针孔的线性阵列的平面上形成反射的参考光束的波数滤波的、空间滤波的第三和第四量的一线图象。
通过一多象素检测器测量由这些检测器针孔透射的散射的探测光束的空间滤波的第三和第四量和反射的参考光束的波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第一阵列,该多象素检测器包括一象素的线性阵列。反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第四移相器被移动若干弧度以形成反射的参考光束的第一移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的空间滤波的第三和第四量和反射的参考光束的第一移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第二阵列。
反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第四移相器被移动附加的弧度以分别形成反射的参考光束的第二移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的空间滤波的第三和第四量和反射的参考光束的第二移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第三阵列。
反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第四移相器被移动附加的弧度以分别形成反射的参考光束的第三移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的空间滤波的第三和第四量和反射的参考光束的第三移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第四阵列。
在下一步骤中,测量的强度值的第一、第二、第三和第四阵列被发送给一计算机进行处理。通过该计算机从测量的强度值的第一阵列的对应元素中减去测量的强度值的第二阵列的元素以实现在这些检测器针孔的平面上在焦的该散射的探测光束的一复振幅的分量值的第一阵列的测量,来自离焦图象的光的影响基本上被抵消。通过该计算机从测量的强度值的第三阵列的对应元素中减去测量的强度值的第四阵列的元素以实现在这些检测器针孔的平面上在焦的该散射的探测光束的一复振幅的分量值的第二阵列的测量,来自离焦图象的光的影响基本上被抵消。
该散射的探测光束的振幅的分量值的第一和第二阵列的元素是正交分量的值且这样,在一复常数中给出(give within a complexconstant)这些检测器针孔的平面上在焦的该散射的探测光束的复振幅的精确测量。来自离焦图象的光的影响基本上被删除。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,不需对物体材料进行扫描,可获得该物体材料的一线段的一精确的一维表示。该线段的方向是在该探测透镜的光轴的方向上。该线段可切过该物体材料的一或多个表面或位于该物体材料的一平面内。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,分别从通过在一维和二维中扫描该物体材料获取的测量的强度值的第一、第二、第三和第四阵列的两维和三维阵列获得该物体材料的精确的二维和三维表示。该物体材料的期望的线段、平面截面或体积区域可切过或包括该物体材料的一或多个表面。该物体材料的扫描是通过用由该计算机控制的一移动器分别在一维和二维中系统地移动该物体材料而实现的。如果希望的离焦图象校正超出了本发明设备在散射的探测光束的振幅的分量值的第一和第二阵列中能做到的补偿,该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
根据第二实施例,本发明提供了一种用于通过将来自一宽带、空间扩展的、空间非相干线光源的光学辐射成象到一源针孔的线性阵列上,来从一离焦图象的复振幅中鉴别出一在焦图象的复振幅的方法和设备,其包括先前所述实施例的该设备和电子处理装置,其中第一实施例的源针孔由该源针孔的线性阵列所替代,第一实施例的空间滤波器针孔由空间滤波器针孔的一线性阵列所替代,且第一实施例的检测器针孔的线性阵列和多象素检测器分别由检测器针孔的一二维阵列和包括一象素的二维阵列的一多象素检测器所替代。该源针孔的线性阵列和该空间滤波器针孔的线性阵列垂直于由色散元件确定的该平面。这些检测器针孔和检测器象素的二维阵列通过在多象素检测器的该在焦平面中的该源针孔的线性阵列的图象被取向。
波数滤波的、空间滤波的散射的探测光束的振幅的第一和第二分量值的测量的阵列的元素是正交分量的值且这样,在一复常数中给出在该检测器针孔的二维线性阵列的平面上在焦的该散射的探测光束的复振幅的一精确测量,来自离焦图象的光的影响基本上被删除。使用本领域的熟练技术人员公知的计算机算法,基本上不需要扫描,可获得该物体材料的一二维截面的精确的二维表示。该二维截面是通过该源针孔的线性阵列和该探测透镜的光轴的各自取向被选择的。该二维截面可切过该物体材料的一或多个表面或位于该物体材料的一表面内。使用本领域的熟练技术人员公知的计算机算法,从通过在基本上一维中该物体的扫描获得的第一、第二、第三和第四强度值的三维阵列,可获得该物体的精确的三维表示。该物体材料的三维表示可包括该物体材料的一或多个表面的表示。如果希望的离焦图象校正超出了本发明设备在散射的探测光束的振幅的分量值的第一和第二阵列中能做到的补偿,该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
根据第二实施例的一个变型,本发明提供了一种用于通过将来自一宽带、空间扩展的、空间非相干线光源的光学辐射成象到-源狭缝上,来从一离焦图象中鉴别出一在焦图象的方法和设备,其包括先前所述的第二实施例的设备和电子处理装置,其中第二实施例的源针孔的线性阵列由该源狭缝所替代,第二实施例的空间滤波器针孔的线性阵列由一空间滤波器狭缝所替代。该源狭缝和该空间滤波器狭缝的方向垂直于由该色散元件确定的平面。
波数滤波的、空间滤波的散射的探测光束的振幅的第一和第二分量值的测量的阵列的元素是正交分量的值且这样,在一复常数中给出在该检测器针孔的二维阵列的平面上在焦的该波数滤波的、空间滤波的散射的探测光束的复振幅的一精确测量,来自离焦图象的光的影响基本上被删除。使用本领域的熟练技术人员公知的计算机算法,不需要扫描,可获得该物体材料的一二维截面的精确的二维表示。该二维截面是通过该源狭缝和该探测透镜的光轴的各自取向被选择的。使用本领域的熟练技术人员公知的计算机算法,从通过在一维中该物体材料的扫描获得的第一、第二、第三和第四强度值的三维阵列,可获得该物体材料的精确的三维表示。该物体材料的扫描是通过用由该计算机控制的一移动器在一维中系统地移动该物体材料而实现的。如果所希望的离焦图象校正超出了本发明设备能做到的补偿,则该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
对本发明的第一和第二优选实施例的替代性实施例包括使用附加的光学装置和与本发明的第一和第二优选实施例的主要设备中采用的电子处理装置基本上相同的电子处理装置来改善和/或最优化信噪比的能力。这些附加的光学装置包括用于参考光束和探测光束的修改的路径,从而可相对于或者第一实施例或者第二实施例的选择的检测器针孔上成象的波数滤波的、空间滤波的散射的探测光束的振幅,调节用于或者第一实施例或者第二实施例的一选择的检测器针孔上聚焦的波数滤波的、空间滤波的反射的参考光束的振幅。
根据本发明的第三个实施例,提供了带有改进和优化信噪比的装置的用来把在焦图象的复振幅从离焦图象的复振幅鉴别出来的一种方法和设备,该设备包括前述第一实施例的设备以及一个光学装置,后者用来相对于被成图象在选择的检测器针孔上的波数滤波的、空间滤波的散射探测光束的振幅调节被聚焦在选择的检测器针孔上的波数滤波的、空间滤波的反射参考光束的振幅。来自一个宽带空间非相干点光源的光线被聚焦在一个光源针孔上。从光源针孔射出的光线被准直和导向一个第一移相器。准直光线的一个第一部分的相位被移动而产生相移光线的一个第一量,准直光线的一个第二部分的相位被移动而产生相移光线的一个第二量。
相移光线的第一和第二量入射到一个第一分束器上。相移光线第一量的一个第一部分透过第一分束器,形成探测光束的一个第一量,相移光线第一量的一个第二部分被第一分束器反射,形成参考光束的一个第一量。相移光线第二量的一个第一部分透过第一分束器,形成探测光束的一个第二量,相移光线第二量的一个第二部分被第一分束器反射,形成参考光束的一个第二量。探测光束的第一和第二量被聚焦在一个第一探测光束斑上。参考光束的第一和第二量被聚焦在一个第一参考光束斑上。
从第一探测光束斑射出的探测光束第一量的光线被准直和导向一个第二分束器。该准直光线的一部分透过第二分束器,形成探测光束的一个第三量。从第一探测光束斑射出的探测光束第二量的光线被准直和导向第二分束器。该准直光线的一部分透过第二分束器,形成探测光束的一个第四量。探测光束第三和第四量的光线被导向一个第二移相器。探测光束第三量的光线透过第二移相器,其相位被移动,形成探测光束的一个第五量。探测光束第四量的光线透过第二移相器,其相位被移动,形成探测光束的一个第六量,第一和第二移相器对探测光束第五和第六量产生的净相移量是相同的。
从第一参考光束斑射出的参考光束第一量的光线被准直和导向一个第三移相器,作为参考光束的一个第三量出射。从第一参考光束斑射出的参考光束第二量的光线被准直和导向第三移相器,作为参考光束的一个第四量出射,第一和第三移相器对于参考光束第三和第四量产生的净相移量是相同的。参考光束第三量的一部分被一个第三分束器反射,形成参考光束的一个第五量。参考光束第四量的一部分被第三分束器反射,形成参考光束的一个第六量。准直的参考光束第五和第六量被一个参考透镜聚焦在一参考反射镜上的一个第二参考光束斑上。
准直的探测光束第五和第六量被一个探测透镜聚焦在物体材料中的一线图象上,由此来照明物体材料。该线图象近似地沿该探测透镜的光轴被对准且该线图象沿该光轴的长度通过例如该探测透镜的焦深和色差及该光源的光学带宽的因素的组合被确定。。
从被照明物体射出的沿探测透镜方向的探测光束的第五和第六量的反射和/或散射光线形成一个散射探测光束。散射探测光束被探测透镜准直和导向第二移相器。该准直光线的一个第一部分的相位被移动,产生相移光线的一个第一散射探测光束量,准直光线的一个第二部分的相位被移动,产生相移光线的一个第二散射探测光束量。第一和第二散射探测光束量的光线被导向第二分束器。第一和第二散射探测光束量的一部分被第二分束器反射,分别形成散射探测光束的第三量和第四量。散射探测光束第三和第四量的准直光线被一个空间滤波器透镜聚焦在一空间滤波器针孔上。
从参考反射镜上的第二参考光束斑射出的沿参考透镜方向的反射光线形成一个反射参考光束,然后它通过该参考透镜被准直和导向到第三分束器上。反射参考光束的一部分透过第三分束器,入射到一个第四移相器上。透射光束的一个第一部分的相位被移动,产生相移光线的一个第一反射参考光束量。透射光束的一个第二部分的相位被移动,产生相移光线的一个第二反射参考光束量。第一和第二反射参考光束量的光线被导向第二分束器。第一和第二反射参考光束量的一部分透过第二分束器,分别形成反射参考光束的第三和第四量。反射参考光束第三和第四量的准直光线被空间滤波器透镜聚焦在空间滤波器针孔上。
该散射的探测光束的各第三量和第四量的一部分通过该空间滤波器针孔以分别形成散射的探测光束的空间滤波的第三和第四量。该散射的探测光束的空间滤波的第三和第四量通过一色散元件透镜被准直和引导到一色散元件,最好是一反射衍射光栅。
该反射的参考光束的各第三量和第四量的一部分通过该空间滤波器针孔以分别形成反射的参考光束的空间滤波的第三量和第四量。该反射的参考光束的空间滤波的第三量和第四量通过该色散元件透镜被准直和引导到该色散元件。
从该色散元件射出的散射的探测光束的各空间滤波的第三和第四量的一部分通过一检测器透镜分别形成散射的探测光束的波数滤波的、空间滤波的第三和第四量。该散射的探测光束的波数滤波的、空间滤波的第三和第四量通过该检测器透镜被聚焦以在包含检测器针孔的一线性阵列的一平面上形成一线图象。从该色散元件射出的反射的参考光束的各空间滤波的第三和第四量的一部分通过该检测器透镜以分别形成反射的参考光束的波数滤波的、空间滤波的第三和第四量。该反射的参考光束的波数滤波的、空间滤波的第三和第四量通过该检测器透镜被聚焦以在包含该检测器针孔的线性阵列的平面上形成一线图象。
通过一多象素检测器测量由这些检测器针孔透射的散射的探测光束的波数滤波的、空间滤波的第三和第四量和反射的参考光束的波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第一阵列,该多象素检测器包括一象素的线性阵列。反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第五移相器被移动若干弧度以形成反射的参考光束的第一移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的波数滤波的、空间滤波的第三和第四量和参考光束的第一移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第二阵列。
反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第五移相器被移动附加的弧度以分别形成反射的参考光束的第二移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的波数滤波的、空间滤波的第三和第四量和反射的参考光束的第二移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第三阵列。
反射的参考光束的波数滤波的、空间滤波的第三和第四量的相位通过第五移相器被移动附加的弧度以分别形成反射的参考光束的第三移相的、波数滤波的、空间滤波的第三和第四量。通过该多象素检测器测量由这些检测器针孔透射的散射的探测光束的波数滤波的、空间滤波的第三和第四量和反射的参考光束的第三移相的、波数滤波的、空间滤波的第三和第四量的重叠部分的强度作为测量的强度值的第四阵列。
在下一步骤中,测量的强度值的第一、第二、第三和第四阵列被发送给一计算机进行处理。通过该计算机从测量的强度值的第一阵列的对应元素中减去测量的强度值的第二阵列的元素以实现在这些检测器针孔的平面上在焦的该散射的探测光束的一复振幅的分量值的第一阵列的测量,来自离焦图象的光的影响基本上被抵消。通过该计算机从测量的强度值的第三阵列的对应元素中减去测量的强度值的第四阵列的元素以实现在这些检测器针孔的平面上在焦的该散射的探测光束的一复振幅的分量值的第二阵列的测量,来自离焦图象的光的影响基本上被抵消。
该波数滤波的、空间滤波的散射的探测光束的振幅的分量值的第一和第二阵列的元素是正交分量的值且这样,在一个复常数内给出这些检测器针孔的平面上在焦的该散射的探测光束的复振幅的精确测量。来自离焦图象的光的影响基本上被抵消。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,不需对物体材料进行扫描,可获得该物体材料的一线段的一精确的一维表示。该线段的方向是在该探测透镜的光轴的方向上。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,分别从通过在一维和二维中扫描该物体材料获取的测量的强度值的第一、第二、第三和第四阵列的两维和三维阵列获得该物体材料的精确的二维和三维表示。该物体材料的扫描是通过用由该计算机控制的一移动器分别在一维和二维中系统地移动该物体材料而实现的。如果希望的离焦图象校正超出了本发明设备在散射的探测光束的振幅的分量值的第一和第二阵列中能做到的补偿,该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
在第三实施例中,关于测量所希望复振幅的信噪比可被调整或改善和/或优化。该优化是通过改变第一、第二、第三分束器的反射/透射性质而调节聚焦在一选择的检测器针孔上的散射探测光束的波数滤波的、空间滤波的第三和第四量的振幅与聚焦在该选择的检测器针孔上的反射参考光束的波数滤波的、空间滤波的第三和第四量的振幅之间的比值来实现。
根据本发明的第四个实施例,提供了一带有能通过把来自一个宽带、空间扩展、空间非相干的光源的光辐射成图象到一个光源针孔的线性阵列上来调节和/或优化信噪比的装置的、用来把在焦图图象的复振幅从离焦图图象的复振幅鉴别出来的一种方法和设备,该设备包括上述第三实施例的设备和电子处理装置,只是其中第三实施例的光源针孔已被一个光源针孔的线性阵列所取代,第三实施例的空间滤波器针孔已被一个空间滤波器针孔的线性阵列所取代,并且第三实施例的检测器针孔的线性阵列和多象素检测器已被检测器针孔的一二维阵列和由一象素的二维阵列组成的一多象素检测器所取代。该光源针孔的线性阵列和该空间滤波器针孔的线性阵列的方向垂直于由该色散元件确定的平面。这些检测器针孔和这些检测器象素的二维线性阵列被用在该多象素检测器的在焦平面中的光源针孔的线性阵列的图象进行取向。
该波数滤波的、空间滤波的散射的探测光束的振幅的第一和第二分量值的测量的阵列的元素是正交分量的值且这样,在一个复常数内给出这些检测器针孔的二维线性阵列的平面上在焦的该散射的探测光束的复振幅的精确测量。来自离焦图象的光的影响基本上被抵消。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,不需对物体材料进行扫描,可获得该物体材料的一二维截面的一精确的二维表示。该二维截面是通过这些光源针孔的线性阵列和该探测透镜的光轴的取向而被选择的。使用该计算机和本技术领域的熟练技术人员公知的计算机算法,从通过在一维中扫描该物体材料获取的第一、第二、第三和第四强度值的三维阵列获得该物体的精确的三维表示。如果希望的离焦图象校正超出了本发明设备在散射的探测光束的振幅的分量值的第一和第二阵列中能做到的补偿,该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
在第四实施例中,关于测量所希望复振幅的信噪比可被调整或改善和/或优化。该调整或改善和/或优化是通过改变第一、第二、第三分束器的反射/透射性质而调节聚焦在一选择的检测器针孔上的散射探测光束的波数滤波的、空间滤波的第三和第四量的振幅与聚焦在该选择的检测器针孔上的反射参考光束的波数滤波的、空间滤波的第三和第四量的振幅之间的比值来实现。
根据第四实施例的一个变型,本发明提供了一种用于通过将来自一宽带、空间扩展的、空间非相干线光源的光学辐射成象到一源狭缝上,来从一离焦图象中鉴别出一在焦图象的方法和设备,其包括先前所述的第四实施例的设备和电子处理装置,其中第司实施例的源针孔的线性阵列由该源狭缝所替代,第四实施例的空间滤波器针孔的线性阵列由一空间滤波器狭缝所替代。该源狭缝和该空间滤波器狭缝的方向垂直于由该色散元件确定的平面。
波数滤波的、空间滤波的散射的探测光束的振幅的第一和第二分量值的测量的阵列的元素是正交分量的值且这样,在一复常数中给出在该检测器针孔的二维阵列的平面上在焦的该波数滤波的、空间滤波的散射的探测光束的复振幅的一精确测量,来自离焦图象的光的影响基本上被抵消。使用本领域的熟练技术人员公知的计算机算法,不需要扫描,可获得该物体材料的一二维截面的精确的二维表示。该二维截面是通过该源狭缝和该探测透镜的光轴的各自取向被选择的。使用本领域的熟练技术人员公知的计算机算法,从通过在一维中该物体材料的扫描获得的第一、第二、第三和第四强度值的三维阵列,可获得该物体材料的精确的三维表示。该物体材料的扫描是通过用由该计算机控制的一移动器在一维中系统地移动该物体材料而实现的。如果所希望的离焦图象校正超出了本发明设备能做到的补偿,则该计算机算法可包括本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术。
根据以上第一、第二、第三和第四实施例及其变型,本发明的设备采用一探测透镜,该探测透镜可具有作为波长的函数的一扩展的聚焦范围同时保持对于频率分量的高的横向空间分辨率。通过采用焦距被设计成取决于波长的一透镜,聚焦范围可被扩展超出由用于一单一波长的的探测透镜的数值孔径定义的范围。通过使用本领域技术人员公知的技术,该波长依赖性可被设计在该透镜中。这些技术包括由不同色散的折射材料组成的透镜多重谱线的设计。这些透镜设计可还包括波带片。如果使用波带片,该探测透镜单元最好被设计成按这些波带片的一次序,在一给定波长的一光束分量的大部分在焦点上。这些波带片可通过全息技术被生成。为获得在扩展的焦距范围的优点,来自光源的光束必须包括匹配该探测透镜的特性的特性,即具有匹配于该探测透镜的波长范围的一波长带宽。
该第一、第二、第三和第四实施例及其变型包括第一组实施例。该第二组实施例包括第五、第六、第七和第八实施例及其变型。该第五、第六、第七和第八实施例及其变型分别对应于第一、第二、第三和第四实施例及其变型的某些修改的结构,其中,具有一轴向或纵向色差的第一组实施例的第一探测透镜被具有横向色差的一探测透镜所替换。该具有横向色差的探测透镜对于第二组实施例的这些实施例及其变型,在物体材料中生成一线图象,其近似垂直于各自探测透镜的光轴地被对准,且该线图象的图象点实际上被同时获取。
垂直于各自探测透镜的光轴的线图象的长度由例如各自探测透镜的焦距和各自探测透镜的横向色差的幅度(该两因素可被调节),和光源的光学带宽的因素的组合所确定。
第三组实施例包括第九、第十、第十一和十二实施例及其变型。该第九、第十、第十一和十二实施例及其变型分别对应于第一、第二、第三和第四实施例及其变型的某些其他的修改的结构。其中未结合有多元件移相器。该多元件移相器的去除对于第三组实施例降低了离焦图象的背景的减少和补偿的程度。用于第三组实施例的探测透镜具有轴向色差,在一物体材料中生成一线图象。该线图象近似地沿具有轴向色差的探测透镜的光轴对准且该线图象的图象点基本上同时被获取。
第四组实施例包括第13、14、15和16实施例及其变型。该第13、第14、第15和16实施例及其变型分别对应于第五、第六、第七和第八实施例及其变型的某些其他的修改的结构。其中未结合有多元件移相器。该多元件移相器的去除对于第四组实施例降低了离焦图象的背景的减少和补偿的程度。用于第四组实施例的探测透镜具有轴向色差,在一物体材料中生成一线图象。该线图象近似地正交于具有轴向色差的探测透镜的光轴对准且该线图象的图象点基本上同时被获取。
第五组实施例包括第17、18、19和20实施例及其变型。该第17、第18、第19和20实施例及其变型分别对应于第一、第二、第三和第四实施例及其变型的第二组的某些其他的修改的结构。其中具有轴向色差的探测透镜被基本上没有轴向色差的探测透镜所替代。由第五组的实施例在一物体材料中生成的图象标称地是一点图象。对于第五组实施例的这些实施例及其变型的来自离焦图象的背景的减少和补偿程度与对于第一组实施例的这些实施例及其变型的来自离焦图象的背景的减少和补偿程度相同。第五组实施例的这些实施例及其变型的图象点在时间上顺序地被获取。
根据第五组实施例的这些实施例及其变型,对于光源的多光学频率分量,可调节和/或最优化信噪比。这是通过以下手段实现的:在参考和/或反射参考光束的路径中,最好和/或在该探测和/或散射探测光束的路径中放置一波长滤波器且构成该波长滤波器的发射以具有一特定的波长相关性来调节和/或最优化透射通过各自用于不同波长的检测器针孔的波数滤波的、空间滤波的反射的参考光束和波数滤波的、空间滤波的散射的探测光束的比例。当在通过该物体材料中的探测和散射的探测光束有强烈衰减时,该特征是特别有用的。
对于该五组实施例的各实施例及其变型,有一用于将信息写至一包括一记录介质的物体材料的对应的实施例或变型用于写信息的各实施例及其变型包括一对应实施例或变型的方法和设备,除了以下结构的变化外:该光源和参考反射镜子系统被相互转换且该检测器和检测器针孔由一反射镜替换,其中该反射镜将来自光源投射在该反射镜上的光基本上引导回其自身,带有连同一移相程序一起由配置的反射镜引入的反射率的时间上及空间上相关度和一时间上及空间上相关相移以在物体材料中生成期望的图象。对于该五组实施例的这些实施例及其变型,该相移程序执行与在波数滤波的、空间滤波的反射的参考光束中引入一序列相移以获得第一、第二、第三和第四测量的强度值的程序相类似的功能。
对于在此所述的写入实施例及其变型的某一些,一单位二进制格式被使用以在物体材料中的一给定位置存储信息。在此所述的写入实施例及其变型的某一些中,通过在一幅度或幅度及相位记录介质中的各数据存储位以用于幅度的基N格式或用于幅度及相位信息的(基N)×(基M)格式进行记录,获得比在这些实施例及其变型的某一些中更高密度的信息存储。
本领域的熟练技术人员可理解在不超出本发明的范围和精神的前提下,对于应用的实施例及其变型的在波数滤波的、空间滤波的反射的参考光束中引入一序列相移以获得第一、第二、第三、和第四测量的强度值的程序也可用相敏检测和外差检测技术来实现。例如,由0、、和弧度的四个离散相移值组成的相移程序可由在频率的幅度的一正弦相变所替代。该波数滤波的、空间滤波的散射的探测光束的复振幅的第一和第二分量值通过相敏检测被检测分别为的第一和第二谐波。该幅度被选择以使有对第一和第二谐波两者的检测的高灵敏度。在第二例中,参考光束的频率相对于探测光束的频率,例如通过一声光调制器被移位,且该波数滤波的、空间滤波的散射的探测光束的复振幅的第一和第二分量值通过外差检测被获取。
本领域的熟练技术人员可理解用于将信息写至光盘的实施例及其变型可以一位二进制格式在存储器位写信息。本领域的熟练技术人员还可理解用于将信息写至光盘的这些实施例及其变型可在一存储器点(memeory site)以用于幅度的基N格式或用于幅度及相位的(基N)×(基M)格式的形式写入信息或作为采用待被存储的信息的(基N)×(基M)格式的变换,例如傅里叶变换或希耳伯特变换的变换。
本领域的熟练技术人员可理解信息可通过磁光效应被存储在一介质中及存储的信息通过测量一由物体材料透射或散射的探测光束的偏振状态的变化而被检索。
本领域的熟练技术人员可理解在该五组实施例的这些实施例及其变型以及相关联的写入实施例及其变型中的物体材料的期望的扫描也可通过在物体材料保持静态时,扫描物体材料中的各自光源针孔、光源针孔的线性阵列或光源狭缝的图象而被实现。
应该理解,本发明的“使能技术(enabling technology)”适用于任何电磁辐射和例如电子显微镜中所用的电子束,甚至适用于能获得适合的准直透镜、成图象透镜、和移相器的声波。对于那些其中探测的是光束振幅而不是光束强度的应用,在检测器后面的电子处理中必需有能产生振幅平方的功能。
应该理解,物体材料中的线图象的长度可通过改变例如探测透镜的焦深和/或轴向色差或探测透镜的横向色差,带有必须的光源的光学带宽的对应变化而被改变。
第二或第四优选实施例或它们的各自变型的情况下,线光源不需要在线光源的方向上空间非相干以取得减少的系统误差,尽管当使用一空间非相干线光源时系统误差总体上是较低的。
相对于读取一多层、多迹道光盘的第一和第三组实施例的某一些的一个优点在于在光盘的深度方向上基本上同时成象一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在光盘的深度方向上同时成象一线段可被使用以大大地减少对在深度方向上的由光盘的转动、光盘的不平整度、和/或光盘的振动生成的光盘的运动的灵敏度。在光盘的深度方向上同时成象一线段还可被使用来以自多层同时获取的信息来识别一参考表面,该参考层用作为登记的目的。
相对于提供在集成电路的制造中使用的一晶片的层析X射线复振幅图象的第一和第三组实施例的一些实施例的一个优点在于在晶片的深度方向上基本上同时成象一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在晶片的深度方向上同时成象一线段可被使用以大大地减少对在深度方向上的由例如晶片的移动、扫描、或振动生成的晶片的运动的灵敏度。在晶片的深度方向上同时成象一线段还可被使用来以自多个深度同时获取的信息来识别该晶片的一表面和/或该晶片内的一表面。
相对于提供自然条件下的一生物样品的一层析X射线复振幅图象,在生物样品的一无创性活检样品中可被使用的一图象的第一和第三组实施例的某一些的一个优点在于在生物样品的深度方向上基本上同时成象一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在生物样品的深度方向上同时成象一线段可被使用以大大地减少对在深度方向上的由例如生物样品的移动、扫描、或振动生成的生物样品的运动的灵敏度。在生物样品的深度方向上同时成象一线段还可被使用来以自多个深度同时获取的信息来识别该生物样品的一表面和/或该生物样品内的一表面。
相对于读取一多层、多迹道光盘的第一和第三组实施例的其他一些的另一个优点在于基本上同时成象该光盘的一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该光盘的该二维截面的一轴平行于该光盘的深度方向且该光盘的该二维截面的正交轴可以或者平行于该光盘的径向或平行于该光盘中一迹道的切线。该光盘的二维截面同时成象可被使用以大大地减少对在深度方向和径向上的由光盘的转动、光盘的不平整度、和/或光盘的振动生成的光盘的运动的灵敏度。该光盘中的二维截面的同时成象还可被使用以识别该光盘中或上的一参考表面,即参考层,和一参考迹道或被使用用于以在多层和多迹道同时获取的信息来进行迹道识别,该参考层和参考迹道用作为登记的目的。
相对于读取一多层、多迹道光盘的第二和第四组实施例的一些的一个优点在于基本上同时成象与该光盘中或上的一层相切的一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该光盘中或上的一层相切的一线段的同时成象可被使用以大大地减少对由光盘的转动和/或光盘的振动生成的光盘的运动的灵敏度。与该光盘中或上的一层相切的一线段的同时成象还可被使用以从多迹道同时获取的信息来识别该光盘中的一参考迹道,该参考迹道用作为登记的目的。
相对于提供在集成电路的制造中使用的一晶片的层析X射线复振幅图象的第一和第三组实施例的一些实施例的一个优点在于基本上同时成象与该晶片的一表面相切的或在晶片中的一表面上的一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该晶片的一表面相切的或在晶片中的一表面上的一线段的同时成象可被使用以大大地减少对由晶片的移动、扫描、或振动生成的晶片的运动的灵敏度。与该晶片中或上的一表面相切的一二维截面的同时成象还可被使用以从多个位置同时获取的信息来识别该晶片中或上的一参考位置,该参考位置用作为登记的目的。
相对于提供在集成电路的制造中使用的一晶片的层析X射线复振幅图象的第一和第三组实施例的一些实施例的一个优点在于基本上同时成象该晶片的一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该晶片的该二维截面的一轴平行于该晶片的深度方向。该晶片的二维截面的同时成象可被使用以大大地减少对由晶片的移动、扫描、或振动生成的晶片在深度和横向方向的运动的灵敏度。该晶片的二维截面的同时成象还可被使用以在其他多个位置同时获取的信息来识别该晶片的一表面或一内部表面,该表面或内部表面可能地用作为登记的目的。
相对于提供自然条件下的一生物样品的一层析X射线复振幅图象,在生物样品的一无创性活检样品中可被使用的一图象的第一和第三组实施例的另外一些的另一个优点在于基本上同时成象该生物样品的一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该生物样品的该二维截面的一轴平行于该生物样品的深度方向。该生物样品的二维截面的同时成象可被使用以大大地减少对由生物样品的移动、扫描、或振动生成的生物样品在深度和横向方向的运动的灵敏度。该生物样品中的二维截面的同时成象还可被使用以在其他多个位置同时获取的信息来识别该生物样品的一表面或一内部表面,该表面或内部表面可能地用作为登记的目的。
相对于提供自然条件下的一生物样品的一层析X射线复振幅图象,在生物样品的一无创性活检样品中可被使用的一图象的第二和第四组实施例的一些的一个优点在于基本上同时成象与该生物样品中或上的一表面相切的一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该生物样品中或上的一表面相切的一线段的同时成象可被使用以大大地减少对由生物样品的移动、扫描、或振动生成的生物样品的运动的灵敏度。与该生物样品中或上的一表面相切的一线段的同时成象还可被使用以从多个位置同时获取的信息来识别该生物样品中的一参考位置,该参考位置用作为登记的目的。
相对于读取一多层、多迹道光盘的第二和第四组实施例的其他一些的另一个优点在于基本上同时成象该光盘的一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔及狭缝共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该光盘的该二维截面的一轴平行于该光盘的径向且该光盘的该二维截面的正交轴可以或者平行于该光盘中或上的一迹道的切线。该光盘的二维截面同时成象可被使用以大大地减少对由光盘的转动和/或光盘的振动生成的光盘在径向上的的运动的灵敏度。该光盘中或上的二维截面的同时成象还可被使用以用在多迹道和该多迹道上的多位置同时获取的信息来识别一参考迹道用于迹道识别及用于一给定迹道的读取误差,该参考迹道用作为登记的目的。
相对于读取一多层、多迹道光盘的第五组实施例的一个优点在于生成一多层、多迹道光盘的一一维线段、一二维截面或一三维部分图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
相对于提供在集成电路的制造中使用的一晶片的层析X射线复振幅图象的第五组实施例的一个优点在于生成一晶片的一一维线段、一二维截面或一三维部分图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
相对于提供自然条件下的一生物样品的一层析X射线复振幅图象,在生物样品的一无创性活检样品中可被使用的一图象的第五组实施例的一个优点在于生成该样品的一一维线段、一二维截面或一三维部分图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
本发明的前四组实施例的一个优点在于基本上同时成象一线段,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。该基本上同时成象特征是通过引入称为“光学波数域发射测量术”(OWDR)的技术而成为可能的。该背景的减少是通过对一干涉测量(interferometry)系统采用针孔共焦显微术的基本原理而成为可能的。该基本上同时成象特征使得可能在测量过程期间生成一维、二维和三维图象,带有大大降低的对物体运动的灵敏度。该运动的问题在生物系统的自然条件下的测量的情况下的当前采用的技术中造成严重的限制。在未结合在此公开的技术的PSI和SCLI中,由于振动引起的运动,会遭遇严重的限制。在读取多层、多迹道光盘或写入多层、多迹道光盘中,该未被追踪的运动的问题也可造成严重的限制。
本发明另一个优点在于基本上同时成象一二维截面,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。该基本上同时成象特征是通过引入OWDR的技术而成为可能的。该背景的减少是通过对一干涉测量系统采用狭缝共焦显微术的基本原理而成为可能的。该基本上同时成象特征使得可能在测量过程期间生成二维和三维图象,带有大大降低的对物体运动的灵敏度。如上所述,该运动的问题在生物系统的自然条件下的测量的情况下的当前采用的技术中造成严重的限制。在由于振动引起的运动的PSI和SCLI中,会遭遇严重的限制。在读取多层、多迹道光盘或写入多层、多迹道光盘中,由于未被追踪的运动的问题也可造成严重的限制。
用于写至一多层、多迹道光盘的实施例及其变型、对应于第一和第三组实施例的一些的实施例及其变型中的一些的一个优点在于在光盘的深度方向上基本上同时成象一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息成象进行的一序列图象中生成的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在光盘的深度方向上同时成象一线段可被使用以大大地减少对在深度方向上的由光盘的转动、光盘的不平整度、和/或光盘的振动生成的光盘的运动的灵敏度。在光盘的深度方向上同时成象一线段还可被使用来生成该光盘中的一参考表面,同时地在多层写入信息,该参考层用作为登记的目的。
用于写至一多层、多迹道光盘的实施例及其变型、对应于第一和第三组实施例的另一些的实施例及其变型中的一些的另一个优点在于在光盘中基本上同时成象一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔和狭缝共焦干涉显微术或全息术进行的一序列图象中生成的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该光盘的该二维截面的一轴基本上平行于该光盘的深度方向且该光盘的该二维截面的正交轴可以或者基本平行于该光盘的径向、平行于该光盘中一迹道的切线或平行于两者之间的任何方向。该光盘的二维截面同时成象可被使用以大大地减少对在深度方向和正交方向上的由光盘的转动、光盘的不平整度、和/或光盘的振动生成的光盘的运动的灵敏度。该光盘中的二维截面的同时成象还可被使用以生成该光盘中或上的一参考表面、即参考层,和一参考迹道,该参考层和参考迹道用作为登记的目的。
用于写至一多层、多迹道光盘的实施例及其变型、对应于第二和第四组实施例的一些的实施例及其变型中的一些的一个优点在于基本上同时成象与该光盘中或上的一层相切的一线段,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列图象中生成的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该光盘中或上的一层相切的一线段的同时成象可被使用以大大地减少对由光盘的转动和/或光盘的振动生成的光盘的运动的灵敏度。
用于写至一多层、多迹道光盘的实施例及其变型、对应于第二和第四组实施例的另一些的实施例及其变型中的一些的另一个优点在于基本上同时成象光盘的一二维截面,带有显著减少的统计误差及带有与用现有技术单针孔和狭缝共焦干涉显微术或全息术进行的一序列图象中生成的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该光盘的该二维截面的一轴基本上平行于该光盘的径向且该光盘的该二维截面的正交轴可以基本平行于该光盘中或上的一迹道的切线。该光盘的二维截面同时成象可被使用以大大地减少对在径向上的由光盘的转动和/或光盘的振动生成的光盘的运动的灵敏度。该光盘中或上的二维截面的同时成象还可被使用以生成一参考迹道用于迹道识别,同时在多个迹道和该多个迹道上的多个位置写入信息,该参考迹道用作为登记的目的。
用于写至一多层、多迹道光盘的实施例及其变型、对应于第五组实施例的实施例及其变型的一个优点在于在一多层、多迹道光盘上生成一一维线段、一二维截面或一三维部分图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
本发明的一个优点在于替代如在PCI合OCT的情况下的散射振幅的量值而获得该物体的复散射振幅。相对于获得一给定类型的物体材料的一维、二维或三维图象所需的计算机分析量,这是特别重要的。
另一个优点在于相比于在当前采用的现有技术的共焦系统中所需的计算机处理,获得在一维、二维及三维成象中的复散射振幅所需的计算机处理被大大地减少。
另一个优点在于如果需要对在本发明的设备中已被大大减少的离焦图象进行修正,相比于在现有技术的扫描单针孔和扫描狭缝共焦及扫描单针孔和扫描狭缝共焦干涉显微术中所需的计算机处理,用本发明的设备实现一给定水平的修正所需的计算机处理被显著地减少。
另一个优点在于对于单光源针孔,在本发明的各自实施例及其变型中,背景辐射对于在一给定测量时间间隔在该物体材料中的一给定横向距离上测量的复散射振幅中的统计噪声的贡献可被降低到在现有技术扫描单针孔共焦干涉显微术中在同样时间间隔可获得的之下,达到基本上与在轴向图象距离上的独立的测量位置的数量的均方根成正比的一因数,其中独立是相对于测量的复散射振幅而言的。相对于狭缝共焦干涉显微术,给出了一类似的优点,其中对应的减少因数基本上与在该物体材料的一成象的二维截面上的独立的测量位置的数量的均方根成正比。
另一个优点在于背景辐射对于一给定测量时间间隔在一给定成象的轴向距离上的测量的复散射振幅中的统计噪声的贡献可被减少到从该复散射振幅自身的大小所主要导出的情况。对于背景辐射的量值相比于该复散射振幅的大小是相对地较大的情况,这是一特别重要的优点。这在现有技术的扫描单针孔或狭缝共焦显微术中是不能实现的。
另一个优点是对于前四组实施例的某些实施例及其变型,要求基本上仅在一维上的扫描以生成一二维图象且仅要求基本上在二维上的扫描以生成一三维图象。
另一个优点是对于前四组实施例的其他一些实施例及其变型,要求基本上仅在一维上的扫描以生成一三维图象。
总之,本发明的设备可被操作以(1)减少系统误差;(2)减少统计误差;(3)减少检测器、处理电子器件的动态范围要求;(4)提高光盘中存储的数据的密度;(5)减少生成或者一一维、二维或三维图象所需的计算机处理量;(6)减少对于修正离焦图象的系统误差效应所需的计算机处理量;及/或(7)当通过一混浊介质成象时可进行工作。通常,这些特征的一或多个可同时被实现。
附图的简单说明
在各附图中,相似的代号代表相似的元件。
图1a-1n一起以示意图形式说明来自第一组实施例的本发明目前优选的第一实施例,图1a示出子系统80与81、81与82、81与83、82与81a、83与81a及81a和84之间的各个光路,从计算机118到移动器116和子系统83中移相器44的电子信号路径,以及从子系统84中的检测器114到计算机118的电子信号路径;
图1b说明子系统80,其中图1b的平面垂直于图1a的平面;
图1c说明子系统81,其中图1c的平面垂直于图1a的平面;
图1d说明对于探测光束进入子系统82的情况的子系统82,其中图1d的平面垂直于图1a的平面;
图1e说明对于参考光束进入子系统83的情况的子系统83,其中图1e的平面垂直于图1a的平面;
图1f说明对于探测光束离开子系统82的情况的子系统82,其中图1f的平面垂直于图1a的平面;
图1g说明对于参考光束离开子系统83的情况的子系统83,其中图1g的平面垂直于图1a的平面;
图1h说明对于探测光束进入子系统81a的情况的子系统81a,其中图1h的平面垂直于图1a的平面;
图1i说明对于参考光束进入子系统81a的情况的子系统81a,其中图1i的平面垂直于图1a的平面;
图1j说明对于探测光束进入子系统84的情况的子系统84,其中图1j的平面垂直于图1a的平面;
图1k说明对于参考光束进入子系统84的情况的子系统84,其中图1k的平面垂直于图1a的平面;
图1l说明了对于由子系统82中光的散射和/或反射在子系统84中产生离焦光束的情况的子系统82,其中图1l的平面垂直于图1a的平面:
图1m说明了对于由子系统82中光的散射和/或反射在子系统81a中产生离焦光束的情况的子系统81a,其中图1m的平面垂直于图1a的平面;
图1n说明了对于背景光束进入子系统84情况的子系统84,其中图1n的平面垂直于图1a的平面;
图1aa-ai连同图1a-1n中的一些一起,以概略的形式说明了第二组实施例的本发明的当前优选的第五实施例,图1aa分别示出了分束器100和子系统82aa之间、分束器100和子系统83aa之间、子系统82aa和85、及子系统83aa和95之间的光路,和电子信号132和133到移动器116及到子系统83aa中的移相器44的路径;
图1ab说明了对于探测光束进入子系统82aa及图1ab的平面垂直于图1aa的平面的情况下的子系统82aa;
图1ac说明了对于探测光束进入子系统85及图1ac的平面垂直于图1aa的平面的情况下的子系统85;
图1ad说明了对于参考光束进入子系统83aa及图1ad的平面垂直于图1aa的平面的情况下的子系统83aa;
图1ae说明了对于参考光束进入子系统95及图1ae的平面垂直于图1aa的平面的情况下的子系统95;
图1af说明了对于散射的探测光束离开子系统85及图1af的平面垂直于图1aa的平面的情况下的子系统85;
图1ag说明了对于散射的探测光束离开子系统82aa及图1ag的平面垂直于图1aa的平面的情况下的子系统82aa;
图1ah说明了对于反射的参考光束离开子系统95及图1ah的平面垂直于图1aa的平面的情况下的子系统95;
图1ai说明了对于反射的参考光束离开子系统83aa及图1ai的平面垂直于图1aa的平面的情况下的子系统83aa;
图2a-2f一起以概略的形式说明本发明目前的第二优选实施例,其中图2a示出子系统80a与81、81与82、81与83、82与81b、83与81b、81b和84a之间的光路,从计算机118到移动器116和子系统83中的移相器44的电子信号路径,以及从子系统84a中的检测器114a到计算机118的电子信号路径;
图2b说明子系统80a,其中图2b的平面垂直于图2a的平面且线光源的方向及针孔8a的线性阵列位于图2a的平面内;
图2c说明探测光束进入子系统81b的情况,其中图2c的平面垂直于图2a的平面且针孔18b的线性阵列位于图2a的平面内;
图2d说明参考光束进入子系统81b的情况,其中图2d的平面垂直于图2a的平面且针孔18b的线性阵列位于图2a的平面内;
图2e说明探测光束进入子系统84a的情况,其中图2e的平面垂直于图2a的平面;
图2f说明参考光束进入子系统84a的情况,其中图2f的平面垂直于图2a的平面;
图2aa连同图2a-2f中的一些一起,以概略的形式说明了第二组实施例的本发明的当前优选的第六实施例,图2aa分别示出了分束器100和子系统82aa之间、分束器100和子系统83aa之间、子系统82aa和85、及子系统83aa和95之间的光路,和电子信号132和133到移动器116及到子系统83aa中的移相器44的路径;
图3a-3l一起以概略的形式说明本发明目前的第三优选实施例,其中图3a示出子系统80与81、80与81c、81与82、81c与83a、82与81a、83a与81a、和81a和84之间的光路;从计算机118到移动器116和子系统83a中的移相器44的电子信号路径;以及从子系统84中的检测器114到计算机118的电子信号路径;
图3b说明了子系统80,其中图3b的平面垂直于图3a的平面;
图3c说明了子系统81a,其中图3c的平面垂直于图3a的平面;
图3d说明探测光束进入子系统82的情况,其中图3d的平面垂直于图3a的平面;
图3e说明了子系统81c,其中图3e的平面平行于图3a的平面;
图3f说明参考光束进入子系统83a的情况,其中图3f的平面平行于图3a的平面且移相器34和34a分别绕轴3a和3c被旋转90度,仅为说明性的目的;
图3g说明探测光束离开子系统82的情况,其中图3g的平面垂直于图3a的平面;
图3h说明参考光束离开子系统83a的情况,其中图3h的平面垂直于图3a的平面且移相器34和34a分别绕轴3a和3c被旋转90度,仅为说明性的目的;
图3i说明探测光束进入子系统81a的情况,其中图3i的平面垂直于图3a的平面;
图3j说明参考光束进入子系统81a的情况,其中图3j的平面垂直于图3a的平面;
图3k说明探测光束进入子系统84的情况,其中图3k的平面垂直于图3a的平面;
图3l说明参考光束进入子系统84的情况,其中图3l的平面垂直于图3a的平面;
图3aa和3ab一起以概略的形式说明自第二组实施例的本发明目前的第七优选实施例,其中图3aa示出了分束器100和子系统82aa之间、分束器100和子系统83ab之间、子系统82aa和85、及子系统83ab和95之间的光路,和电子信号132和133到移动器116及到子系统83ab中的移相器44的路径;
图3ab说明反射的参考光束离开子系统83ab的情况,其中图3ab平面平行于图3aa的平面且移相器34和34a分别绕轴3b和3f被旋转90度,仅为说明性的目的;
图4a-4f一起以示意图形式说明本发明目前的第四优选实施例,其中图4a示出子系统80a与81、80a与81c、81与82、81c与83a、82与81b、83a与81b和81b与84a之间的光路,从计算机118到移动器116和子系统83a中的移相器44的电子信号路径,以及从子系统84a中的检测器114a到计算机118的电子信号路径;
图4b说明了子系统80a,其中图4b的平面垂直于图4a的平面;
图4c说明了散射的探测光束进入子系统81b的情况,其中图4c的平面垂直于图4a的平面;
图4d说明了反射的参考光束进入子系统81b的情况,其中图4d的平面垂直于图4a的平面;
图4e说明了散射的探测光束进入子系统84a的情况,其中图4e的平面垂直于图4a的平面;
图4f说明了反射的参考光束进入子系统84a的情况,其中图4f的平面垂直于图4a的平面;
图4aa连同图4a-4f中的一些一起,以概略的形式说明自第二组实施例的本发明目前的第八优选实施例,其中图4aa示出了分束器100和子系统82aa之间、分束器100和子系统83ab之间、子系统82aa和85、及子系统83ab和95之间的光路,和电子信号132和133到移动器116及到子系统83ab中的移相器44的路径;
图5示出一个具有四个成图象部分的反射共焦显微镜的几何布局;
图6是根据本发明的四个优选实施例及其本发明的这些优选实施例的变型的空间滤波的针孔平面中的一离焦图象的幅值的示意图;
图7是根据本发明的四个优选实施例及其本发明的这些优选实施例的变型的空间滤波针孔平面中的一反射的参考光束幅值的示意图;
图8a-8c涉及制造集成电路的石板印刷术及其应用,其中图8a是使用该共焦显微镜系统的一石板印刷术曝光系统的概略性示意图;
图8b和8c是描述制造集成电路的步骤的流程图;及
图9是使用该共焦显微镜系统的一掩模(mask)检验系统的概略性示意图。
本发明的详细说明
本发明能够把由三维物体材料空间的一个体元素所反射和/或散射的光的复振幅与由位于被测体元素前方、后方及边上的结构的重叠离焦图象所产生的背景光的复振幅分离开来。所说明的层析技术能把一个图象平面中的希望复振幅信号与由各种机制所产生的“背景”和“前景”复振幅信号分离开来。这些背景和前景复振幅信号可以是:(1)物体材料中不是被成图象的一线段或二维截面的部分的离焦图象,(2)希望振幅信号的散射信号,(3)源自非成图象的一线段或二维截面的光源的信号的散射,和/或(4)热辐射。散射地点和热辐射源可能位在物体被测的物体的一线段或二维截面的前方、后方和/或其中的空间内。
本发明的技术以两种不同的对离焦图象的鉴别级别中的一种级别来实现。在第一个级别(级别1)中,本发明的设备的成图象子系统的脉冲响应函数通过在本发明设备的各个子系统的光瞳上分别导入一维的相位变化图案而在一个平面内受到操作。在第二个级别(级别2)中,本发明的设备的成图象子部分的脉冲响应函数通过在各个子系统的光瞳上分别导入二维的相位变化图案而在两个正交的平面内受到操作。级别2的实现比级别1的实现在把离焦图象从在焦图象鉴别出来的方面更为有效。这里所说明的任何一个优选实施例都可以实现级别1和级别2的鉴别。
本发明的使能技术,对于不论是被构形成级别1还是级别2鉴别的本发明设备的每个优选实施例来说,都是共同的,但这里仅对级别1鉴别的各个优选实施例说明本发明的使能技术。级别1鉴别是基于一正交平面的一具体取向,其中实现了成象子系统的脉冲响应函数。其中成象子系统的脉冲响应函数被操作的该正交平面的取向的选择对在本发明的设备中实现的背景光束对统计误差的影响的减少程度有影响。
参考各附图的详细内容,图1a-1n以示意图形式示出本发明目前的第一优选实施例。如图1a-1n所示,本发明的该优选实施例是一个干涉仪,其中包括一个分束器100、物体材料112、移动器116、参考反射镜120、色散检测器元件130a和130b、和一个检测器114。在本技术领域中该结构叫做迈克耳逊干涉仪,这里示出的是一个简单的例子。本技术领域中已知的这种干涉仪的其他形式例如有偏振迈克耳逊干涉仪,在C.Zanoni(扎诺尼)的论文“DifferentialInterferometer Arrangements for Distance and AngleMeasurements:Principles,Advantages,and Applications(用于距离和角度测量的差分干涉仪布局:原理、优点和应用)”(VDIBerichte NR/749,93-106,1989)中有所说明,可以把它使用在图1a-1n的设备中而不会明显偏离本发明第一优选实施例的精神和范畴。
在第一优选实施例中的其中一成象子系统的脉冲响应函数被操作的平面的取向垂直于图1a的平面且平行于该成象子系统的光轴。
图1b以示意图形式示出图1a所示的子系统80的一个实施例。图1b的平面垂直于图1a的平面。对于第一优选实施例而言,光源10最好是一个点光源或一个其表面各处的辐射是空间非相干的光源,最好是一个激光器或类似的相干光源,或部分相干辐射光源,而且最好是一超辐照激光器,较佳地是偏振的。光源10发出与子系统80的光轴3相对准的输入光束2。如图1b所示,输入光束2进入聚焦透镜6并被聚焦在图象平面7中的针孔8上。由多个光束12-1、-2、-3、-4所组成的光束12从针孔8发散出来,进入一个其光轴对准于子系统80的光轴3的透镜16。光束12从透镜16射出时成为准直光束12A,后者由光束12A-1、-2、-3、-4组成,准直光束12A进入移相器14。移相器14包括一些矩形移相器14-1、-2、-3、-4,它们各自的光轴都平行于子系统80的光轴3。应该指出,这些移相器的数目可以是任何合适的数2m,其中m是一个整数。图1b中所例子是m=2的情况,4个移相器的情况已足以清楚地说明本发明设备各个部件之间的关系。平行光束12A-1、-2、-3、-4分别透过移相器14-1、-2、-3、-4,出射时分别变成光束12B-1、-2、-3、-4,总的构成光束12B。移相器14-2和14-4,所导入的相移量分别比移相器14-1和14-3所导入的多π弧度,而移相器14-1与14-3所导入的相移量是相同的。
在图1a中,光束12B从子系统80射出而进入子系统81。在图1C中光束12B进入透镜26,透镜26具有与子系统81的光轴3对准的一光轴,出射时变成由光束12C-1、-2、-3、-4所组成的光束12C。图1c的平面垂直于图1a的平面。透镜26使光束12C聚焦成在焦图象平面17中的图象点18。光束12C从图象点18射出时变成由光束22-1、-2、-3、-4所组成的光束22。光束22进入一个其光轴对准于子系统81的光轴3的透镜36。光束22从透镜26射出并离开子系统81时变成由光束22A-1、-2、-3、-4所组成的准直的光束22A。
如图1a所示,光束22A部分地透过分束器100,变成由光束P22B-1、-2、-3、-4所组成的光束P22B,并进入图1d中所示的子系统82。
在图1d中,光束P22B入射到一个由移相器24-1、-2、-3、-4所组成的移相器24上。图1d的平面垂直于图1a的平面。移相器24与14含有与移相器14相同数目的2m个单元,图1d中示出的是m=2的情况。光束P22B-1、-2、-3、-4分别透过移相器24-1、-2、-3、-4,出射后分别变成光束P22C-1、-2、-3、-4,它们组成了光束P22C。移相器24-1与24-3所导入的相移量相同,是比移相器24-2和24-4所导入的相移大的弧度,而移相器24-2和24-4所导入的相移量是相同的。
由每一对移相器14-1与24-1、14-2与24-2、14-3与24-3、14-4与24-4所产生的相移量之和都是π弧度。所以光束P22C-1、-2、-3、-4中的任意两个光束之间都不存在净相对相移。光束P22C透过透镜46,变成由光束P22D-1、-2、-3、-4所组成的光束P22D,后者被聚焦成中心位于物体材料112中的在焦图象平面27内的图象点28的一线图象。该线图象的轴基本上平行于成象子系统82的光轴3。该线图象的长度由例如探测透镜46的焦深和色差及光源10的光学带宽的因素的组合所确定。该线段可切过该物体材料的一或多个表面或位于该物体材料的一表面内。透镜46的光轴是对准于子系统82的光轴3的。
在图1a中,光束22A部分地被分束器100反射,变成由光束R22B-1、-2、-3、-4所组成的光束R22B。光束R22B进入示于图1e的子系统83。图1e的平面垂直于图1a的平面。如图1e所示。光束R22B入射在一个由移相器34-1、-2、-3、-4所组成的移相器34上。移相器34与14含有相同数目2m的单元,图1e中示出了m=2的情况。光束R22B透过移相器34,然后又透过移相器44,出射后变成由光束R22C-1、-2、-3、-4所组成的光束R22C。由移相器44所导入的相移量受来自计算机118的信号132控制。移相器34-1与34-3所导入的相移量相同,比移相器34-2或34-4所导入的多π弧度,而移相器34-2与34-4所导入的移相量是相同的。所以在光束R22C-1、-2、-3、-4中的任何两个光束之间没有净相对相移。光束R22C透过透镜56后变成由光束R22D-1、-2、-3、-4所组成的光束R22D。光束R22D被透镜56聚焦成参考反射镜120上的在焦图象平面37中的图象点38。透镜56的光轴是对准于子系统83的光轴3a的。
在图1f中,光束P22D(见图1d)的一部分被图象点28处的线图象中的物体材料反射和/或散射,变成组成了散射的探测光束P32的多个光束P32-1、-2、-3、-4。图1f的平面垂直于图1a的平面。散射的探测光束P32从在焦图象平面27中的图象点28发散,进入透镜46。如图1f所示,散射的探测光束P32从透镜46射出时变成由光束P32A-1、-2、-3、-4所组成的准直光束P32A。光束P32A-1、-2、-3、-4分别透过移相器24-4、-3、-2、-1,出射时分别变成光束P32B-1、-2、-3、-4。光束P32B-1、-2、-3、-4组成了散射的探测光束P32B,从子系统82射出。由移相器24-1与24-3所导入的相移量相同,比移相器24-2或24-4所导入的多π弧度,而移相器24-2与24-4所导入的相移量是相同的。
在图1g中,光束R22D(见图1e)被参考反射镜120反射,变成由光束R32-1、-2、-3、-4所组成的反射的参考光束R32。反射的参考光束R32自在焦图象平面37中的图象点38发散,进入透镜56。如图1g所示,反射的参考光束R32从透镜56射出时变成由光束R32A-1、-2、-3、-4所组成的准直的反射的参考光束R32A。光束R32A-1、-2、-3、-4首先透过移相器44,再分别透过移相器34-4、-3、-2、-1,出射后分别变成反射的参考光束R32B,反射的参考光束R32B由光束R32B-1、-2、-3、-4组成。由移相器44所导入的相移量受来自计算机118的信号132控制。由移相器34-1与34-3所导入的相移量是相同的,比由移相器34-2或34-4所导入的多π弧度,而移相器34-2与34-4所导入的相移量是相同的。光束R32B-1、-2、-3、-4组成了从子系统83射出的光束R32B。
图1a中示出散射的探测光束P32B被分束器100部分地反射,变成由光束P32C-1、-2、-3、-4所组成的散射的探测光束P32C。散射的探测光束P32C进入图1h中所示的子系统81a,图1h的平面垂直于图1a的平面。在图1h中,散射的探测光束P32C进入具有与子系统81a的光轴3a对准的一光轴的透镜26a并出射66变成由光束P32D-1、-2、-3、-4所组成的散射的探测光束P32D。透镜26a将散射的探测光束P32D聚焦成图象平面17a中的针孔18a上。散射的探测光束P32D的一部分从针孔18a出射变成由光束P42-1、-2、-3、-4组成的空间滤波的、散射的探测光束P42。散射的探测光束进入具有与子系统81a的光轴3a对准的一光轴的透镜36a。空间滤波的、散射的探测光束P42从透镜36a射出并离开子系统81a变成准直的、空间滤波的、散射的探测光束P42A,该探测光束P42A由光束P42A-1、-2、-3、-4组成。
图1a示出光束R32B被分束器100部分地透过,变成由光束R32C-1、-2、-3、-4所组成的反射的参考光束R32C。反射的参考光束R32C进入如图1i所示的子系统81a。图1I的平面垂直于图1a的平面。在图1i中,反射的参考光束R32透过透镜26a变成由光束R32D-1、-2、-3、-4所组成的反射的参考光束R32D。光束R32D被透镜26a聚焦成图象平面17a中的针孔18a上。反射的参考光束R32D的一部分从针孔18a出射变成由光束R42-1、-2、-3、-4组成的空间滤波的、反射的参考光束R42。空间滤波的、反射的参考光束R42透过透镜36a并离开子系统81a变成准直的、空间滤波的、反射的参考光束R42A,该探测光束R42A由光束R42A-1、-2、-3、-4组成。
图1a中示出空间滤波的、散射的探测光束P42A投射在色散元件130a上,该色散元件130a最好是一反射衍射光栅。空间滤波的、散射的探测光束P42A的一部分在图1a的平面中被第一色散检测器元件130a衍射变成散射的探测光束P42B。散射的探测光束P42B投射在第二色散检测器元件130b上,该色散检测器元件130b最好是一透射衍射光栅。散射的探测光束P42B的一部分在图1a的平面中被第二色散检测器元件130b衍射变成波数滤波的、空间滤波的散射的探测光束P42C。尽管光束P42B和P42C由光学频率分量的一频谱组成且因此在图1a的平面内成角度(in angle)被色散,仅光束P42B和P42C的一频率分量的路径被示出在图1a中。所示出的路径是典型的。对仅光束P42B和P42C的一频率分量的说明使得可在不超出本发明的精神和范围且不将过分的复杂性引入图1a及后续附图,显示相对于波数滤波的、空间滤波的散射的探测光束P42C的子系统84的重要特性。
波数滤波的、空间滤波的散射的探测光束P42C进入子系统84,如图1j中所示。图1j的平面垂直于图1a的平面。如图1j所示,波数滤波的、空间滤波的散射的探测光束P42C通过具有与子系统84的光轴3d对准的一光轴的透镜66并射出变成由光束P42D-1、-2、-3、-4组成的波数滤波的、空间滤波的光束P42D。被示出仅带有一光学频率分量的波数滤波的、空间滤波的光束P42D通过透镜66被聚焦到图象平面47中的图象点48。图象平面47中的图象点48的位置且因此图象点48在一位于图象平面47中的一检测器针孔的线性阵列上的位置将依据色散检测器元件130a和130b而取决于波数滤波的、空间滤波的光束P42D的光学频率。通过该检测器针孔的线性阵列的光束的部分通过一多象素检测器114被检测,该多象素检测器114最好是由例如线性阵列CCD的一象素的线性阵列组成的一检测器。
在图1a中示出空间滤波的、反射的参考光束R42A投射在色散检测器元件130a上。空间滤波的、反射的参考光束R42A的一部分在图1a的平面中被色散检测器元件130a衍射变成反射的参考光束R42B。反射的参考光束R42B投射在第二色散检测器元件130b上。反射的参考光束R42B的一部分在图1a的平面中被第二色散检测器元件130b衍射变成波数滤波的、空间滤波的反射的参考光束R42C。尽管光束R42B和R42C由光学频率分量的一频谱组成且因此在图1a的平面内成角度(in angle)被色散,仅光束R42B和R42C的一频率分量的路径被示出在图1a中。所示出的路径是典型的。对仅光束R42B和R42C的一频率分量的说明使得可在不超出本发明的精神和范围且不将过分的复杂性引入图1a及后续附图,显示相对于波数滤波的、空间滤波的散射的探测光束R42C的部分84的重要特性。
波数滤波的、空间滤波的反射的参考光束R42C进入子系统84,如图1k中所示。图1k的平面垂直于图1a的平面。如图1k所示,波数滤波的、空间滤波的反射的参考光束R42C通过透镜66并射出变成由光束R42D-1、-2、-3、-4组成的波数滤波的、空间滤波的反射的参考光束R42D。在图1k中被示出仅带有一光学频率分量的波数滤波的、空间滤波的反射的参考光束R42D通过透镜66被聚焦到图象平面47中的图象点48。图象平面47中的图象点48的位置且因此图象点48在一位于图象平面47中的一检测器针孔的线性阵列上的位置将取决于波数滤波的、空间滤波的反射的参考光束R42D的光学频率。通过该检测器针孔的线性阵列的光束的部分通过一多象素检测器114被检测。
在图1l中,光束P22(见图1d)的一部分被离焦图象平面57内的一个“离焦”图象点58处的物体材料反射和/或散射,变成由光束B52-1、-2、-3、-4所组成的光束B52。图1l的平面垂直于图1a的平面。背景光束B52从离焦图象点58发散并进入透镜46。如图11所示,背景光束B52从透镜46出射时变成由光束B52A-1、-2、-3、-4所组成的基本上准直的光束B52A。光束B52A-1、-2、-3、-4分别透过移相器24-4、-3、-2、-1,出射时分别成为光束B52B-1、-2、-3、-4。光束B52B-1、-2、-3、-4组成了背景光束B52B。由移相器24-1与24-3所导入的相移量是相同的。比移相器24-2或24-4所导入的多π弧度。由移相器24-2与24-4所导入的相移量是相同的。
如图1a所示,背景光束B52B被分束器100部分地反射,变成由光束B52C-1、-2、-3、-4所组成的光束B52C。光束B52C进入图1m中所示的子系统81a并通过透镜26a射出时变成由光束B52D-1、-2、-3、-4所组成的光束B52D。图1m的平面垂直于图1a的平面。背景光束B52D被透镜26a聚焦在位于偏离了在焦图象平面47的离焦图象平面67中的图象点68处且这样对于背景光束B52D的各频率分量,仅离焦背景光束B52D的一小部分被透射通过针孔18a。该离焦背景光束B52D的一小部分被透射通过针孔18a作为由光束B62-1、-2、-3、-4组成的空间滤波的背景光束B62。空间滤波的背景光束B62的一部分投射在透镜36a上并射出变成由光束B62A-1、-2、-3、-4组成的基本上准直的空间滤波的背景光束B62A。空间滤波的背景光束B62A射出子系统81a变成空间滤波的背景光束B62A。
在图1a中示出空间滤波的背景光束B62A投射在色散检测器元件130a上。空间滤波的背景光束B62A的一部分在图1a的平面中被第一色散检测器元件130a衍射变成背景光束B62B。背景光束B62B投射在第二色散检测器元件130b上。背景光束B62B的一部分在图1a的平面中被第二色散检测器元件130b衍射变成波数滤波的、空间滤波的背景光束B62C。尽管光束B62B和B62C由光学频率分量的一频谱组成且因此在图1a的平面内成角度(in angle)被色散,对于光束B62B和B62C的一光学频率分量的路径被示出在图1a中。波数滤波的、空间滤波的背景光束B62C进入子系统84,如图1n中所示。如图1n所示,波数滤波的、空间滤波的背景光束B62C通过透镜66并射出变成波数滤波的、空间滤波的背景光束B62D。在图1n中被示出仅带有一光学频率分量的波数滤波的、空间滤波的背景光束B62D通过透镜66被聚焦到图象平面47中的图象点48。图象平面47中的图象点48的位置将取决于波数滤波的、空间滤波的背景光束B62D的光学频率。通过该检测器针孔的线性阵列的光束的部分通过一多象素检测器114被检测。
图1a-1n所示本发明设备的工作基于由检测器114的各象素获取的一序列4个强度测量值。这序列4个线性阵列的强度值I1、I2、I3和I4是检测器114在移相器44导入一序列不同相移量(参考光束的总相移量,包括沿两个方向透过移相器44时所产生的相移量)x0、x0+π、x0+π/2和x0+3π/2弧度的情形下分别测得的,其中x0是某一固定的相移值。(当然,移相器34和44的作用可以结合在单个受计算机118控制的移相器中)。4个线性阵列的强度值I1、I2、I3、I4作为信号131以数字或模拟形式被传送给计算机118,进行后续的处理。在检测器114或者在计算机118中含有普通的转换电路即模/数移动器,用来把4个线性阵列的强度值I1、I2、I3、I4转换成数字形式。移相器44的相移量受信号132控制,该信号是计算机118根据后面将给出的等式(12a)和(12b)或等式(36)产生和发送的。移相器44可以是电光型的或者是后者将说明的用于宽带光波长操作的类型。然后,计算机118计算出强度差I1-I2和I3-I4,这两个差中以较高效率所含的内容仅为波数滤波的、空间滤波的散射的探测光束P42D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项。
以较高的效率分离出波数滤波的、空间滤波的散射的探测光束P42D的复振幅(图1j)与波数滤波的、空间滤波的反射的参考光束R42D的复振幅(图1k)之间的干涉交叉项的原因来自两个系统特性。第一个系统特性是,在一个复尺度因子内,波数滤波的、空间滤波的散射的探测光束P42D和波数滤波的、空间滤波的反射的参考光束R42D的复振幅在图象平面47中的空间分布对于移相器44所导入任何相移量的情况都是基本相同的。第二个系统特性是,当移相器44所导入的相移量增加或减小π、3π…弧度时,波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项将改变正负号。由于当移相器44所导入的相移量增加或减小π、3π…弧度时,在图象平面47中的波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项将改变正负号。在强度差I1-I2和I3-I4中这个干涉交叉项不会互相抵消。然而,所有不是干涉交叉项的项,即波数滤波的、空间滤波的背景光束B62D(图1n)的波数滤波的、空间滤波的散射的探测光束P42D和波数滤波的、空间滤波的反射的参考光束R42D的强度,将在强度差I1-I2和I3-I4中抵消。上述的参考的系统特性是共焦干涉显微镜的共同特性,因此下面将叫做“共焦干涉系统特性”。
对于在图象平面47中的波数滤波的、空间滤波的背景光束B62D(见图1n),则由于共焦干涉系统特性,强度差I1-I2和I3-I4中将只会含有波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项。不过,在图象平面47中的波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的大小相对于以往在逐象素比较基础上的共焦干涉显微镜中的相应干涉交叉项被大大地减小。
对于在波数滤波的、空间滤波的散射的探测光束P42D和波数滤波的、空间滤波的背景光束B62D同时出现的一般情况,强度差I1-I2和I3-I4中将有两个干涉交叉项,即波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项和波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项。注意,由于共焦干涉系统特性,波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的散射的探测光束P42D的复振幅之间的干涉交叉项在强度差I1-I2和I3-I4中是被抵消掉的。
波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项代表了来自离焦图象的背景。与以往技术干涉共焦显微系统相比,本发明设备中的波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的大小在图象平面47中一般是减小了,而在波数滤波的、空间滤波的散射的探测光束P42D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的大小却基本上没有减小。在图象平面47中的波数滤波的、空间滤波的背景光束B62D的复振幅与波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的减小部分地是因为一个光束的振幅是随着至图象平面的距离的增大而减小的。这个性质是以往技术共焦干涉显微镜减小背景的基础。然而,在本发明的设备中,这前一干涉交叉项大小的减小比以往技术共焦干涉显微术的减小有所增强。
上一段中所说的“减小有所增强”是通过提供移相器14、24、和34来实现的。移相器14、24和34改变了在焦图象平面47处的在波数滤波的、空间滤波的散射的探测光束P42D、波数滤波的、空间滤波的反射的参考光束R42D和波数滤波的、空间滤波的背景光束B62D的复振幅的空间性质。虽然波数滤波的、空间滤波的散射的探测光束P42D、波数滤波的、空间滤波的反射的参考光束R42D的复振幅的空间性质都被移相器14、24和34改变了,但它们各自的在图象平面47中的复振幅的改变后的空间分布基本上是相同的。这个特性在先前讨论强度差I1-I2和I3-I4对波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的敏感性时曾指出过。
然而,波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅各自改变后的分布在在焦图象平面47上是明显不同的。波数滤波的、空间滤波的反射的参考光束R42D的复振幅对于图象平面47中的波数滤波的、空间滤波的反射的参考光束R42D的中心是一个反对称函数。反之,波数滤波的、空间滤波的背景光束B62D中的那个与波数滤波的、空间滤波的反射的参考光束R42D的复振幅发生干涉的部分是主要与图1m所示光束B52D-1、-2、-3或-4中的一个光束相关连的复振幅,这个复振幅在图象平面47中的波数滤波的、空间滤波的反射的参考光束R42D的图图象空间范围内只有小的相对变化。于是,波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的空间分布的主要成分是关于在图象平面47中的波数滤波的、空间滤波的反射的参考光束R42D的中心的一个反对称分布。
波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项对由检测器114的一单象素所记录的强度值的贡献是在图象平面47内的波数滤波的、空间滤波的反射的参考光束R42D形成的图图象空间范围内干涉交叉项的积分。一个反对称函数在以该函数的反对称轴为中心的一个空间范围内的积分等于零。所以,波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项对由检测器114的一单象素所记录的强度值的净贡献的减小程度要远远超过以往技术共焦显微术所能达到的减小强度。
重要的是注意在图象平面47中波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项导致系统误差以及统计误差两者的降低。由于在图象平面47中波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的减少导致相比于现有技术的检测器114的各象素中生成的光电子的数量的减少,统计误差降低。由于积分电荷的统计不确定性且因此输出信号与在检测器的各象素中生成的光电子的积分数量均方根有关,输出信号中的统计误差对于图1a-1n中的设备基本上被降低。
这样,由于以下两原因,用本发明设备获取的一成象的线段的每图象点的统计误差基本上小于采用现有技术的共焦干涉显微术在相同时间间隔内获得的统计误差。第一个原因是在现有技术的共焦干涉显微术中,成象的线段必须在时间间隔内被扫描,该时间间隔减少了在各图象点花费的时间乘以该成象的线段中的图象点的数量,以获取对应于在相同时间间隔内在本发明的设备中同时获得的强度差的阵列的一强度差的阵列。这导致与现有技术的干涉共焦显微术中获得的统计精度相比,对于本发明的设备,通过与在该成象的线段中的独立的图象点的数量的均方根成正比的一因素,由该成象的线段的若干图象点组成的图象的统计精度被提高。第二个原因的基础在于在图象平面47中波数滤波的、空间滤波的背景光束B62D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的大小相对于在现有技术的干涉共焦显微术中获得的对应的干涉交叉项的大小被实际地减小了,如先前描述的段落中所述。这两原因形成了结论的基础:当考虑到在相同时间间隔中获取的物体材料的一线段图象的统计精度时,对于本发明的设备,由离焦图象的振幅引入的统计误差相比于在现有技术的干涉共焦显微术中由离焦图象的振幅引入对应的统计误差被大大地降低了。
通过使用计算机和本领域的熟练技术人员公知的计算机退卷积和积分方程反演技术来逆反根据等式(32a)和(32b)的积分方程,可进行对于影响即超出由第一实施例的设备实现的补偿的离焦图象的系统误差的修正。
信噪比可被调节为光源光学频率分量的波长的函数以使生成例如与波长的第一级独立的信噪比。通常,在进入物体材料112之前被归一化代对应的探测光束P22D的振幅的光学频率分量的波长滤波的、空间滤波的散射的探测光束P42D的振幅将随波长发生变化,因为在物体材料112中的探测光束P22D和散射的探测光束P32的透射的波长无关性及由于当图象点28进入物体材料112中的深度增加时探测透镜46的数值孔径发生变化。而且波长滤波的、空间滤波的散射的探测光束P42D的振幅与波长滤波的、空间滤波的背景光束B62D的振幅的比例通常在图象点28进入物体材料112中的深度增加时而减小。信噪比的变化通常将伴随在进入物体材料112之前被归一化代对应的探测光束P22D的振幅的光学频率分量的波长滤波的、空间滤波的散射的探测光束P42D的振幅的变化。这些因素对信噪比的影响可通过在参考反射镜子系统83中和/或在探测光束子系统82中,最好在参考反射镜子系统83中放置一波长滤波器而被部分地补偿,并构成该波长滤波器的透射以具有特别的波长相依性来根据等式(39)调节和/或最优化透射通过用于不同波长的各自检测器针孔的波长滤波的、空间滤波的散射的探测光束P42D和波长滤波的、空间滤波的反射的参考光束R42D的比例。
在本第一实施例的详细说明中曾指出,在光束P22C-1、-2、-3、-4中的任何两个光束之间没有净相移量。这一特性使得有可能达到本第一实施例的详细说明中所指出的下述目的:所产生的针孔8在物体材料112内的在焦图象平面27中的,和参考反射镜120上的在焦图象平面37中的两个共轭图象,基本上不会因分别存在移相器14和24以及移相器14和34而有所改变,但与物体材料112内的图象点28和参考反射镜120上的图象点38相共轭的在图图象平面17a和47中的图象中却因这些移相器的存在而产生了明显的变化。
通过考虑如果在第一实施例中除去了移相器14将会造成什么样的后果,也可以得到关于移相器14、24、与34之间相互关系的深入了解。这时,波长滤波的、空间滤波的反射的参考光束R42D在图象平面47中将由反对称函数变成对称函数,而在图象平面47中波长滤波的、空间滤波的背景光束B62D的空间性质却基本没有改变。于是,波长滤波的、空间滤波的背景光束B62D的复振幅与波长滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项的空间分布将基本是一个相对于在图象平面47中波长滤波的、空间滤波的反射的参考光束R42D的中心的对称分布。但由于一个对称涵数在中心位于函数对称轴处的一个空间范围内的积分通常不等于零,所以由图象点48处的检测器114的一给定象素所记录的强度值的减小程度将基本上不会超过以往技术共焦显微术所能达到的减小程度。
虽然上面的说明仅针对了物体材料112中一个特定部分处的一个特定的图象点28,但计算机118可以通过给移动器116以控制信号133使之把物体材料112的其他部分移动到图象点28处,从而让系统实现对物体材料112中的希望线段、平面截面、或体积区域的“扫描”。该物体材料112中的希望线段、平面截面、或体积区域可切过或包括该物体材料的一或多个表面。
本发明的第一优选实施例中的水平1鉴别是通过在与色散检测器元件130a和130b确定的平面正交的一平面内操作本发明的设备的成象子系统的脉冲响应函数而实现的。在第一优选实施例的一变型中也可实现一水平1型的鉴别,其中该变型的设备和电子处理装置与第一优选实施例的基本相同,带有绕它们各自光轴转过π/2弧度的移相器14、24和34。在第一优选实施例的变型中离焦图象的系统影响的降低与第一优选实施例中相同。在第一优选实施例的变型中由离焦图象造成的统计影响也被降低到低于在现有技术共焦干涉显微术中实现的统计影响,但通常不如用第一优选实施例的设备实现的有效。
现在参见图2a-2f,图2a以示意图形式示出了自第一组实施例及其变型的本发明的第二实施例,其中光源子系统80a、子系统81b和检测器子系统84a被较佳地构成用于狭缝共焦显微术。在图2a-2f中,与前面参考图1a-1n所说明的元件相类似的元件用类似的代号来表示。图2b所示子系统80a中的改变发生在光源10a的区域中,现在该区域最好含有一个宽带空间非相干的线光源,最好是一个灯丝或激光二极管阵列;改变还发生在第一实施例的针孔8的区域中,现在该区域最好是一个与透镜6所形成的线光源10a的图象相对齐的光源针孔线性阵列8a。图2c和2d所示的子系统81b的改变在于用子系统81b中的空间滤波器针孔18b的一线性阵列替代第一实施例的子系统81a中的针孔81b。图2e和2f所示的子系统84a的改变在于检测器114a的区域,其中在第一实施例的图象平面47中的针孔的线性阵列最好是检测器针孔的一二维阵列且具有线性阵列的象素的第一实施例的检测器114现是最好包括一二维阵列的象素的一检测器114a。
在图2b中,光源针孔线性阵列8a和光源10a沿垂直于图2b平面的方向排列。图2b的平面垂直于图2a的平面。在图2c和2d中,空间滤波器针孔18b的阵列被对准垂直于图2c和2d的平面,图2c和2d的平面垂直于图2a的平面。在图2e和2f中,检测器针孔的二维阵列和检测器象素的二维阵列被对准垂直于图2e和2f的平面。
图2a-2f所示第二实施例的其余部分最好与上述图1a-1n的第一优选实施例的对应部分相同。
本发明的第二实施例中的水平1鉴别是通过在正交于由色散检测器元件130a和130b确定的平面的一平面内操作本发明的设备的成象子系统的脉冲响应函数而实现的。在第二优选实施例的第一变型中也可实现一水平1型的鉴别,其中该变型的设备和电子处理装置与第二优选实施例的基本相同,带有绕它们各自光轴转过π/2弧度的移相器14、24和34。在第二实施例的第一变型中离焦图象的系统影响的降低与第二优选实施例中相同。在第二优选实施例的第一变型中由离焦图象造成的统计影响也被降低到低于在现有技术共焦干涉显微术中实现的统计影响,但通常不如用第二优选实施例的设备实现的有效。
描述第二实施例的第二变型,其中该变型的设备和电子处理装置与第二优选实施例的基本相同,除了第二优选实施例的光源针孔8a和空间滤波器针孔18a的线性阵列被一光源狭缝和一空间滤波器狭缝替代。在第二实施例的第二变型中离焦图象的系统影响的降低与第二优选实施例中相同。在第二优选实施例的第二变型中由离焦图象造成的统计影响也被降低到低于在现有技术共焦干涉显微术中实现的统计影响,但通常不如用第二优选实施例的设备实现的有效。
替代各自狭缝而如在第二优选实施例及其第一变型中使用光源针孔的一线性阵列和空间针孔的一线性阵列产生对物体材料的一受限制的扫描以生成该物体材料的一截面的二维表示的要求。该受限制的扫描的方向是沿该物体材料中的光源针孔的线性阵列的图象的方向。该受限制的扫描出现,因为在该物体材料中的光源针孔的线性阵列的图象的方向上的针孔之间的间隔。另外,当该物体材料中的光源针孔的线性阵列的图象的方向上的针孔之间的间隔符合等式(54)的条件时,保持对波数滤波的、空间滤波的散射的探测光束的高灵敏性。
该受限制的扫描的步骤数是由该物体材料中的两邻接的光源针孔的图象间的间隔比例和各自成象系统的角度分辨率来确定的。实践中,该受限制的扫描中的步骤数将显著地少于光源针孔和空间滤波器针孔的线性阵列中的针孔数。这样使用带有光源针孔和空间滤波器针孔的线性阵列的第二优选实施例及其变型的设备,物体材料的一截面的二维表示可被获取而基本上不进行扫描。
现在参见图3a-3l,其中示出了自第一组实施例的本发明的第三实施例,其中第一优选实施例的参考光束和探测光束的光路已被改变,以改进和优化信噪比。第三实施例的设备和电子处理装置基本上与第一优选实施例中的相同,只是这里增加了用来对第一实施例的干涉仪重新构形的附加光学装置,使得反射的参考光束与散射的探测光束的振幅比值可被调节;在第三优选实施例和第一优选实施例中,具有类似代号的光学元件执行类似的操作,电子处理装置执行所说明的类似电子操作。波数滤波的、空间滤波的反射的参考光束与散射的探测光束的振幅比值是通过改变图3a-3l中的分束器100、100a和100b的透射/反射系数来调节的。
如图3a-3l所示,本发明的第三优选实施例是一个由分束器100、100a和100b、物体材料112、移动器116、一个参考反射镜120,色散检测器元件130a和130b以及一个检测器114所组成的干涉仪。这种构形在本技术领域内被认为是迈克耳逊干涉仪的一种形式,这里示出的是一个简单的例子。可以在图3a-3l的设备中采用本技术领域所知的其他形式的干涉仪,例如在前述Zanoni的论文“DifferentialInterferometer Arrangements for Distance and AngleMeasurements:Principles,Advantages,and Applications”中所说明的偏振迈克耳逊干涉仪,这样做不会明显偏离本发明第三优选实施例的精神和范畴。
在第三实施例中的其中成象子系统的脉冲响应函数被操作的平面的取向垂直于图3a的平面。
图3b以示意图形式示出图3a所示子系统80的实施例。图3b的平面垂直于图3a的平面。对于第三优选实施例,光源10最好是一个点光源或是一个其表面各处的辐射是空间非相干的光源,最好是一个激光器或类似的相干光源或部分相干辐射光源,并且最好是一超辐照激光器,较佳地是一偏振的。光源10发出对准于子系统80的光轴3的输入光束2。如图3b所示,光束2进入聚焦透镜6并被聚焦在图象平面7中的一个针孔8上。由光束12-1、-2、-3、-4所组成的光束12从针孔8发散,进入一个其光轴对准于子系统80的光轴3的透镜16。光束12从透镜16出射时变成由光束12A-1、-2、-3、-4所组成的准直光束12A,进入移相器14。移相器14由一些矩形移相器14-1、14-2、14-2、14-4组成,它们各自的光轴都平行于子系统80的光轴3。应该指出,这些矩形移相器的数目可以是一个任意适当的数2m,其中m为整数。图3b所示例子对应于m=2的情况,4个移相器已足以清楚地表明本发明设备各个部件之间的关系。平行光束12A-1、-2、-3、-4分别透过移相器14-1、14-2、14-3、14-4,从移相器14出射时分别变成光束12B-1、-2、-3、-4,这后4个光束组成了光束12B。移相器14-2和14-4所导入的相移量都比移相器14-1或14-3所导入的多π弧度,移相器14-1和14-3所导入的相移量是相同的。
在图3a中,光束12B从子系统80射出,部分地透过分束器100a,变成由光束P12B-1、-2、-3、-4所组成的光束P12B。光束P12B进入子系统81。在图3c中,光束P12B进入透镜26,出射时变成由光束P12C-1、-2、-3、-4所组成的光束P12C。图3c的平面垂直于图3a的平面。透镜26把光束P12C聚焦成图象平面17中的图象点18。光束P12C从图象点18射出时变成由光束P22-1、-2、-3、-4所组成的光束P22。光束P22进入一个其光轴对准子系统81的光轴3的透镜36。光束P22从透镜36射出时变成由光束P22A-1、-2、-3、-4所组成的准直光束P22A,然后离开子系统81。
如图3a所示,光束P22A被分束器100部分地透射,变成由光束P22B-1、-2、-3、-4所组成的光束P22B,然后进入图3d所示的子系统82。图3d的平面垂直于图3a的平面。
在图3d中,光束P22B入射到一个含有单元24-1、-2、-3、-4的移相器24上。移相器24所含的单元数2m与移相器14的相同,图3d示出的是m=2的情况。光束P22B-1、-2、-3、-4分别透过移相器24-1、-2、-3、-4,出射时分别变成光束P22C-1、-2、-3、-4,它们组成了光束P22C。由移相器24-1和24-3所导入的相移量是相同的,都比移相器24-2或24-4所导入的多π弧度,移相器24-2与42-4所导入的相移量是相同的。于是如前面所说明的,在光束P22C-1、-2、-3、-4中的任何两个光束之间没有净相对相移。光束P22C透过透镜46,变成由光束P22D-1、-2、-3、-4所组成的光束P22D,后者被聚焦形成中心物体材料112中的图象平面27上的图象点28的一线段。该线图象的轴基本上平行于成象子系统82的光轴3。该线图象的长度由例如探测透镜46的色差和焦深以及光源10的光学带宽的因素的组合来确定,探测透镜46的色差和焦深两者可被调节。该线段可切过物体材料的一或多个平面或位于该物体材料的一个平面内。透镜46的光轴是对准于子系统82的光轴3的。
在图3a中,光束12B被分束器100a部分地反射,变成由光束R12B-1、-2、-3、-4所组成的光束R12B。光束R12B进入图3e中所示的子系统81c,图3e的平面平行于图3a的平面。
在图3e中,光束R12B进入透镜26c,出射时变成由光束R12C-1、-2、-3、-4所组成的光束R12C。光束R12B-1、-2、-3、-4在垂直于图3e的平面的一平面中被空间地分开且在图3e所示的视野中呈现重叠和在空间上共同扩张的。透镜26c的光轴是对准于子系统81c的光轴3b的。透镜26c和平面反射镜120c一起把光束R12C聚焦成图象平面17b上的图象点18c。光束R12C从图象点18b发散,变成由光束R22-1、-2、-3、-4所组成的光束R22。光束R22-1、-2、-3、-4在垂直于图3e的平面的一平面中被空间地分开且在图3e所示的视野中呈现重叠和在空间上共同扩张的。光束R22进入一个光轴对准于子系统81c的光轴3c的透镜36c。光束R22从透镜36c出射时变成由光束R22A-1、-2、-3、-4所组成的准直光束R22A,然后离开子系统81c。光束R22A-1、-2、-3、-4在垂直于图3e的平面的一平面中被空间地分开且在图3e所示的视野中呈现重叠和在空间上共同扩张的。
如图3a所示,离开了子系统81c的光束R22A进入子系统83a。图3f所示的子系统83a由透镜56a、参考反射镜120、分束器100b、和移相器34、34a及44组成。图3f的平面平行于图3a的平面。在图3f中示出由移相器34-1、-2、-3、-4组成的移相器34和由移相器元件34a-1、-2、-3、-4组成的移相器34a分别绕光轴3a和3c转过π/2弧度,为了使对光束R22A、R22B、R22C和R22D通过子系统83a的描述及跟踪更加简单而不超出本发明的第三实施例的精神和范围。因此,在图3f中示出由光束R22A-1、-2、-3、-4组成的光束R22A和由光束R22B-1、-2、-3、-4组成的光束R22B绕光轴3c被转过π/2弧度且在图3f中示出由光束R22C-1、-2、-3、-4组成的光束R22C和由光束R22D-1、-2、-3、-4组成的光束R22D绕光轴3a被转过π/2弧度。在子系统83a中,光束R22A入射到移相器34a上。移相器34a所含的单元数2m与移相器14所含的相同。光束R22A透过移相器34a后变成光束R22B,然后被部分反射成光束R22C。由移相器34a-1和34a-3所导入的相移量相同,比移相器34a-2或34a-4导入的多π弧度,移相器34a-2和34a-4所导入的相移量是相同的。因此在光束R22C-1、-2、-3、-4中的任何两个光束之间没有净相对相移。光束R22C透过透镜56a,变成光束R22D。光束R22D被透镜56a聚焦成参考反射镜120上的图象平面37中的图象点38。透镜56a的光轴是对准子子系统83a的光轴3a的。
在图3g中,光束P22D(见图3d)的一部分被图象点28处的物体材料反射和/或散射,变成由多个光束P32-1、-2、-3、-4所组成的散射的探测光束P32。图3g的平面垂直于图3a的平面。散射的探测光束P32从在焦图象平面27中的图象点28处发散,进入透镜46。如图3g所示,散射的探测光束P32从透镜46射出时变成由光束P32A-1、-2、-3、-4所组成的准直的散射的探测光束P32A。光束P32A-1、-2、-3、-4分别透过移相器24-4、-3、-2、-1,出射时分别变成光束P32B-1、-2、-3、-4。光束P32B-1、-2、-3、-4组成了散射的探测光束P32B,从子系统82射出。由移相器24-1与24-3所导入的相移量是相同的,比由移相器24-2或24-4所导入的多π弧度,移相器24-2与24-4所导入的相移量是相同的。
在图3h中,光束R22D(见图3f)被参考反射镜120反射,变成由光束R32-1、-2、-3、-4所组成的反射的参考光束R32。图3h中所示的子系统83a由透镜56a、参考反射镜120、分束器100b和移相器34、34a和44组成。移相器34由移相器元件34-1、-2、-3、-4组成及移相器34a由移相器元件34a-1、-2、-3、-4组成,该两移相器在图3h中被示出分别绕光轴3a和3c转过π/2弧度,为了使对光束R32、R32A、R32B通过子系统83a的描述及跟踪更加简单而不超出本发明的第三实施例的精神和范围。因此光束R32A、由光束R32B-1、-2、-3、-4组成的光束R32B、和由光束R32C-1、-2、-3、-4组成的光束R32C在图3h中被示出绕光轴3a转过π/2弧度。图3h的平面平行于图3a的平面。反射的参考光束R32从图象平面37中的图象点38处发散,进入透镜56a。如图3h所示,反射的参考光束R32从透镜56a出射时变成由光束R32A-1、-2、-3、-4所组成的准直光束R32A。光束R32A-1、-2、-3、-4首先透过移相器44,接着再分别透过移相器34-4、-3、-2、-1,出射时分别变成R32B-1、-2、-3、-4。由移相器44所导入的相移量受来自计算机118的信号132控制。由移相器34-1和34-3所导入的相移量是相同的,比由移相器34-2与34-4所导入的多π弧度,由移相器34-2与34-4所导入的相移量是相同的。反射的参考光束R32B从子系统83a射出。
图3a示出,散射的探测光束P32B的-部分被分束器100反射,变成由光束P32C-1、-2、-3、-4所组成的散射的探测光束P32C。散射的探测光束P32C进入图3i所示的子系统81a。在图3i中,散射的探测光束P32C进入透镜26a,出射时变成由光束P32D-1、-2、-3、-4所组成的光束P32D。图3i的平面垂直于图3a的平面。透镜36a的光轴是对准于子系统81a的光轴3a的。透镜26a将散射的探测光束P32D聚焦到图象平面17a中的空间滤波器针孔18a上。散射的探测光束P32D的一部分从空间滤波器针孔18a出射变成由光束P42-1、-2、-3、-4组成的空间滤波的散射的探测光束P42。空间滤波的散射的探测光束P42进入光轴与子系统81a的光轴3a对齐的透镜36a。空间滤波的散射的探测光束P42从透镜36a出射并离开子系统81a变成准直的空间滤波的散射的探测光束P42A,探测光束P42A由光束P42A-1、-2、-3、-4组成。
图3a示出,反射的参考光束R32B被分束器100部分地透射,变成由光束R32C-1、-2、-3、-4的组成的反射的参考光束R32C。接着反射的参考光束R32C进入图3j所示的子系统81a。图3j的平面垂直于图3a的平面。在图3j中,反射的参考光束R32C进入透镜66,射出时成为由光束R32D-1、-2、-3、-4所组成的反射的参考光束R32D。光束R32D被透镜26a聚焦到图象平面17a中的空间滤波器针孔1Sa上。反射的参考光束R32D的一部分从空间滤波器针孔18a射出变成由光束R42-1、-2、-3、-4组成的空间滤波的、反射的参考光束R42。空间滤波的、反射的参考光束R42进入透镜36a。空间滤波的、反射的参考光束R42从透镜36a出射并离开子系统81a变成由光束R42A-1、-2、-3、-4组成的准直的空间滤波的、反射的参考光束R42A。
图3a中示出空间滤波的、散射的探测光束P42A投射在色散元件130a上,该色散元件130a最好是一反射衍射光栅。空间滤波的、散射的探测光束P42A的一部分在图3a的平面中被色散检测器元件130a衍射变成散射的探测光束P42B。散射的探测光束P42B投射在第二色散检测器元件130b上,该色散检测器元件130b最好是一透射衍射光栅。散射的探测光束P42B的一部分在图3a的平面中被第二色散检测器元件130b衍射变成波数滤波的、空间滤波的散射的探测光束P42C。尽管光束P42B和P42C由光学频率分量的一频谱组成且因此在图3a的平面内成角度(in angle)被色散,仅光束P42B和P42C的一频率分量的路径被示出在图3a中。所示出的路径是典型的。对仅光束P42B和P42C的一频率分量的说明使得可在不超出本发明的精神和范围且不将过分的复杂性引入图3a及后续附图,显示相对于波数滤波的、空间滤波的散射的探测光束P42C的子系统84的重要特性。
波数滤波的、空间滤波的光束P42C进入子系统84,如图3k中所示。图3k的平面垂直于图3a的平面。如图3k所示,波数滤波的、空间滤波光束P42C通过具有与子系统84的光轴3d对准的一光轴的透镜66并射出变成由光束P42D-1、-2、-3、-4组成的波数滤波的、空间滤波的光束P42D。被示出仅带有一光学频率分量的波数滤波的、空间滤波的光束P42D通过透镜66被聚焦到图象平面47中的图象点48。图象平面47中的图象点48的位置且因此图象点48在一位于图象平面47中的一检测器针孔的线性阵列上的位置将取决于依据色散检测器元件130a和130b的波数滤波的、空间滤波的光束P42D的光学频率。通过该检测器针孔的线性阵列的光束的部分通过一检测器114被检测,该检测器114最好是由例如线性阵列CCD的一象素的线性阵列组成的一检测器。
在图3a中示出空间滤波的、反射的参考光束R42A投射在色散检测器元件130a上。空间滤波的、反射的参考光束R42A的一部分在图3a的平面中被色散检测器元件130a衍射变成反射的参考光束R42B。反射的参考光束R42B投射在第二色散检测器元件130b上。反射的参考光束R42B的一部分在图3a的平面中被第二色散检测器元件130b衍射变成波数滤波的、空间滤波的反射的参考光束R42C。尽管光束R42B和R42C由光学频率分量的一频谱组成且因此在图3a的平面内成角度(in angle)被色散,仅光束R42B和R42C的一频率分量的路径被示出在图3a中。所示出的路径是典型的。对仅光束R42B和R42C的一频率分量的说明使得可在不超出本发明的精神和范围且不将过分的复杂性引入图3a及后续附图,显示相对于波数滤波的、空间滤波的散射的探测光束R42C的部分84的重要特性。
波数滤波的、空间滤波的反射的参考光束R42C进入子系统84,如图31中所示。图31的平面垂直于图3a的平面。在图31中,波数滤波的、空间滤波的反射的参考光束R42C通过透镜66并射出变成由光束R42D-1、-2、-3、-4组成的波数滤波的、空间滤波的反射的参考光束R42D。在图31中被示出仅带有一光学频率分量的波数滤波的、空间滤波的反射的参考光束R42D通过透镜66被聚焦到图象平面47中的图象点48。图象平面47中的图象点48的位置且因此图象点48在一位于图象平面47中的一检测器针孔的线性阵列上的位置将取决于波数滤波的、空间滤波的反射的参考光束R42D的光学频率。通过该检测器针孔的线性阵列的光束的部分通过检测器114被检测。
图3a-3l所示的第三实施例的其余情况最好与对图1a-1n所说明的相同,这里不再重复说明。
本发明的第三优选实施例中的水平1鉴别是通过在与色散检测器元件130a和130b确定的平面正交的一平面内操作本发明的设备的成象子系统的脉冲响应函数而实现的。在第三优选实施例的一变型中也可实现一水平1型的鉴别,其中该变型的设备和电子处理装置与第三优选实施例的基本相同,带有绕它们各自光轴转过π/2弧度的移相器14、24和34。第三实施例的变型的其余部分最好与本发明的第一优选实施例的变型中所描述的相同。
现在参见图4a-4f,图4a-4f以示意图形式示出了自第一组实施例的本发明的第四实施例,其中光源子系统80a、子系统81b和检测器子系统84a被较佳地构成用于适当的狭缝共焦显微术。在图4a-4f中,与前面参考图3a-3l所说明的元件相类似的元件用类似的代号来表示。图4b所示子系统80a中的改变发生在光源10a的区域中,现在该区域最好含有一个宽带空间非相干的线光源,最好是一个灯丝或激光二极管阵列;改变还发生在第三实施例的针孔8的区域中,现在该区域最好包括一个与透镜6所形成的线光源10a的图象相对齐的光源针孔线性阵列8a。图4c和4d所示的子系统81b的改变在于用子系统81b中的空间滤波器针孔18b的一线性阵列替代第三实施例的子系统81a中的针孔81b。图4e和4f所示的子系统84a的改变在于检测器114a的区域,其中在第三实施例的图象平面47中的针孔的线性阵列最好是检测器针孔的一二维阵列且具有线性阵列的象素的第三实施例的检测器114现是最好包括一二维阵列的象素的一检测器114a。
在图4b中,光源针孔线性阵列8a和光源10a沿垂直于图4b平面的方向对齐。图4b的平面垂直于图4a的平面。在图4c和4d中,空间滤波器针孔18b的线性阵列被对准垂直于图4c和4d的平面,图4c和4d的平面垂直于图4a的平面。在图4e和4f中,检测器针孔的二维阵列和检测器象素的二维阵列被对准垂直于图4e和4f的平面。
图4a-4f所示第四实施例的其余部分最好与上述图3a-3l的第三优选实施例的对应部分相同。
本发明的第四实施例中的水平1鉴别是通过在正交于由色散检测器元件130a和130b确定的平面的一平面内操作本发明的设备的成象子系统的脉冲响应函数而实现的。在第四优选实施例的第一变型中也可实现一水平1型的鉴别,其中该变型的设备和电子处理装置与第四优选实施例的基本相同,带有绕它们各自光轴转过π/2弧度的移相器14、24和34。第四实施例的变型的其余部分最好与本发明的第二优选实施例的第一变型的对应方面的描述的相同。
描述第四实施例的第二变型,其中该变型的设备和电子处理装置与第四优选实施例的基本相同,除了第四优选实施例的光源针孔8a和空间滤波器针孔18a的线性阵列被一光源狭缝和一空间滤波器狭缝替代。第四实施例的第二变型的其余部分最好与本发明的第四优选实施例的对应方面的描述的相同。
第四优选实施例的第二变型的离焦图象的系统影响的降低基本上与现有技术中的狭缝共焦干涉显微术所实现的相同。然而,在第四优选实施例的第二变型中由离焦图象造成的统计影响也被降低到低于在现有技术共焦干涉显微术中实现的统计影响,但通常不如用第四优选实施例和第四优选实施例的第一变型的设备实现的有效。
替代各自狭缝而如在第四优选实施例和第四优选实施例的第一变型中使用光源针孔的一线性阵列和空间针孔的一线性阵列产生对物体材料的一受限制的扫描以生成该物体材料的一截面的二维表示的要求。该受限制的扫描的方向是沿该物体材料中的光源针孔的线性阵列的图象的方向。该受限制的扫描出现,因为在该物体材料中的光源针孔的线性阵列的图象的方向上的针孔之间的间隔。另外,当该物体材料中的光源针孔的线性阵列的图象的方向上的针孔之间的间隔符合等式(54)的条件时,保持对波数滤波的、空间滤波的散射的探测光束的高灵敏性。
该受限制的扫描的步骤数是由该物体材料中的两邻接的光源针孔的图象间的间隔比例和各自成象系统的角度分辨率来确定的。实践中,该受限制的扫描中的步骤数将显著地少于光源针孔和空间滤波器针孔的线性阵列中的针孔数。这样使用带有光源针孔和空间滤波器针孔的线性阵列的第四优选实施例及其第一变型的设备,物体材料的一截面的二维表示可被获取而基本上不进行扫描。
在第五组实施例的实施例及其变型的描述中注意到通过各实施例及其变型,获得由一物体材料散射的和/或反射的,一散射的探测光束的复振幅的幅值和相位。在各实施例及其变型的一散射的探测光束的复振幅的确定中的显著减少的统计误差和减少的系统误差是与对于一给定的光盘的记录介质可被存储及检索的数据的最大密度有关的性质,该记录介质是该物体材料。
用于存储器点(site)存储的数据的格式通常为二进制,一位可获得使用。具有由用于在此描述的第五组实施例的这些实施例及其变型的减少的统计误差和减少的系统误差的引用的特性经受的增加的信噪比,可在一光盘的一给定的记录介质中存储的数据的最大密度可被增大。在一存储器点存储的数据可用一(基N)×(基M)格式表示,基N用于复振幅的振幅被与其比较的N个振幅窗,且基M用于复振幅的相位被与其比较的M个相位窗。
对于第五组实施例的这些实施例及其变型,复振幅的振幅由一系列N窗口比较器电子处理器处理以确定该振幅位于N个窗口中的哪一个。类似地,该复振幅的相位由一系列M个窗口比较器电子处理器处理以确定该相位位于M个窗口中的哪一个。可被使用的N和M的值将由例如获得的信噪比和要求的处理时间的因素确定。通过使用第五组实施例中的一个在一光学存储器中存储的数据的最大密度的提高与乘积N×M成正比。
来自第二组实施例的本发明的当前的优选实施例具有许多执行与第五组实施例的第一实施例的具有类似参考数字的元件类似功能的元件。在图1a所示的共焦显微术系统中,子系统82被子系统82aa,色散元件130c和130d,及子系统85替代;且子系统83被子系统83aa,反射镜120a,及子系统95替代,如图1aa所示,以提供本发明的第五实施例。该第五实施例包括一由一分束器100、物体材料112、移动器116、参考反射镜120、色散探测光束元件130c和130d、色散检测器元件130a和130b及检测器114组成的迈克耳逊干涉仪。
如图1aa所示,光束22a通过分束器100被部分地透射变成由光束P22B-1、-2、-3、-4组成的光束P22B并进入子系统82aa,其在图1d中被示出。
在图1aa中,光束P22B入射到一个由移相器24-1、-2、-3、-4所组成的移相器24上。图1ab的平面垂直于图1aa的平面。移相器24与14含有与移相器14相同数目的2m个单元,图1ab中示出的是m=2的情况。光束P22B-1、-2、-3、-4分别透过移相器24-1、-2、-3、-4,出射后分别变成光束P22C-1、-2、-3、-4,它们组成了光束P22C。移相器24-1与24-3所导入的相移量相同,是比移相器24-2和24-4所导入的相移大的弧度,而移相器24-2和24-4所导入的相移量是相同的。
由每一对移相器14-1与24-1、14-2与24-2、14-3与24-3、14-4与24-4所产生的相移量之和都是π弧度。所以光束P22C-1、-2、-3、-4中的任意两个光束之间都不存在净相对相移。光束P22C透过透镜26,变成由光束P22D-1、-2、-3、-4所组成的光束P22D,后者被聚焦成位于在焦图象平面1.7内的图象点18的第一中间探测光束斑。光束P22D从图象点18射出变成由光束P32-1、-2、-3、-4组成的光束P32。光束P32进入具有与子系统82aa的光轴3对准的一光轴的透镜36。光束P32从透镜36射出并离开子系统82aa变成由光束P32A-1、-2、-3、-4组成的准直的光束P32A。
在图1aa中,探测光束P32A投射在第三色散元件、色散探测光束元件130c上,该色散元件130c最好是一反射衍射光栅。探测光束P32A的一部分在图1aa的平面中被第三色散检测器元件130c衍射变成由光束P32B-1、-2、-3、-4组成的探测光束P32B。探测光束P32B投射在第四色散元件、色散探测光束元件130d上,该色散元件130d最好是一透射衍射光栅。探测光束P32B的一部分在图1aa的平面中被第四色散元件130d衍射变成由光束P32C-1、-2、-3、-4组成的探测光束P32C。尽管光束P32B和P32C由光学频率分量的一频谱组成且因此在图1aa的平面内成角度(in angle)被色散,仅光束P32B和P32C的一频率分量的路径被示出在图1aa中。所示出的路径是典型的。对仅光束P32B和P32C的一频率分量的说明使得可在不超出本发明的精神和范围且不将过分的复杂性引入图1aa及后续附图,显示相对于探测光束P32C的图1ac中所示子系统85的重要特性。
在图1ac中,探测光束P32C进入子系统85并通过透镜46以形成由光束P32D-1、-2、-3、-4组成的探测光束P32D。探测光束P32D由透镜46聚焦以在物体材料112中的在焦图象平面27中形成一线图象且从而照明该物体材料112。在焦图象平面27中的线图象包括图象点28。该线图象的轴基本上垂直于成象子系统85的光轴3a。该线图象的长度由例如透镜46的焦距、色散探测光束元件130c和130d的色散率及光源10的光学带宽的因数的组合所确定,透镜46的焦距和色散探测光束元件130c和130d的色散率两者可被调节。该线段可切过物体材料的一或多个表面或位于该物体材料的一表面内。透镜46的光轴对准于子系统85的光轴3a。
在图1aa中,光束22A部分地被分束器100反射,变成由光束R22B-1、-2、-3、-4所组成的光束R22B。光束R22B进入示于图1ad的子系统83aa。图1ad的平面垂直于图1aa的平面。如图1ad所示。光束R22B入射在一个由移相器34-1、-2、-3、-4所组成的移相器34上。移相器34与14含有相同数目2m的单元,图1ad中示出了m=2的情况。光束R22B透过移相器34,然后又透过移相器44,出射后变成由光束R22C-1、-2、-3、-4所组成的光束R22C。由移相器44所导入的相移量受来自计算机118的信号132控制。
移相器34-1与34-3所导入的相移量相同,比移相器34-2或34-4所导入的多π弧度,而移相器34-2与34-4所导入的移相量是相同的。所以在光束R22C-1、-2、-3、-4中的任何两个光束之间没有净相对相移。光束R22C透过透镜56后变成由光束R22D-1、-2、-3、-4所组成的光束R22D。光束R22D被透镜56聚焦成参考反射镜120上的在焦图象平面37中的图象点38。透镜56的光轴是对准于子系统83的光轴3b的。参考光束R22D从在图象点38的中间参考光束斑射出变成由光束R32D-1、-2、-3、-4组成的参考光束R32。参考光束R32进入具有与子系统83aa的光轴对准的一光轴的透镜66。参考光束R32从透镜66射出并离开子系统83aa变成由光束R32A-1、-2、-3、-4组成的准直的参考光束R32A。
在图1aa中,参考光束R32A由反射镜120a反射并被引导至子系统95变成由光束R32B-1、-2、-3、-4组成的参考光束R32B。在图1ae中,参考光束R32B通过透镜76变成由光束R32C-1、-2、-3、-4组成的光束R32C。参考光束R32C由透镜76聚焦到参考反射镜120上的在焦图象平面47中的图象点48。透镜76的光轴与子系统95的光轴3c对准。
在图1af中,光束P32D(见图1ac)的一部分被在焦图象平面27中的线图象区域中的物体材料反射和/或散射,变成组成了散射的探测光束P42的多个光束P32-1、-2、-3、-4。散射的探测光束P42从在焦图象平面27中的线图象发散,进入透镜46。如图1af所示,散射的探测光束P42从透镜46射出并离开子系统85变成由光束P42A-1、-2、-3、-4所组成的准直光束P42A。
在图1aa中,探测光束P42A投射在第四色散元件130d上。探测光束P42A的一部分在图1aa的平面中被色散探测光束元件130d衍射变成由光束P42B-1、-2、-3、-4组成的散射的探测光束P42B。散射的探测光束P42B投射在第三色散元件130c上。散射的探测光束P42B的一部分在图1aa的平面中被变成由光束P42C-1、-2、-3、-4组成的散射的探测光束P42C。尽管光束P42B和P42C由光学频率分量的一频谱组成且因此在图1aa的平面内成角度(in angle)被色散,仅光束P42B和P42C的一频率分量的路径被示出在图1aa中。光束P42B和P42C的分量路径的光学频率与图1aa中所示的探测光束P32B和P32C分量路径的光学频率相同。
在图1ag中,探测光束P42C进入子系统82aa(见图1aa)。在图1ag中,散射的探测光束P42 C进入透镜36射出形成由光束P42D-1、-2、-3、-4组成的探测光束P42D。探测光束P42D由透镜36聚焦到在焦图象平面17中的图象点18出的中间散射探测光束斑。尽管仅散射的探测光束P42D的一频率分量的路径被示出在图1ag中,用于散射的探测光束P42D的所有光学频率分量的图象点与在图1ag中概略示出的一图象点相同:由透镜36、色散探测光束元件130c和130d、透镜46、和物体材料112组成的光学系统是具有图象点18的一共焦成象系统,对于光束P32的光学频率分量的全频谱来说,该图象点18是其自身的共轭图象点。
继续看图1ag,散射的探测光束P42D从图象点18射出成为由光束P52-1、-2、-3、-4所组成的光束P52。散射的探测光束P52进入透镜26并被准直以形成由光束P52A-1、-2、-3、-4所组成的光束P52A。光束P52A-1、-2、-3、-4分别通过移相器24-4、-3、-2、-1并射出成为光束P52B-1、-2、-3、-4。光束P32B-1、-2、-3、-4包括离开子系统82aa的散射的探测光束P52B。移相器24-1与24-3所导入的相移量相同,比移相器24-2或24-4所导入的多π弧度,而移相器24-2与24-4所导入的移相量是相同的。
在图1ah中,参考光束R32D(见图1ae)由参考反射镜120反射成为光束R42-1、-2、-3、-4所组成的反射的参考光束R42。反射的参考光束R4从在焦图象平面47中的图象点48射出并进入透镜76。如图1ah所示,反射的参考光束R42从透镜76射出成为由光束R42A-1、-2、-3、-4所组成的准直的反射的参考光束R42。
在图1aa中,参考光束R42A由反射镜120a反射并被引导至子系统83aa变成由光束R42B-1、-2、-3、-4组成的反射的参考光束R42B。在图1ai中,反射的参考光束R42B通过透镜66变成由光束R42C-1、-2、-3、-4组成的反射的参考光束R42C。反射的参考光束R42C由透镜66聚焦到在焦图象平面37中的图象点38处的中间反射参考光束图象斑。参考光束R42C从在图象点38处的中间反射参考光束图象斑射出变成由光束R52-1、-2、-3、-4组成的参考光束R52。参考光束R52进入透镜56并从透镜56射出成为由光束R52A-1、-2、-3、-4组成的参考光束R52A。如图1ai所示,反射的参考光束R52从透镜56射出成为由光束R52A-1、-2、-3、-4组成的准直的反射的参考光束R52A。光束R52A-1、-2、-3、-4首先通过移相器44且然后分别通过移相器34-4、-3、-2、-1以射出成为由光束R32B-1、-2、-3、-4组成的反射的参考光束R32 B。由移相器44所导入的相移量受来自计算机118的信号132控制。移相器34-1与34-3所导入的相移量相同,比由移相器34-2或34-4所导入的多π弧度,由移在34-2与34-4所导入的相移量是相同的。组成光束R32B的光束R32B-1、-2、-3、-4离开子系统83aa。
第五实施例的其余描述与对第一实施例的的对应部分的描述相同。
第一实施例的波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项和第五实施例的波数滤波的、空间滤波的散射的探测光束P62D的复振幅与波数滤波的、空间滤波的反射的参考光束R62D的复振幅之间的干涉交叉项包含有关物体材料112中的两基本正交的线段的信息,这些各自的线段的图象点是被同时获取的。对于第一实施例,物体材料112中的线段基本上平行于子系统82的光轴3而对于第五实施例,物体材料112中的线段基本上垂直于子系统85的光轴3a。
本发明的第物优选实施例中的水平1鉴别是通过在与色散探测光束元件130c和130d及色散检测器元件130a和130b确定的平面正交的一平面内操作本发明的设备的成象子系统的脉冲响应函数而实现的。在第五优选实施例的一变型中也可实现一水平1型的鉴别,其中该变型的设备和电子处理装置与第五优选实施例的基本相同,带有绕它们各自光轴转过π/2弧度的移相器14、24和34。在第五优选实施例的变型中离焦图象的系统影响的降低与第五优选实施例中相同。在第五优选实施例的变型中由离焦图象造成的统计影响也被降低到低于在现有技术共焦干涉显微术中实现的统计影响,但通常不如用第五优选实施例的设备实现的有效。
来自第二组实施例的本发明的当前第六优选实施例具有许多执行与来自第一组实施例的第二实施例中的具有相同参考数字的元件相同功能的元件,该第六实施例被构成用于近似的狭缝共焦显微术。在图2a所示的共焦显微术系统中,子系统82被子系统82aa,色散元件130c和130d,及子系统85替代;且子系统83被子系统83aa,反射镜120a,及子系统95替代,如图2aa所示,以提供本发明的第六实施例。该第六实施例包括一由一分束器100、物体材料112、移动器116、参考反射镜120、色散探测光束元件130c和130d、色散检测器元件130a和130b及检测器114组成的迈克耳逊干涉仪。
第六实施例的其余描述与对第二和第五实施例的的对应部分的描述相同。
第二实施例的波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项和第六实施例的波数滤波的、空间滤波的散射的探测光束P62D的复振幅与波数滤波的、空间滤波的反射的参考光束R62D的复振幅之间的干涉交叉项包含有关物体材料112中的两基本正交的线段的信息,这些各自的二维截面的图象点是被同时获取的。对于第二实施例,物体材料112中的二维截面的法线基本上垂直于子系统82的光轴3而对于第六实施例,物体材料112中的二维截面的法线基本上平行于子系统85的光轴3a。
来自第二组实施例的本发明的当前第七优选实施例具有许多执行与来自第一组实施例的第三实施例中的具有相同参考数字的元件相同功能的元件。在图3a所示的共焦显微术系统中,子系统82被子系统82aa,色散元件130c和130d,及子系统85替代;且子系统83a被子系统83ab,反射镜120a,及子系统95替代以提供本发明的第七实施例。该第七实施例包括一由一分束器100、物体材料112、移动器116、参考反射镜120、色散探测光束元件130c和130d、色散检测器元件130a和130b及检测器114组成的迈克耳逊干涉仪。
第七实施例的其余描述与对第三和第六实施例的的对应部分的描述相同。
第三实施例的波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项和第七实施例的波数滤波的、空间滤波的散射的探测光束P62D的复振幅与波数滤波的、空间滤波的反射的参考光束R62D的复振幅之间的干涉交叉项包含有关物体材料112中的两基本正交的线段的信息,这些各自的线段的图象点是被同时获取的。对于第三实施例,物体材料112中的线段基本上平行于子系统82的光轴3而对于第七实施例,物体材料112中的线段基本上正交于子系统85的光轴3a。
来自第二组实施例的本发明的当前第八优选实施例具有许多执行与来自第一组实施例的第四实施例中的具有相同参考数字的元件相同功能的元件。在图4a所示的共焦显微术系统中,子系统82被子系统82aa,色散元件130c和130d,及子系统85替代;且子系统83a被子系统83ab,反射镜120a,及子系统95替代以提供本发明的第八实施例。该第八实施例包括一由一分束器100、物体材料112、移动器116、参考反射镜120、色散探测光束元件130c和130d、色散检测器元件130a和130b及检测器114组成的迈克耳逊干涉仪。
第八实施例的其余描述与对第四和第七实施例的的对应部分的描述相同。
第四实施例的波数滤波的、空间滤波的散射的探测光束P42D的复振幅和波数滤波的、空间滤波的反射的参考光束R42D的复振幅之间的干涉交叉项和第八实施例的波数滤波的、空间滤波的散射的探测光束P62D的复振幅与波数滤波的、空间滤波的反射的参考光束R62D的复振幅之间的干涉交叉项包含有关物体材料112中的两基本正交的二维截面的信息,这些各自的二维截面的图象点是被同时获取的。对于第四实施例,物体材料112中的二维截面的法线基本上正交于子系统82的光轴3而对于第八实施例,物体材料112中的二维截面的法线基本上平行于子系统85的光轴3a。
来自第三组实施例的本发明的当前优选第九、第十、第十一和第十二实施例及其变型包括有与第一、第二、第三和第四实施例及其变型相同的元件和子系统,除了省略掉移相器14、24、34、和34a外。第三组实施例中的这些实施例及其变型的其余描述与对第一组实施例的实施例及其变型的对应部分的描述相同,除了相对于获得用于一给定时间间隔内的图象的统计精度的水平外。
来自第一组实施例的这些实施例及其变型的获得用于一给定时间间隔内的图象的统计精度的水平比来自第三组实施例的这些实施例及其变型的获得用于一给定时间间隔内的图象的统计精度的水平要好。然而,相对于现有技术中的共焦干涉显微术中的离焦图象引入的对应的统计误差,对于第三组实施例的这些实施例及其变型,由离焦图象的振幅所引入的统计误差将被大大地减少。
在逐象素比较的基础上,第三组实施例的这些实施例及其变型的一检测器平面中的波数滤波的、空间滤波背景光束的复振幅和波数滤波的、空间滤波的反射的参考光束的复振幅之间的干涉交叉项的大小与获得用于现有技术的共焦干涉显微术中的对应的干涉交叉项的大小基本相同。然而,在一给定时间间隔中,用第三组实施例的这些实施例及其变型的设备获得的物体材料的一成象线段的每图象点的统计误差与对于现有技术的共焦干涉显微术中的仅一单个图象点在相同时间间隔内获得的统计误差相同。对于成象物体材料的二维截面,采用相同的陈述。差别在于当考虑到在相同时间间隔内获得的物体材料的一线段或二维截面的一图象的统计精度时,相对于现有技术中的共焦干涉显微术中的离焦图象引入的对应的统计误差,对于第三组实施例的这些实施例及其变型,由离焦图象的振幅所引入的统计误差将被大大地减少的结论的基础。
来自第四组实施例的本发明的当前优选第13、第14、第15和第16实施例及其变型包括有与第五、第六、第七和第八实施例及其变型相同的元件和子系统,除了省略掉移相器14、24、34、和34a外。第四组实施例中的这些实施例及其变型的其余描述与对第二组实施例的实施例及其变型的对应部分的描述相同,除了相对于来自离焦图象的背景的减少和补偿的水平外。
来自第二组实施例的这些实施例及其变型的获得的来自离焦图象的背景的减少和补偿的水平比来自第四组实施例的这些实施例及其变型的获得的来自离焦图象的背景的减少和补偿的水平要好。然而,相对于现有技术中的共焦干涉显微术中的离焦图象引入的对应的统计误差,对于第四组实施例的这些实施例及其变型,由离焦图象的振幅所引入的统计误差将被大大地减少。
在逐象素比较的基础上,第四组实施例的这些实施例及其变型的一检测器图象平面中的波数滤波的、空间滤波背景光束的复振幅和波数滤波的、空间滤波的反射的参考光束的复振幅之间的干涉交叉项的大小与获得用于现有技术的共焦干涉显微术中的对应的干涉交叉项的大小基本相同。然而,在一给定时间间隔中,用第四组实施例的这些实施例及其变型的设备获得的物体材料的一成象线段的每图象点的统计误差与对于现有技术的共焦干涉显微术中的仅一单个图象点在相同时间间隔内获得的统计误差相同。对于成象物体材料的二维截面,采用相同的陈述。差别在于当考虑到在相同时间间隔内获得的物体材料的一线段或二维截面的一图象的统计精度时,相对于现有技术中的共焦干涉显微术中的离焦图象引入的对应的统计误差,对于第四组实施例的这些实施例及其变型,由离焦图象的振幅所引入的统计误差将被大大地减少的结论的基础。
来自第五组实施例的本发明的当前优选第17、第18、第19和第20实施例及其变型包括有与第一、第二、第三和第四实施例及其变型相同的元件和子系统,除了用小色差探测透镜替换第一组实施例的这些实施例及其变型的非消色差探测透镜外。第五组实施例中的这些实施例及其变型的其余描述与对第一组实施例的实施例及其变型的对应部分的描述相同,除了相对于在一给定时间间隔内获得的统计精度的水平外。
来自第五组实施例的这些实施例及其变型的获得的来自离焦图象的背景的减少和补偿的水平与来自第一组实施例的这些实施例及其变型的获得的来自离焦图象的背景的减少和补偿的水平一样。然而,相对于五组实施例的这些实施例及其变型的设备中的离焦图象引入的对应的统计误差,对于第一组实施例的这些实施例及其变型,由离焦图象的振幅所引入的统计误差将是更好,第五组实施例按时间序列地获取图象点。
来自第五组实施例的这些实施例及其变型的获得的来自离焦图象的背景的减少和补偿的水平显著地好于用现有技术中的共焦干涉显微术获得的来自离焦图象的背景的减少和补偿的水平。在逐象素比较的基础上,第五组实施例的这些实施例及其变型的一检测器图象平面中的波数滤波的、空间滤波背景光束的复振幅和波数滤波的、空间滤波的反射的参考光束的复振幅之间的干涉交叉项的大小相对于获得用于现有技术的共焦干涉显微术中的对应的干涉交叉项的大小被大大地减小。这样,在一给定的时间间隔中,用第五组实施例的这些实施例及其变型的设备获得的用于图象的统计精度和系统误差的水平显著地好于现有技术的共焦干涉显微术中的在相同时间间隔内获得的统计精度和系统误差的水平。
熟悉本技术领域的人们应会看到,在不偏离本发明的精神和范畴的情况下,为了改变本发明设备对减小来自离焦图象的信号的程序和空间分辨率的性质,可以对移相器14、24、24a、34和34a应用除旁瓣技术。他们还应会看到,在不偏离本发明精神和范畴的情况下,移相器14、24、24a、34和34a的功能也可以用其他的移相器组合达到,或者被构形成具有一组同心圆单元或其他几何图案单元的元件。
移相器14、24、24a、34、34a和44可以是电光类型的或其他色散光学元件类型的。关于色散光学元件类型的参考文献将在下面讨论宽带操作的段落中给出。或者,这里所说明的由移相器44所导入的相移也可以通过使反射镜移动来产生,例如使参考反射镜120沿子系统83和83a的光轴3a的方向移动。
如果由移相器14、24、24a、34、34a和44所导入的相移量与波长无关,则本发明设备对宽带光源的性能可得到改进。通过把移相器14、24、24a、34、34a和44适当地设计成例如下述两个专利所公开的类型,则有可能满足宽带移相器的要求,这两个专利是:1980年7月授予H.A.Hill(希尔)、J.W.Figoski(费戈斯基)和P.T.Ballard(巴拉德)的美国专利No.4,213,706:“Background CompensatingInterferometer(带背景补偿的干涉仪)”和1981年12月授予H.A.Hill、J.W.Figoski和P.T.Ballard的美国专利No.4,304,464,后者的标题也是“Background Compensating Interferometer”。
对于第五组实施例的各实施例及其变型,由对应的用于将信息写至包括一记录介质的物体材料的实施例及其变型。各用于写信息的实施例及其变型包括第五组实施例的一对应的实施例及其变型方法和设备。除了以下在构成的变化外:光源和参考反射镜子系统被互换且检测器和检测器针孔通过一写反射镜被替换,该写反射镜将投射在该写反射镜上的来自光源的光基本上引回到其自身上。该写反射镜的反射率和由该写反射镜引入的相移是与一相移程序相结合配置的该写反射镜上的位置的函数以在物体材料中产生期望的图象。该相移程序执行类似于在波数滤波的、空间滤波的反射的参考光束中引入一系列相移以获得用于第五组实施例的这些实施例及其变型的第一、第二、第三和第四测量的强度值的程序相似的功能。
对于在此描述的写实施例,该记录过程包括多个不同的机制且该光盘的记录介质包括多种不同的材料和不同的材料的组合记录过程的例子包括例如法拉第旋转和科尔效应的电光效应和磁光效应以及光化学孔燃烧(hole burning)。
当对于记录过程使用磁光效应以使通过检测一散射的或透射的探测光束的偏振状态的变化来检索存储的信息时,第五组实施例的这些实施例被构成以检测散射的探测光束的偏振以及散射的探测光束的复振幅。五组实施例的这些实施例被构成以通过将散射的探测光束传送通过一分析仪例如偏振分束器并测量由该分析仪分离的该散射的探测光束的不同的偏振状态的复振幅来检测散射的探测光束的偏振。
当一在此描述的写实施例来使用一振幅一记录介质、非线性振幅一记录介质、和/或相位记录介质时,与记录介质中的图象相关联的减少的统计误差和减少额系统误差,在此描述的写实施例的特性,在存储器点存储的数据的密度与N×M成正比,其中N和M具有与第五组实施例的读实施例的描述相同的含义。
在一给定的存储器点存储的信息内容由这些写实施例及其变型的写反射镜产生的相移的空间分布和反射率的空间分布所控制。由写反射镜产生的开窗的反射率和开窗的相移由位于该反射镜前面的电光振幅调制器和移相器的一矩阵控制,该电光振幅调制器和移相器的状态由计算机控制。反射率和移相的开窗通过类似于在第五组实施例中测量的复散射振幅的振幅和相位的开窗中使用的电子过程相似的电子过程而实现。
由第一和第三组实施例的这些实施例及其变型测量的在一探测透镜的轴向上的波数滤波的、空间滤波的散射的探测光束和波数滤波的、空间滤波的反射的参考光束之间的干涉项正比于在一物体材料中的图象点的复散射振幅的傅里叶变换。类似地,通过对应于第一和第三组实施例的这些实施例及其变型的写实施例及其变型存储在一存储器点的信息与由写反射镜反射的对应的波数滤波的、空间滤波的光束和波数滤波的、空间滤波的反射的参考光束之间的干涉项正比。由写反射镜反射的对应的波数滤波的、空间滤波的光束和波数滤波的、空间滤波的反射的参考光束之间的干涉项与在写反射镜上的各自点的复反射率的傅里叶变换成正比。
熟悉本技术领域的人们应会看到,当写反射镜的复反射率被选择以使由写反射镜反射的对应的波数滤波的、空间滤波的光束和波数滤波的、空间滤波的反射的参考光束之间的干涉项与待被存储在一存储器点的信息的反傅里叶变换成正比时,由第一和第三组实施例的这些实施例及其变型测量的在一探测透镜的轴向上的波数滤波的、空间滤波的散射的探测光束和波数滤波的、空间滤波的反射的参考光束之间的测量的干涉项正比于存储的初始信息。这样,在该例中不需要对由第一和第三组实施例的这些实施例及其变型测量的在一探测透镜的轴向上的复散射振幅执行傅里叶变换来恢复被存储的初始信息。
第一和第三组实施例的一些实施例的一个优点在于通过在晶片的深度方向上基本上同时成象一线段而实现在集成电路的制造中使用的一晶片的层析X射线复振幅图象,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在晶片的深度方向上一线段的同时成象可被使用以大大地减少对在深度方向上的由例如晶片的移动、扫描、或振动生成的晶片的运动的灵敏度。在晶片的深度方向上同时成象一线段还可被使用来以自多个深度同时获取的信息来识别该晶片的一表面和/或该晶片内的一表面。
第一和第三组实施例的一些实施例的一个优点在于通过在晶片的深度方向上基本上同时成象一二维截面而实现在集成电路的制造中使用的一晶片的层析X射线复振幅图象,带有显著减少的统计误差及带有与用现有技术单针孔和狭缝共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。该晶片的二维截面的一轴平行于该晶片的深度方向。在晶片的深度方向和横向上一二维截面的同时成象可被使用以大大地减少对在深度方向上的由例如晶片的移动、扫描、和/或振动生成的晶片的运动的灵敏度。在晶片中的二维截面的同时成象还可被使用来用在其他位置同时获取的信息来识别该晶片的一表面和/或该晶片内的一表面,该表面和/或内部表面可能用作为登记的目的。
第一和第三组实施例的某一些的一个优点在于通过在生物样品的深度方向上基本上同时成象一线段来实现自然条件下的一生物样品的一层析X射线复振幅图象,例如在生物样品的一无创性活检样品中可被使用的一图象,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。在生物样品的深度方向上同时成象一线段可被使用以大大地减少对在深度方向上的由例如生物样品的移动、扫描、或振动生成的生物样品的运动的灵敏度。在生物样品的深度方向上同时成象一线段还可被使用来以自多个深度同时获取的信息来识别该生物样品的一表面和/或该生物样品内的一表面。
第一和第三组实施例的某一些的一个优点在于通过上基本上同时成象生物样品的一二维截面来实现自然条件下的一生物样品的一层析X射线复振幅图象,例如在生物样品的一无创性活检样品中可被使用的一图象,带有显著减少的统计误差及带有与用现有技术单针孔和狭缝共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。生物样品的二维截面的一轴平行于该生物样品的深度方向。在生物样品的深度方向上同时成象一二维截面可被使用以大大地减少对在深度方向和横向上的由生物样品的移动、扫描、和/或振动生成的生物样品的运动的灵敏度。在生物样品中同时成象一二维截面还可被使用来以用在其他位置同时获取的信息来识别该生物样品的一表面和/或该生物样品内的一表面,该表面和/或内部表面可能用作为登记的目的。
第二和第四组实施例的一些实施例的一个优点在于通过基本上同时成象与该晶片的一表面相切的或在晶片中的一表面上的一线段来实现在集成电路的制造中使用的一晶片的层析X射线复振幅图象,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该晶片的一表面相切的或在晶片中的一表面上的一线段的同时成象可被使用以大大地减少对由晶片的移动、扫描、和/或振动生成的晶片的运动的灵敏度。与该晶片中或上的一表面相切的一二维截面的同时成象还可被使用以从多个位置同时获取的信息来识别该晶片中或上的一参考位置,该参考位置用作为登记的目的。
第二和第四组实施例的一些的一个优点在于通过基本上同时成象与该生物样品中或上的一表面相切的一线段来实现供自然条件下的一生物样品的一层析X射线复振幅图象,例如在生物样品的一无创性活检样品中可被使用的一图象,带有显著减少的统计误差及带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少或相同的来自离焦图象的背景。与该生物样品中或上的一表面相切的一线段的同时成象可被使用以大大地减少对由生物样品的移动、扫描、和/或振动生成的生物样品的运动的灵敏度。与该生物样品中或上的一表面相切的一二维截面的同时成象还可被使用以从多个位置同时获取的信息来识别该生物样品中的一参考位置,该参考位置用作为登记的目的。
第五组实施例的一个优点在于在集成电路的制造中使用的一晶片的层析X射线复振幅图象是生成一晶片的一一维、一二维或一三维图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
第五组实施例的一个优点在于在自然条件下的一生物样品的一层析X射线复振幅图象,例如在生物样品的一无创性活检样品中可被使用的一图象是生成该样品的一维、二维或三维图象,带有与用现有技术单针孔共焦干涉显微术或全息术进行的一序列测量中获得的来自离焦图象的背景相比显著减少的来自离焦图象的背景。
上述的共焦干涉显微术系统在用于制造例如计算机芯片的大规模集成电路的石版印刷(lithography)应用的分档器(stepper)或扫描仪上的对准标记识别中以及在用于测量分档器或扫描仪的镀覆性能的一独立应用计量系统中可是特别有用的。上述的共焦干涉显微术系统在制造大规模集成电路的不同阶段的分档器或扫描仪中使用的标记的检查及芯片的检查中是特别有用的。石版印刷是用于半导体制造工业的关键技术驱动者。
降至及在100nm线宽以下的覆盖改善是五个最困难的的挑战之一,例如见Semiconductor Industry Roadmap,82页(1997)。由于一石版印刷工具可生产$50-100M/年的产品,改善(保持)石版印刷工具的性能的经济价值是重要的。石版印刷工具领域的每1%提高(损失)导致对于集成电路制造商来说会带来约$1M/年的经济收益(损失)及带给石版印刷工具销售商一实质性的竞争性的利好或利空。
通过在一芯片的一水平上打印一图形及在该芯片的一连续水平上打印一第二图形,且然后在一独立应用计量系统上测量该两图形的位置、取向和分布的差异来测量覆盖。
该独立应用计量系统包括一用于观看这些图形的显微镜系统,例如上述的共焦干涉显微术系统,其被连接至用于测量这些图形的相对位置的激光器量计控制(gauge-controlled)台;和一晶片处理系统。
一石版印刷工具的功能是将空间构形(patterned)的辐射引导至一涂覆有光阻材料的晶片。该过程包括确定该晶片将接收该辐射(对准)的位置及将该辐射施加给在该位置的光阻材料。
为正确地定位该晶片,该晶片包括在其上的对准标记,这些对准标记可由专用传感器例如上述的共焦干涉显微术系统来测量。这些对准标记的测量的位置确定该晶片在该工具内的位置。该信息以及晶片表面的期望的构型的说明,引导该晶片相对于该空间构形的辐射的对准。根据这样的信息,支持该涂覆有光阻材料的晶片一可移动的台移动该晶片以使该辐射暴露给该晶片的正确位置。
在曝光期间,一辐射源照明一构型的调制盘,该调制盘散射该辐射以生成该空间图形的辐射。该调制盘还被称之为一掩模,且这些术语在下面被互换地使用。在缩减石版印刷的情况下,一缩影透镜收集散射的辐射并形成该调制盘图形的一缩小的图象。可替换地,在近似印刷的情况下,在与晶片接触以生成该调制盘图形的一1:1图象之前该散射的辐射传播一小的距离(通常在微米的数量级)。该辐射起始在该光阻材料中的光化学处理,将该辐射图形转换成该光阻材料中的一潜象。
当制做一掩模时,它必须是优良的。图形中的任何缺陷将劣化用该掩模印刷的半导体电路的功能。在将一掩模传送给半导体制造流水线之前,将其通过一自动的掩模检验系统,检索该图形中的任何缺陷。掩模检验可能有两种策略,已知为模一数据库和模一模检验。第一种方法包括一自动的扫描显微镜,其直接将该掩模图形与用于生成该掩模的计算机数据进行比较。这要求非常大的数据处理容量,类似于该掩模书写器本身所需的数据处理容量。被检验的掩模图形和用于生成该掩模的数据组之间的任何偏差被标志为一误差。上述的共焦干涉显微术系统特别适合于自动的掩模检验,因为其具有背景减少和基本上同时获取一维线段图象和二维截面图象的优点。
总之,该石版印刷系统,也被称之为曝光系统,通常包括一照明系统和一晶片定位系统。该照明系统包括一辐射原,用于提供例如紫外线、可见光、X线、电子或离子辐射;和一调制盘或掩模,用于将该图形传送给该辐射,从而生成该空间构形的辐射。另外,对于缩减石版印刷的情况,该照明系统可包括一透镜组件,用于将该空间构形的辐射成象到该晶片上。该成象的辐射曝光涂覆在晶片上的光阻材料。该照明系统还包括一掩模台,用于支持该掩模;和一定位系统,用于调节该掩模台相对于引导通过该掩模的辐射的位置。该晶片定位系统包括一晶片台,用于支持该晶片;和一定位系统,用于调节该晶片台相对于该成象的辐射的位置。集成电路的制造可包括多个曝光步骤。对于有关石版印刷的一般参考文献,例如见J·R·Sheats和B·W·Smith所著的Microlithography:Science and Technology(微型石版印刷:科学与技术)(Marcel Dekker,Inc.,New York,1998),其内容被结合在此作为参考。
在图8a中示出使用一共焦干涉显微术系统(未示出)一石版印刷扫描仪800的一例子。该共焦干涉显微术系统被使用来精确地定位在一曝光系统内的晶片(未示出)上的对准标记的位置。这里,台822被使用来定位和支持相对于一曝光位置的该晶片。扫描仪800包括一机架802,其装载其他的支持机构和各种在这些机构上装载的元件。一曝光基座804已安装在其顶部上,一透镜外壳806安装在曝光基座804的顶部上,一调制盘或掩模台816安装在透镜外壳806的顶部上用来支持一调制盘或掩模。用于相对于该曝光位置定位该掩模的一定位系统概略地用817指示。定位系统817可包括例如压电变换器元件和对应的控制电子器件。尽管,在该实施例中未被包括,一或多个干涉测量系统被使用以精确地测量该掩模台的位置以及其他可移动元件的位置(这些元件的位置在制造石版印刷机构的过程中必须被准确地监视)(见supra Shears和Smith的Microlithography:Science andTechnology(微型石版印刷:科学与技术))。
悬挂在曝光基座804下方的是一支持基座813,用于装载晶片台822。台822包括一平面反射镜828,用于反射通过干涉测量系统826引导至该台的一测量光束。用于相对于干涉测量系统826定位台822的一定位系统被用819概略地表示。定位系统819可包括压电变换器元件和对应的控制电子器件。该测量光束反射回安装在曝光基座804上的该干涉测量系统。
在操作期间,一辐射光束810,例如来自一UV激光器(未示出)的一紫外(UV)光束,通过一光束整形光学组件812并在自反射镜814反射后向下行进。然后,该辐射光束通过由掩模台816装载的一掩模(未示出)。该掩模(未示出)经一透镜外壳806中装载的一透镜组件808被成象在晶片台822上的一晶片(未示出)上。基座804和由它支持的各种元件通过由弹簧820描绘的一减振系统与环境振动隔离。
如现有技术中众所周知的,石版印刷是制做半导体装置的制做方法中的关键部分。例如,美国专利5,483,343描绘了用于这样的制做方法的步骤。这些步骤在下面参照图8b和8c进行描述。图8b是制做例如半导体芯片(例如IC或LSI)、液晶面板或CCD的半导体装置的顺序的流程图。步骤851是用于设计一半导体装置的电路的设计过程。步骤852是用于根据该电路图形设计来制做一掩模的过程。步骤853是用于通过使用例如硅的材料来制做一晶片的过程。
步骤854是被成为预处理的一晶片处理过程,其中通过使用这样制备的掩模和晶片,通过石版印刷在该晶片上形成电路。为在该晶片上形成对应于该掩模上的这些图形的具有足够空间分辨率的电路,需要相对该晶片的石版印刷工具的干涉测量定位。在此所述的共焦干涉显微术方法和系统可特别用来检验该晶片的表面和通过晶片处理在该晶片上生成的内部若干层以检查和监视在该晶片处理中使用的石版印刷的有效性。步骤855是一安装步骤,其被称为后处理,其中由步骤854处理的该晶片被形成在半导体芯片中。该步骤包括组装(切割和焊接)及包封(芯片密封)。步骤856是一检验步骤,其中进行由步骤855生成的半导体装置的操作性检查、持续性检查等。进行这些处理,完成半导体装置并装运(步骤857)。
图8c是该晶片处理的详细流程图。步骤861是用于氧化一晶片的表面的氧化处理。步骤862是用于在该晶片表面上形成一绝缘膜的CVD处理。步骤863是用于通过真空沉积在该晶片上形成电极的一电极形成处理。步骤864是用于将离子注入该晶片的一离子注入处理。步骤865是用于将光阻材料(光敏材料)施加给该晶片的一光阻材料处理。步骤866是一用于通过上述曝光设备进行曝光(例如石版印刷),在该晶片上印刷该掩模的电路图形的处理。再一次,如上所述,使用在此所述的共焦干涉显微术系统和方法提高了这些石版印刷步骤的精度、分辨率和保持性。
步骤867是用于显影备曝光的晶片的一显影处理。步骤868是用于去除除了显影的光阻材料图象以外的部分的一蚀刻处理。步骤869是用于在进行蚀刻处理后分离保留在该晶片上的光阻材料的一光阻材料分离处理。通过重复这些处理,在该晶片上形成并重叠电路图形。
在此所述的共焦干涉显微术系统和方法的一重要应用是检验在先前所述的石版印刷方法中使用的掩模和调制盘。作为一例子,在图9中示出一概略的掩模检验系统900。一光源910生成一光源光束912且一共焦干涉显微术组件914将该辐射光束引导至由一可移动的台918支持的一基底916。为确定该台的相对位置,一干涉测量系统920将一参考光束922引至安装在光束聚焦组件914上的一反射镜924并将一测量光束926引至安装在台918上的一反射镜928。由该干涉测量系统测量的位置中的变化对应于基底916上的写光束912的相对位置的变化。干涉测量系统920发送一测量信号932给控制器930,指示检验光束912在基底916上的相对位置。控制器930发送一输出信号给一支持并定位台918的基座936。
控制器930可使用信号944使共焦干涉显微术组件914扫描该基底的一区域上的检验光束。结果,控制器930引导该系统的其他元件来检验埃基底。该掩模检验将该掩模图形直接与被使用生成该掩模的计算机数据进行比较。
理论
背景鉴别
前述各优选实施例中所描述的设备全都是针孔共焦干涉显微系统或狭缝共焦干涉显微系统的例子。共焦显微系统的背景鉴别能力是其最重要的属性之一,这个能力起因于共焦显微术强大的光学分层性质。这与普通显微术中靠限制景深有完全不同的性质,其差别在于,在普通显微镜中离焦信息仅仅是被模糊化了,而在共焦系统中探测到的离焦信息确实被大为减少:在轴向偏离了焦平面的某个地点所散射的光在检测器下面上是离焦的,因此不能有效地通过设置在检测器平面上的一个掩膜,请参见C.J.R.Sheppard(库帕德)和C.J.Cogswll(考格斯威尔)在T.Wilson(威尔逊)所编的著作《ConfocalMicroscopy(共焦显微术)》(Academic Press,London,1990)中的文章“Three-dimensional Imaging In Confocal Microscopy(共焦显微术中的三维成图象)”(pp143-169)。在DIP中使用的斐索干涉仪例如具有可与常规的显微术相比的对离焦图象的灵敏度。
第一和第二组实施例的实施例及其变型的共焦干涉显微术系统的不寻常的特性是基本上同时获取用于一图象中的一点阵列的信息,各具有对相对于在现有技术共焦干涉显微术中实现的减小的离焦图象的灵敏度。
反射的参考光束以及散射的探测光束都因受到光瞳函数的影响而使其在焦图象点48处发生明显改变,但在焦图象点48处的离焦光束部分却基本上没有改变。对于引用的实施例及其变型,本发明的这种特性被使用来实现对相对于现有技术的共焦干涉显微术中实现的减小的离焦图象的灵敏度。
第一、第二、第三和第四组实施例的实施例及其变型中描述的设备还包括一色散干涉测量学的形式。该光学时域反射测量术OTDR包括将一短强脉冲光注入一物体例如一纤维并测量与时间相关的反向散射光信号。该光学频域反射测量术OFDR包括用单色辐射照明一物体,该单色辐射的频率以公知的方式随时间而变化,并测量与频率相关的反向散射光信号。在引用的实施例及其变型中,该与波数相关的反向散射光信号被测量作为波数k的函数。从OTDR和OFDR的定义类推,在本发明中使用的色散干涉测量学的形式可被分类为光学波数域反射测量术OWDR的一形式。
作为结合OWDR的结果,对于在一给定曝光中可访问的所有象素位置,基本上同时取得第一和第三组实施例的这些实施例及其变型的对一在焦图象的振幅的灵敏度。对于第二和第四组实施例的这些实施例及其变型,作为结合OWDR的结果,对于在一给定曝光中可访问的基本上正交于物体材料成象子系统的光轴的一线段内的所有横向位置,基本上同时取得对一在焦图象的振幅的灵敏度。标准的共焦干涉显微术系统必须在该物体材料的各自轴向维度或横向维度中执行一扫描以获得对在焦图象的振幅的等效灵敏度。
第一和第二组实施例的实施例及其变型的共焦干涉显微术系统的不寻常的特性是基本上同时获取用于一图象中的一点阵列的信息,各具有对相对于在现有技术共焦干涉显微术中实现的减小的离焦图象的灵敏度。共焦干涉显微术系统在现有技术中被公知为一种为了获得一物体的一维、二维和三维图象的目的,通过减少离焦图象的影响来改善光学截取的手段,而改变显微镜的光瞳函数(见M.玻恩和E.沃耳夫,《Principles of Optics(光学原理)》,第8.6,3节,423-427(Pergamon Press,New York,1959)是一种为某些特定应用而改进对比度的手段且如在DIP中使用的一种形式的OWDR在现有技术中被公知为一种减少相位模糊的手段。不过,发明人相信,把共焦干涉显微术、改变光瞳函数和OWDR结合在同一个系统中以减小由背景光造成的系统误差和统计误差,则是首次在这里提出的。
第三和第四组实施例的实施例及其变型的共焦干涉显微术系统的不寻常的特性是基本上同时获取用于一图象中的一点阵列的信息,各具有对相对于在现有技术共焦干涉显微术中实现的减小的离焦图象的灵敏度。共焦干涉显微术系统在现有技术中被公知为一种减少离焦图象的影响的手段且如在DIP中使用的一种形式的OWDR在现有技术中被公知为一种减少相位模糊的手段。不过,发明人相信,把共焦干涉显微术和OWDR结合在同一个系统中以减小由背景光造成的系统误差和统计误差,则是首次在这里提出的。
第五组实施例的实施例及其变型的共焦干涉显微术系统的不寻常的特性同涉及获取用于一图象中的一点阵列的信息,各具有对相对于在现有技术共焦干涉显微术中实现的减小的离焦图象的灵敏度的第五一和第二组实施例的实施例及其变型的不寻常的特性相同。因此,发明人相信,把共焦干涉显微术和改变光瞳函数结合在同一个系统中以减小由背景光造成的系统误差和统计误差,则是首次在这里提出的。
          在焦图象的脉冲响应函数:
                 轴向OWDR
在图1a-1n中描绘的第一实施例被选择作为用于示出在先前部分中引用的与众不同的特征的基础的系统,尽管该基础可同样良好地应用于自第一组实施例的所有四个实施例及其变型。图1b中的针孔8和图1h、1i和1m中空间滤波器针孔18a代表用于光束的所有光学频率分量的一共焦干涉系统的共轭针孔而图1j、1k和1n中的检测器114的各轴仅对一光束的一光学频率分量灵敏,作为图1a中所示的色散检测器元件130a和130b的结果。在以下的理论段落中示出可能自由检测器114记录的强度重构适用于各可访问的轴向位置的现有技术共焦信号的一等效物作为一组四个曝光中的光学频率的函数。这基本上对应于与其中要求沿图1c和1e中所示的物体材料112的轴向的一物理扫描以获得现有技术共焦信号作为轴向位置的函数的标准的共焦显微术系统相比,用本发明的设备同时获得作为轴向位置的一函数的等效的现有技术在焦共焦信号。
非荧光共焦扫描显微镜有两种有用的模式:反射模式和透射模式。请参见C.J.R.Sheppard在《Advances in Optical and ElectronMicroscopy,10(光学和电子显微术进展,10)》中的文章“ScanningOptical Microscopy(扫描光学显微术)”以及C.J.R.Sheppard和.A.Choudhury(楚赫利)在OpticaActa,24(10),1051-1073(1977)上发表的论文。实际上,利用共焦显微镜通过使物体沿轴向扫描能容易地实现光学分层,从而形成三维图象。请参见C.J.R Sheppard和C.J.Cogswell在J.Microscopy,159(pt2),179-194(1990)上发表的论文;C.J.R.Sheppard和T.Wilson在Opt.Lett.3,115-117(1978)上发表的论文;以及C.J.R.Sheppard,D.K.Hamilton,和I.J.Cox发表在Proc.R.Soc.Lond.,A387,171-186(1983)上的论文。
考虑一个有三个成图象部分的一共焦显微镜(图5)。对于用于探测光束和散射的探测光束的含有光源10、物体112和检测器114的由图1a-1n所示的子系统的组合,图5的透镜1等价于图1b中所示的子系统80的透镜16、图1c中所示的子系统81的透镜26和36、及图1c中所示的子系统82的透镜46的组合;图5的透镜2等价于图1f中所示的子系统82的透镜46与图1h中所示的子系统81a的透镜26a的组合;图5的透镜3等价于图1h中所示的子系统81a的透镜36a与图1j中所示的子系统84的透镜66的组合。对于用于参考光束和反射的参考光束的含有光源10、物体112和检测器114的由图1a-1n所示的子系统的组合,图5的透镜1等价于图1b中所示的子系统80的透镜16、图1c中所示的子系统81的透镜26和36、及图1e中所示的子系统83的透镜56的组合;图5的透镜2等价于图1g中所示的子系统83的透镜56与图1i中所示的子系统81a的透镜26a的组合;图5的透镜3等价于图1i中所示的子系统81a的透镜36a与图1k中所示的子系统84的透镜66的组合。
我们给下述4个空间定义光学坐标系(vi,wi,ui):图象平面7A空间、图象平面7A空间、物体112空间或参考反射镜120空间、图象平面17aA空间和检测器114的图象空间47A,这4个空间对应的i值依次为i=1,2,0,3。这时有: v i = k x ~ i sin α i , w i = k y ~ i sin α i , - - - - ( 1 ) u i = 4 k z ~ i sin 2 ( α i / 2 ) , 其中,sinαi是区域i的数值孔径,波数k=2π/λ,λ是辐射在真空中的波长,
Figure A9980877001126
是第i空间中的光程距离。光程距离的定义是: x ~ i = ∫ 0 x i n ( x i ′ , y i ′ , z i ′ ) dx i ′ y i ~ = ∫ 0 y i n ( x i ′ , y i ′ , z i ′ ) dy i ′ , - - - ( 2 ) z i ~ = ∫ 0 c i n ( x i ′ , y i ′ , z i ′ ) dz i ′
其中的积分路径沿着相应的光线,n(x'i、y'i、z'i)是(x'i、y'i、z'i)处的折射率。
已经证明,共焦显微镜中的成图象性能类似于相干显微镜(见前述Sheppard和Choudhury的论文),其中的图象可以用相干传递函数来描述,相干传递函数是脉冲响应函数的傅里叶变换。因此,图5系统的有效三维脉冲响应函数he(V3,V0,V2,V1)可表示为he(v3,v2,v0,v1) =h3(v3-v2)h2(v2-v0)h1(v0-v1),    (3)其中 h 1 ( v ) = ∫ ∫ P 1 ( ξ 1 , η 1 ) exp { ju [ 1 4 sin 2 ( α 1 / 2 ) - ( ξ 1 2 + η 1 2 ) 2 ] } - - - ( 4 a ) h 2 ( v ) = ∫ ∫ P 2 ( ξ 2 , η 2 ) exp { - ju [ 1 4 sin 2 ( α 2 / 2 ) - ( ξ 2 2 + η 2 2 ) 2 ] } - - - ( 4 b ) h 3 ( v ) = ∫ ∫ P 3 ( ξ 3 , η 3 ) exp { - ju [ 1 4 sin 2 ( α 3 / 2 ) - ( ξ 3 2 + η 3 2 ) 2 ] } ×cxp[-j(ξ3υ+η3w)+jkW3]dξ33;             (4c)hi、pi和wi分别是图5中第i个等价透镜的脉冲响应函数、光瞳函数和波差函数(见M.Gu(顾)和C.J.R.Sheppard在Appl.Opt.31(14),2541-2549(1992)上发表的论文中的参考文献10-12);I分别是1,2,3,和4,j是(-1)1/2。脉冲响应函数是响应于一个点源物体时图象平面中的振幅。移相器44的作用可归入相应的光瞳函数pi中。
假定三维物体可由代表单位体积的散射的散射分布t(V0)来表征(见C.J.R.Sheppard和X.Q.Mao(毛)在J.Opt.Soc.Am.A,6(9),1260-1269(1989)上发表的论文),t(V0)与折射率n的关系是:r(v0)=jk2|1-n2(v0)|    (5)
见E.Wolf(沃耳夫)在Opt.Commun.,1,153-156(1969)上发表的论文。一般n和t都是复数,等式(5)中的j说明在无损耗媒质中散射波与直射波的相位正交。假定多次散射的效应可以忽略。我们还忽略未散射的辐射,对于反射模式由于没有直射(未散射)辐射会对图象有贡献,这个假定是成立的。由于叠加原理成立,所以图象振幅可看成是构成物体的各个基元断层的贡献的和。此外还必须在整个非相干光源面上对振幅分布A(V1)积分。对于物体的入射辐射和反射/散射辐射,还必需包括表明辐射在物体中的衰减的衰减函数a(V0)。
包括色散检测器元件130a和130b的透镜的脉冲响应函数可被写作为: h 1 ( v 0 - v 1 ) = { exp [ jk ( z 0 ~ - z 1 ~ ) ] } h 1 ′ ( v 0 - v 1 ) , - - - ( 6 a ) h 2 ( v 2 - v 0 ) = { exp [ - jk ( z 2 ~ - z 0 ~ ) ] } h 2 ′ ( v 2 - v 0 ) , - - - ( 6 b ) h 3 ( v 3 - v 2 ) = { exp [ - jk ( z 3 ~ - z 2 ~ ) ] } h 3 ′ ( v 3 - v 2 ) , - - - ( 6 c ) 其中 h 1 ′ ( v 0 - v 1 ) = ∫ ∫ P 1 ( ξ 1 , η 1 ) exp { - j u 0 [ 1 2 ( ξ 1 2 + η 1 2 ) ] } ×((exp{-j[ξ101)+η1(w0-w1)]+jkW1}))dξ11,    (7a) h 2 ′ ( v 2 - v 0 ) = P 2 ( ξ 2 , η 2 ) exp { j ( u 2 - u 0 ) [ 1 2 ( ξ 2 2 + η 2 2 ) ] } - - - ( 7 b ) ×((exp{-j[ξ220)+η2(w2-w0)]+jkW2}))dξ22 h 3 ′ ( v 3 - v 2 ) = ∫ ∫ P 3 ( ξ 3 , η 3 ) G 3 ( k , v 3 ) exp { - ju 2 [ 1 2 ( ξ 3 2 + η 3 2 ) ] } - - - ( 7 c ) ×((exp{-j[ξ332)+η3(w3-w2)]+jkW3}))dξ22,
且G3(k,v3)是用于图1a中的色散检测器元件130a和130b的色散光瞳函数。与式(7a)中的u项相关的式(7b)和式(7c)的u的符号变化是因为在v0空间发生的反射。
于是在空间滤波器针孔18a的图象平面17a中的散射探测光束US的振幅由下式给出US(v2)=(R1T1)1/2∫∫A(v1)[∫∫∫h1(v0-v2)×α(v0)t(v0)α(v0)h2(v2-v0)dv0]dv1    (8)其中R1和T1分别是分束器100的反射和透射系数。把等式(6a)和(6b)代入等式(8),得到下述US(V2)的表达式: U S ( v 2 ) = ( R 1 T 1 ) 1 / 2 ∫ ∫ A ( v 1 ) { ∫ exp ( j 2 k z 0 ~ ) [ ∫ ∫ h 1 ′ ( v 0 - v 1 ) xα(v0)t(v0)α(v0)h'2(v2-v0)dυ0dw0]dz0}dυ1dw1   (9)
振幅US(V2)表示用于本发明的设备的在图1h中的空间滤波器针孔18a的复散射振幅。从由式(3)给出的脉冲响应函数he(v3,v2,v0,v1)的特性可得出,通过对于图1h和图1j中的透镜36a和66,及图1a中的色散检测器元件130a和130b的组合,用脉冲响应函数he(v3-v2)对US(V2)的卷积而获得在图1j中所示的检测器114的图象平面47中的复散射振幅US(V3)。图象平面47的光学坐标由V3给出。用等式表示: U S ( v 3 ) = ( R 1 T 1 ) 1 / 2 ∫ ∫ A ( v 1 ) ( ( ∫ exp ( j 2 k z 0 ~ ) { ∫ ∫ h 1 ′ ( v 0 - v 1 ) ×α(v0)t(v0)α(v0)[∫∫h'3(v3-v2)t2(v2)h'2(v2-v0)dυ2dw2]×dυ0dw0}dz0))dυ1w1其中t2(v2)是用于空间滤波器针孔18a的透射函数。通过设定 z 0 ~ = 0 即, exp ( j 2 k z 0 ~ ) = 1 . 可从等式(10)得到透射模式共焦显微镜结构的相应US(V3)表达式。
通过检查由一物体的一平面的横截面的散射获得的观察的干涉信号的振幅的特性,不引入过分的复杂性可非常容易地显示如在本发明的设备中使用的OWDR的重要特征。考虑到此,我们首先认为共焦干涉显微镜对于一任意三维散射物体的平面的横截面,还有用于参考反射镜的一横向平面反射器、一点辐射光源的响应,及区域1、2、3和4中的折射率等于1。
设该参考反射镜的该散射物体的横截面的轴向位置分别为Z0,R和Z0,S,且在图1k中的检测器114处的图象平面47中的反射的参考光束的振幅为UR。通过适当的变量的变化,UR可从等式(10)获得。用于给定的散射物体材料的横向平面的截面的检测器114的输出电流I是以下的形式: I z 0 , S - z 0 , R , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 , x = +|UR(z0,R3,w3)+US(z0,S,υ3,w3)|2    (11a)其可被扩展为 I z O , S - z O , R , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δ υ 3 / kf 3 sin α 3 ) , w 3 , x = +|UR(z0,R3,w3)|2+|US(z0,S3,w3)|2    (11b)+2|UR(z0,R3,w3)||US(z0,S3,w3)|×cos[2k(z0,S-z0,R)+(φSR)+x], Δ υ 3 = 2 π m 4 ~ f 3 sin α 3 [ 1 - ( 2 π m 3 ~ / k ) 2 ] 1 / 2 - - - ( 12 ) f3是检测器区3的焦距,m3是特定于色散检测器元件130a和130b的使用的衍射级的空间频率的v3分量,(φSR)是在z0,S=z0,R的US和UR之间的相差,及x是由图1e和1g中所示的子系统83中的干涉仪的参考腿中的移相器44引入的相移。
从审视等式(11b)可见,在恒定的比例因子和相位因子内,可通过在四个不同的x值处的I(z0,S,z0,R,v3,w3,x)的测量获得与散射振幅US(z0,S,v3,w3)成正比的等式(11b)中的该项。一优先的x的四个值的组是x=x0,x0+π,x0+(π/2),x0+(3π/2)。对于i=1,2,3,和4的输出电流I的对应的四个值根据以下方案被组合以实现 ΔI 1 z O , R , z O , S , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 ≡ I 1 - I 2 =I(z0,R,z0,S3,w3,x0)-I(z0,R,z0,S3,w3,x0+π)=4|UR(z0,R3,w3)||US(z0,S3,w3)×cos[2k(z0,S-z0,R)+(φSR)+x0], ΔI 2 z O , R , z O , S , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 ≡ I 3 - I 4 - - - ( 13 a ) =Ip(z0,R,z0,S3,w3,x0+π/2)-Ip(z0,R,Z0,S3,w3,x0+3π/2)=-4|UR(z0,R3,w3)||US(z0,S3,w3)|×sin[2k(z0,S-z0,R)+(φSR)+x0]                  (13b)对于ΔI的复合表示被定义为 ΔI z O , R , z O , S , ( υ 3 / kf 3 sin α 3 ) = ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 ≡ +ΔI1(z0,R,z0,S3,w3)+jΔI2(z0,R,z0,S3,w3)
                                                                                      (14)或用等式(13a)和(13b)替代为 ΔI z O , R , z O , S , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 = +4|UR(z0,R3,w3)||US(z0,S3,w3)|×exp{-j[2k(z0,S-z0,R)+(φSR)]}
                                                         (15)对于有限轴向厚度的散射物体材料,通过在z0,S上进行ΔI(z0,R,z0,S,v3,w3)的积分而获得对应的信号ΔI(z0,R,v3,w3)。使用等式(15),对于有限轴向厚度的散射物体材料,ΔI(z0,R,v3,w3)可被表示为 ΔI z O , R , ( υ 3 / kf 3 sin α 3 ) = + ( υ 0 / kf 0 sin α 0 ) + ( Δυ 3 / kf 3 sin α 3 ) , w 3 = +∫((4|UR||US|exp {-j[2k(z0,S-z0,R)+(φSR)]}))dξ0,S.
                                                                        (16)通过测量ΔI(z0,R,v3,w3)为v3的-函数,得到的信号ΔI(z0,R,v3,w3)被测量为波数k的一函数。
从审视等式(16)可见,在恒定的比例因子内,观察到的量ΔI是散射的振幅US和反射的参考振幅UR的乘积的傅里叶变换。现有技术的共焦干涉显微术获得有关物体材料的等效信息。用本发明的设备从在时间上顺序获取的一组四个独立的测量值获得有关在z0方向上的在一轴向点阵列中的该物体材料的由ΔI(z0,R,v3,w3)表示的信息,不需要进行物体材料的扫描。对于现有技术的共焦干涉显微术,通过扫描该物体材料,必须对在z0方向上的轴向点阵列中的各轴向点进行等效的四个独立的测量。这样,用本发明的设备在小于现有技术的共焦干涉显微术的时间内,获取有关该物体材料的由ΔI(z0,R,v3,w3)表示的信息。部分地导致在获取测量的电流期间对统计精度的提高和对物体材料的运动的灵敏度降低是本发明的这个特征。
傅里叶变换的散射振幅的特性
在标题为“对于在焦图象的脉冲响应函数”的部分中示出测量的强度II可被组合以给出如等式(16)表示的ΔI,其为散射的振幅US和反射的参考振幅UR的乘积的傅里叶变换。这样,通过相对于波数k计算ΔI(z0,R,v3,w3)的反傅里叶变换F-1(ΔI)可获得有关散射物体自身的信息,即 F - 1 ( ΔI ) = ∫ ΔI z O , R ( υ 3 / k ′ f 3 sin α 3 ) = ( υ 0 / k ′ f 0 sin α 0 ) + ( Δυ 3 / k ′ f 3 sin α 3 ) , w 3 ×[exp(jk'z)]dk'
                                      (17)将对于由等式(16)给出的ΔI的表达式替代进德等式(17),获得以下的用于散射的振幅US和反射的参考振幅UR的乘积的等式。 | U R | | U S | e - j ( φ S - φ R ) = ( 1 4 ) F - 1 ( ΔI ) - - - - - ( 18 )
用于从基于等式(18)的F-1(ΔI)计算|US|exp(-jφS)的优选程序是[F-1(ΔI)]/4与[|UR|exp(-jφR)]-1相乘,其中由一独立组的测量值确定反射的振幅|UR|exp(-jφR)。在该优选的计算中,相对对φSS,0的所有非物体材料贡献(contributions),仅知道φR是重要的。一种用于确定|UR|exp[j(φRS,0)]的方法包括三种不同类型的测量。第一种测量用具有已知的反射特性的一平面反射表面替换物体材料112来进行以实现对应的复量ΔI的测量。自用第一种测量获得的该对应的复量ΔI,获取|UR||US,0|exp[j(φRS,0)]的测量,其中|US,0|描述对|US|的所有非物体材料贡献。第二种测量是测量没有物体材料的Ii之一。从获取的没有物体材料的该Ii,获得|UR2的一测量值。第三种测量是测量没有参考反射镜且物体材料被一具有已知的反射特性的一平面反射表面替换的Ii之一,从没有参考反射镜且物体材料被一具有已知的反射特性的一平面反射表面替换的该II,获得|US,02的一测量值。三个等式|UR||US,0|exp[j(φRS,0)]、|UR2、|US,02的这些测量值包括确定在从F-1(ΔI)计算|US|exp(-jφS)中所用的{|UR|exp[j(φRS,0)]}-1所需的信息。通过所述程序可确定的|UR|exp[j(φRS,0)]精度将部分地取决于本发明的设备中存在的本征背景,由设备本身而非物体材料产生的背景的水平。注意到所述的方法还被使用来帮助特征化|US,02且因此用于本发明的设备的干涉仪的物体材料臂的脉冲响应函数是重要的。
对于本发明的设备的轴向分辨率超出由对于一给定波长由本发明的设备的数值孔径确定的分辨率的情况,该轴向分辨率易于被估算。为了估算对于具有非实质性细节的画面不涣散或模糊的条件的轴向分辨率,给出以下简化的假设。假设在间隔k_和k+上|UR||US|和(φSR)变化了一微不足道的量且还假设光源的频谱是该间隔中的一三角函数,Δ(k,k+,k_),在k’上的积分,可以闭型估算等式(17),具有结果
Figure A9980877001201
× ( ( sin { Δk [ ( z O , S - z - O , R ) - z ] } { Δk [ ( z O , S - z O , R ) - z ] } ) ) 2 ] ] dz O , S - - - ( 19 )
Figure A9980877001203
k - = [ ( k + + k - ) / 2 ] , - - - - - - ( 21 a ) Δk=[(k+-k_)/4]                (21b)我们从等式(19)看到获得|US|,具有以下的轴向空间分辨率 Δz = 2.8 Δk = 4 ( 2.8 ) ( k + - k - ) , - - - - - - ( 22 a ) 或根据波长被写作为 Δz = 2.8 π ( 2 λ + λ - λ + - λ - ) , - - - - - - ( 22 b ) 其中λ+=2π/k_,λ_=2π/k+           (23)
白光条纹图形
对于散射物体是一单个反射表面的例子,当轴向分辨率超过由对于一给定波长由本发明的设备的数值孔径确定的分辨率时,ΔI是一典型的白光条纹图形。因此对于这种情况,可用类似于由等式(22a)或等式(22b)给出的一轴向分解率容易地识别该参考和物体反射表面的相对位置。这可通过或者定位该条纹图形中的具有最大振幅的峰、定位该白光条纹图形的包络中的峰或者一些其他对比参考特征,自该白光条纹图形直接实现(参见L.Deck和P.de Groot,ibid中的2-7)。
用于在焦图象的脉冲响应函数:
横向OWDR
第二组实施例的第五实施例被选择作为用于示出在标题为“Background Compensation(背景补偿)”的文章中引用的区别性特征的系统,尽管该基础同样可良好地应用于第二组实施例的所有实施例及其变型。对于第五实施例的使用OWDR的共焦干涉显微术系统的一在焦图象的脉冲响应函数可容易地自在对于第一实施例的先前部分中推导的脉冲响应函数获得:第一实施例的光瞳函数Pi被第五实施例的对应的光瞳函数替代,第五实施例的对应的光瞳函数包括色散元件130a、130b、130c和130d的效应(见图1aa、2aa、3aa、和4aa)。
从审视等式(16)可见,在一恒定的比例因子内,观察到的量ΔI是散射的振幅US和反射的参考振幅UR的乘积的傅里叶变换。现有技术的共焦干涉显微术获得有关物体材料的等效信息。用本发明的设备从在时间上顺序获取的一组四个独立的测量值获得有关在横向平面截面中的在一水平点阵列的该物体材料的由ΔI(z0,S,z0,R,v3,w3)表示的信息,不需要进行物体材料的扫描。对于现有技术的共焦干涉显微术,通过扫描该物体材料,必须对在横向平面截面中的的水平点阵列中的各水平点进行等效的四个独立的测量。这样,用本发明的设备在小于现有技术的共焦干涉显微术的时间内,获取有关该物体材料的由ΔI(z0,S,z0,R,v3,w3)表示的信息。部分地导致在获取测量的电流期间对统计精度的提高和对物体材料的运动的灵敏度降低是本发明的这个特征。
离焦图象的振幅
检测器在焦图象平面17a中的空间滤波器针孔中的离焦光束振幅UR可以用菲涅尔积分C(z)和S(z)表示,它们的定义是: C ( z ) = ∫ 0 z cos ( π 2 t 2 ) dt , - - - - - - ( 24 ) S ( z ) = ∫ 0 z sin ( π 2 t 2 ) dt - - - - - - ( 25 )
请参见Abramowitz(阿勃拉莫维奇)和Stegun(史梯更),《Handbook of Mathematical Functions(数学函数手册)》,(Nat.Burof Standards(国家标准局)),(Appl Math(应用数学)Ser 55),Sect.7.3,300-302,1964。对于位于V1=(0,0,0)的点光源8,UB的表达方式为: U B ( v 2 ) = - ( j λ ) ( A B f 2 2 ) ( π f 2 2 kz B ) exp [ jk ( z B ~ ) ] × exp [ jk ( x 2 2 + y 2 2 ) / ( 2 z B ) ] × ∫ ∫ P 2 ( ξ 2 ~ , η 2 ~ ) exp [ - j π 2 ( ξ ~ 2 2 + η ~ 2 2 ) ] d ξ 2 ~ d η 2 ~ - - - - - - ( 26 ) 其中f2是图5中的区域2的焦距,(x2,y2,z2)是图象平面57中的离焦坐标,(AB/f2)是透镜2出射光瞳处离焦光束的振幅。 ξ 2 ~ = ( kz B πf 2 2 ) 1 / 2 ( ξ 2 + x 2 z B f 2 ) - - - - - - ( 27 a ) η 2 ~ = ( kz B πf 2 2 ) 1 / 2 ( η 2 + x 2 z B f 2 ) - - - - - - ( 27 b ) 且ζ2和η2是透镜2的出射光瞳坐标(自在Born和wolf,ibid的论文8.8.1中描述的衍射理论推导出)。对于级别2鉴别,m=2,且无移相器14,24和34的移相元件的切趾(apodization)的在ζ2和η2上积分后的结果为 U B ( v 2 ) = - ( j λ ) ( A B f 2 2 ) ( πf 2 2 kz B ) exp [ jk ( z B ~ ) ] ×exp[jk2 2+y2 2)/(2zB)]×{[C(ξ5')-2C(ξ4')+2C(ξ3')-2C(ξ2')+C(ξ1')]-j[S(ξ5')-2S(ξ4')+2S(ξ3')-2S(ξ2')+S(ξ1')]}×{[Cη5'-2C(η4')+2C(η3')-2C(η2')+C(η1')]-j[S(η5')-2S(η4')+2S(η3')-2S(η2')+S(η1')]    (28)其中, ξ P ′ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) a + x 2 z B f 2 ] ; p = 1 , . . . , 5 , - - - - - - ( 29 a ) η p ′ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) a + y 2 z B f 2 ] ; p = 1 , . . . 5 , - - - ( 29 b ) 且a是在ζ2和η2方向上的移相元件的宽度。对于例如在v2方向上,m=2,且无移相器14,24和34的移相元件的切趾(apodization)的级别1鉴别操作的结果为 U B ( v 2 ) = - ( j λ ) ( A B f 2 2 ) ( πf 2 2 kz B ) exp [ jk ( z B ~ ) ] ×exp[jk(x2 2+y2 2)/(2zB)] ×{[C(ξ5')-2C(ξ4')+2C(ξ3')-2C(ξ2')-C(ξ1')]-j[S(ξ5')-2S(ξ4')+2S(ξ3')-2S(ξ2')+S(ξ1')])    (30)在图6中示出用于级别1鉴别的各光束B52D-1、-2、-3、-4的|UB(v2)|2的一个例子作为对于y2=0及z2=50λ(f2/d0)2的(x2d0/λf2)的一函数。
从审视图6显见为何相比于现有技术的干涉共焦显微术,本发明的设备显示对来自离焦图象的背景的降低的灵敏度,现有技术的干涉共焦显微术是对UB敏感的,同时本发明的设备对作为在图象平面17a中的UR的反对称空间特性的结果的UB相对于x2和y2的导数是敏感的。可能使用菲涅耳积分的特性(见Abramowitz和Stegun,ibid.)证实在空间滤波器针孔18a的(URUB *+UR *UB)的光学频率分量的积分,将是对在一对应的检测器针孔上的对应的(URUB *+UR *UB)的积分的良好近似等价,对于现有技术共焦干涉显微术的情况和在此描述的本发明的情况,在表1中列出以此方式的表现。在表1中
Figure A9980877001251
U*表示U的复共轭且该积分是在以这样一位置为中心的间隔上:在该位置UR在用于级别1鉴别的x2中和在用于级别2鉴别的x2和y2两者中是反对称的。
通过移相器14、24和34的移相元件的切趾,在本发明设备中获得超出表1中给出的对来自离焦图象的背景的改善的鉴别以减小UB相对于x2和y2的导数的幅值。考虑到切趾函数T2( ξ22) T 2 ( ξ 2 , η 2 ) = | sin ( π ξ 2 a ) | | sin ( π η 2 a ) | - - - ( 31 ) 对于级别2鉴别且m=2的在ξ2和η2上进行积分后的结果是 U B ( v 2 ) = - ( 1 2 k ) ( A B f 2 2 ) ( πf 2 2 kz B ) exp [ jk ( z B ~ ) ]
Figure A9980877001263
Figure A9980877001265
Figure A9980877001266
ξ p ′ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) α + ( f 2 2 kz B ) ( kx 2 f 2 - π α ) ] , p = 1,5 ; - - - ( 33 a ) ξ p ″ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) α + ( f 2 2 kz B ) ( kx 2 f 2 + π α ) ] , p = 1,5 ; - - - ( 33 b ) η p ′ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) α + ( f 2 2 kz B ) ( ky 2 f 2 - π α ) ] , p = 1,5 ; - - - ( 33 c ) η p ″ = ( kz B πf 2 2 ) 1 / 2 [ ( p - 3 ) α + ( f 2 2 kz B ) ( ky 2 f 2 + π α ) ] , p = 1,5 . - - - ( 33 d )
可能使用菲涅耳积分的特性(见Abramowitz和Stegun,op cit.)证实在空间滤波器针孔58的(URUB *+UR *UB)的光学频率分量的积分,将是对在一对应的检测器针孔上的对应的(URUB *+UR *UB)的积分的良好近似等价,对于带有由等式(31)给出的切趾的级别2鉴别和带有在ξ2方向上的具有|sin(πξ2/a)|的-ξ2相关的切趾及在η2方向上没有切趾的级别1的在此公开的本发明,在表1中列出以此方式的表现。
结合本发明的设备的这些特性的一非常显著的特征是对于离焦图象的光源的各独立体积元,能实现在图象平面67中波数滤波的、空间滤波的反射的参考光束和波数滤波的、空间滤波的背景光束的检测的干涉项的加强的减少。因此,干涉项的这种减小将同时导致由离焦图象背景所造成的统计误差和系统误差的经增强的减小。
相比于现有技术共焦显微术的轴向截面功率(sectioning power)被有效减少的现有技术干涉共焦显微术的轴向截面功率的上下文中,本发明的设备对来自离焦图象的背景的降低的灵敏度的不同的可能性的潜在值也是可以被理解的。相比于由于来自离焦图象的强度的检测的背景的现有技术共焦显微术中的误差信号,由于反射的参考振幅和来自离焦图象的背景振幅之间的检测的干涉交叉项的在现有技术干涉共焦显微术中的误差信号在zB中具有对zB弱一级的相关性。
统计误差
考虑本发明设备对一任意三维散射物体112的一个平面横截面的响应。对于散射物体112的一个给定横向平面截面,检测器一个象素的输出电流I为:I(z0,S-z0,R,x)=∫∫p|UR2dx3dy3+∫∫p|UB2dx3dy3+∫∫p|US2dx3dy3
Figure A9980877001281
∫∫p(USUB *+US *UB)dx3dy3
其中∫∫p是在该检测器针孔的面积内的积分,x是移相器44所导入的相移量。由等式(12a)和(12b)分别定义的强度差ΔI1=I1-I2和ΔI2=I3-I4的相应等式为:ΔI1=2∫∫p(URUB *+UR *UB)dx3dy3+2∫∫p(URUS *+UR *US)dx3dy3,    (35a)△I2=j2∫∫p(URUB *-UR *UB)dx3dy3    (35b)+j2∫∫p(URUS *-UR *US)dx3dy3,其中Ii由下式定义:Ii≡I(x=xi),x1=0,x2=π,x3=π/2,x4=3π/2    (36)∫∫p(URUS *+UR *US)dx3dy3和j∫∫p(URUS *-UR *US)dx3dy3的统计误差可分别表示为: &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U S * + U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 8 dx 3 dy 3 = + 1 2 + 1 2 &Integral; &Integral; p | U B | 2 dx 3 dy 3 &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &Integral; &Integral; p | U S | 2 dx 3 dy 3 &Integral; &Integral; p | U R | 2 dx 3 dy 3 - - - ( 37 a ) + 1 2 &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U B * + U R * U B ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &sigma; 2 &lsqb; &Integral; &Integral; p ( U S U B * + U S * U B ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 , &sigma; 2 &lsqb; j &Integral; &Integral; p ( U R U S * - U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 = - - - ( 37 b ) + 1 2 + 1 2 &Integral; &Integral; p | U B | 2 dx 3 dy 3 &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &Integral; &Integral; p | U S | 2 dx 3 dy 3 &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &sigma; 2 &lsqb; j &Integral; &Integral; p ( U R U B * - U R * U B ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &sigma; 2 &lsqb; &Integral; &Integral; p ( U S U B * + U S * U B ) dx 3 dx 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 , 在推导等式(37a)和(37b)中假定σ2(∫∫p|UR2dx3dy3)=∫∫p|UR2dx3dy3,σ2(∫∫p|UB2dx3dy3)=∫∫p|UB2dx3dy3,也就是已假定系统中的统计噪声是由所探测到的光电子数的泊松统计规律决定的。并且∫∫p|UR2dx3dy3和∫∫p|UB2dx3dy3   都对应着大量的光电子。对于     ∫∫p|UR2dx3dy3>>∫∫p|US2dx3dy3和 ∫∫p|UB2dx3dy3>>∫∫p|US2dx3dy3     的情况,等式(37a)和(37b)右侧中与US有关的那些项可忽略不计,于是简化为以下等式: &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U S * + U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 = 1 2 + 1 2 &Integral; &Integral; p | U B | 2 dx 3 dy 3 &Integral; &Integral; P | U R | 2 dx 3 dy 3 + 1 2 &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U B * + U R * U B ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 , - - - ( 38 a ) &sigma; 2 &lsqb; j &Integral; &Integral; p ( U R U S * - U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 = 1 2 + 1 2 &Integral; &Integral; p | U B | 2 dx 3 dy 3 &Integral; &Integral; p | U R | 2 dx 3 dy 3 + 1 2 &sigma; 2 &lsqb; j &Integral; &Integral; p ( U R U B * - U R * U B ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 - - - ( 38 b ) 值得指出的是,在从 ∫∫p|UK2dx3dy3=2∫∫p|UB2dx3dy3改变到∫∫p|UR2dx3dy3>>∫∫p|UB2dx3dy3     时所得到的关于∫∫p(URUS *+UR *US)dx3dy3,j∫∫p(URUS *-UR *US)dx3dy3   的信噪比的额外增益是一个约等于(3/2)的因子。然而,这一增益的代价是光源功率和所需信号电子处理电路的动态范围的巨大增加。因此,|UR|的最佳选择典型地应是满足述条件:∫∫P|UR2dx3dy3≥2∫∫p|UB2dx3dy3    (39)当满足关系式(39)所示的条件时,等式(38a)和(38b)所给出的统计误差将受下列不等式的限制: 1 2 < &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U S * + U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 &le; 9 8 , - - - ( 40 a ) 1 2 < &sigma; 2 &lsqb; &Integral; &Integral; p ( U R U S * - U R * U S ) dx 3 dy 3 &rsqb; &Integral; &Integral; p | U R | 2 dx 3 dy 3 &le; 9 8 . - - - ( 40 b )
审视等式(37a)和(37b)或(38a)和(38b)可清楚明显地看到,实施了本发明的设备由于其减小了的离焦图象背景而在给定的工作值US和UR下本征地具有低于以往技术共焦干涉显微系统的统计误差。典型地,使用实施本发明的设备所得到的信噪比将比使用未采用本发明的共焦干涉显微镜的大一个因子(3/2)1/2
对等式(37a)和(37b)、(38a)和(38b),以及(40a)和(40b)的解释是:利用这里所公开的本发明有可能从一组4个强度测量得到复数散射振幅的分量,使得对于物体中的每个独立的位置,推出的复散射振幅的每个分量的统计误差都典型地在由复数散射振幅自身的统计性质所确定的有限统计误差的一个因子(3/2)1/2范围内,并且与往技术共焦干涉显微镜相比,能够以较低的光源工作功率大小和较低的信号处理电路动态范围要求来达到给定的统计误差。“独立的位置”这个词用来表示由4个测量强度组成的相关联的组是一些统计独立的组。
有可能在图1a-1n和图2a-2f所示的第一和第二实施例中通过减小移相器24的透射率以同时衰减图象平面47处的散射探测光束和离焦图象光束,来满足关系式(39)所给出的条件。为了得到给定的信噪比,这个衰减处理有可能需要随着移相器24衰减程度的增大而增大光源10的强度。对于图3a-3l和4a-4f所示的本发明第三和第四实施例,可以通过调节分束器100、100a和100b的相对透射/反射性质来满足关系式(39)给出的条件。一般而言,当用第三或第四实施例来满足关系式(39)给出的条件时,与上述基于减小移相器24透射率的衰减处理相比,光源10或10a可以工作于较低的功率。
该信噪比可被调节为光源光学频率分量的波长的一函数,以使生成例如将与波长一阶无关的的一信噪比。该特征在第一实施例的详细描述部分中被说明。如在引用的描述中所述,由于被说明的因素,被归一化到探测光束P22D的振幅的对应光学频率分量的波长滤波的、空间滤波的散射的探测光束P42D的振幅在进入物体材料之前一般地随波长而变化。而且波长滤波的、空间滤波的散射的探测光束P42D的振幅对波长滤波的、空间滤波的背景光束B62D的振幅的比例一般地随着图象点28进入物体材料112中深度的增大而减小。这些因素对信噪比比例的影响可通过以下方式被部分地补偿:在参考反射镜子系统83和/或在探测光束子系统82中放置一波长滤波器,且构成该波长滤波器的透射以具有特定的波长相关性来调节和/或优化透射通过不同波长的各自检测器针孔的波长滤波的、空间滤波的散射的探测光束P42D和长滤波的、空间滤波的反射的参考光束R42D的比例以满足等式(39)表示的条件。
由离焦图象造成的系统误差
只要测得|UR|,结合测量值ΔI1、ΔI2和|UR|exp[j(φRS,0)]等式(35a)和(35b)可以用来对US的实部和虚部进行测量。量|UR|exp[j(φRS,0)]如可通过标题为“Properties of Fourier Transformed ScatteringAmplitude(傅里叶变换的散射振幅的特性)”的论文中所述的方法来确定。其中剩余有可能系统误差项:∫∫p(URUB *+UR *UB)dx3dy3          (41a)∫∫p(URUB *-UR *UB)dx3dy3    (41b)当|UB|>>|US|时,这些系统误差项可能是明显的。因此,希望能把由式(41a)和(41b)所表示的干涉项补偿到一个可接受的水平。
通常,在此公开的本发明中,为补偿∫∫p(URUB *+UR *UB)dx3ay3和∫∫p(URUB *-UR *UB)dx3dy3项所需的计算机处理量要比以往技术共焦干涉显微术所需的少得多。这是因为UB的空间性质取决于待测三维物体112的散射性质,从而通过一个积分方程而取决于US。这些积分方程,即等式(35a)和(35b),是第二类弗莱德霍姆(Fredholm)积分方程。当例如在实施了本发明的设备中减小了∫∫p(URUB *+UR *UB)dx3dy3和∫∫p(URUB *-UR *UB)dx3dy3项时,为求得US而需执行的对各个积分方程求逆的计算机处理将减少。一般,所需计算机处理的减少速度快于∫∫p(URUB *+UR *UB)dx3dy3和∫∫p(URUB *-UR *UB)dx3dy3项的减小速度。
对于那些实施本发明的设备不同的,没有补偿互相干涉项∫∫p(USUB *+US *UB)dx3dy3干涉测量,对应于等式(35a)和(35b)的积分方程是非线性积分方程:它们是US的二次积分方程。一般而言为求解非线性积分方程所需的计算机硬件和软件要比求解线性积分方程的复杂得多。因此,实施本发明的设备把操作对象从
∫∫p(USUB *+US *UB)dx3dy3项转变成∫∫p(URUB *+UR *UB)dx3dy3和∫∫p(URUB *-UR *UB)dx3dy3项这一事实代表了本发明相对于以往技术针孔共焦显微术的一个重要特征。
还应指出,与以往技术针孔共焦显微术不同,在实施本发明的设备中起因于背景信号∫∫p|UB2dx3dy3的系统误差的减小是彻底的。
宽带工作
本发明的重要特征征一是,当光源10是一个在探测透镜46的轴向上同时成象多个图象点所需的宽带光源时仍可实现对离焦图象背景效应的经增强的减小。对于该特征的讨论,为简明起见假设象差函数Wi=1且没有光瞳函数Pi的切趾,即没有移相器14、24、34、34a和44的切趾。本领域的熟练技术人员可以理解当采用切趾以改变分解,例如得到的用于US(v3)的算术表达式将会更加复杂,但尽管如此一般保持对于例如其对称或反对称空间特性的重要特征。在简化前面段落中说明的假设的条件下且对于级别1鉴别的等式(9)的积分产生 U S ( v 2 ) = ( 1 2 ) ( a &prime; d 0 ) ( R 1 T 1 ) 1 / 2 &Integral; A ( v 1 ) d&upsi; 1 ×∫∫sinc[(a'/2d0)(υ01)] &times; { sin &lsqb; m ( &upsi; 0 - &upsi; 1 ) &rsqb; m sin &lsqb; ( 1 / 2 ) ( &upsi; 0 - &upsi; 1 ) &rsqb; } a ( v 0 ) t ( v 0 ) a ( v 0 ) &times; sin c &lsqb; ( a &prime; / 2 d 0 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; { sin &lsqb; m ( &upsi; 2 - &upsi; 0 ) &rsqb; m sin ( &upsi; 2 - &upsi; 0 ) } &times; sin &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; exp ( j 2 k z S ~ ) d&upsi; 0 dz 0 (42)其中z0由zS替换,a’和d0分别是移相器14、24、34和34a中的元件的宽度和中心到中心的距离且sincx≡(sinx)/x。由于w1相关在级别1鉴别中不与来自离焦图象的背景的减少相关,因此被抑制,在v2方向上的US(v2)的空间特性被配置以使获得波数滤波的、空间滤波的背景光束且因此在一宽带操作上限制的潜在源的经增强的减少。
对于反射的参考光束UR(v2)的振幅的对应表达式是 U R ( v 2 ) = ( 1 2 ) ( a &prime; d 0 ) ( T 1 R 1 ) 1 / 2 &Integral; A ( v 1 ) d&upsi; 1 ×∫sinc[(a'/2d0)(υ01)] &times; { sin &lsqb; m ( &upsi; 0 - &upsi; 1 ) &rsqb; m sin &lsqb; ( 1 / 2 ) ( &upsi; 0 - &upsi; 1 ) &rsqb; } sin c &lsqb; ( a &prime; / 2 d 0 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; &times; { sin &lsqb; m ( &upsi; 2 - &upsi; 0 ) &rsqb; m sin ( &upsi; 2 - &upsi; 0 ) } sin &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; exp ( j 2 k z R ~ ) d &upsi; 0 - - - ( 43 ) 其中z0被zR替换。
考虑到a’=d0的情况,对于该特殊情况等式(42)和(43)分别约化到 U S ( v 2 ) = ( 1 2 ) ( R 1 T 1 ) 1 / 2 &Integral; A ( v 1 ) d&upsi; 1 &Integral; &Integral; 2 sin c &lsqb; m ( &upsi; 0 - &upsi; 1 ) &rsqb; ×a(v0)t(v0)a(v0) &times; sin c &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; { sin &lsqb; m ( &upsi; 2 - &upsi; 0 ) &rsqb; m sin ( &upsi; 2 - &upsi; 0 ) } &times; sin &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; exp ( j 2 k z S ~ ) d&upsi; 0 dz 0 , (44) U R ( v 2 ) = ( 1 2 ) ( T 1 R 1 ) 1 / 2 &Integral; A ( v 1 ) d&upsi; 1 &Integral; 2 sin c &lsqb; m ( &upsi; 0 - &upsi; 1 ) &rsqb; &times; sin c &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; { sin &lsqb; m ( &upsi; 2 - &upsi; 0 ) &rsqb; m sin ( &upsi; 2 - &upsi; 0 ) } &times; sin &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 0 ) &rsqb; exp ( j 2 k z R ~ ) d&upsi; 0 , - - - ( 45 ) 等式(45)中在v0上的积分可被执行带有结果 U R ( v 2 ) = ( 1 2 ) ( T 1 R 1 ) 1 / 2 &Integral; A ( v 1 ) ( 1 / m ) sin c &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 1 ) &rsqb; &times; { sin &lsqb; m ( &upsi; 2 - &upsi; 1 ) &rsqb; m sin ( &upsi; 2 - &upsi; 1 ) } &times; sin &lsqb; ( 1 / 2 ) ( &upsi; 2 - &upsi; 1 ) &rsqb; exp ( j 2 k z R ~ ) d&upsi; 1 . - - - ( 46 ) 对于两元件相移系统(m=1)在图7中示出UR(v2)的一个例子为(x2kd0/f)的一函数,y2=0,z2=0及v1=0。
通过因数sin[(1/2)(v2-v1)]在等式(46)中清楚地呈现UR(v2)绕v1的反对称空间分布。UR(v2)的空间分布一般地将显示类似的行为,因为等式(44)具有与等式(45)相同的算术结构。该反对称空间分布在来自离焦图象的背景的振幅的优先的减少中被利用(exploited)。
从例如等式(46)所揭示的系统性质可以明显看出,只要相应(v2-v1)满足条件(其中[σ(q)]2代表幅角q的方差): &sigma; ( &upsi; 2 - &upsi; 1 ) &le; &pi; 2 m - - - ( 47 ) 则对于在焦图象仍可保持对由等式(44)所给出的US(V3)的高灵敏度。
当(v3-v1)的值给定时,对信号的贡献在(x3-x1)/f与k之间有双曲线的关系:(v3-v1)是正比于k(x3-x1)/f的。因此,有可能通过对k加以限制而使得允许的k值与(x3-x1)/f值满足关系式(47),同时使获取图象数据的检测器将产生改进的信噪比(在焦信号强度与离焦信号强度之比)。从关系式(47)可得到下列关系式: ( kd 0 ) 2 { &sigma; &lsqb; ( x 2 - x 1 ) / f &rsqb; } 2 + ( kd 0 ) 2 &lsqb; ( x 2 - x 1 ) / f &rsqb; 2 ( &sigma; k k ) 2 &le; ( &pi; 2 m ) 2 - - - - ( 48 ) 选择这样一种工作模式,在该模式中关系式(48)左手侧上的两个项对左侧有相同的贡献,这时有: ( kd 0 ) &sigma; &lsqb; ( x 2 - x 1 ) / f &rsqb; &le; &pi; 2 3 / 2 m - - - ( 49 ) ( kd 0 ) &lsqb; ( x 2 - x 1 ) / f &rsqb; ( &sigma; k k ) &le; &pi; 2 3 / 2 m - - - ( 50 ) 结合关系式(50)与下列等式将可得到一个关于(σk/k)的关系式:(υ21)=[kd0(x3-x0)/f=rπ,r=1,3,…,    (51)其中rπ代表(v3-v1)值的一个子组,在下因子 { sin &lsqb; m ( &upsi; 2 - &upsi; 1 ) &rsqb; m sin ( &upsi; 2 - &upsi; 1 ) } . - - - ( 52 ) 中这些值将达到峰值。结果为: ( &sigma; k k ) &le; ( 1 2 3 / 2 mr ) - - - ( 53 )
从关系式(53)可明显看出,实施了本发明的设备工作于比较宽的λ波带时仍是有效的。例如,当m=1和r=1时,(σk/k)≤0.35;当m=2和r=1时(σk/k)≤0.18。
可实际采用的r值范围有一个限制。这一限制来自对信噪比的考虑。在式(52)所给出的对观察信号有贡献的因子中,每个峰值都对应着一个改进的信号强度。然而,随着所包含的峰的数目增多,也即r的最大值rmax增大,根据关系式(53)k的带宽必需减小。
当在本发明的第二或第四实施例及其变型中采用级别2的鉴别时,各针孔之间的间距也有一限制。这个限制也可以用类似于宽带工作段落中的分析来求得。从例如等式(46)所揭示的系统性质,可明显看出,只要有
δv1≥4π    (54)(其中δv1是相应针孔光源线性阵列中相邻两针孔之间的间距),就可保持对在焦图象的US(v2)的高灵敏度。
注意到关系式(49)和(50)所示限制条件的右侧不显含x1或y1,可以看出实施了本发明的设备对于点类光源是有效的,而对x1或y1的取值范围没有本征性的限制。
通过混浊媒质观察
这里所公开的本发明的另一个重要特征是,当通过混浊媒质观察时对离焦图象背景效应的增强减小仍是有效的。通过混浊媒质观察时的脉冲响应函数hA.M为:hA,M=hA*hM                 (55)其中hA是设备在通过非混浊媒质观察时的脉冲响应函数,hM是混浊媒质的脉冲响应函数,*代表hA与hM的卷积。hA*hM的傅里叶变换F(hA*hM)为:F(hA,M)=F(hA)F(hM)
                           (56)脉冲响应函数hM可以由一个高斯分布很好地代表: h M ( v l - v m ) = 1 2 &pi; &sigma; exp &lsqb; - ( &upsi; l - &upsi; m ) 2 + ( w l - w m ) 2 2 &sigma; 2 &rsqb; - - - ( 57 ) 其中σ2是hM的方差。
hM的傅里叶变换F(hM)由下式给出: F ( h M ) = exp ( - q &CenterDot; q&sigma; 2 2 ) - - - ( 58 ) 其中q是与v相共轭的角空间频率矢量。hA的最低频率峰值位于频率q=2π(d0/λ)               (59)处。从等式(56)和(58)可以明显看出,当F(hM)>(1/e)            (60)或 q &CenterDot; q&sigma; 2 2 &le; 1 . - - - - - - ( 61 ) 时,hA·M可在q=(d0/λ)处保持比较大的值。利用式(59)和(61)可得到,可以使用的d0值受下述条件限制: d 0 &le; &lambda; 2 &pi;&sigma; - - - - - - ( 62 )
于是,有可能把实施本发明的层析成图象系统设计得能在低于由hM决定的截止频率的空间频率范围同保持比较高的灵敏度。
根据本发明可以认识到,对于具有任意空间性质的参考光束振幅,背景光(即离焦返回的探测光束)的振幅与参考光束振幅之间的干涉项可以对不希望的系统误差的产生起决定性作用,并且对不希望的统计误差的产生的是重要的。在本发明的上述各实施例中,由于通过移相而在参考光束中产生了反对称的空间性质,背景光与参考光束振幅之间的干涉项被减小。由于这一干涉项被减小,它将不会在由多象素检测器的各象素所产生的数据中产生不可接受的大的系统误差和统计误差。
还可以认识到,波数滤波的、空间滤波的反射参考光束的振幅是与波数滤波的、空间滤波的反射参考光束与波数滤波的、空间滤波的散射探测光束(“即”希望信号)之间的干涉项相关的。参考光束是以波数滤波的、空间滤波的反射参考光束振幅的平方的形式被探测的。波数滤波的、空间滤波的散射探测光束被检测为波数滤波的、空间滤波的反射参考光束与波数滤波的、空间滤波的散射探测光束之间的相干项,也即波数滤波的、空间滤波的散射探测光束振幅与波数滤波的、空间滤波的反射参考光束振幅的乘积的形式被探测的。探测到的波数滤波的、空间滤波的反射参考光束与探测到的波数滤波的、空间滤波的散射探测光束是相关的,因为这两者中都出现有波数滤波的、空间滤波的反射参考光束振幅。这种相关性使得从这样的干涉项来确定物体材料性质将在统计上更为精确。结果,可以从多象素检测器在响应于波数滤波的、空间滤波的反射参考光束与波数滤波的、空间滤波的散射探测光束之间的干涉项时所产生的数据获得在焦物体材料的精确特性。这是因为对于该多象素检测器的一给定象素的统计精度是受到该象素响应于波数滤波的、空间滤波的散射探测光束振幅的平方时所产生的光电子数目的限制的,而不是受到响应于波数滤波的、空间滤波的反射参考光束或波数滤波的、空间滤波的背景光束的振幅平方时所产生的光电子数目的限制的。
熟悉本技术领域的人们还可看到,在本发明所公开的各实施例中的任一个实施例中也可以采用另外的和/或附加的光学元件和检测器。例如,也可以采用偏振分束器或再结合附加的移相元件来改变用来探测物体材料的辐射的性质。另一个例子可以是增加一检测器来监视光源强度。可以在不偏离本发明精神的和范畴的情况下作出这些或其他明显的修改。
还应该看到,例如可以在图1a-1n中删去移相器34,这时,产生于在焦图象平面37中图象点38处的点光源8的图象将不同于前面所述的图象,虽然由反射参考光束于在焦图象平面47中的图象点48处所产生的点光源8的图象基本上与前面所述的图象相同。然而,上述离焦图象的抵消仍能实现。类似地,可以在图2a-2f中删去移相器34,在图3a-3l和图4a-4f中删去移相器34和34a。
还应该看到,只要能使反射参考光束在单图象素检测器平面上的振幅的空间分布基本上是反对称的,移相器14、24、34、34a的各个移相器单元的空间构形可以与前述的不同和/或带有除旁瓣功能。不过,为了得到物体材料112的希望层析图象,由多象素检测器产生的图象数据必需以略为不同于前述本发明各实施例中的方法进行处理。
还应该看到,前述各实施例及其变型中的干涉仪可以是不超出本发明的精神和范围的的在透射模式中起作用的共焦干涉显微术系统。例如当检测一探测光束的偏振状态的变化时,该透射模式可以是用于本发明的某些读和写模式的一较佳的工作模式。
还应该看到,前述各实施例中的干涉仪可以是偏振型的,其目的例如是用偏振光去探测物体材料112或者是为了增大通过干涉仪到单或多象素检测器上的光的信息通量。不过,为了使反射参考光束和散射探测光束能在单或多象素检测器上混合,需要在前述设备中增加例如偏振分束器这样的附加光学元件。

Claims (44)

1、一种把在一物体内和/或上的一区域的在焦图象从离焦图象区分出来以减小该物体的图象信息中的误差的方法,它包括以下步骤:
(a)从一个单色点光源产生一个探测光束和一个参考光束;
(b)产生参考光束的反对称空间性质;
(c)通过把探测光束引导至该区域内或上的一个在焦图象点,产生一个在焦返回探测光束;
(d)产生在焦返回探测光束的反对称空间性质;
(e)使步骤(b)的参考光束与一个来自离焦图象点的光束发生干涉;
(f)使步骤(b)的参考光束与步骤(d)的在焦返回探测光束发生干涉;
(g)用一个检测器系统检测该在焦返回探测光束的振幅作为步骤(b)的参考光束与步骤(d)的在焦返回探测光束之间的一个干涉项,离焦图象光束的振幅与步骤(b)的参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该图象信息的数据中的误差。
2、根据权利要求1的方法,其中该点光源是一单色线光源上的一点。
3、根据权利要求1的方法,其中该物体是一半导体晶片。
4、根据权利要求1的方法,其中该物体是一生物物质。
5、根据权利要求1的方法,其中该物体是一光盘且该区域是该光盘内和/或上的一带有信息的区域。
6、一种把在一物体内和/或上的一区域的在焦图象从离焦图象区分出来以减小该物体的图象信息中的误差的方法,它包括以下步骤:
(a)从一个宽带点光源产生一个探测光束和一个参考光束;
(b)产生参考光束的反对称空间性质;
(c)把探测光束通过第一色散元件以将该探测光束转换成聚焦至该物体内/或上的一线的一光束;
(d)产生一个在焦返回探测光束;
(e)产生在焦返回探测光束的反对称空间性质;
(f)空间滤波步骤(e)的在焦返回探测光束;
(g)把空间滤波的在焦返回探测光束通过第二色散元件以将该探测光束转换成聚焦至一检测器系统的一检测器平面中的一线的一光束;
(h)空间滤波步骤(b)的参考光束;
(i)把空间滤波的参考光束通过第二色散元件以将该参考光束转换成聚焦至该检测器平面中的该线的一光束;
(j)空间滤波来自一离焦图象点的一光束;
(k)把空间滤波的来自该离焦图象点的光束通过第二色散元件以将该光束转换成聚焦至该检测器平面中的该线的一光束;
(l)使步骤(i)的聚焦的空间滤波的参考光束与步骤(k)的来自该离焦图象点的聚焦的空间滤波的光束发生干涉;
(m)使步骤(i)的聚焦的空间滤波的参考光束与步骤(g)的聚焦的空间滤波的在焦返回探测光束发生干涉;及
(n)用该检测器系统检测步骤(i)的聚焦的空间滤波的参考光束与步骤(g)的聚焦的空间滤波的在焦返回探测光束之间的一个干涉项,步骤(k)的聚焦的空间滤波的离焦图象光束的振幅与步骤(i)的聚焦的空间滤波的参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该物体图象的数据中的误差。
7、根据权利要求6的方法,其中该点光源是一宽带线光源上的一点。
8、根据权利要求6的方法,其中步骤(c)包括将该探测光束通过至少一光栅,其中该线基本上平行于该物体的一表面。
9、根据权利要求6的方法,其中该线基本上垂直于该物体的一表面。
10、根据权利要求6的方法,包括对该检测器系统产生的数据执行傅里叶变换。
11、根据权利要求6的方法,其中该物体是一半导体晶片。
12、根据权利要求6的方法,其中该物体是一生物物质。
13、根据权利要求6的方法,该物体是一光盘且该区域是该光盘内和/或上的一带有信息的区域。
14、一种把在一物体内和/或上的一区域的在焦图象从离焦图象区分出来以减小该物体的图象信息中的误差的方法,它包括以下步骤:
(a)从一个宽带点光源产生一个探测光束和一个参考光束;
(b)产生参考光束的反对称空间性质;
(c)将该探测光束转换成聚焦至该物体内/或上的一线的一光束;
(d)产生一个在焦返回探测光束;
(e)产生在焦返回探测光束的反对称空间性质;
(f)空间滤波步骤(e)的在焦返回探测光束;
(g)把空间滤波的在焦返回探测光束通过一色散元件以将该探测光束转换成聚焦至一检测器系统的一检测器平面中的一线的一光束;
(h)空间滤波步骤(b)的参考光束;
(i)把空间滤波的参考光束通过该色散元件以将该参考光束转换成聚焦至该检测器平面中的该线的一光束;
(j)空间滤波来自一离焦图象点的一光束;
(k)把空间滤波的来自该离焦图象点的光束通过该色散元件以将该光束转换成聚焦至该检测器系统中的该线的一光束;
(l)使步骤(i)的成像的空间滤波的参考光束与步骤(k)的来自该离焦图象点的聚焦的空间滤波的光束发生干涉;
(m)使步骤(i)的聚焦的空间滤波的参考光束与步骤(g)的聚焦的空间滤波的在焦返回探测光束发生干涉;及
(n)用该检测器系统检测步骤(i)的聚焦的空间滤波的参考光束与步骤(g)的聚焦的空间滤波的在焦返回探测光束之间的一个干涉项,步骤(k)的聚焦的空间滤波的离焦图象光束的振幅与步骤(i)的聚焦的空间滤波的参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该物体图象的数据中的误差。
15、根据权利要求14的方法,其中该点光源是一宽带线光源上的一点。
16、根据权利要求14的方法,其中该物体是一半导体晶片。
17、根据权利要求14的方法,其中该物体是一生物物质。
18、根据权利要求14的方法,该物体是一光盘且该区域是该光盘内和/或上的一带有信息的区域。
19、根据权利要求14的方法,其中步骤(c)包括将该探测光束通过至少一光栅,其中该线基本上平行于该物体的一主表面。
20、根据权利要求14的方法,其中步骤(c)的该线基本上垂直于该物体的一主表面。
21、根据权利要求14的方法,包括对该检测器系统产生的数据执行傅里叶变换。
22、一种用于把一物体内和/或上的一区域的在焦图象从离焦图象区分开来以减少该物体的图象信息中的误差的的干涉测量系统,它包括:
(a)产生一个探测光束和一参考光束的点光源;
(b)产生参考光束的反对称空间性质的第一移相器;
(c)通过把探测光束引导至该区域内或上的一个在焦图象点,产生一个在焦返回探测光束的第一光束引导设备;
(d)产生在焦返回探测光束的反对称空间性质的第二移相器;
(e)引导该反对称参考光束和该反对称在焦探测光束以使该反对称参考光束与来自一离焦图象点的光束发生干涉及使该反对称参考光束和该反对称在焦返回探测光束发生干涉的第二光束引导系统;
(f)检测该反对称参考光束和该反对称在焦返回探测光束之间的一个干涉项的检测器系统,
该离焦图象光束的振幅与该反对称参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该图象信息的数据中的误差。
23、根据权利要求22的干涉测量系统,其中该点光源是一线光源的一点。
24、根据权利要求22的干涉测量系统,其中该点光源是一单色点光源。
25、根据权利要求22的干涉测量系统,其中该点光源是一宽带点光源。
26、一种用于把一物体内和/或上的一区域的在焦图象从离焦图象区分开来以减少该物体的图象信息中的误差的的干涉测量系统,它包括:
(a)产生一个探测光束和一参考光束的点光源;
(b)产生参考光束的反对称空间性质的第一移相器;
(c)第一色散元件和第一光束引导设备,其将该探测光束通过该第一色散元件以将该探测光束转换成聚焦至该物体内/或上的一线的一光束且从而产生一个在焦返回探测光束;
(d)产生在焦返回探测光束的反对称空间性质的第二移相器;
(e)空间滤波该反对称在焦返回探测光束的空间滤波器;
(f)第二色散元件和第二光束引导设备,其将该空间滤波的反对称在焦返回探测光束通过该第二色散元件以将该探测光束转换成聚焦至一检测器系统的一检测器平面中的一线的一光束;
(g)该空间滤波器空间滤波该反对称参考光束;
(h)该第二光束引导设备将该空间滤波的反对称参考光束通过该第二色散元件以将该光束转换成聚焦至该检测器平面中的该线的一光束;
(i)该空间滤波器空间滤波来自一离焦图象点的一光束;
(j)该第二光束引导设备将自离焦图象点的空间滤波的该光束通过该第二色散元件以将该光束转换成聚焦至该检测器平面中的该线的一光束;及
(k)检测该聚焦的空间滤波的反对称参考光束和该聚焦的空间滤波的反对称在焦返回探测光束之间的一个干涉项的检测器系统,
该聚焦的空间滤波的离焦图象光束的振幅与该聚焦的空间滤波的反对称参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该物体的图象的数据中的误差。
27、根据权利要求26的干涉测量系统,其中该点光源是一线光源的一点。
28、根据权利要求26的干涉测量系统,其中该点光源是一单色点光源。
29、根据权利要求26的干涉测量系统,其中该点光源是一宽带点光源。
30、一种用于把一物体内和/或上的一区域的在焦图象从离焦图象区分开来以减少该物体的图象信息中的误差的的干涉测量系统,它包括:
(a)产生一个探测光束和一参考光束的点光源;
(b)产生参考光束的反对称空间性质的第一移相器;
(c)将该探测光束转换成聚焦至该物体内/或上的一线的一光束以产生一个在焦返回探测光束的聚焦设备;
(d)产生在焦返回探测光束的反对称空间性质的第二移相器;
(e)空间滤波该反对称在焦返回探测光束的空间滤波器;
(f)一色散元件和一光束引导设备,其将该空间滤波的反对称在焦返回探测光束通过该色散元件以将该探测光束转换成聚焦至一检测器系统的一检测器平面中的一线的一光束;
(g)该空间滤波器空间滤波该反对称参考光束;
(h)该光束引导设备将该空间滤波的反对称参考光束通过该色散元件以将该光束转换成聚焦至该检测器平面中的该线的一光束;
(i)该空间滤波器空间滤波来自一离焦图象点的一光束;
(j)该光束引导设备将来自离焦图象点的空间滤波的该光束通过该色散元件以将该光束转换成聚焦至该检测器系统中的该线的一光束;及
(k)检测该聚焦的空间滤波的反对称参考光束和该聚焦的空间滤波的反对称在焦返回探测光束之间的一个干涉项的检测器系统,
该聚焦的空间滤波的离焦图象光束的振幅与该聚焦的空间滤波的反对称参考光束的振幅之间的干涉项的幅度被明显地减小,由此减小了由检测器系统所产生的表示该物体的图象的数据中的误差。
31、根据权利要求30的干涉测量系统,其中该点光源是一线光源的一点。
32、根据权利要求30的干涉测量系统,其中该点光源是一宽带点光源
33、一种在制做一晶片上的集成电路中使用的石版印刷系统,该系统包括:
(a)用于支持该晶片的一台;
(b)用于将空间构形的辐射成像在该晶片上的照明系统;
(c)一晶片,包括有在该晶片内和/或上的对准区域;
(d)用于相对于该被成像的辐射调节该台的位置的一激光测量控制的定位系统;
(e)与用于测量该些对准区域的相对位置的激光测量控制的定位系统连接的,用于把一物体内和/或上的一区域的在焦图象从离焦图象区分开来以减少该物体的图象信息中的误差的的干涉测量系统。
34、根据权利要求33的石版印刷系统,其中该干涉测量系统包括权利要求22的干涉测量系统。
35、根据权利要求33的石版印刷系统,其中该干涉测量系统包括权利要求26的干涉测量系统。
36、根据权利要求33的石版印刷系统,其中该干涉测量系统包括权利要求30的干涉测量系统。
37、一种在制做集成电路中期间检验一晶片上的集成电路图形中使用的计量系统,该系统包括:
(a)用于支持该晶片的一台;
(b)用于调节该图形内和/或上的一区域的相对位置的一激光测量控制的定位系统;
(c)用于把该图形内和/或上的该区域的在焦图象从离焦图象区分开来以减少该图形的图象信息中的误差的的干涉测量系统。
38、根据权利要求37的计量系统,其中该干涉测量系统包括权利要求22的干涉测量系统。
39、根据权利要求37的计量系统,其中该干涉测量系统包括权利要求26的干涉测量系统。
40、根据权利要求37的计量系统,其中该干涉测量系统包括权利要求30的干涉测量系统。
41、一种在制做集成电路期间检验一掩模中的一图形中使用的计量系统,该系统包括:
(a)用于支持该掩模的一台;
(b)用于调节该掩模内和/或上的一区域的相对位置的一激光测量控制的定位系统;
(c)用于把该掩模内和/或上的该区域的在焦图象从离焦图象区分开来以减少该图形的图象信息中的误差的的干涉测量系统。
42、根据权利要求41的计量系统,其中该干涉测量系统包括权利要求22的干涉测量系统。
43、根据权利要求41的计量系统,其中该干涉测量系统包括权利要求26的干涉测量系统。
44、根据权利要求41的计量系统,其中该干涉测量系统包括权利要求30的干涉测量系统。
CN 99808770 1998-06-02 1999-05-26 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备 Pending CN1309759A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/089,105 US6091496A (en) 1997-01-28 1998-06-02 Multiple layer, multiple track optical disk access by confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
US09/089,105 1998-06-02
US12505799P 1999-03-18 1999-03-18
US60/125,057 1999-03-18

Publications (1)

Publication Number Publication Date
CN1309759A true CN1309759A (zh) 2001-08-22

Family

ID=26780253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99808770 Pending CN1309759A (zh) 1998-06-02 1999-05-26 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备

Country Status (4)

Country Link
EP (1) EP1084378A1 (zh)
JP (1) JP2002517710A (zh)
CN (1) CN1309759A (zh)
WO (1) WO1999063300A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869466A (zh) * 2010-07-13 2010-10-27 李超宏 基于自适应光学技术的共焦扫描与光学相干层析成像仪
CN106062528A (zh) * 2014-02-27 2016-10-26 埃西勒国际通用光学公司 用于识别并定位眼科镜片上的微型蚀刻物的光学仪器
CN106461369A (zh) * 2014-06-17 2017-02-22 视乐有限公司 色散编码全范围光学相干断层成像术
CN106949966A (zh) * 2017-03-24 2017-07-14 中国科学院上海光学精密机械研究所 扫频光学相干层析成像系统的光谱标定方法
CN110081815A (zh) * 2019-04-25 2019-08-02 天津大学 基于白光led的低相干干涉条纹畸变矫正方法
CN112513707A (zh) * 2018-04-17 2021-03-16 克莫麦特公司 对象的描绘
CN113843660A (zh) * 2020-11-12 2021-12-28 西华大学 基于多线激光扫描的数控机床工件检测方法
US20220078050A1 (en) * 2018-12-17 2022-03-10 U-Blox Ag Estimating one or more characteristics of a communications channel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505256A (ja) * 2000-07-27 2004-02-19 ゼテティック・インスティチュート 共振器により強化された光透過機能を有する多重光源アレイ
US6667809B2 (en) 2000-07-27 2003-12-23 Zetetic Institute Scanning interferometric near-field confocal microscopy with background amplitude reduction and compensation
AU2001281361A1 (en) * 2000-07-27 2002-02-13 Zetetic Institute Differential interferometric scanning near-field confocal microscopy
JP5149196B2 (ja) * 2005-12-06 2013-02-20 カール ツァイス メディテック アクチエンゲゼルシャフト 干渉測定法による試料測定
EP2309221A1 (en) * 2006-02-24 2011-04-13 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
JP2009008393A (ja) * 2007-06-26 2009-01-15 Kowa Co 光画像計測装置
EP3414516B1 (en) * 2016-02-12 2020-04-01 Carl Zeiss Meditec, Inc. Systems and methods for improved oct measurements
CN111665259A (zh) * 2019-03-08 2020-09-15 深圳中科飞测科技有限公司 检测设备及检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760901A (en) * 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869466A (zh) * 2010-07-13 2010-10-27 李超宏 基于自适应光学技术的共焦扫描与光学相干层析成像仪
CN106062528A (zh) * 2014-02-27 2016-10-26 埃西勒国际通用光学公司 用于识别并定位眼科镜片上的微型蚀刻物的光学仪器
CN106062528B (zh) * 2014-02-27 2018-11-02 依视路国际公司 用于识别并定位眼科镜片上的微型蚀刻物的光学仪器
CN106461369A (zh) * 2014-06-17 2017-02-22 视乐有限公司 色散编码全范围光学相干断层成像术
CN106461369B (zh) * 2014-06-17 2019-04-02 视乐有限公司 色散编码全范围光学相干断层成像术
CN106949966A (zh) * 2017-03-24 2017-07-14 中国科学院上海光学精密机械研究所 扫频光学相干层析成像系统的光谱标定方法
CN112513707A (zh) * 2018-04-17 2021-03-16 克莫麦特公司 对象的描绘
US20220078050A1 (en) * 2018-12-17 2022-03-10 U-Blox Ag Estimating one or more characteristics of a communications channel
US11601307B2 (en) * 2018-12-17 2023-03-07 U-Blox Ag Estimating one or more characteristics of a communications channel
CN110081815A (zh) * 2019-04-25 2019-08-02 天津大学 基于白光led的低相干干涉条纹畸变矫正方法
CN110081815B (zh) * 2019-04-25 2021-01-05 天津大学 基于白光led的低相干干涉条纹畸变矫正方法
CN113843660A (zh) * 2020-11-12 2021-12-28 西华大学 基于多线激光扫描的数控机床工件检测方法

Also Published As

Publication number Publication date
JP2002517710A (ja) 2002-06-18
EP1084378A1 (en) 2001-03-21
WO1999063300A1 (en) 1999-12-09

Similar Documents

Publication Publication Date Title
CN1351705A (zh) 使用波数域反射技术及背景振幅减少和补偿的多层共焦干涉显微术
CN1146717C (zh) 共焦干涉显微镜的背景补偿
CN1309759A (zh) 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备
Lieb et al. Single-molecule orientations determined by direct emission pattern imaging
CN1231749C (zh) 用于分析板结构的曲率和应力信息的系统和方法
CN101076705A (zh) 用于波前控制和改进的3d测量的方法和装置
CN1035454C (zh) 干涉仪及其信号处理装置
Lin et al. Single-shot depth-section imaging through chromatic slit-scan confocal microscopy
CN1144063C (zh) 光学平移测量
CN1477448A (zh) 光刻装置和器件制造方法
Simmert et al. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging
CN1826518A (zh) 用于相位测量的系统和方法
CN1784588A (zh) 使用扫描干涉测量形成复杂表面结构的轮廓以及对其表征
CN1275030C (zh) 用于样品椭圆偏振光二维显示的装置,显示方法及具有空间分辨率的椭圆偏振光测量方法
CN1623195A (zh) 光学扫描装置
Li et al. Axial nanodisplacement measurement based on astigmatism effect of crossed cylindrical lenses
Sun et al. Unilateral-shift-subtracting confocal microscopy with nanoscale axial focusing precision
Wang et al. Differential confocal measurement for surface topography with microstructures based on spiral scanning and wavelet filter
Cui et al. Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy
Wang et al. Optical imaging module for astigmatic detection system
Vo et al. Reducing the residual focus error signal in optical pickup head astigmatism displacement systems using the signal conditioning method
Quercioli et al. Interferometry with optical pickups
Andreev et al. Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements
Guillon et al. Quantitative confocal spiral phase contrast
Serov et al. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication