CN1309092C - 垂直金属氧化物半导体场效应二极管及制造方法 - Google Patents

垂直金属氧化物半导体场效应二极管及制造方法 Download PDF

Info

Publication number
CN1309092C
CN1309092C CNB028147952A CN02814795A CN1309092C CN 1309092 C CN1309092 C CN 1309092C CN B028147952 A CNB028147952 A CN B028147952A CN 02814795 A CN02814795 A CN 02814795A CN 1309092 C CN1309092 C CN 1309092C
Authority
CN
China
Prior art keywords
semiconductor
diode
semiconductor body
upper zone
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028147952A
Other languages
English (en)
Other versions
CN1545736A (zh
Inventor
R·A·梅茨勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEMICOA
Original Assignee
VRAM Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VRAM Technologies LLC filed Critical VRAM Technologies LLC
Publication of CN1545736A publication Critical patent/CN1545736A/zh
Application granted granted Critical
Publication of CN1309092C publication Critical patent/CN1309092C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Memories (AREA)
  • Furan Compounds (AREA)

Abstract

此半导体二极管是二极管构造的垂直金属氧化物半导体场效应器件,它用半导体底座(304)形成,并具有一个二极管端子(324)作为垂直金属氧化物半导体场效应器件的栅(318)与漏(312)之间的公共连接以及一个二极管端子(330)作为对垂直金属氧化物半导体场效应器件的源(314)的公共连接。还公开了垂直金属氧化物半导体场效应器件的制造方法。

Description

垂直金属氧化物半导体场效应二极管及制造方法
技术领域
本发明一般涉及到半导体器件及其制造。更确切地说,本发明涉及到半导体二极管及其制造方法。
背景技术
各种半导体器件在现有技术中是众所周知的。由于本发明涉及到半导体二极管及其制造方法,故本节的重点是半导体二极管。
半导体二极管被广泛地用于各种目的的电子电路中。这种半导体二极管的主要目的是响应于正向偏压而提供沿正向的电流传导,并响应于反向偏压而阻挡沿反向的电流传导。这一整流功能被广泛地用于诸如各种电源之类的电路以及许多其它的电子电路中。
在典型的半导体二极管中,直至正向偏压达到特定类型半导体器件的某个特征数值之前,沿正向的导电一直被局限于泄漏电流数值。举例来说,直至正向偏压至少约为0.7V,硅pn结二极管都不明显地导电。许多硅的肖特基二极管由于肖特基势垒的特性而能够在例如0.4V的低电压下开始导电。锗的pn结二极管在室温下具有大约0.3V的正向导电电压降。但不仅由于它与硅集成电路制造不兼容,而且还由于它即使作为分立器件也对温度很敏感以及其它的不希望有的特性,故锗的pn结二极管目前仅仅偶尔被使用。
在某些应用中,二极管不是由于其整流特性而被使用,而经常是被正向偏置,以便提供其特有的正向导电电压降。例如,在集成电路中,二极管或二极管连接的晶体管被频繁地用来提供基本上等于电路中另一个晶体管的基极-发射极电压的正向导电电压降。虽然本发明的某些实施方案可以被用于这种普通电路中,但这种用途不是其主要目的。
在利用半导体二极管的真正整流特性的电路中,二极管的正向导电电压降通常是一个重要缺点。举个具体的例子来说,在直流-直流降压转换器中,变压器通常被使用,其中,由适当控制器控制的半导体开关被用来周期性地将变压器的初级连接到直流电源和从直流电源断开。次级电压通过有整流特性的二极管或通过其它半导体开关被连接到转换器的输出。控制器按照保持所希望的输出电压的要求而改变初级到电源的连接的工作周期即频率。若半导体开关被用来将次级连接到输出,则此第二开关也被控制器控制。
用半导体开关来将次级耦合到输出,具有正向导电电压降非常小的优点,虽然也有为保持从初级到次级的能量传送效率要求在转换器的整个工作温度范围内仔细控制的缺点。将半导体二极管用于这一目的,具有免去控制次级开关的优点,但也有将半导体二极管的正向导电压降施加到次级电路上的缺点。这具有二个非常重要的缺点。首先,半导体二极管的正向导电电压降能够明显地降低转换器的效率。例如,普遍用于计算机系统的较新的集成电路被设计成以例如3.3V、3V、以及2.7V的较低的电源电压工作。在3V电源的情况下,施加0.7V串联电压降意味着转换器实际上工作于3.7V负载,从而甚至在考虑其它损耗之前,转换器的效率就被限制到了81%。
其次,上述的效率损失在二极管中代表功率损失,导致其发热。这限制了集成电路转换器的功率转换容量,并在许多应用中要求使用适当尺寸的分立二极管,增大了总的电路尺寸和成本。
另一种普遍使用的交流-直流转换电路是全波桥式整流器,通常耦合到其初级由交流电源驱动的变压器的次级绕组。此处,二个二极管的电压降被施加在峰值直流输出上,使电路使用常规二极管效率特别低,并增大了电路的发热,根据要提供的直流功率而要求通过大的分立器件、散热结构等来耗散。
因此,为了用作其中二极管随时会经受正向和反向偏压二者的电路中的整流元件,使半导体二极管具有低的正向导电电压降,可能是非常有利的。虽然这种二极管以分立的形式有许多用途,但还希望这种二极管可以与集成电路制造技术兼容,以便能够以集成电路的形式被实现为更大得多的集成电路的一部分。而且,反向电流泄漏总是不希望有的,且通常必需由额外的正向导电电流来弥补,从而降低了电路效率,但反向电流泄漏对某些电路能够具有其它的更重要的有害影响。因此,这种半导体二极管进一步具有低的反向偏置泄漏电流,也可能是可取的。
在许多应用中,要求二极管跨越变压器之类的线圈放置。在这种时候,反向电压有可能被施加到二极管,使之反向击穿,特别是使其成为结的雪崩条件。在采用迅速改变的波形来驱动跨越二极管桥连接的变压器线圈的直流-直流转换器中,这是特别真实的。在这些应用中,“雪崩能量”容量的指标要求是通常包括在数据表中的参数。二极管的雪崩能量容量是设计这种电路的一个重要的因素。雪崩能量容量决定了设计者在将半导体二极管设计到电路中时具有多大的设计裕度。雪崩能量容量的数值越大,电路设计者具有的设计灵活性就越大。
雪崩能量容量是二极管在不遭到破坏的情况下从线圈吸收能量的容量的一种度量,其中能量E=(1/2)×I2×L。这些要求典型约为几十毫焦耳。二极管非破坏性地耗散这一能量的能力中的一个关键的因素是耗散能量的结面积的大小,亦即在雪崩过程中实际导电的结的面积的大小。半导体二极管的高的雪崩能量容量改善了其使用。
同时,借助于减小其尺寸和改善其制造方法来降低半导体二极管的成本,是可取的。
发明内容
本发明公开了一些适合用于集成电路中以及分立器件的半导体二极管,它们具有低的正向导电电压降、低的反向泄漏电流、高的电压容量和雪崩能量容量。这些半导体二极管是二极管构造的垂直柱状金属氧化物半导体场效应器件,其一个二极管端子作为垂直柱状金属氧化物半导体场效应器件的栅与漏之间的公共连接,且一个二极管端子作为与垂直柱状金属氧化物半导体场效应器件的源的公共连接。
本发明还公开了垂直柱状金属氧化物半导体场效应器件的制造方法。各种器件的终止方法能够被用来完成此二极管器件。下面描述了各种实施方案。
因此,本发明提供了一种制作二极管的方法,它包含:a)提供第一导电类型的半导体本体,此半导体本体在其第一表面上具有第二导电类型层;b)在第二导电类型层上形成多个柱状氧化物底座;c)进行方向性腐蚀,以便在各个底座之间的第二导电类型层中形成沟槽;d)在各个底座之间的第二导电类型层中形成第一导电类型区,并在各个底座下方稍许延伸;e)进行方向性腐蚀,以便形成延伸通过各个底座之间的第二导电类型层的较深的沟槽以及清除各个底座之间的第二导电类型层中的第一导电类型区而不清除稍许延伸在各个底座下方的第二导电类型层部分;f)淀积栅氧化物;g)淀积重掺杂的多晶半导体层;h)对多晶半导体层进行方向性腐蚀,以便从各个底座之间的栅氧化物上清除多晶半导体;i)进行注入,以便将各个底座之间的区域从第一导电类型转变到第二导电类型;j)进行方向性腐蚀,以便将各个底座侧壁上的栅氧化物上的多晶半导体层的高度进一步降低到上述b)的剩余层的水平;k)清除暴露的栅氧化物;l)淀积导电层作为对二极管的第一电接触;以及m)提供对半导体本体的电接触作为对二极管的第二电接触。
本发明还提供了一种制作二极管的方法,它包含:a)在第一导电类型的半导体本体的第一表面上形成多个柱状半导体底座,这些底座具有从半导体本体延伸的第一导电类型的下部区、在底座的上部区与下部区之间形成pn结的第二导电类型的上部区、以及在邻近pn结的上部区中并延伸在邻近pn结的上部区周围的第一导电类型区;b)形成栅氧化物和导电栅,此导电栅从下部区延伸到在上部区中并延伸在上部区周围的第一导电类型区;c)提供导电层,此导电层接触到导电栅和在上部区中并延伸在上部区周围的第一导电类型区;以及d)提供对半导体本体的导电接触。
本发明还提供了一种二极管,它包含:第一导电类型的半导体本体;半导体本体第一表面上的多个柱状底座,各个柱状底座具有第一导电类型的下部区以及第二导电类型的上部区,在所述上部区和所述下部区之间形成pn结,上部区和下部区确定各个底座的侧壁;环绕各个邻近pn结的底座的上部区的第一导电类型区;各个底座侧壁上的栅氧化物,此栅氧化物从下部区延伸到各个底座上部区周围的第一导电类型区,各个底座上部区周围的部分第一导电类型区不被栅氧化物覆盖;栅氧化物上的导电栅;各个底座之间的第二导电类型层;多个柱状底座上的与导电栅和各个底座上部区周围的第一导电类型区形成电接触的导电层;以及与半导体本体形成电接触的导电层。
本发明还提供了一种二极管,它包含:第一导电类型半导体本体第一表面上的多个柱状半导体底座,这些底座具有从半导体本体延伸的第一导电类型的下部区、在底座上部区与下部区之间形成pn结的第二导电类型的上部区、以及在邻近pn结的上部区中并环绕邻近pn结的上部区的第一导电类型区;栅氧化物和导电栅,此导电栅从下部区延伸到在各个底座的上部区中并延伸在上部区周围的第一导电类型区;导电层,此导电层接触到导电栅和在上部区中并延伸在上部区周围的第一导电类型区;以及对半导体本体的导电接触。
本技术领域的普通技术人员根据本发明各个具体实施方案的下列描述,本发明的其它情况和特点将变得明显。
附图说明
从本发明的下列详细描述中,本发明的特点和优点将变得明显,其中:
图1是采用其中可以使用本发明的全波桥式整流器的熟知的交流-直流转换器的电路图。
图2A-2B是作为根据本发明连接的二极管的n沟道和p沟道金属氧化物半导体场效应器件的示意图。
图2C是图2A和2B的二极管连接的金属氧化物半导体场效应器件的等效电路的示意图。
图3A-3N是剖面图,示出了用来制造本发明的二极管连接的垂直金属氧化物半导体场效应器件的示例工艺中的各个步骤。
图4A-4N是剖面图,示出了用来制造本发明的二极管连接的垂直金属氧化物半导体场效应器件的另一示例工艺中的各个步骤。
图5A-5C是本发明的垂直MOSFED二极管的示例变通结构的俯视图。
图6示出了其上制作了多个垂直MOSFED二极管的晶片上的有源二极管区域。
图7是一个有源二极管区域电学等效的示意图。
在这些附图中,相似的参考号和标注表示提供相似功能的相似的元件。
具体实施方式
首先参照图1,可以看到采用其中可以使用本发明的全波桥式整流器的熟知的交流-直流转换器的电路图。在这种电路中,变压器110被用来提供初级与次级电路之间的直流隔离,并被用来频繁地对由二极管D1、D2、D3、D4组成的全波桥提供交流电压提升或下降。当次级引线112相对于次级引线114足够正时,二极管D2将通过电阻器116导电,从而对电容器118充电或进一步充电,并对负载119提供电流,此电流通过二极管D3返回到变压器的引线114。同样,在交流输入的另一个半周期中,当次级引线114的电压相对于次级引线112足够正时,二极管D4将通过电阻器116导电,从而对电容器118充电,并对负载119提供电流,且此电容器和负载电流通过二极管D1返回到次级引线112。于是可以看到,每当电流通过D4从二极管D1的全波桥传送到桥的输出端时,二个二极管电压降就与此输出被串联施加。而且,由于任何一对二极管仅仅当跨越变压器110次级的电压超出跨越电容器118的电压二个二极管电压降时才导电,故显然,仅仅在部分时间内,亦即当变压器次级电压处于或接近正或负峰值时,电流才被传送到桥的输出端。
图1的电路仅仅是其中有意采用本发明的电路的示例性类型。这些电路的特征可以是这样一些电路,其中,二极管将承受跨越二个二极管连接的正(正向)和负(反向)差动电压二者,且二极管的功能是整流功能以提供直流即整流过的电流输出。这是要区别于其中所希望的二极管功能是当传导电流时,无论二极管是否也在使用中经受负的差动电压,都提供响应于二极管正向导电电压降特性的参考电压的那些应用的。特别适合于使用本发明的电路的特征也可以是这样一些电路,其中,一个二极管或多个二极管会经受跨越二极管连接的正和负差动电压二者,且二极管的功能是功率整流功能以提供足够功率电平的直流即整流过的输出,以便对连接到其上的一个或多个电路加电。这是要区别于所希望的二极管功能是提供信号电平电流输出的那些应用的,且其中此信号电平电流输出在不被二极管的直流即整流过的电流输出加电的后续电路中使用或处理。
在图1所示类型的许多电路中,除了滤波电容器118之外,线性调压器也可以被用于输出端。而且,作为有利于变压器次级电阻的分立电路元件,用作限流电阻器的电阻器116可以被省略,在基本上所有感兴趣的应用中变压器将是一个尺寸足以耗散其中的功率损耗的真实分立元件。但对本发明特别重要的是二极管D1-D4本身作为这些二极管中的功率损失通常没有提交所需的电路功能,而是仅仅产生不希望有的功耗和热,需要使用无论是分立形式还是集成电路形式的更大的二极管,从而实际上增大了提供这一额外功率输出,例如负载所需功率加上二极管耗散的功率所需的变压器的尺寸。
本发明的目的是实现多个二极管和/或一个二极管功能,此功能具有低的二极管正向导电电压降、低的反向电流泄漏、以及高的电压容量,以便主要用于这种电路和其它电路,其中二极管在使用中可以或实际上经受正向和反向偏压二者。在本发明中,通过使用在图2A和2B中分别示意地示为n沟道和p沟道二极管连接的场效应器件的二极管连接的场效应器件,达到了此目的。根据本发明的优选实施方案,通过使用公共栅和漏连接,典型为衬底上的公共导电层,更优选是通过一个或多个提高所得器件的电学特性的特殊制造技术,制造了这种器件。图2C示出了具有各自的阳极“A”和阴极“B”端子的图2A和2B的二极管连接的场效应器件的等效二极管。
借助于制作一个或多个具有二极管连接的构造的垂直和柱状金属氧化物半导体场效应晶体管(MOSFET),本发明实现了一种半导体二极管。一个或多个并联连接的具有二极管连接的构造的垂直和柱状形金属氧化物半导体场效应晶体管(MOSFET),被称为二极管构造的垂直金属氧化物半导体场效应器件(MOSFED)。
在二极管构造的垂直MOSFED的制造中,此处列为参考的Richard A.Metzler在2000年10月12日提交的题为“METHOD ANDAPPARATUS FOR PATTERNING FINE DIMENSIONS”的美国专利申请No.09/689074中描述的掩蔽和制造技术,也能够被用来降低掩蔽成本,并在本发明中提供比其它能够得到的更精细的线条。
此处提出了与图3A-3N以及图4A-4N有关的本发明的制造实施方案的工艺。这些示例性工艺形成了本发明的二极管构造的垂直金属氧化物半导体场效应器件(MOSFED)。分立的二极管构造的垂直金属氧化物半导体场效应器件能够基本上想象为用公共栅-漏连接来连接的柱状和垂直金属氧化物半导体场效应晶体管。(在此方面,此处为了专一性的目的,在正常的正向导电的意义上,源和漏被识别,在反向偏置的器件中,认为源和漏颠倒)。本发明的二极管构造的垂直金属氧化物半导体场效应器件也可以被称为垂直MOSFED二极管。但本发明因为其工作不同且由不同的工艺制作,因而不是传统的金属氧化物半导体场效应晶体管(MOSFET)。如随后可以看到的那样,在典型的应用中,大量严密封装的MOSFED器件被制作在单个衬底上,都具有公共的栅-漏连接和公共的源连接。因此,此处所用的MOSFED可以称为单个衬底上多个共连的器件的单个器件。
现在参照图3A-3N,示出了各个剖面图,说明了用来制造本发明的二极管连接的垂直金属氧化物半导体场效应器件的示例性制造工艺。此二极管连接的即二极管构造的垂直MOSFED是用柱状底座制作的。图3A-3L仅仅示出了晶片的一部分来说明单个MOSFED的制作。典型地说,借助于跨越更大的部分或整个半导体晶片复制大量共连器件集团,来同时制作这些多个器件。如现有技术中众所周知的那样,为了提供所需击穿电压,组合有某种形式的边沿终止的多个器件的集团也是典型的。
图3A示出了其上具有二个硅外延层的晶片的起始硅衬底300。直接在衬底300顶部上的第一硅外延层301,与衬底的导电类型相同,并被提供来形成二极管器件的增大的反偏置击穿电压。直接在第一层顶部上且形成晶片表面的第二外延层302,导电类型相反。在具有N型衬底的一个实施方案中,第一硅外延层的电阻率约为1.1欧姆厘米,而厚度约为3微米,以便达到大约45V的反偏置击穿电压。第二P型外延层的电阻率为0.25欧姆厘米,而选择来确定MOSFED阈值的厚度为0.6微米。具有硅外延层的外延晶片能够被采购作为起始材料,或用众所周知的标准外延生长技术作为二极管工艺部分来制作。可以用淀积或注入技术随之以驱动从而在第一外延层表面中形成第二导电类型,来代替第二外延层。
在N型硅衬底的情况下,衬底300的下表面即背面可以形成阴极,而衬底300的部分顶部表面被形成为阳极。在P型硅衬底的情况下,二极管各端子被颠倒,且衬底300的下表面即背面可以形成阳极,而衬底300的部分顶部表面被形成为阴极。
如图3B所示,薄的氧化物层303被生长在衬底300的表面上,以便使随后的薄片注入剂随机化。此薄的氧化物303的厚度典型为300。随后的薄片注入剂不要求掩模掩蔽,而是由被注入在整个晶片上的离子组成。此薄片注入剂是为了提供垂直MOSFED二极管的P型背栅区域的良好欧姆接触。此注入剂是能量为15KeV的约为每平方厘米4×1015原子的硼。
再次参照图3B,示出了第一掩蔽步骤的完成。在第一掩蔽步骤和腐蚀之前,将氧化物层涂敷在这个晶片的薄氧化物303顶部上。然后用掩模对此氧化物层进行图形化,并将包括部分薄氧化物303的区域腐蚀掉,以便在薄氧化物303的顶部上形成柱状形构造的底座304。在一个实施方案中,此柱状形构造的底座304的高度约为1.0微米(μm)。此底座304的形状可以是任何柱状形状,包括但不局限于圆形、六角形、正方形、矩形、以及诸如螺旋形之类的其它实心形状等。此处为了便于描述,柱状形假设是形成矩形柱状底座的矩形或由氧化物层形成的棒形。图3B示出了跨越硅晶片形成的多个矩形柱状底座304中的4个。在一个实施方案中,矩形柱状构造底座304的尺寸的宽度约为0.15微米,高度约为1.0微米,间距约为0.4微米。可以理解的是,为了提供二极管构造的垂直MOSFED的相似的器件物理,可以根据注入水平的任何调整来改变这些尺寸。为了进一步细化各个多个底座304周围的工艺,硅晶片区域310被分解为图3C。
现在参照图3C,示出了图3B的区域310的分解图。矩形柱状构造底座304被形成在衬底300上的薄氧化物303表面上。图3D-3L示出了二极管构造的垂直MOSFED相对于图3C的矩形柱状构造底座304的进一步加工。
现在参照图3D,各个底座304之间的薄氧化物层303和部分衬底300已经被腐蚀到大约500的深度,形成浅的硅沟槽308和衬底底座309。这一腐蚀步骤是通常用于硅工艺中来形成沟槽金属氧化物半导体(MOS)晶体管和电容器的反应离子刻蚀(RIE,方向性腐蚀)。现在执行N型阳极接触的注入,典型为砷,剂量为3×1015,而能量为15KeV。这在各个底座外围周围提供了区域312,将变成器件表面处的阳极区(漏)。
现在参照图3E,额外的硅腐蚀已经被执行到0.6微米的深度。这在硅底座结构的顶部处留下了阳极区312。随之以另一个砷注入314,在15KeV下剂量为3×1014,以便形成FED的源。
图3F示出了另一个500的第三硅腐蚀的结果。这清除了沟槽底部内的大部分第二注入剂,若使用了N型外延层,则留下与之接触的被隔离的源注入剂314,或若未使用N型外延层,则留下与N型衬底接触的被隔离的源注入剂314。此第二注入不是必需的,且变通的实施方案制作此器件时不用此第二注入和第三硅腐蚀。但对于降低器件的开通电阻来说,此第二注入是有用的。
如图3G所示,氧化物底座的其余部分被剥离掉,并在栅形成的第一阶段中,在器件上共形淀积厚度为100的栅氧化物层316和重掺杂的多晶硅层318。
下一个工艺是多晶硅层的RIE刻蚀(方向性腐蚀),停止于氧化物层上,以便形成图3H所示的侧壁栅区318。随之以形成P型区320的硼注入,以便在反向偏置(关断)过程中阻挡来自栅氧化物底部的电位。
如图3I所示,执行进一步的多晶硅RIE刻蚀。这清除了多晶栅318的顶部,直至能够到达漏元件。之后是氧化物腐蚀,以便如图3J所示清除栅氧化物。这准备好了涂敷诸如TiSi或TiW之类的金属扩散势垒322的表面。图3K示出了具有势垒金属层322以及涂敷在结构上的顶部金属层324的最终器件。
图3L示出了具有涂敷的最终金属的4个底座的最终剖面。但未示出的是器件的源接触。在某些应用中,如图3M所示,借助于在与垂直MOSFED器件332相反的衬底300背面上淀积金属化层330,来形成源接触。在其它的应用中,如图3N所示,垂直MOSFED器件332被制作在阱334中,并借助于在邻近或围绕垂直MOSFED器件的阱表面上淀积金属化层330,来形成源接触。
现在参照图4A-4M,可以看到本发明的制作MOSFED的一种变通工艺。在此工艺中,开始的各个步骤与图3,具体地说是与图3A-3D所述的相同。因此,图4A-4D完全相同于图3A-3D,并使用相同的参考号表示。在形成图4D的各个n型阳极接触注入区域312之后,如图4E所示,淀积氧化物层,然后用方向性腐蚀方法进行回腐蚀,留下侧壁区400。然后,执行进一步的方向性腐蚀步骤(图4F),随之进一步n型,典型为砷的注入以形成n型区402。然后如图4G所示,执行进一步的方向性腐蚀步骤,留下源区402。然后,如图4H所示,剥离掉氧化物侧壁区400,提供比前述实施方案更大的对区域312的物理接触。氧化物底座的其余部分也被剥离掉。
如图3I所示,下一个步骤是安置栅氧化物层404和重掺杂的多晶硅层406。然后,如图4J所示,方向性腐蚀从氧化物层404的水平表面清除多晶硅,留下侧壁部分406。进一步的方向性腐蚀降低了侧壁区406的高度,具体地说是从区域408清除多晶硅。然后,栅氧化物层从暴露表面的清除,暴露了区域312,然后,淀积扩散势垒410和顶部金属层412,以便形成单个柱状器件的图4M的最终结构或多个器件的图4N的最终结构。同以前那样,可以利用诸如图3M的金属化层330之类的衬底反侧上的金属化层,或利用接触到如图3M中那样其中形成柱状形器件的阱的金属化层,来形成源接触。
现在参照图5A-5C,示出了二极管构造的垂直MOSFED的示例性阵列的俯视图。在图5A中,用圆形柱状底座来形成二极管构造的垂直MOSFED 340。在图5B中,用正方形的矩形柱状底座来形成二极管构造的垂直MOSFED 340。在图5C中,用六角形柱状底座来形成二极管构造的垂直MOSFED 340。为了形成不同形状的二极管构造的垂直MOSFED 340,其它的柱状能够被用于底座。
现在参照图6,多个二极管有源区90被晶片上各个二极管有源区90之间的画痕沟道91分隔开。在各个二极管有源区90中是多个二极管构造的垂直MOSFED 340。画痕沟道91中二极管有源区的边沿终止可以通过几种半导体器件终止来提供,这些终止包括由Richard A.Metzler和Vladimir Rodov在1997年1月23日提交的题为“Semiconductor diodes having low forward conduction voltage dropand low reverse current leakage”的美国专利No.5825079的锥形终止或由Richard A.Metzler在1999年9月14日提交的题为“Method andApparatus for Termination of Semiconductor Devices”的美国专利申请No.09/395722所述的台面终止。此外,可以使用众所周知的单个或多个普通环终止,或可以使用电压允许的与器件有源扩散集成的简单保护环。
现在参照图7,二极管有源区的示意等效图具有并联连接的多个二极管340,各代表一个二极管构造的垂直MOSFED。将各个二极管连接的垂直MOSFED器件340的电流容量相加,导致大的电流承载容量。可以理解的是,在一个晶片上的各个集团中,可以有几百个或更多个MOSFED器件有源区90,在图9中仅仅示出了4个。各个分立的二极管有源区90能够包含几千个分立的二极管构造的垂直MOSFED 340。
关于二极管的电流容量,正向电流是并联耦合在一起的二极管构造的垂直MOSFED 340的数目的函数。
关于阈值电压,借助于恰当地选择用来制造二极管构造的垂直MOSFED的掺杂剂、其浓度、以及其它材料和尺寸,沟道区可以被制作成刚好在跨越阳极与阴极的基本上为0的正向偏置下导电。这样,在诸如电源之类的真实整流应用中,本发明就导致整流器件中降低了的功耗和发热以及得到的电路的更大的总效率。
此处已经公开了制造二极管构造的垂直MOSFED的某些示例性方法以及这样制作的MOSFED。要指出的是,在示例性工艺中,存在着单个掩蔽步骤,它仅仅具有相对于其上要制作MOSFED的半导体衬底对准的无足轻重的要求。然后,各个额外的步骤是相对于在先步骤自对准,从而省略了多个掩模,确切地说是省略了通常用于半导体器件制造的掩模组的各个掩模之间的严格对准要求。这简化了工艺,提高了成品率,并减小了由掩模对准差异造成的晶片之间器件的变化。
在上述某些情况下,提出了某些变通的材料和方法。但要指出的是,具体变通材料和工艺的确认不意味着制造工艺中或得到的二极管器件中的这些或其它的步骤被排除于在本发明中的使用。相反,此处所提出之外的步骤和材料对于本技术领域的熟练人员来说是显而易见的。于是,虽然对于某些优选实施方案已经公开和描述了本发明,但本技术领域的熟练人员可以理解的是,本发明的二极管及其制造方法可以被改变而不偏离本发明的构思与范围。

Claims (20)

1.一种制作二极管的方法,它包含:
a)提供第一导电类型的半导体本体,此半导体本体在其第一表面上具有第二导电类型层;
b)在第二导电类型层上形成多个柱状氧化物底座;
c)进行方向性腐蚀,以便在各个底座之间的第二导电类型层中形成沟槽;
d)在各个底座之间的第二导电类型层中形成第一导电类型区,并在各个底座下方稍许延伸;
e)进行方向性腐蚀,以便形成延伸通过各个底座之间的第二导电类型层的较深的沟槽以及清除各个底座之间的第二导电类型层中的第一导电类型区而不清除稍许延伸在各个底座下方的第二导电类型层部分;
f)淀积栅氧化物;
g)淀积重掺杂的多晶半导体层;
h)对多晶半导体层进行方向性腐蚀,以便从各个底座之间的栅氧化物上清除多晶半导体;
i)进行注入,以便将各个底座之间的区域从第一导电类型转变到第二导电类型;
j)进行方向性腐蚀,以便将各个底座侧壁上的栅氧化物上的多晶半导体层的高度进一步降低到上述b)的剩余层的水平;
k)清除暴露的栅氧化物;
l)淀积导电层作为对二极管的第一电接触;以及
m)提供对半导体本体的电接触作为对二极管的第二电接触。
2.权利要求1的方法,其中,半导体本体是半导体衬底,且借助于在衬底的第二表面上提供金属化层,来提供第二电接触。
3.权利要求1的方法,其中,半导体本体是第二导电类型的半导体衬底中的阱,且借助于提供对阱的电接触,来提供第二电接触。
4.权利要求1的方法,其中,半导体是硅半导体。
5.权利要求4的方法,其中,半导体本体是N型导电的硅半导体本体。
6.一种制作二极管的方法,它包含:
a)在第一导电类型的半导体本体的第一表面上形成多个柱状半导体底座,这些底座具有从半导体本体延伸的第一导电类型的下部区、在底座的上部区与下部区之间形成pn结的第二导电类型的上部区、以及在邻近pn结的上部区中并延伸在邻近pn结的上部区周围的第一导电类型区;
b)形成栅氧化物和导电栅,此导电栅从下部区延伸到在上部区中并延伸在上部区周围的第一导电类型区;
c)提供导电层,此导电层接触到导电栅和在上部区中并延伸在上部区周围的第一导电类型区;以及
d)提供对半导体本体的导电接触。
7.权利要求6的方法,其中,半导体本体是半导体衬底,且借助于在衬底的第二表面上提供金属化层,来提供对半导体本体的导电接触。
8.权利要求6的方法,其中,半导体本体是第二导电类型的半导体衬底中的阱,且借助于提供对阱的电接触,来提供对半导体本体的导电接触。
9.权利要求6的方法,其中,半导体是硅半导体。
10.权利要求9的方法,其中,半导体本体是N型导电的硅半导体本体。
11.一种二极管,它包含:
第一导电类型的半导体本体;
半导体本体第一表面上的多个柱状底座,各个柱状底座具有第一导电类型的下部区以及第二导电类型的上部区,在所述上部区和所述下部区之间形成pn结,上部区和下部区确定各个底座的侧壁;
环绕各个邻近pn结的底座的上部区的第一导电类型区;
各个底座侧壁上的栅氧化物,此栅氧化物从下部区延伸到各个底座上部区周围的第一导电类型区,各个底座上部区周围的部分第一导电类型区不被栅氧化物覆盖;
栅氧化物上的导电栅;
各个底座之间的第二导电类型层;
多个柱状底座上的与导电栅和各个底座上部区周围的第一导电类型区形成电接触的导电层;以及
与半导体本体形成电接触的导电层。
12.权利要求11的二极管,其中,半导体本体是半导体衬底,且形成对半导体本体的电接触的导电层是衬底第二表面上的金属化层。
13.权利要求11的二极管,其中,半导体本体是第二导电类型的半导体衬底中的阱,且形成对半导体本体的电接触的导电层是对阱的电接触。
14.权利要求11的二极管,其中,半导体是硅半导体。
15.权利要求14的二极管,其中,半导体本体是N型导电的硅半导体本体。
16.一种二极管,它包含:
第一导电类型半导体本体第一表面上的多个柱状半导体底座,这些底座具有从半导体本体延伸的第一导电类型的下部区、在底座上部区与下部区之间形成pn结的第二导电类型的上部区、以及在邻近pn结的上部区中并环绕邻近pn结的上部区的第一导电类型区;
栅氧化物和导电栅,此导电栅从下部区延伸到在各个底座的上部区中并延伸在上部区周围的第一导电类型区;
导电层,此导电层接触到导电栅和在上部区中并延伸在上部区周围的第一导电类型区;以及
对半导体本体的导电接触。
17.权利要求16的二极管,其中,半导体本体是半导体衬底,且借助于在衬底的第二表面上提供金属化层,来提供对半导体本体的导电接触。
18.权利要求16的二极管,其中,半导体本体是第二导电类型的半导体衬底中的阱,且借助于提供对阱的电接触,来提供对半导体本体的导电接触。
19.权利要求16的二极管,其中,半导体是硅半导体。
20.权利要求19的二极管,其中,半导体本体是N型导电的硅半导体本体。
CNB028147952A 2001-05-23 2002-05-08 垂直金属氧化物半导体场效应二极管及制造方法 Expired - Fee Related CN1309092C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/864,436 2001-05-23
US09/864,436 US6537921B2 (en) 2001-05-23 2001-05-23 Vertical metal oxide silicon field effect semiconductor diodes

Publications (2)

Publication Number Publication Date
CN1545736A CN1545736A (zh) 2004-11-10
CN1309092C true CN1309092C (zh) 2007-04-04

Family

ID=25343277

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028147952A Expired - Fee Related CN1309092C (zh) 2001-05-23 2002-05-08 垂直金属氧化物半导体场效应二极管及制造方法

Country Status (12)

Country Link
US (1) US6537921B2 (zh)
EP (2) EP1393382B1 (zh)
JP (1) JP4511118B2 (zh)
KR (1) KR100883873B1 (zh)
CN (1) CN1309092C (zh)
AT (1) ATE516596T1 (zh)
AU (1) AU2002305526B8 (zh)
BR (1) BR0209916A (zh)
CA (1) CA2447722A1 (zh)
IL (2) IL158845A0 (zh)
TW (1) TW558839B (zh)
WO (1) WO2002095835A2 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308313B4 (de) * 2003-02-26 2010-08-19 Siemens Ag Halbleiterdiode, elektronisches Bauteil, Spannungszwischenkreisumrichter und Steuerverfahren
US7030680B2 (en) * 2003-02-26 2006-04-18 Integrated Discrete Devices, Llc On chip power supply
US7105391B2 (en) * 2004-03-04 2006-09-12 International Business Machines Corporation Planar pedestal multi gate device
JP2006165468A (ja) * 2004-12-10 2006-06-22 Nec Electronics Corp 半導体集積回路
JP4790340B2 (ja) * 2005-07-25 2011-10-12 パナソニック株式会社 半導体装置
US7615812B1 (en) * 2006-03-23 2009-11-10 Integrated Discrete Devices, Llc Field effect semiconductor diodes and processing techniques
US8148748B2 (en) 2007-09-26 2012-04-03 Stmicroelectronics N.V. Adjustable field effect rectifier
WO2009042807A2 (en) 2007-09-26 2009-04-02 Lakota Technologies, Inc. Adjustable field effect rectifier
KR100975404B1 (ko) * 2008-02-28 2010-08-11 주식회사 종합건축사사무소근정 블록담장용 지주 및 이의 시공방법
KR100955175B1 (ko) * 2008-03-13 2010-04-29 주식회사 하이닉스반도체 수직형 반도체 소자 및 그 제조 방법
CN102037548B (zh) * 2008-04-28 2014-04-23 意法半导体有限公司 具有集成场效应整流器的mosfet
US8445947B2 (en) * 2008-07-04 2013-05-21 Stmicroelectronics (Rousset) Sas Electronic circuit having a diode-connected MOS transistor with an improved efficiency
KR101010121B1 (ko) * 2008-07-04 2011-01-24 주식회사 하이닉스반도체 반도체 소자의 제조방법
WO2010080855A2 (en) 2009-01-06 2010-07-15 Lakota Technologies Inc. Self-bootstrapping field effect diode structures and methods
WO2010127370A2 (en) 2009-05-01 2010-11-04 Lakota Technologies, Inc. Series current limiting device
WO2011049552A1 (en) * 2009-10-19 2011-04-28 Integrated Discrete Devices, Llc Field-effect semiconductor diode and methods of making the same
CN102064201B (zh) * 2010-10-22 2011-11-30 深圳市芯威科技有限公司 浅槽金属氧化物半导体二极管
US9331065B2 (en) 2011-05-17 2016-05-03 Semiconductor Components Industries, Llc Semiconductor diode and method of manufacture
US8502336B2 (en) 2011-05-17 2013-08-06 Semiconductor Components Industries, Llc Semiconductor diode and method of manufacture
FR2982416B1 (fr) 2011-11-03 2014-01-03 St Microelectronics Sa Dispositif electronique de protection contre les decharges electrostatiques
FR2984604B1 (fr) 2011-12-16 2014-01-17 St Microelectronics Sa Dispositif electronique compact de protection contre les decharges electrostatiques.
CN104412339B (zh) * 2012-07-05 2017-10-17 保险丝公司 用于电压瞬变电路保护的撬棒器件
US9716151B2 (en) 2013-09-24 2017-07-25 Semiconductor Components Industries, Llc Schottky device having conductive trenches and a multi-concentration doping profile therebetween
US9263598B2 (en) 2014-02-14 2016-02-16 Semiconductor Components Industries, Llc Schottky device and method of manufacture
US10431699B2 (en) 2015-03-06 2019-10-01 Semiconductor Components Industries, Llc Trench semiconductor device having multiple active trench depths and method
US9716187B2 (en) 2015-03-06 2017-07-25 Semiconductor Components Industries, Llc Trench semiconductor device having multiple trench depths and method
US9391065B1 (en) 2015-06-29 2016-07-12 Globalfoundries Inc. Electrostatic discharge and passive structures integrated in a vertical gate fin-type field effect diode
CN109427878A (zh) * 2017-08-21 2019-03-05 中国科学院物理研究所 场效应二极管及包括其的全波整流电桥和能量管理电路
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
US10388801B1 (en) * 2018-01-30 2019-08-20 Semiconductor Components Industries, Llc Trench semiconductor device having shaped gate dielectric and gate electrode structures and method
US10608122B2 (en) 2018-03-13 2020-03-31 Semicondutor Components Industries, Llc Schottky device and method of manufacture
DE102018206724A1 (de) 2018-05-02 2019-11-07 Kardion Gmbh Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung
DE102018206727A1 (de) * 2018-05-02 2019-11-07 Kardion Gmbh Energieübertragungssystem und Empfangseinheit zur drahtlosen transkutanen Energieübertragung
DE102018206754A1 (de) 2018-05-02 2019-11-07 Kardion Gmbh Verfahren und Vorrichtung zur Bestimmung der Temperatur an einer Oberfläche sowie Verwendung des Verfahrens
DE102018206725A1 (de) 2018-05-02 2019-11-07 Kardion Gmbh Empfangseinheit, Sendeeinheit, Energieübertragungssystem und Verfahren zur drahtlosen Energieübertragung
US10566466B2 (en) 2018-06-27 2020-02-18 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method
US10439075B1 (en) 2018-06-27 2019-10-08 Semiconductor Components Industries, Llc Termination structure for insulated gate semiconductor device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291974U (zh) * 1988-12-28 1990-07-20
US5825079A (en) * 1997-01-23 1998-10-20 Luminous Intent, Inc. Semiconductor diodes having low forward conduction voltage drop and low reverse current leakage

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444255A (en) 1944-11-10 1948-06-29 Gen Electric Fabrication of rectifier cells
DE1229093B (de) 1963-01-23 1966-11-24 Basf Ag Verfahren zur Herstellung von Hexahydropyrimidinderivaten
US3295030A (en) 1963-12-18 1966-12-27 Signetics Corp Field effect transistor and method
DE1221363B (de) 1964-04-25 1966-07-21 Telefunken Patent Verfahren zum Verringern des Bahnwiderstands von Halbleiterbauelementen
US3617824A (en) 1965-07-12 1971-11-02 Nippon Electric Co Mos device with a metal-silicide gate
US3407343A (en) 1966-03-28 1968-10-22 Ibm Insulated-gate field effect transistor exhibiting a maximum source-drain conductance at a critical gate bias voltage
US3458798A (en) 1966-09-15 1969-07-29 Ibm Solid state rectifying circuit arrangements
DE1614574A1 (de) 1967-08-04 1970-10-29 Siemens Ag Halbleiterbauelement,insbesondere Halbleiterbauelement mit pn-UEbergang
US3619737A (en) 1970-05-08 1971-11-09 Ibm Planar junction-gate field-effect transistors
US3864819A (en) 1970-12-07 1975-02-11 Hughes Aircraft Co Method for fabricating semiconductor devices
US3943547A (en) 1970-12-26 1976-03-09 Hitachi, Ltd. Semiconductor device
US3749987A (en) 1971-08-09 1973-07-31 Ibm Semiconductor device embodying field effect transistors and schottky barrier diodes
US3769109A (en) 1972-04-19 1973-10-30 Bell Telephone Labor Inc PRODUCTION OF SiO{11 {11 TAPERED FILMS
US3935586A (en) 1972-06-29 1976-01-27 U.S. Philips Corporation Semiconductor device having a Schottky junction and method of manufacturing same
US4019248A (en) 1974-06-04 1977-04-26 Texas Instruments Incorporated High voltage junction semiconductor device fabrication
FR2289051A1 (fr) 1974-10-22 1976-05-21 Ibm Dispositifs a semi-conducteur du genre transistors a effet de champ et a porte isolee et circuits de protection cotre les surtensions
US3988765A (en) 1975-04-08 1976-10-26 Rca Corporation Multiple mesa semiconductor structure
US4045250A (en) 1975-08-04 1977-08-30 Rca Corporation Method of making a semiconductor device
US4099260A (en) 1976-09-20 1978-07-04 Bell Telephone Laboratories, Incorporated Bipolar read-only-memory unit having self-isolating bit-lines
US4140560A (en) 1977-06-20 1979-02-20 International Rectifier Corporation Process for manufacture of fast recovery diodes
US4104086A (en) 1977-08-15 1978-08-01 International Business Machines Corporation Method for forming isolated regions of silicon utilizing reactive ion etching
US4153904A (en) 1977-10-03 1979-05-08 Texas Instruments Incorporated Semiconductor device having a high breakdown voltage junction characteristic
US4139880A (en) 1977-10-03 1979-02-13 Motorola, Inc. CMOS polarity reversal circuit
US4138280A (en) 1978-02-02 1979-02-06 International Rectifier Corporation Method of manufacture of zener diodes
US4246502A (en) 1978-08-16 1981-01-20 Mitel Corporation Means for coupling incompatible signals to an integrated circuit and for deriving operating supply therefrom
US4330384A (en) 1978-10-27 1982-05-18 Hitachi, Ltd. Process for plasma etching
US4340900A (en) 1979-06-19 1982-07-20 The United States Of America As Represented By The Secretary Of The Air Force Mesa epitaxial diode with oxide passivated junction and plated heat sink
US4318751A (en) 1980-03-13 1982-03-09 International Business Machines Corporation Self-aligned process for providing an improved high performance bipolar transistor
US4372034B1 (en) 1981-03-26 1998-07-21 Intel Corp Process for forming contact openings through oxide layers
US4508579A (en) 1981-03-30 1985-04-02 International Business Machines Corporation Lateral device structures using self-aligned fabrication techniques
US4533988A (en) 1981-04-09 1985-08-06 Telectronics Pty. Ltd. On-chip CMOS bridge circuit
DE3124692A1 (de) 1981-06-24 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart "halbleitergleichrichter"
US4423456A (en) 1981-11-13 1983-12-27 Medtronic, Inc. Battery reversal protection
US4403396A (en) 1981-12-24 1983-09-13 Gte Laboratories Incorporated Semiconductor device design and process
US5357131A (en) 1982-03-10 1994-10-18 Hitachi, Ltd. Semiconductor memory with trench capacitor
DE3219606A1 (de) 1982-05-25 1983-12-01 Siemens AG, 1000 Berlin und 8000 München Schottky-leistungsdiode
DE3219888A1 (de) 1982-05-27 1983-12-01 Deutsche Itt Industries Gmbh, 7800 Freiburg Planares halbleiterbauelement und verfahren zur herstellung
US4638551A (en) 1982-09-24 1987-01-27 General Instrument Corporation Schottky barrier device and method of manufacture
GB2134705B (en) 1983-01-28 1985-12-24 Philips Electronic Associated Semiconductor devices
DE3334167A1 (de) 1983-09-21 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Halbleiterdiode
US4534826A (en) 1983-12-29 1985-08-13 Ibm Corporation Trench etch process for dielectric isolation
DE3435306A1 (de) 1984-09-26 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung von laserdioden mit jutierter integrierter waermesenke
EP0176778B1 (de) 1984-09-28 1991-01-16 Siemens Aktiengesellschaft Verfahren zum Herstellen eines pn-Übergangs mit hoher Durchbruchsspannung
JPS61156882A (ja) 1984-12-28 1986-07-16 Toshiba Corp 二重拡散形絶縁ゲ−ト電界効果トランジスタ及びその製造方法
US4777580A (en) 1985-01-30 1988-10-11 Maxim Integrated Products Integrated full-wave rectifier circuit
US4742377A (en) 1985-02-21 1988-05-03 General Instrument Corporation Schottky barrier device with doped composite guard ring
US4579626A (en) 1985-02-28 1986-04-01 Rca Corporation Method of making a charge-coupled device imager
JPS62119972A (ja) 1985-11-19 1987-06-01 Fujitsu Ltd 接合型トランジスタ
US4745395A (en) 1986-01-27 1988-05-17 General Datacomm, Inc. Precision current rectifier for rectifying input current
US4666556A (en) 1986-05-12 1987-05-19 International Business Machines Corporation Trench sidewall isolation by polysilicon oxidation
US4875151A (en) 1986-08-11 1989-10-17 Ncr Corporation Two transistor full wave rectifier
EP0257328B1 (de) 1986-08-11 1991-10-23 Siemens Aktiengesellschaft Verfahren zur Stabilisierung von pn-Übergängen
JPH0693498B2 (ja) 1986-08-25 1994-11-16 日立超エル・エス・アイエンジニアリング株式会社 半導体集積回路装置
EP0262356B1 (de) 1986-09-30 1993-03-31 Siemens Aktiengesellschaft Verfahren zur Herstellung eines pn-Übergangs hoher Spannungsfestigkeit
US5338693A (en) 1987-01-08 1994-08-16 International Rectifier Corporation Process for manufacture of radiation resistant power MOSFET and radiation resistant power MOSFET
JPH0744213B2 (ja) 1987-02-23 1995-05-15 松下電子工業株式会社 半導体装置の製造方法
US4811065A (en) 1987-06-11 1989-03-07 Siliconix Incorporated Power DMOS transistor with high speed body diode
US4857985A (en) 1987-08-31 1989-08-15 National Semiconductor Corporation MOS IC reverse battery protection
EP0311816A1 (de) 1987-10-15 1989-04-19 BBC Brown Boveri AG Halbleiterbauelement und Verfahren zu dessen Herstellung
US4822757A (en) 1987-11-10 1989-04-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US4903189A (en) 1988-04-27 1990-02-20 General Electric Company Low noise, high frequency synchronous rectifier
JPH0783118B2 (ja) * 1988-06-08 1995-09-06 三菱電機株式会社 半導体装置およびその製造方法
JPH0291974A (ja) * 1988-09-29 1990-03-30 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US4900692A (en) 1989-04-24 1990-02-13 Motorola, Inc. Method of forming an oxide liner and active area mask for selective epitaxial growth in an isolation trench
US4974050A (en) 1989-05-30 1990-11-27 Motorola Inc. High voltage semiconductor device and method
US4927772A (en) 1989-05-30 1990-05-22 General Electric Company Method of making high breakdown voltage semiconductor device
JPH0750791B2 (ja) 1989-09-20 1995-05-31 株式会社日立製作所 半導体整流ダイオード及びそれを使つた電源装置並びに電子計算機
US5038266A (en) 1990-01-02 1991-08-06 General Electric Company High efficiency, regulated DC supply
JP2730271B2 (ja) 1990-03-07 1998-03-25 住友電気工業株式会社 半導体装置
US5225376A (en) 1990-05-02 1993-07-06 Nec Electronics, Inc. Polysilicon taper process using spin-on glass
JPH0429372A (ja) 1990-05-24 1992-01-31 Mitsubishi Electric Corp 半導体光検出装置
JP2682202B2 (ja) 1990-06-08 1997-11-26 日本電気株式会社 電界効果トランジスタを用いた整流回路
US5184198A (en) 1990-08-15 1993-02-02 Solid State Devices, Inc. Special geometry Schottky diode
US5109256A (en) 1990-08-17 1992-04-28 National Semiconductor Corporation Schottky barrier diodes and Schottky barrier diode-clamped transistors and method of fabrication
JP3074736B2 (ja) 1990-12-28 2000-08-07 富士電機株式会社 半導体装置
US5168331A (en) * 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
US5268833A (en) 1991-05-14 1993-12-07 U.S. Philips Corporation Rectifier circuit including FETs of the same conductivity type
JP2682272B2 (ja) * 1991-06-27 1997-11-26 三菱電機株式会社 絶縁ゲート型トランジスタ
US5254869A (en) 1991-06-28 1993-10-19 Linear Technology Corporation Aluminum alloy/silicon chromium sandwich schottky diode
FR2679068B1 (fr) 1991-07-10 1997-04-25 France Telecom Procede de fabrication d'un transistor a effet de champ vertical, et transistor obtenu par ce procede.
JP2858383B2 (ja) 1991-10-14 1999-02-17 株式会社デンソー 半導体装置の製造方法
US5475245A (en) 1992-03-23 1995-12-12 Rohm Co., Ltd. Field-effect voltage regulator diode
US5510641A (en) * 1992-06-01 1996-04-23 University Of Washington Majority carrier power diode
US5258640A (en) 1992-09-02 1993-11-02 International Business Machines Corporation Gate controlled Schottky barrier diode
JP2809253B2 (ja) 1992-10-02 1998-10-08 富士電機株式会社 注入制御型ショットキーバリア整流素子
US5506421A (en) 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US5396087A (en) 1992-12-14 1995-03-07 North Carolina State University Insulated gate bipolar transistor with reduced susceptibility to parasitic latch-up
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
US5479626A (en) 1993-07-26 1995-12-26 Rockwell International Corporation Signal processor contexts with elemental and reserved group addressing
US5426325A (en) 1993-08-04 1995-06-20 Siliconix Incorporated Metal crossover in high voltage IC with graduated doping control
JP2910573B2 (ja) * 1993-09-10 1999-06-23 株式会社日立製作所 電界効果トランジスタ及びその製造方法
JP3396553B2 (ja) * 1994-02-04 2003-04-14 三菱電機株式会社 半導体装置の製造方法及び半導体装置
US5780324A (en) 1994-03-30 1998-07-14 Denso Corporation Method of manufacturing a vertical semiconductor device
US5536676A (en) 1995-04-03 1996-07-16 National Science Council Low temperature formation of silicided shallow junctions by ion implantation into thin silicon films
KR0154702B1 (ko) 1995-06-09 1998-10-15 김광호 항복전압을 향상시킨 다이오드 제조 방법
JP3230650B2 (ja) * 1996-03-27 2001-11-19 富士電機株式会社 炭化けい素半導体基板とその製造方法およびその基板を用いた炭化けい素半導体素子
US5818084A (en) 1996-05-15 1998-10-06 Siliconix Incorporated Pseudo-Schottky diode
US5744994A (en) * 1996-05-15 1998-04-28 Siliconix Incorporated Three-terminal power mosfet switch for use as synchronous rectifier or voltage clamp
US5886383A (en) 1997-01-10 1999-03-23 International Rectifier Corporation Integrated schottky diode and mosgated device
US5793089A (en) * 1997-01-10 1998-08-11 Advanced Micro Devices, Inc. Graded MOS transistor junction formed by aligning a sequence of implants to a selectively removable polysilicon sidewall space and oxide thermally grown thereon
US5898982A (en) 1997-05-30 1999-05-04 Luminous Intent, Inc. Thin film capacitors
JPH11307786A (ja) * 1998-04-27 1999-11-05 Citizen Watch Co Ltd 半導体ダイオード
US6186408B1 (en) 1999-05-28 2001-02-13 Advanced Power Devices, Inc. High cell density power rectifier
JP2001085685A (ja) * 1999-09-13 2001-03-30 Shindengen Electric Mfg Co Ltd トランジスタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291974U (zh) * 1988-12-28 1990-07-20
US5825079A (en) * 1997-01-23 1998-10-20 Luminous Intent, Inc. Semiconductor diodes having low forward conduction voltage drop and low reverse current leakage

Also Published As

Publication number Publication date
AU2002305526A1 (en) 2002-12-03
TW558839B (en) 2003-10-21
KR100883873B1 (ko) 2009-02-17
EP2273554A1 (en) 2011-01-12
IL158845A0 (en) 2004-05-12
JP4511118B2 (ja) 2010-07-28
US6537921B2 (en) 2003-03-25
KR20040005982A (ko) 2004-01-16
US20020177324A1 (en) 2002-11-28
AU2002305526B8 (en) 2007-02-15
IL158845A (en) 2007-12-03
EP1393382B1 (en) 2011-07-13
EP1393382A2 (en) 2004-03-03
JP2004531065A (ja) 2004-10-07
WO2002095835A2 (en) 2002-11-28
AU2002305526B2 (en) 2006-10-12
WO2002095835A3 (en) 2003-07-31
BR0209916A (pt) 2004-08-31
CA2447722A1 (en) 2002-11-28
ATE516596T1 (de) 2011-07-15
CN1545736A (zh) 2004-11-10

Similar Documents

Publication Publication Date Title
CN1309092C (zh) 垂直金属氧化物半导体场效应二极管及制造方法
CN1135633C (zh) 具有第一和第二二极管接触的二极管
CN1531756A (zh) 垂直结型场效应半导体二极管
CN1311560C (zh) 横向低侧高压器件及高侧高压器件
CN1252827C (zh) 高单元密度的功率整流器及其制造方法和计算机主板
US9048308B2 (en) Regenerative building block and diode bridge rectifier and methods
CN104051546B (zh) 一种功率二极管的制备方法
US6420757B1 (en) Semiconductor diodes having low forward conduction voltage drop, low reverse current leakage, and high avalanche energy capability
CN103337523A (zh) 一种斜沟槽超势垒整流器件及其制造方法
US6433370B1 (en) Method and apparatus for cylindrical semiconductor diodes
CN1918710A (zh) 小表面有源半导体元件
CN207517702U (zh) 一种双外延超级势垒整流器
JPH0349257A (ja) 半導体装置
CN107403795A (zh) 一种功率半导体器件结构及其制造方法
WO2011049552A1 (en) Field-effect semiconductor diode and methods of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: INTEGRATED DISCRETE DEVICES CO.,LTD.

Free format text: FORMER NAME OR ADDRESS: VRAM TECHNOLOGIES LLC

CP03 Change of name, title or address

Address after: American California

Patentee after: Integrated Discrete Devices Ll

Address before: American California

Patentee before: Vram Technologies LLC

ASS Succession or assignment of patent right

Owner name: ARRAY OPTRONIX INC.

Free format text: FORMER OWNER: INTEGRATED DISCRETE DEVICES LL

Effective date: 20110926

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20110926

Address after: American California

Patentee after: Semicoa

Address before: American California

Patentee before: Integrated Discrete Devices Ll

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20120508