CN1288777C - 阴极活性物质及使用它的锂二次电池 - Google Patents

阴极活性物质及使用它的锂二次电池 Download PDF

Info

Publication number
CN1288777C
CN1288777C CNB2004100074548A CN200410007454A CN1288777C CN 1288777 C CN1288777 C CN 1288777C CN B2004100074548 A CNB2004100074548 A CN B2004100074548A CN 200410007454 A CN200410007454 A CN 200410007454A CN 1288777 C CN1288777 C CN 1288777C
Authority
CN
China
Prior art keywords
active material
cathode active
lithium
vibration mode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100074548A
Other languages
English (en)
Other versions
CN1577924A (zh
Inventor
韩赫洙
崔荣敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1577924A publication Critical patent/CN1577924A/zh
Application granted granted Critical
Publication of CN1288777C publication Critical patent/CN1288777C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种下面通式(1)的阴极活性物质和使用这种阴极活性物质的锂二次电池,它具有更长的循环寿命及有效的充电/放电特性:LixCoyM1-yA2...(1),式中0.95≤x≤1.0;0≤y≤1;M是选自Ni,Fe,Pb,Mg,Al,K,Na,Ca,Si,Ti,Sn,V,Ge,Ga,B,As,Zr,Mn及Cr中的至少一个;而A是选自O,F,S和P中的一个。所述阴极活性物质如拉曼光谱法所测定的,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围。而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。

Description

阴极活性物质及使用 它的锂二次电池
技术领域
本发明涉及用于锂二次电池的氧化锂阴极活性物质以及使用此阴极活性物质的锂二次电池,更具体地说,本发明涉及在其拉曼光谱中具有特别相对峰强度的氧化锂阴极活性物质及使用它的锂二次电池。
背景技术
随着制造手提无绳设备的近来迅速发展,锂二次电池已变成小电子设备例如便携式计算机、移动电话、摄像录像机等的适用电源。自从Mizusima在1980年公开了锂钴氧化物(LiCoO2)作为有效的阴极活性物质以来,已对锂的复杂氧化物进行了深入研究。
关于二次电池的发展,循环寿命、充电/放电特性及容量特性是应考虑的重要性能度量。构成二次电池的阴极和阳极活性物质、电解质、粘结剂等等的组成及结构是影响二次电池特性的主要因素。
可以通过评估影响电池功能的这类因素而制造具有所希望性能的电池。如美国专利5344726,6335121等所公开的,评估取决于电池制造中所用阳极活性物质的电池特性的方法,包括X-射线技术及拉曼光谱,利用它们可以读到含碳阳极活性物质的各个峰。
但是,用基于拉曼光谱而评估取决于所用阴极活性物质的电池特性的方法,却几乎没有报导。这是因为在制造阴极中,阴极活性物质通常以与粘结剂、导电碳等的混合物使用,难于从其他物质中将它分离出来供分析用。
因此,通常直接使用完全电池对例如循环寿命、充电/放电特性及容量特性等进行性能评估。很明显,在开发活性物质阶段,常使用X-射线衍射分析法来预测电池性能。但是,用这种分析方法不能观察到阴极活性物质的微小结构变化。当在电池中使用具体阴极活性物质时,没有替代的办法,只有使用完全电池去评估使用期限和安全措施,这因而增加了制造时间和增加了开发阴极活性物质电池的成本。
发明内容
本发明提供了一种阴极活性物质,它使得能采用电池组件而不是采用完全电池,通过用拉曼光谱法分析阴极活性物质的结构变化,以预测循环寿命和充电/放电特性,以便能制造可靠电池。本发明也提供了采用此阴极活性物质的锂二次电池。
在一个方面,本发明提供了一种下面通式(1)的阴极活性物质:
                    LixCoyM1-yA2    …(1)
式中0.95≤x≤1.0;0≤y≤1;M是选自Ni,Fe,Pb,Mg,Al,K,Na,Ca,Si,Ti,Sn,V,Ge,Ga,B,As,Zr,Mn及Cr中的至少一个;而A是选自O,F,S和P中的一个;其中通式(1)的阴极活性物质如拉曼光谱法所测定的,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。
在另一方面,本发明提供了一种锂二次电池,它包括:含有作为主要组份的含碳物质的阳极;含有作为阴极活性物质的上述通式(1)锂基化合物的阴极;安置在阳极与阴极之间的隔板;及液态电解液和聚合物电解液中的一种。如上所述,用作阴极活性物质的通式(1)锂基化合物如拉曼光谱所测出的,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。
当上述锂化合物用作阴极活性物质时,在电池的制造结束之前,可以预测电池的循环寿命、充电/放电特性和容量特性。因此,使用本发明的锂基阴极活性物质能更有效制造具有所希望特性的电池。
附图说明
通过参考所附附图详细描述其示范性实施方案,则本发明的上述或其他特征将变得更清晰,在附图中:
图1是锂钴氧化物本身被用作电池的阴极活性物质之前的拉曼光谱;
图2说明锂钴氧化物被用作根据本发明的电池中的阴极活性物质之前的六方晶系A1g和Eg分子振动模式;
图3是锂钴氧化物样品在制造电池中在被用作阴极活性物质之后的拉曼光谱;
图4是电池的容量~充电/放电循环次数图,而这种电池是在本发明实施例中用锂钴氧化物作为阴极活性物质而制造的。
具体实施方式
下面参考附图将对根据本发明的阴极活性物质和使用它的非水锂二次电池作详细描述。
锂二次电池如此制造:用阴极和阳极制成电极组件,而阴极和阳极由能可逆地嵌入或脱出锂离子的物质制成,又制成置于阴极和阳极之间的隔板;往电极组件中加入液态电解液或聚合物电解液。原则上说,锂二次电池经氧化反应和还原反应产生电能,而当锂离子嵌入阴极和阳极以及从阴极和阳极脱出时发生氧化反应和还原反应。锂二次电池的循环寿命、充电/放电特性及容量特性依据所用阴极活性物质的微结构变化而改变。
根据本发明,使用下列通式(1)的锂基化合物作为阴极活性物质:
                    LixCoyM1-yA2    …(1)
式中0.95≤x≤1.0;0≤y≤1;M是选自Ni,Fe,Pb,Mg,Al,K,Na,Ca,Si,Ti,Sn,V,Ge,Ga,B,As,Zr,Mn及Cr中的至少一个;而A是选自O,F,S和P中的一个。
通式(1)的锂基阴极活性物质原本仅具有六方晶系结构,但在制造电池中被加工后则具有六方晶系和尖晶石结构。电池的充电/放电特性和循环寿命依据上述两种结构的比例而大大变化。用X-射线衍射法不能检测出这一微小结构变化,但仅使用拉曼光谱法就可以检测出。
拉曼光谱由分子振动模式而提供物质分子结构的情报,并提供分子结构的微小和局部变化的精确测量。当样品用具体波长的光照射时,发生非弹性拉曼散射和产生依据分子结构变化的信号。这种拉曼光谱法可用于分析阴极活性物质的分子结构。各种拉曼光谱峰的出现取决于阴极活性物质的分子结构,因此可能区别适于产生所希望电池特性的锂基阴极活性物质。
具体地说,锂基化合物半高宽度(FWHM)、相对峰强度及A1g、Eg和F2g振动模式的峰位置随着阴极活性物质的分子结构而变化。基于这些变化,可以筛选出所希望的阴极活性物质。
根据本发明的锂基阴极活性物质的拉曼光谱,在被加工例如制造电池之前,具有相应于两种振动模式的两个峰,如图1所示。换句话说,出现了如图2所说明的相应于两种振动模式即A1g和Eg模式的两个明显的峰。
但是,在制造电池中被加工之后,根据本发明的锂基阴极活性物质具有六方晶系及尖晶石结构。为将在制造电池中被加工后的锂基阴极活性物质进行拉曼光谱分析,将阴极板从电池中分离出来,在400-650℃加热1-10分钟以留下阴极活性物质和含碳物质。这些留下的阴极活性物质及含碳物质被用作拉曼光谱法的样品。电池的特性由所加入的阴极活性物质的结构来决定,而不是由使用之前未加工的阴极活性物质的起始结构来决定。因此,在制造电池之后从阴极板将锂基阴极活性物质分离出来也是重要的。通过分析电池中所用化合物的两种结构的相对峰强度和FWHM,能够制造具有有效充电/放电特性和循环寿命的电池。
在拉曼光谱中,可以使用514nm激光束作为激发源。锂基化合物的拉曼光谱含有相应于A1g(六方晶系及尖晶石结构)、Eg(六方晶系结构)及F2g(尖晶石结构)振动模式的峰,并适用Lorentzian函数进行分析。
在通式(1)的锂基阴极活性物质的拉曼结构中,尖晶石与六方晶系A1g振动模式之间峰强度的比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间峰强度的比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间峰强度的比值在1∶0.2至1∶0.4的范围。
另一方面,通过(1)的锂基阴极活性物质可含有10-1000ppm的镍,镍可以改进电池的特性。
锂基化合物的六方晶系A1g和Eg振动模式当具有上述峰强度的比值时,其FWHM值可分别为12.8-13.6cm-1及9.3-11.3cm-1。锂基化合物的尖晶石A1g和F2g振动模式当具有上述峰强度的比值时,其FWHM值可分别为12.2-13.0cm-1及14.1-16.6cm-1
本发明也提供一种锂二次电池,它包括:含有作为主要成份的含碳物质的阳极;含有作为阴极活性物质的通式(1)锂基化合物的阴极;安置在阳极与阴极之间的隔板;及液态电解液和聚合物电解液中的一种。关于用作阴极活性物质的通式(1)锂基化合物,如拉曼光谱法所测定的,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。此锂二次电池具有有效的充电/放电特性和循环寿命特性。
将参考下列实施例对本发明作更详细的描述。下列实施例是为了解释的目的,而且不是对本发明范围的限制。
                制备实施例1:制备锂阴极活性物质
将48gCo3O4和23g含有镍杂质的Li2CO3称重和混合到一起。把此混合物在800℃煅烧。将已煅烧的产物研磨并分级以提供锂钴氧化物复合物(样品1)。此锂钴氧化物含159ppm的Ni。
                      制备实施例2和3
以与制备实施例1相同的方式合成分别含24ppm(样品2)和623ppm(样品3)Ni的锂钴氧化物复合物。
实施例1至3:制造锂二次电池
分别将在制备实施例100g 1至3中制备的锂钴氧化物与5g作为粘结剂的聚偏氟乙烯、10g作为导电剂的碳黑及100g N-甲基-2-吡咯烷酮混合,制成三种混合物。用球磨机分别地将这些混合物研磨约10小时,得到阴极物质。将这些阴极物质用距离为250μm的刮涂器分别地涂在厚度为15μm、宽度为30cm的铝箔上。把此涂了阴极物质的铝箔干燥、辊压并切成预定的大小以制造阴极板。
将100g用作阳极活性物质的结晶人造石墨(MIMB2528,得自OSAKAGAS,日本),15g用作粘结剂的聚偏氟乙烯及200g N-甲基-2-吡咯烷酮混合到一起并球磨约10小时,生成阳极活性物质组合物。
把此阳极活性物质组合物用距离为300μm的刮涂器涂到厚度为12μm、宽度为30cm的铜箔上,将此涂了阳极活性物质组合物的铜箔干燥、辊压并切成预定的大小以形成阴极板。
将厚度为20μm的聚乙烯隔板(得自CELGARD,美国)分别置于阴极板与阳极板之间,密封制成电池组件。把含有1.1M LiPF6的由体积比为35∶55∶5∶10的碳酸亚乙酯(EC)、碳酸乙甲酯(EMC)、碳酸亚丙酯(PC)、氟代苯(FB)的混合物,注射入每个电池组件中,以生成完全的锂二次电池。
                      比较实施例
以与实施例1相同的方式制造一种锂二次电池,不同的是所用的阴极活性物质含有少于10ppm的Ni。
            实验实施例1:拉曼光谱的测定
在将实施例1至3制备的锂二次电池充电和放电一次之后,从锂二次电池把阴极板分离开并在650℃加热10分钟以便把阴极活性物质和含碳物质留下。来自锂二次电池的阴极活性物质和含碳物质被用作拉曼光谱测定用的样品。
用拉曼光谱仪(System 3000,得自RENISHAW)进行拉曼光谱测定。在测定拉曼光谱中使用514nm激光器作为激发源。用Lorentzian函数对拉曼光谱中相应于锂钴氧化物的A1g、Eg和F2g的振动模式的峰进行分析。
分析结果示于表1及图3之中。
表1
  实施例   结构   振动模式   峰位置   I(六方晶系)(Eg/A1g)   I(尖晶石)(F2g/A1g)   I(六方晶系)(A1g)/尖晶石(A1g)   FWHM
  实施例1   六方晶系   Eg   482   0.93-1.02   0.27-0.29   0.34-0.38   9.6-10.7
  A1g   592   12.8-13.6
  尖晶石   F2g   522   14.1-16.6
  A1g   690   12.2-13.0
  实施例2   六方晶系   Eg   482   2.07-3.49   0.23-0.37   0.06-0.14   11.4-13.3
  A1g   593   18.3-19.4
  尖晶石   F2g   523   14.4-23.4
  A1g   690   13.8-14.4
  实施例3   六方晶系   Eg   481   1.48-1.57   0.24   0.18-0.21   9.3-11.3
  A1g   592   13.0-13.1
  尖晶石   F2g   521   13.3-16.4
  A1g   689   11.5-11.8
  比较实施例   六方晶系   Eg   483   0.45-0.61   N/A   2.5-2.6   9.4-10.0
  A1g   592   N/A
  尖晶   F2g   N/A   13.2-14.3
  石   A1g   690   13.3-15.1
从表1和图3可以明显看到,用作阴极活性物质的根据本发明的锂钴氧化物复合物具有尖晶石结构及六方晶系结构,并显示具有具体宽度和强度比值的拉曼峰。
                实验实施例2:循环寿命检验
将实施例1至3及比较实施例中制得的额定容量为1800mAh的圆筒形锂二次电池,在恒定的1800mA电流下充电至4.2V电压,放置30分钟,再在1800mA电流下放电至2.75V电压。重复此充电和放电循环以测定充电/放电循环寿命特性。结果示于图4中。
正如从图4中所明显看到的,使用根据本发明的阴极活性物质制得的锂二次电池甚至在300次循环之后其充电/放电容量也不显示大的变化,在比较实施例中制的锂二次电池则在300次循环后其充电/放电容量发生大的降低。
如上所述,根据本发明的上面通式(1)的阴极活性物质和使用此阴极活性物质的锂二次电池具有改进的循环寿命及充电/放电特性,并具有更大的放电容量。锂二次电池的性能可以在制造完全电池之前使用含在锂二次电池之中的阴极活性物质来测定,因此能够大大节省用于开发电极活性物质和电池所需的时间和成本。
尽管本发明通过参考其说明性实施例已作了具体展示和描述,但是本技术领域技术熟练人员应该明白,在不违背权利要求书所限定的本发明的精神实质和范围的前提下,可以对形式和细节作出各种改变。

Claims (8)

1.一种下面通式(1)的阴极活性物质:
                    LixCoyM1-yA2    ...(1)
式中0.95≤x≤1.0;0≤y≤1;M是选自Ni,Fe,Pb,Mg,Al,K,Na,Ca,Si,Ti,Sn,V,Ge,Ga,B,As,Zr,Mn及Cr中的至少一个;而A是选自O,F,S和P中的一个,
该通式(1)的阴极活性物质利用拉曼光谱法测出,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。
2.权利要求1的阴极活性物质,含有数量为10-1000ppm的镍。
3.权利要求1的阴极活性物质,其中利用拉曼光谱法测出,该通式(1)的阴极活性物质的六方晶系A1g和Eg振动模式的半高宽度分别为12.8-13.6cm-1和9.3-11.3cm-1
4.权利要求1的阴极活性物质,其中利用拉曼光谱法测出,该通式(1)的阴极活性物质的尖晶石A1g和F2g振动模式的半高宽度分别为12.2-13.0cm-1和14.1-16.6cm-1
5.一种锂二次电池,它包括:
含有作为主要成份的含碳物质的阳极;
含有作为阴极活性物质的通式(1)锂基化合物的阴极;
安置在阳极与阴极之间的隔板;及
液态电解液和聚合物电解液中的一种;
LixCoyM1-yA2    ...(1)
式中0.95≤x≤1.0;0≤y≤1;M是选自Ni,Fe,Pb,Mg,Al,K,Na,Ca,Si,Ti,Sn,V,Ge,Ga,B,As,Zr,Mn及Cr中的至少一个;而A是选自O,F,S和P中的一个,其中通式(1)的锂基化合物利用拉曼光谱法测出,其尖晶石与六方晶系A1g振动模式之间的峰强度比值在1∶0.1至1∶0.4的范围,六方晶系A1g与Eg振动模式之间的峰强度比值在1∶0.9至1∶3.5的范围,而尖晶石A1g与F2g振动模式之间的峰强度比值在1∶0.2至1∶0.4的范围。
6.权利要求5的锂二次电池,其中该阴极活性物质含10-1000ppm的镍。
7.权利要求5的锂二次电池,其中利用拉曼光谱法测出,该通式(1)的锂基化合物的六方晶系A1g和Eg振动模式的半高宽度分别为12.8-13.6cm-1和9.3-11.3cm-1
8.权利要求5的锂二次电池,其中利用拉曼光谱法测出,该通式(1)的锂基化合物的尖晶石A1g和F2g振动模式的半高宽度分别为12.2-13.0cm-1和14.1-16.6cm-1
CNB2004100074548A 2003-07-24 2004-03-04 阴极活性物质及使用它的锂二次电池 Expired - Lifetime CN1288777C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR51115/03 2003-07-24
KR51115/2003 2003-07-24
KR1020030051115A KR100563047B1 (ko) 2003-07-24 2003-07-24 양극 활물질 및 이를 이용한 리튬 2차 전지

Publications (2)

Publication Number Publication Date
CN1577924A CN1577924A (zh) 2005-02-09
CN1288777C true CN1288777C (zh) 2006-12-06

Family

ID=34074978

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100074548A Expired - Lifetime CN1288777C (zh) 2003-07-24 2004-03-04 阴极活性物质及使用它的锂二次电池

Country Status (4)

Country Link
US (1) US7563540B2 (zh)
JP (1) JP2005044785A (zh)
KR (1) KR100563047B1 (zh)
CN (1) CN1288777C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048564B2 (en) 2007-06-25 2011-11-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of forming positive electrode

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608946B2 (ja) * 2004-05-26 2011-01-12 トヨタ自動車株式会社 リチウム複合酸化物材料およびその利用
EP1912271B1 (en) * 2005-08-01 2017-07-05 Santoku Corporation Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4993891B2 (ja) * 2005-09-22 2012-08-08 三洋電機株式会社 非水電解質二次電池
JPWO2007083457A1 (ja) * 2006-01-20 2009-06-11 日鉱金属株式会社 リチウムニッケルマンガンコバルト複合酸化物及びリチウム二次電池
JP4240060B2 (ja) 2006-05-26 2009-03-18 ソニー株式会社 正極活物質および電池
JP5014218B2 (ja) * 2007-03-22 2012-08-29 三洋電機株式会社 非水電解質二次電池
WO2009128289A1 (ja) 2008-04-17 2009-10-22 日鉱金属株式会社 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
EP2365565A4 (en) * 2008-12-05 2013-07-03 Jx Nippon Mining & Metals Corp POSITIVE ACTIVE ELECTRODE MATERIAL FOR A LITHIUM ION BATTERY, POSITIVE ELECTRODE FOR A SECONDARY BATTERY WITH THE POSITIVELY ACTIVE ELECTRODE MATERIAL, AND A LITHIUM CERTAIN BATTERY WITH THE POSITIVE ELECTRODE FOR A SECONDARY BATTERY
KR101264363B1 (ko) 2009-12-03 2013-05-14 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 전구체의 제조방법
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
JP2015529748A (ja) * 2012-07-26 2015-10-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 低温アニールを用いる電気化学デバイス製造プロセス
CN103247796B (zh) * 2013-05-14 2018-04-10 东莞新能源科技有限公司 锂离子电池用多晶相正极材料及其制备方法
CN106165154B (zh) 2013-12-03 2020-03-13 离子材料公司 固体离子传导性聚合物材料及其应用
CN106489217B (zh) 2014-04-01 2021-07-30 离子材料公司 高容量聚合物阴极和包括该阴极的高能量密度可充电电池
WO2016196873A1 (en) * 2015-06-04 2016-12-08 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
EP3304620A4 (en) 2015-06-04 2018-11-07 Ionic Materials, Inc. Solid state bipolar battery
JP6991861B2 (ja) 2015-06-08 2022-02-03 イオニツク・マテリアルズ・インコーポレーテツド アルミニウム負極および固体ポリマー電解質を有するバッテリー
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
JP6326396B2 (ja) * 2015-11-10 2018-05-16 株式会社神戸製鋼所 LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
EP3333128A1 (en) 2016-12-07 2018-06-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel chargeable crystalline materials, in particular for use as electrode materials in electrochemical storage devices
JP7198762B2 (ja) 2017-01-26 2023-01-04 イオニツク・マテリアルズ・インコーポレーテツド 固体高分子の電解質を含むアルカリ電池のカソード
JP6907805B2 (ja) * 2017-08-17 2021-07-21 セイコーエプソン株式会社 複合体、リチウム電池、複合体の製造方法、リチウム電池の製造方法、電子機器
JP6966308B2 (ja) * 2017-12-11 2021-11-10 トヨタ自動車株式会社 リチウムイオン電池用正極活物質及びその製造方法、リチウムイオン電池、並びに、リチウムイオン電池システム
WO2019244955A1 (ja) 2018-06-21 2019-12-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
JP6992897B2 (ja) * 2018-06-21 2022-01-13 株式会社村田製作所 正極活物質および電池
CN111785927A (zh) * 2019-04-03 2020-10-16 中国科学院物理研究所 钠离子电池钛基复合相负极活性材料及其制备方法和应用
CA3239761A1 (en) * 2022-05-20 2023-11-23 Lg Chem, Ltd. Positive electrode active material and method for manufacturing same
CN117941096A (zh) * 2022-06-30 2024-04-26 宁德新能源科技有限公司 电化学装置和电子装置
CN116995225A (zh) * 2023-09-12 2023-11-03 中创新航科技集团股份有限公司 一种正极片及应用其的锂离子电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643035B2 (ja) * 1991-06-17 1997-08-20 シャープ株式会社 非水系二次電池用炭素負極およびその製造方法
JPH076753A (ja) 1993-06-15 1995-01-10 Toray Ind Inc 電極およびその製造方法、およびその電極を用いた二次電池
JPH07320785A (ja) 1994-05-26 1995-12-08 Sony Corp 非水電解液二次電池
WO1998024134A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery
JP2000294240A (ja) * 1999-04-08 2000-10-20 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム複合酸化物およびこれを用いたリチウム二次電池
JP4246342B2 (ja) 1999-12-15 2009-04-02 日立マクセル株式会社 リチウム二次電池とリチウム二次電池用正極活物質
JP4020565B2 (ja) * 2000-03-31 2007-12-12 三洋電機株式会社 非水電解質二次電池
JP4986098B2 (ja) 2001-03-15 2012-07-25 日立金属株式会社 非水系リチウム二次電池用正極およびそれを用いた非水系リチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048564B2 (en) 2007-06-25 2011-11-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of forming positive electrode
CN101689631B (zh) * 2007-06-25 2013-03-06 三洋电机株式会社 非水电解质二次电池和正极的制造方法

Also Published As

Publication number Publication date
US20050019661A1 (en) 2005-01-27
KR100563047B1 (ko) 2006-03-24
US7563540B2 (en) 2009-07-21
KR20050012029A (ko) 2005-01-31
JP2005044785A (ja) 2005-02-17
CN1577924A (zh) 2005-02-09

Similar Documents

Publication Publication Date Title
CN1288777C (zh) 阴极活性物质及使用它的锂二次电池
Martha et al. Surface studies of high voltage lithium rich composition: Li1. 2Mn0. 525Ni0. 175Co0. 1O2
Dupré et al. Electrode/electrolyte interface studies in lithium batteries using NMR
CN1433383A (zh) 锂钴氧化物及其制备方法
Lee et al. Cycle life modeling and the capacity fading mechanisms in a graphite/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell
CN105572155A (zh) 用于确定锂离子电池电极的锂化的方法
WO2008136561A1 (en) Anode material of secondary battery and secondary battery using the same
Barker et al. Lithium insertion in manganese oxides: A model lithium ion system
Appetecchi et al. Lithium insertion into carbonaceous materials and transition metal oxides from high performance polymer electrolytes
Nordh Li4Ti5O12 as an anode material for Li ion batteries in situ XRD and XPS studies
Oswald et al. XPS investigations of valence changes during cycling of LiCrMnO4‐based cathodes in Li‐ion batteries
CN101329286B (zh) 一种评价层状结构锂钴氧化物电化学性能的方法
Liu et al. Impacts of the properties of anode solid electrolyte interface on the storage life of Li-ion batteries
CN109888271B (zh) 正极活性材料及其制备方法、正极片和锂离子电池
KR101440699B1 (ko) 정극 활물질의 평가 방법
Chowdhury et al. Influence of state of charge window on the degradation of Tesla lithium-ion battery cells
CN113903904B (zh) NaLuO2在作为钠离子电池正极材料中的用途
La Mantia Characterization of electrodes for lithium-ion batteries through electrochemical impedance spectroscopy and mass spectrometry
Barker et al. Differential capacity as a spectroscopic probe for the investigation of alkali metal insertion reactions
Kida et al. A study on the cycle performance of lithium secondary batteries using lithium nickel–cobalt composite oxide and graphite/coke hybrid carbon
Floriano et al. Electrochemical and structural characterization of spent and fresh lithium-ion cell phone batteries
CN112268916B (zh) 一种快速表征锂离子电池用二元正极材料性能的方法
Opra et al. Effect of Al (OH) 3 in enhancing PbSnF4 anode performances for rechargeable lithium-ion battery
CN1591958A (zh) 非水电解质电池
Striebel et al. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061206