CN1246859C - 压电陶瓷成分以及采用此压电陶瓷成分的压电器件 - Google Patents

压电陶瓷成分以及采用此压电陶瓷成分的压电器件 Download PDF

Info

Publication number
CN1246859C
CN1246859C CNB021047278A CN02104727A CN1246859C CN 1246859 C CN1246859 C CN 1246859C CN B021047278 A CNB021047278 A CN B021047278A CN 02104727 A CN02104727 A CN 02104727A CN 1246859 C CN1246859 C CN 1246859C
Authority
CN
China
Prior art keywords
piezoelectric
piezoelectric ceramic
ceramic composition
composition
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021047278A
Other languages
English (en)
Other versions
CN1428791A (zh
Inventor
权相九
许康宪
洪钟国
徐东焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of CN1428791A publication Critical patent/CN1428791A/zh
Application granted granted Critical
Publication of CN1246859C publication Critical patent/CN1246859C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明披露了一种压电陶瓷成分和采用此压电陶瓷成分的压电器件,该压电陶瓷成分包括:PZT压电成分,其B-晶格被某种材料替代;以及氧化铬。所提供的压电陶瓷成分包括:表示为分子式Pb[(Co1/2W1/2)xTi1-x-yZry]O3(其中0.001≤x≤0.04,并且0.35≤y≤0.55)的主要部分;根据压电陶瓷成分的总重量,压电陶瓷成分还包括:数量为0.01wt%至2wt%的Cr2O3,数量为0.1wt%至0.5wt%的MnO2以及数量为0.01wt%至2.0wt%的添加剂。该压电陶瓷成分可以满足对压电材料要求的诸如kp和Qm的压电特性,并且它们的相变温度为320℃或更高,TCF的温度系数为±30ppm/℃,软熔处理后的振荡频率变化为0.1%或者更低,而且它们还具有这样良好的压电特性以致可以降低泄漏电流。

Description

压电陶瓷成分以及 采用此压电陶瓷成分的压电器件
技术领域
本发明一般地涉及可以降低泄漏电流的压电陶瓷成分以及采用此压电陶瓷成分的压电器件,更具体地说,本发明涉及在其内用某种材料代替PZT压电的B-晶格、并添加氧化铬的压电陶瓷成分,以及采用此压电陶瓷成分的压电器件。此压电陶瓷成分具有良好的耐热性和频率稳定性,并且可以降低泄漏电流。
背景技术
最近,在陶瓷谐振器、陶瓷滤波器、压电式换能器、压电式蜂鸣器、超声波振荡器等内广泛采用压电式传感器。例如,作为当前信息技术中的关键部件的、千赫兹范围SMD(表面安装器件)型滤波器通常用于生产诸如寻呼机、AMPS(高级移动电话业务系统)、无线发送/接收设备、有线/无线免提成套组件以及无线网络的装置内的双层的IF滤波器。压电式传感器的用途在不断扩大,并且随着压电式传感器灵敏度的发展,需要压电式传感器具有更高级的电特性/压电特性。
随着信息技术的迅速发展,对重量轻、体积小并且效率高的电子材料以及频率稳定电子材料的需求在不断增加。
特别是在使用SMD型芯片部件时,它们需要通过软熔处理。因此,需要一种在软熔处理过程不影响其压电特性、并且耐高温的材料。
然而,由于Tc(相变温度)低,所以传统压电成分的耐热性差,并且经过软熔处理后,其压电特性和频率稳定性的变化大,因此,几乎不能利用传统压电成分生产高附加值SMD型滤波器。此外,有多种电子产品不能生产,并且产品的竞争能力差,因为难以对传统压电成分的压电特性进行控制。
为了确保材料的耐热性,并为了使根据振荡模式软熔处理之后的频率和材料的压电特性稳定,利用包括Pb(Zr,Ti)O3的压电成分作为主要部分并且利用诸如Mn、Y,Dy、Er、Ho、Lu以及Yb的添加剂,对于在软熔处理之后,使耐热性以及频率变化、电容变化和耦合系数(k)变化的稳定过程进行了研究。
例如,第6123867号美国专利披露了一种包括Pb[(Mn,Nb)Zr,Ti]O3作为主要部分和添加剂的压电陶瓷成分,以及采用这种压电陶瓷成分的压电器件,这种压电器件可以使耐热性以及频率变化比、电容变化比和耦合系数(k)变化比稳定。
此外,第sho.52-17239号和第sho.51-7318号日本专利出版物披露的基于Pb(Zn Nb)(Sn,Nb)TiZrO3的成分以及第sho.54-32516号和第sho.54-36757号日本专利出版物披露的基于Pb(Sn,Sb)TiZrO3的成分适合用于高频陶瓷振荡器或滤波器,因为其压电特性良好,晶体颗粒小,并且在其烧结期间容易清除杂质。因此,这些压电陶瓷成分用于陶瓷滤波器、陶瓷振荡器、压电式换能器、陶瓷传感器等。
此外,第Hei.8-239269号和第Hei.9-142930号日本未决专利申请对不受热影响的材料进行了披露,这种材料中,添加了作为PZT或Cr的主要部分的Y、Nb等的复合氧化物。
然而,改变了传统压电陶瓷成分的特性,因为耐热性差,并且会由于加热产生漂移。因此,这种压电器件的可靠性差并且不利之处还有批量生产问题。换句话说,当在150℃的温度对利用传统压电陶瓷成分制成的压电器件进行加热1个小时时,与进行热处理之前比较,进行热处理之后,谐振频率fr立即变化几个百分点。
此外,软熔温度更高,并且被加热元件的温度也更高,因为通常采用诸如陶瓷滤波器和陶瓷振荡器的SMT型电子部件。因此,压电陶瓷在热处理之前的压电特性与热处理之后的压电特性不同。也就是说,存在这样一个问题,即当为了软熔压电器件,将压电陶瓷加热到约为250℃温度,然后冷却到室温时,诸如压电陶瓷谐振频率的压电特性,在热处理之前与热处理之后不同。
不仅如此,还存在另一个问题,即当传统压电成分被极化时,泄漏电流变大,并因此导致电压不均匀,从而导致扩散大,并且在生产此压电器件时,生产效率低。
发明内容
因此,本发明的一个目的是提供一种具有良好耐热性和频率稳定性、泄漏电流小的压电陶瓷成分。
本发明的另一个目的是提供通过减小泄漏电流而具有最小扩散并且可以以高生产率制造压电器件的压电陶瓷成分。
本发明的又一个目的是提供采用这种压电陶瓷成分的压电器件,其中压电陶瓷成分具有良好耐热性和频率稳定性并可以降低泄漏电流。
具体实施方式
根据本发明的实施例,提供了一种压电陶瓷成分,该压电陶瓷成分包括被表示为Pb[(Co1/2W1/2)xTi1-x-yZry]O3(其中0.001≤x≤0.04,并且0.35≤y≤0.55)的主要部分,以及根据压电陶瓷成分的总重量,数量为0.01wt%至2wt%的Cr2O3,数量为0.1wt%至0.5wt%的MnO2,数量为0.01wt%至2.0wt%的添加剂。从包括CoO、MgO、ZnO、Al2O3、Fe2O3、Sb2O3、SnO2、CeO2、Nb2O5、V2O5和WO3以及它们的混合物的组中选择添加剂。
根据本发明另一个实施例,提供基于根据本发明压电陶瓷成分的压电器件。
以下,将对本发明进行详细说明。
作为本发明压电陶瓷成分的主要部分的复合氧化物是基于PZT的复合氧化物,其B-晶格被钴和钨部分代替,并且可以将它表示为如下分子式。
分子式1
Pb[(Co1/2W1/2)xTi1-x-yZry]O3
其中0.001≤x≤0.04,并且0.35≤y≤0.55
此外,根据压电陶瓷成分的总重量,压电陶瓷成分还包括:数量为0.01wt%至2wt%的Cr2O3,数量为0.1wt%至0.5wt%的MnO2,数量为0.01wt%至2.0wt%的添加剂。其中从包括CoO、MgO、ZnO、Al2O3、Fe2O3、Sb2O3、SnO2、CeO2、Nb2O5、V2O5和WO3以及它们的混合物的组中选择添加剂。
通常,将大多数包括Pb(Ti,Zr)O3、基于PZT(ABO3复合钙钛矿)的陶瓷成分应用于高频陶瓷振荡器和滤波器,这归因于良好压电特性和小颗粒大小。
根据本发明,为了根据频率变化,扩大温度稳定性和压电特性的范围,其B-晶格部分被(Co1/2W1/2)替代的、基于PZT的陶瓷成分用作压电陶瓷成分的主要部分。(Co1/2W1/2)是反铁电材料,它具有较高的相变温度。
基于PZT的陶瓷成分的B-晶格部分被(Co1/2W1/2)代替,因此会减少相变温度的下降,并且可以防止随着Tc的降低而降低耐热性,因为Tc保持高值。
在分子式1中,以这样的方式将(Co1/2W1/2)添加到压电陶瓷成分内,即x的范围在0.001至0.04之间,优先在0.025至0.035之间。例如,如果x偏离上述范围,则Kp值会太低或太高,并且不能满足要求的带宽值。此外,当添加的Co或W太多时,压电陶瓷成分的耐热性就降低,因为压电陶瓷成分的Tc会降低。
此外,在分子式1中,以这样的方式将Zr添加到压电陶瓷成分内,即y的范围在0.35至0.55之间,优先在0.46至0.50之间。例如,当Zr的含量偏离上述范围时,则Zr偏离MPB区,并且不能满足TCF值,而且不足以影响压电作用,因为Kp值太低。
如上所述,根据压电陶瓷成分的总重量,添加到主要部分,即其B-晶格部分被(Co1/2W1/2)代替的、基于PZT的陶瓷成分内的Cr2O3的数量为0.01wt%至2wt%,优先为1wt%至2wt%。Cr2O3提高了压电成分的热稳定性。当添加到主要部分内的Cr2O3多于2WT%时,压电陶瓷成分的期望物理性质变差,因为形成了另一物相。相反,当添加到主要部分内的Cr2O3少于0.01WT%时,则压电成分热稳定性的提高可以忽略。
根据压电陶瓷成分的总重量,添加到主要部分内的MnO2的数量为0.1wt%至0.5wt%,优先为0.3wt%至0.4wt%。当添加到主要部分内的MnO2多于0.5WT%时,压电陶瓷成分的期望物理性质变差,因为形成了另一物相。相反,当添加到主要部分内的MnO2少于0.1WT%时,则不能充分防止出现泄漏电流。
通过利用(Co1/2W1/2)部分替代基于PZT复合氧化物内的B-晶格可以提高Tc。然而,Tc的提高不能完全确保压电陶瓷成分的频率稳定性。Tc的提高只能稍许限制压电陶瓷成分在热处理期间内的频率变化。为了确保频率稳定性,需要对主要部分添加特定添加剂。
频率稳定性受到在插树过程中形成的磁畴结构的影响。利用磁畴行为控制磁畴结构,磁畴行为就是根据添加到基于PZT复合氧化物内的添加剂的类型引起的显微结构和内部晶体结构的变化。因此,通过对基于PZT的复合氧化物添加合适的添加剂可以对磁畴行为进行控制,从而保证了频率稳定性。
如上所述,将从包括CoO、MgO、ZnO、Al2O3、Fe2O3、Sb2O3、SnO2、CeO2、Nb2O5、V2O5和WO3的组中选择的任何一种0.01wt%至2.0wt%添加剂添加到被表示为Pb[(Co1/2W1/2)xTi1-x-yZry]O3(其中0.001≤x≤0.04,并且0.35≤y≤0.55)的主要部分内。因为考虑到频率和静电电容的变化,所以优先采用CoO。例如,当添加到基于PZT的复合氧化物内的添加剂少于0.01WT%时,不能获得要求的频率稳定性。相反,当添加的添加剂多于2.0WT%时,则压电陶瓷成分的物理性质变差,因为形成另一物相。
因为在上述成分范围内包括经过化合的Pb、Co、W、Ti以及Zr,所以根据本发明的陶瓷成分可以用作制造诸如滤波器的压电器件的材料,这种材料满足了所需的压电特性(例如:kp和Qm),并且具有320℃或更高的相变温度,TCF为±30ppm/℃,软熔处理之后的振荡频率变化为0.1%或更低。此外,压电陶瓷成分进一步包括用于改善热稳定性的Cr2O3和用于降低泄漏电流的MnO2。在对成分进行极化过程后,泄漏电流的减少还会导致由于非均匀电压引起的扩散的减少,从而提高了利用这种成分生产器件的生产率。
如上所述,在其内利用钴和钨替代ABO3复合钙钛矿的B-晶格以及将诸如Cr2O3、MnO2等的添加剂添加到压电陶瓷成分内的压电陶瓷成分可以在大气压力下烧结,并且在250℃或更高温度下进行软熔处理时,具有良好的电特性和热特性。也就是说,软熔处理之后Fosc的变化为0.1%或者更小,谐振频率的温度系数(TCF)是±30ppm/℃,相变温度为320℃或者更高,并且在极化过程中可以降低泄漏电流。
此外,采用压电陶瓷成分的压电器件具有良好耐热性和压电特性,也就是说,可以将软熔处理之后的频率变化和泄漏电流降低到最小。
因此,根据本发明的压电陶瓷成分可以有利地应用于具有优秀区域振动特性、可以被分层并允许对其应用SMT的SMD型陶瓷滤波器。
压电陶瓷成分的说明性的非限制性实例可以包括压电陶瓷、陶瓷谐振器、压电式换能器、压电式蜂鸣器以及滤波器。
利用以下说明的、不对本发明构成限制的实例,可以更好地理解本发明。
实例1
根据如下表1制备压电陶瓷成分,利用压电陶瓷成分制备用于测量相应压电特性的样品。
将PbO、TiO2、ZrO2、CoO、WO3以及Cr2O3用作始料,并且根据表1中的预定比例称重始料和各种添加剂。此后,利用球磨机,将始料与添加剂充分混合24小时。此外,将MnO2添加到结果混合物内,这样根据压电成分的总重量,MnO2的数量为0.4wt%。
将充分混合的稀浆干燥以形成颗粒大小为0.1μm至1.5μm的干燥粉末。在干燥稀浆时,不应将各物相分离。如果将稀浆分离为一层或多层,则不仅在一个物相内不能形成钙钛矿晶体,而且在进一步形成的另一个物相(例如:烧焦绿石相)内也不能形成钙钛矿晶体,并且因此压电特性和可靠性变差。此外,当颗粒直接偏离上述范围时,会形成另一物相或不起反应的生粉末,因为未对稀浆提供保持单一物相所需的足够能量。
接着,在650℃至1000℃下对均匀混合粉末煅烧1至4小时。此时,如果未形成单一物相晶体,则利用两个步骤对粉末进行煅烧。此后,将单一物相粉末湿法研磨为0.1μm至1.2μm,然后将1.5wt%的PVC粘合剂与研磨后的粉末混合。
此后,在1至3吨/cm2之下成型结果粉末,之后,在1000℃至1350℃下烧结1至4小时以生产23mm×18mm的平板形烧结体。
对烧结体的两侧进行研磨,使烧结体的厚度达到0.26mm,该厚度是将烧结体应用于压电式传感器所需的厚度。对研磨烧结体的表面进行冲洗、烘干,之后,利用600℃至700℃的Ag软膏进行热处理。
为了测量样品泄漏电流的变化,这样对样品进行切割,即所有样品具有相同表面积,然后通过在100℃至200℃的硅油内对样品施加1至5kv/mm的直流电场10至30分钟对样品进行极化。对极化后的压电体样品进行冲洗,然后进行切割和处理,这样反谐振频率的中心约为455kHz。
利用HP419A对区域振动的谐振区域内的谐振频率(Fr)、反谐振频率(Fa)、TCF、相变温度(Tc)、在250℃温度下进行软熔处理之后的频率变化以及各样品的泄漏电流的变化进行测量。测量结果示于表1内。
通过在如下等式1中代入在-40℃至90℃范围内测量的谐振频率(Fr),可以计算谐振频率的温度系数(TCF)。
等式1
Figure C0210472700121
表1
No.   Pb[(Co1/2W1/2)xTi1-x-y          Zry]O3     Cr2O3量(wt%) 1Addi.    1Addi.量(wt%)     TCF(ppm/℃)   Tc(℃)     Fr(%)
    x     y
  1*     0     0.35     0.001     CoO     0.1     125   384     0.15
  2*     0     0.40     0.01     Fe2O3     0.01     44   374     0.008
  3     0.04     0.50     1.0     Sb2O3     1     24   344     0.07
  4*     0.12     0.55     2.0     SnO2     2     145   284     0.19
  5*     0     0.60     2.5     CeO2     3     82   312     0.16
  6*     0.01     0.30     0.001     Nb2O5     0.1     67   387     0.01
  7     0.03     0.35     0.01     V2O5     0.01     -10   372     0.02
  8     0.04     0.40     0.1     WO3     0.05     -10   350     0.007
  9*     0.12     0.45     1.0     CoO     1     35   301     0.12
  10*     0     0.50     2.0     Fe2O3     2     -42   310     0.003
  11     0.03     0.45     0.01     Sb2O3     0.1     27   360     0.02
  12     0.04     0.30     0.01     SnO2     0.01     -45   364     0.04
  13*     0.12     0.35     0.1     CeO2     0.05     -129   284     0.012
  14*     0     0.40     1.0     Nb2O5     1     51   372     0.017
  15     0.01     0.45     2.0     V2O5     2     12   325     0.01
  16     0.03     0.50     0.5     WO3     0.1     -20   327     0.009
  17     0.04     0.55     0.01     CoO     0.1     11   325     0.03
  18*     0.12     0.60     0.01     Fe2O3     0.01     40   312     0.04
  19     0.01     0.35     1.0     Sb2O3     1     11   375     0.007
  20     0.03     0.40     2.0     SnO2     2     24   368     0.002
  21*     0.04     0.45     2.5     CeO2     3     26   348     0.01
  22*     0.12     0.50     0.001     Nb2O5     0.1     135   304     0.009
  23*     0.01     0.30     0.1     WO3     0.05     38   362     0.01
  24     0.03     0.35     1.0     CoO     1     17   330     0.004
  25     0.04     0.40     2.0     Fe2O3     2     -22   324     0.004
  26*     0     0.50     0.001     Sb2O3     0     50   384     0.02
  27     0.01     0.55     0.01     SnO2     0.01     20   364     0.05
  28     0.03     0.45     0.1     CeO2     0.05     29   362     0.009
  29     0.04     0.50     1.0     CoO     1     17   350     0.01
  30*     0.12     0.55     2.0     CeO2     2     156   281     0.012
  31*     0.2     0.60     2.5     Nb2O5     3     39   292     0.01
  32*     0     0.40     0     V2O5     0.05     -142   397     0.03
1添加剂
*比较例
根据表1所示的结果,可以看到,根据本发明的压电陶瓷成分在软熔处理之后的Fosc的变化为0.1%或更低,谐振频率的温度系数(TCF)为±30ppm/℃,相变温度为320℃或更高,并在250℃或更高温度下进行软熔处理过程中具有良好的压电特性。
实例2
除了压电陶瓷成分包括Pb[(Co1/2W1/2)0.01Ti0.48Zr0.48]O3、2wt%的Cr2O3以及表2内数量的MnO2之外,重复实例1的过程,并利用压电陶瓷成分制备样品。测量随MnO2的含量变化的泄漏电流。测量结果示于表2。
表2
    MnO2含量(wt%)     泄漏电流(A)
    33     0     0.54
    34     0.1     0.28
    35     0.3     0.06
    36     0.5     0.45
    37     0.7     0.79
    38     0.9     1.20
从表2中结果可以看出,通过对压电陶瓷成分添加0.1wt%至0.5wt%的MnO2可以降低泄漏电流。此外,根据本发明的压电陶瓷成分的优点在于,即使增加添加的MnO2的数量,仍可以保持耐热性不发生变化,并且可以确保频率变化稳定、电容变化稳定以及耦合系数(k)变化稳定。
如上所述,根据本发明的压电陶瓷成分以及采用此压电陶瓷成分的压电器件满足对压电材料要求的诸如kp和Qm的压电特性,并且它们的相变温度为320℃或更高,谐振频率的温度系数(TCP)为±30ppm/℃,软熔处理后的振荡频率变化为0.1%或者更低,而且它们还具有这样良好的压电特性以致可以降低泄漏电流。
以说明性方式对本发明进行了说明,显然,在此使用的术语仅具有说明性意义,而没有限制意义。根据上述教导,可以对本发明进行许多调整和变更。显然,除了特别说明的之外,还可以在所附权利要求所述的本发明范围内,利用其它方法实现本发明。

Claims (9)

1.一种压电陶瓷,该压电陶瓷成分包括:表示为如下分子式1的主要部分;根据压电陶瓷成分的总重量,压电陶瓷成分还包括:数量为0.01wt%至2wt%的Cr2O3,数量为0.1wt%至0.5wt%的MnO2以及数量为0.01wt%至2.0wt%的添加剂;从包括CoO、MgO、ZnO、Al2O3、Fe2O3、Sb2O3、SnO2、CeO2、Nb2O5、V2O5和WO3以及它们的混合物的组中选择所述添加剂;
分子式1:
Pb[(Co1/2W1/2)xTi1-x-yZry]O3
其中0.001≤x≤0.04,并且0.35≤y≤0.55
2.根据权利要求1所述的压电陶瓷,其中x的范围为0.025至0.035。
3.根据权利要求1所述的压电陶瓷,其中y的范围为0.46至0.50。
4.根据权利要求1所述的压电陶瓷,其中Cr2O3的范围为1wt%至2wt%。
5.根据权利要求1所述的压电陶瓷,其中MnO2的范围为0.3wt%至0.4wt%。
6.根据权利要求1所述的压电陶瓷,其中所述添加剂为CoO。
7.一种压电器件,该压电器件采用根据权利要求1至6之任一所述的压电陶瓷。
8.根据权利要求7所述的压电器件,其中从包括陶瓷谐振器、压电式换能器、压电式蜂鸣器以及滤波器的组中选择压电器件。
9.根据权利要求7所述的压电器件,其中压电器件采用压电陶瓷区域振动模式。
CNB021047278A 2001-12-27 2002-02-09 压电陶瓷成分以及采用此压电陶瓷成分的压电器件 Expired - Fee Related CN1246859C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR86412/2001 2001-12-27
KR10-2001-0086412A KR100462872B1 (ko) 2001-12-27 2001-12-27 누설전류가 감소된 압전체 조성물 및 이로 제조된 압전기기

Publications (2)

Publication Number Publication Date
CN1428791A CN1428791A (zh) 2003-07-09
CN1246859C true CN1246859C (zh) 2006-03-22

Family

ID=19717715

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021047278A Expired - Fee Related CN1246859C (zh) 2001-12-27 2002-02-09 压电陶瓷成分以及采用此压电陶瓷成分的压电器件

Country Status (4)

Country Link
US (1) US6656378B2 (zh)
JP (1) JP3686382B2 (zh)
KR (1) KR100462872B1 (zh)
CN (1) CN1246859C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641348B1 (ko) 2005-06-03 2006-11-03 주식회사 케이씨텍 Cmp용 슬러리와 이의 제조 방법 및 기판의 연마 방법
JP4991145B2 (ja) * 2005-11-30 2012-08-01 ブラザー工業株式会社 圧電アクチュエータの検査方法
US8470211B2 (en) * 2006-04-13 2013-06-25 Agency For Science, Technology And Research Ferroelectric ceramic material with a low sintering temperature
DE102007010239A1 (de) * 2007-03-02 2008-09-04 Epcos Ag Piezoelektrisches Material, Vielschicht-Aktuator und Verfahren zur Herstellung eines piezoelektrischen Bauelements
KR101368330B1 (ko) 2009-10-23 2014-03-03 한국기계연구원 고밀도 자기-전기결합 나노복합체 후막 및 이의 제조방법
CN104291817B (zh) * 2013-07-17 2016-03-23 淄博宇海电子陶瓷有限公司 高居里温度的pzt压电陶瓷材料及其制备方法
CN103467081B (zh) * 2013-08-29 2014-11-12 中国科学院声学研究所 一种具有高居里温度的三元系压电材料及制备方法
JP6256406B2 (ja) * 2015-04-10 2018-01-10 Tdk株式会社 圧電磁器および圧電素子
CN104835880A (zh) * 2015-05-29 2015-08-12 常熟苏大低碳应用技术研究院有限公司 Cr3+掺杂PZT薄膜在制备铁电薄膜太阳能电池中的应用
US10436661B2 (en) * 2016-12-19 2019-10-08 Sporian Microsystems, Inc. Heat resistant sensors for very high temperature conditions
CN108083839A (zh) * 2017-12-01 2018-05-29 高俊 一种高强度多孔压电陶瓷的制备方法
US11346698B2 (en) 2019-06-21 2022-05-31 Sporian Microsystems, Inc. Compact pressure and flow sensors for very high temperature and corrosive fluids
US11940336B2 (en) 2021-03-26 2024-03-26 Sporian Microsystems, Inc. Driven-shield capacitive pressure sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517318A (ja) 1974-07-05 1976-01-21 Boeicho Gijutsu Kenkyu Honbuch Kaitenpisutonsochi
JPS5217239A (en) 1975-07-31 1977-02-09 Toshiba Corp Drier
JPS5946112B2 (ja) * 1975-12-29 1984-11-10 三菱油化株式会社 アツデンザイリヨウ
JPS5432516A (en) 1977-08-17 1979-03-09 Kogyo Gijutsuin New ceramic and method of making same
JPS5436757A (en) 1977-08-27 1979-03-17 Shimadzu Corp Position detector
JPH02303081A (ja) * 1989-05-17 1990-12-17 Murata Mfg Co Ltd 圧電性磁器組成物
JPH0818873B2 (ja) * 1990-02-14 1996-02-28 松下電器産業株式会社 圧電磁器組成物
JPH10167821A (ja) * 1996-12-16 1998-06-23 Matsushita Electric Ind Co Ltd 圧電磁器組成物
US6123867A (en) 1997-12-03 2000-09-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic composition and piezoelectric device using the same
JP4030190B2 (ja) * 1998-06-18 2008-01-09 株式会社日本自動車部品総合研究所 圧電磁器組成物および圧電トランス

Also Published As

Publication number Publication date
KR100462872B1 (ko) 2004-12-17
CN1428791A (zh) 2003-07-09
US6656378B2 (en) 2003-12-02
KR20030056238A (ko) 2003-07-04
US20030132418A1 (en) 2003-07-17
JP2003201176A (ja) 2003-07-15
JP3686382B2 (ja) 2005-08-24

Similar Documents

Publication Publication Date Title
JP4929522B2 (ja) 圧電磁器組成物
CN1246859C (zh) 压电陶瓷成分以及采用此压电陶瓷成分的压电器件
KR101235434B1 (ko) 압전 세라믹 조성물 및 이것을 이용한 압전 소자
KR20150106971A (ko) 압전 재료
JP2001019542A (ja) 圧電セラミックスおよびこれを用いた圧電デバイス
US20070138918A1 (en) Piezoelectric ceramic and piezoelectric ceramic element
JP2001240471A (ja) 圧電磁器組成物および圧電共振子
EP2610233A1 (en) Piezoelectric ceramic and piezoelectric device
KR0161988B1 (ko) 작동기용 압전 세라믹 조성물
JP2001316182A (ja) 圧電磁器および圧電共振子
JP2005008516A (ja) 圧電磁器組成物及びこれを用いた圧電素子
KR100685327B1 (ko) 압전자기 조성물, 압전소자
JPH1160334A (ja) アクチュエータ用圧電磁器組成物
JP3670473B2 (ja) 圧電磁器組成物
JP2000072539A (ja) 圧電体
JPH11240759A (ja) アクチュエータ用圧電磁器
JP2000086341A (ja) 圧電磁器組成物及びその製造方法
JPWO2008078487A1 (ja) 圧電磁器組成物及び圧電素子
KR100462871B1 (ko) 내열성 및 주파수 안정성이 우수한 압전 세라믹 조성물 및 이를 이용한 압전기기
JP3981221B2 (ja) 圧電磁器
JP3587557B2 (ja) 高周波用圧電フィルタ磁器組成物
JP4798898B2 (ja) 圧電磁器組成物及び圧電共振子並びに積層型圧電素子
JP3696734B2 (ja) 圧電体
JP2000159574A (ja) 圧電磁器
JP5206673B2 (ja) 圧電磁器組成物、及び圧電部品

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: CO., LTD. S-CERA

Free format text: FORMER OWNER: SAMSUNG ELECTRO-MECHANICS CO., LTD

Effective date: 20030625

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20030625

Applicant after: Samsung Electric Mechanics Co., Ltd.

Applicant before: Samsung Electro-Mechanics Co., Ltd.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060322