CN1231066A - 具有线性电流电压特性的半导体元件 - Google Patents

具有线性电流电压特性的半导体元件 Download PDF

Info

Publication number
CN1231066A
CN1231066A CN97198000A CN97198000A CN1231066A CN 1231066 A CN1231066 A CN 1231066A CN 97198000 A CN97198000 A CN 97198000A CN 97198000 A CN97198000 A CN 97198000A CN 1231066 A CN1231066 A CN 1231066A
Authority
CN
China
Prior art keywords
drift region
semiconductor
source
trap
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97198000A
Other languages
English (en)
Other versions
CN1130776C (zh
Inventor
A·瑟德贝尔格
A·里特温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN1231066A publication Critical patent/CN1231066A/zh
Application granted granted Critical
Publication of CN1130776C publication Critical patent/CN1130776C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

公开了一种半导体器件,得到穿过坐标原点的线性电流电压特性及双向结构。通常器件含有P掺杂的衬底(10)顶上的氧化层(20)。在所述氧化层的顶上为形成纵向n漂移区的n型漂移区(30)。n漂移区包括在每端的轻掺杂的P型阱(32),P型阱(32)有重掺杂的P+半导体材料、接触源或漏电极(35)的部分(31)。每个P型阱(32)附加地含有n+区(33)和附加在所述p型阱顶上的栅电极(34)。由此n+掺杂区(33)分别定位在栅和漏电极或栅和源电极之间的P阱(32)内。由此形成具有共用漂移区的双向双DMOS结构。

Description

具有线性电流电压特性的半导体元件
本发明涉及SOI(绝缘体基外延硅)晶片上的横向绝缘栅双极晶体管(LIGBT)的改进,得到穿过坐标原点的线性电流电压特性。
SOI(绝缘体基外延硅)晶片上的横向绝缘栅双极晶体管(LIGBT)的剖面显示在图1中。图2示出了所述复杂器件的简单等效电路图,由两个等效场效应晶体管和两个结型晶体管T1和T2画出,其中p阱还作为T2的源极电阻。LIGBT器件看起来类似于横向双扩散金属氧化物半导体(LDMOS)晶体管。除了漏接触由已知为漂移区的几微米轻掺杂材料与沟道区分离之外,LDMOS晶体管与熟悉的NMOS晶体管很类似。示意性的LDMOS器件显示在图3中,除了称做阳极的p-区由之后称做漏区的n+扩散代替之外,图3的器件类似于图1的器件。在关断状态中,LDMOS可以使用所述漂移区支持由p阱和p型衬底形成的两个反向偏置的pn结处的高漏极电压。就电流电压特性而论,所述简单的修改对该器件的操作特性产生深远的影响。
在导通状态中,图1中LIGBT的导通电阻比图3中等效LDMOS的导通电阻小5-10倍,对于电阻很重要的应用是个比较好的选择。然而,LIGBT的一个缺点是由于pn结二极管在阳极侧,因此低电流时有很高的电阻,如果晶体管工作在低电流,将产生失真,这是由于将在该区域出现非线性函数。
可以设计n+和p+扩散位于阳极接触区的混合IGBT和DMOS器件,如图4所示。这种结构通常表示为短阳极LIGBT(SA-LIGBT)。和LDMOS器件一样,由于施加到栅极的大于阈值电压的正电压,和加到阳极上的低电压,该器件导通电流。在某个电流级别,沿p+区的压降足以正偏置阳极/漂移结,阳极开始将少数载流子(空穴)注入到漂移区内。这些少数载流子调制漂移区的电导率,器件的操作类似于通常的LIGBT。由此,这种器件在低电流时有DMOS的线性特性,直到在较高电流时n漂移区内的串联电阻正偏置阳极的p和n结,器件表现为IGBT的电流电压特性。因此,整个电流电压特性曲线呈现两个完全线性的部分,但具有完全不同的导数(斜率)。因此在两个斜率的曲线之间存在特性过渡,这将呈现非线性且仍然产生失真。(详细内容例如可以参见Technical Report No.ICL93-020,Donald R.Disney的文章,题目为“绝缘体基外延硅中横向功率器件的物理与技术”,斯坦福大学电子工程系,美国加州,1993。(“Physisc and Techology of Lateral Power Devices in Silicon-On-Insulator Substrates”,Department of Electrical Engineering,Stanford University,California,USA,1993。))
此外,如果SOI材料中绝缘体下的衬底偏置变化,那么由于在绝缘体和硅衬底界面处的电荷载流子的堆积或耗尽,n漂移区内的串联电阻显著改变,因此器件的电流电压特性改变。此外由于最高电压假设在p+阳极,晶体管不支持AC条件下的操作。
在例如电话系统中的中继功能等的某些应用中,要求存在穿过坐标原点的线性和支持双向电压。
例如在1995年的美国专利No.5,382,535中,Satwinder和Wai公开了一种“特性横向双扩散MOS晶体管的制造方法”,显示出一种对称性,并利用了一种通常称做RESURF的技术,RESURF代表减小表面电场。然而这种解决方法在两个源接触之间存在一个向中心延伸的漏,即一侧的源没有用做漏,反之亦然。这意味着它不能作为双向的解决方法,但这种元件必须与对应的LDMOS串联连接,以得到双向的作用。
本发明的确改善了以上提到的LIGBT的不足,由此穿过坐标原点的电流电压特性为线性,而且表现出的双向结构也允许AC操作。
本发明提供了一种DMOS晶体管结构代替SOI晶片上的IGBT的阳极。在它的最基本的形式中,阳极与阴极对称。
在导通状态中,栅极以DMOS晶体管处于导通状态的方式偏置。在阳极侧,电流首先流过第二晶体管,直到晶体管中的压降正向偏置p阱二极管,开始调制漂移区的电导率,得到LIGBT的电流电压(I-V)特性。固有的晶体管的对称性使器件可以在AC条件下工作。
改善的设计包括包含在晶体管的横向设计内的p+电极,改善了漂移区的电导率调制。此外,可以设计不均匀的漂移区掺杂以优化击穿电压与导通电阻的关系。
通过下面参考结合附图的介绍,可以更好地理解本发明及其本发明的目的和优点,其中:
图1示出了LIGBT器件的剖面图;
图2示出了LIGBT器件的等效电路图;
图3示出了LDMOS晶体管的剖面图;
图4示出了短阳极LIGBT器件的剖面图;
图5示出了根据本发明的双向IGBT器件的剖面图;以及
图6示出了根据本发明分段的双向IGBT器件的剖面图。
在图5和6中示出了根据本发明的结构,提供了DMOS晶体管代替SOI晶片上IGBT的阳极。在它的最基本的实施例中,阳极与阴极完全对称,从图5中显示的可以清楚地看出。
为了得到穿过坐标原点的线性电流电压特性同时得到双向结构的图5的半导体器件包含在示例性实施例中,p-掺杂的衬底的顶部上为氧化层。在所述氧化层的顶部产生n型漂移区形成纵向的n漂移区。n漂移区包括在每个端部的p+掺杂半导体材料的p型阱,每个p型阱附加地含有构成源或漏电极的n+区。在p型阱的顶部附加地形成栅电极得到场效应结构,用于控制沟道区内的电流。由此形成具有共用漂移区的双向双DMOS结构。
对于起始材料,可以利用由衬底10、绝缘层20和半导体顶层30组成的SOI材料。衬底10可以为轻或重掺杂的硅衬底,厚度为10到1000μm。衬底同样可以为由二氧化硅、蓝宝石、金刚石等组成的绝缘体。在示例性实施例中的绝缘体20可以是厚度为0.1到10μm的二氧化硅。此外,绝缘体可以为衬底10自身相同类型的材料,即二氧化硅、蓝宝石、金刚石等。顶层30优选为轻掺杂的硅层,厚度为0.1-30μm。
可以首先通过在顶层30上生长或淀积薄保护性的氧化物制备示例性的元件。随后进行n-掺杂物质的注入,使顶层内获得正确的基本掺杂级别。注入的剂量可以为1011到1013cm-2的数量级。随后退火,之后,进行注入穿过光刻限定的图形产生p+区31。合适的剂量级别为1014到1016cm-2。除此之外,为了得到与p阱区32的良好接触,需要p+区,在本例中将在后面的步骤中限定。除去限定光刻图形的材料之后,随后的退火将p+区31向下扩散到掩埋的绝缘体,如图5所示。然而这不是完全地必要,当顶层30很厚时,很难实现。
限定顶层的基本掺杂级别和p+区31之后,可以除去保护性的氧化物。然后分别在顶层30上生长或淀积栅氧化物和栅材料。在示例性实施例中栅氧化物的厚度可以为50-1000的数量级。栅材料可以由重掺杂厚度为0.1-1μm的多晶硅组成。借助随后的光刻图形,通过腐蚀可以限定出漏和源侧的栅结构。合适的栅长度可以为0.2-5μm。
借助附加的光刻图形,通过1011到1014cm-2剂量的注入可以添加p阱32。以p阱32用栅结构的一个边36为界线的方式限定图形。(该边由图6中的虚线36表示)。在随后的退火中,通过横向扩散可以确定沟道的长度(p阱到达栅结构下多远)。以相同的方式,分别限定并热处理漏和源侧的n+区33。注意由虚线限定的p阱32含有重掺杂的p+区31和至少一个n+区,如图5和6所示。
由元件可接收和承受的电压级别确定漂移区的长度(源和漏之间的距离)。为了进一步提高给定漂移区长度的电压接受能力,可以利用横向变化的掺杂分布得到从源到漏尽可能均匀的电场分布。对于所有其它的掺杂区域,可以相同的方式限定横向变化的掺杂分布。
在另一实施例中,漂移区不均匀地掺杂,但浓度从源朝器件的中心方向增加,然后再朝漏的方向降低。对于更简单的制造,这种不均匀的漂移区将分段掺杂,当从源或漏分别横向地看时,都朝中心逐步地增加。
随后的步骤为形成接触孔、金属化和钝化的标准步骤以完全地限定元件。
本发明元件的附加优点除了呈现穿过坐标原点的线性电流电压特性之外,由于双向结构,通过利用控制漂移区的第一栅和第二栅借助偏置电压限定操作模式,同样可以控制器件象具有源和漏的DMOS器件或带阴极和阳极的IGBT器件一样工作。
本领域的技术人员应该理解可以根据本发明的概念对器件作出不同的修改和变化,但不脱离由附带的权利要求书限定的本发明的精神和范围。

Claims (7)

1.一种半导体器件,得到穿过坐标原点的线性电流电压特性及双向结构,包括衬底顶上的绝缘层和所述绝缘层顶上的n型漂移区;所述n型漂移区,在每端形成构成p阱的低掺杂的p型区域,p阱又具有形成源或漏区的重掺杂的n+区;所述p阱还包括至少部分p+掺杂的半导体材料,在所述p型阱上还有栅电极,所述n+掺杂半导体材料的一个部分或多个部分被分别放置在栅和漏电极之间或栅和源电极之间的p阱内;由此形成具有共用漂移区的双向双DMOS结构。
2.根据权利要求1的半导体,其中所述衬底为n掺杂或p掺杂的硅衬底。
3.根据权利要求1的半导体,其中所述衬底为绝缘体。
4.根据权利要求1的半导体,其中所述衬底为氧化物绝缘体。
5.根据权利要求1的半导体,其中分别在源和漏侧p阱内的所述p+型掺杂的半导体材料在某些区域一直达到所述漂移区,以提高少数载流子的注入。
6.根据权利要求1的半导体,其中所述漂移区没有均匀地掺杂,但分别从源或漏看,掺杂浓度朝器件的中心增加,当从所述漂移区的中心看时,分别朝漏或源降低。
7.根据权利要求6的半导体,其中分别从源或漏看,所述漂移区掺杂以分段的方式朝中心增加。
CN97198000A 1996-07-26 1997-07-04 具有线性电流电压特性的半导体元件 Expired - Fee Related CN1130776C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9602880A SE513284C2 (sv) 1996-07-26 1996-07-26 Halvledarkomponent med linjär ström-till-spänningskarasterik
SE96028808 1996-07-26

Publications (2)

Publication Number Publication Date
CN1231066A true CN1231066A (zh) 1999-10-06
CN1130776C CN1130776C (zh) 2003-12-10

Family

ID=20403484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97198000A Expired - Fee Related CN1130776C (zh) 1996-07-26 1997-07-04 具有线性电流电压特性的半导体元件

Country Status (10)

Country Link
US (1) US5886384A (zh)
EP (1) EP0958612A2 (zh)
JP (1) JP2000516396A (zh)
KR (1) KR100317458B1 (zh)
CN (1) CN1130776C (zh)
AU (1) AU3711797A (zh)
CA (1) CA2261719A1 (zh)
SE (1) SE513284C2 (zh)
TW (1) TW334604B (zh)
WO (1) WO1998005075A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339989C (zh) * 2003-09-30 2007-09-26 恩益禧电子股份有限公司 二极管
CN100369264C (zh) * 2005-08-26 2008-02-13 东南大学 三维多栅高压n型横向双扩散金属氧化物半导体管
CN100369265C (zh) * 2005-08-26 2008-02-13 东南大学 三维多栅高压p型横向双扩散金属氧化物半导体管
CN102403321A (zh) * 2011-09-30 2012-04-04 上海新傲科技股份有限公司 半导体装置及制备方法
CN103887332A (zh) * 2013-10-15 2014-06-25 杭州恩能科技有限公司 一种新型功率半导体器件
CN105977288A (zh) * 2016-05-11 2016-09-28 电子科技大学 具有超势垒集电极结构的ligbt器件及其制造方法
CN113690310A (zh) * 2021-07-14 2021-11-23 广东美的白色家电技术创新中心有限公司 Ligbt、制备方法、智能功率模块、驱动电路及电器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476390B2 (ja) * 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6028337A (en) * 1998-11-06 2000-02-22 Philips North America Corporation Lateral thin-film silicon-on-insulator (SOI) device having lateral depletion means for depleting a portion of drift region
SE9901575L (sv) * 1999-05-03 2000-11-04 Eklund Klas Haakan Halvledarelement
JP2001352070A (ja) * 2000-04-07 2001-12-21 Denso Corp 半導体装置およびその製造方法
GB0314390D0 (en) * 2003-06-20 2003-07-23 Koninkl Philips Electronics Nv Trench field effect transistor structure
DE102005045910B4 (de) * 2005-09-26 2010-11-11 Infineon Technologies Austria Ag Laterales SOI-Bauelement mit einem verringerten Einschaltwiderstand
US7531888B2 (en) * 2006-11-30 2009-05-12 Fairchild Semiconductor Corporation Integrated latch-up free insulated gate bipolar transistor
EP1965437A1 (en) * 2007-02-28 2008-09-03 K.N. Toosi University of Technology Nano-scale transistor device with large current handling capability
KR101019406B1 (ko) 2008-09-10 2011-03-07 주식회사 동부하이텍 Ldmos 소자 제조 방법
US20100117153A1 (en) * 2008-11-07 2010-05-13 Honeywell International Inc. High voltage soi cmos device and method of manufacture
JP2010278188A (ja) * 2009-05-28 2010-12-09 Renesas Electronics Corp 半導体集積回路装置
US8236640B2 (en) 2009-12-18 2012-08-07 Intel Corporation Method of fabricating a semiconductor device having gate finger elements extended over a plurality of isolation regions formed in the source and drain regions
KR102016986B1 (ko) * 2013-01-25 2019-09-02 삼성전자주식회사 엘디모스 트랜지스터 기반의 다이오드 및 이를 포함하는 정전기 방전 보호 회로
CN104795438B (zh) * 2015-04-10 2017-07-28 电子科技大学 一种能抑制负阻效应的sa‑ligbt

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205635A1 (en) * 1985-06-25 1986-12-30 Eaton Corporation Bidirectional power fet with bipolar on-state
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
DD258498A1 (de) * 1987-03-16 1988-07-20 Ilmenau Tech Hochschule Gategesteuertes hochspannungsbauelement mit grosser stromergiebigkeit
SE460448B (sv) * 1988-02-29 1989-10-09 Asea Brown Boveri Dubbelriktad mos-switch
DE68926384T2 (de) * 1988-11-29 1996-10-10 Toshiba Kawasaki Kk Lateraler Leitfähigkeitsmodulations-MOSFET
SE464950B (sv) * 1989-11-09 1991-07-01 Asea Brown Boveri Bistabil integrerad halvledarkrets
US5246870A (en) * 1991-02-01 1993-09-21 North American Philips Corporation Method for making an improved high voltage thin film transistor having a linear doping profile
US5362979A (en) * 1991-02-01 1994-11-08 Philips Electronics North America Corporation SOI transistor with improved source-high performance
EP0497427B1 (en) * 1991-02-01 1996-04-10 Koninklijke Philips Electronics N.V. Semiconductor device for high voltage application and method of making the same
DE69225552T2 (de) * 1991-10-15 1999-01-07 Texas Instruments Inc Lateraler doppel-diffundierter MOS-Transistor und Verfahren zu seiner Herstellung
US5286995A (en) * 1992-07-14 1994-02-15 Texas Instruments Incorporated Isolated resurf LDMOS devices for multiple outputs on one die
US5548150A (en) * 1993-03-10 1996-08-20 Kabushiki Kaisha Toshiba Field effect transistor
US5378912A (en) * 1993-11-10 1995-01-03 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a lateral drift region
US5356822A (en) * 1994-01-21 1994-10-18 Alliedsignal Inc. Method for making all complementary BiCDMOS devices
US5648671A (en) * 1995-12-13 1997-07-15 U S Philips Corporation Lateral thin-film SOI devices with linearly-graded field oxide and linear doping profile
US5710451A (en) * 1996-04-10 1998-01-20 Philips Electronics North America Corporation High-voltage lateral MOSFET SOI device having a semiconductor linkup region

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339989C (zh) * 2003-09-30 2007-09-26 恩益禧电子股份有限公司 二极管
CN100369264C (zh) * 2005-08-26 2008-02-13 东南大学 三维多栅高压n型横向双扩散金属氧化物半导体管
CN100369265C (zh) * 2005-08-26 2008-02-13 东南大学 三维多栅高压p型横向双扩散金属氧化物半导体管
CN102403321A (zh) * 2011-09-30 2012-04-04 上海新傲科技股份有限公司 半导体装置及制备方法
CN103887332A (zh) * 2013-10-15 2014-06-25 杭州恩能科技有限公司 一种新型功率半导体器件
CN105977288A (zh) * 2016-05-11 2016-09-28 电子科技大学 具有超势垒集电极结构的ligbt器件及其制造方法
CN105977288B (zh) * 2016-05-11 2020-05-22 电子科技大学 具有超势垒集电极结构的ligbt器件及其制造方法
CN113690310A (zh) * 2021-07-14 2021-11-23 广东美的白色家电技术创新中心有限公司 Ligbt、制备方法、智能功率模块、驱动电路及电器

Also Published As

Publication number Publication date
CA2261719A1 (en) 1998-02-05
WO1998005075A3 (en) 1998-03-05
AU3711797A (en) 1998-02-20
US5886384A (en) 1999-03-23
WO1998005075A2 (en) 1998-02-05
KR100317458B1 (ko) 2001-12-24
SE9602880D0 (sv) 1996-07-26
EP0958612A2 (en) 1999-11-24
SE9602880L (sv) 1998-01-27
SE513284C2 (sv) 2000-08-14
CN1130776C (zh) 2003-12-10
TW334604B (en) 1998-06-21
KR20000029577A (ko) 2000-05-25
JP2000516396A (ja) 2000-12-05

Similar Documents

Publication Publication Date Title
CN1130776C (zh) 具有线性电流电压特性的半导体元件
CN101300679B (zh) 制造半导体器件的方法
CN1695251A (zh) 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法
CN1124408A (zh) 一种用于半导体器件的表面耐压区
CN104254920A (zh) 半导体装置及半导体装置的制造方法
CN104299995A (zh) 半导体装置
CN101752421A (zh) 半导体器件及其制造方法
US20090273031A1 (en) Semiconductor device
CN102456578B (zh) 高压晶体管及其制造方法
SE513284C3 (sv) Halvledarkomponent med linjär ström-till-spänningskarakteristik
KR100194668B1 (ko) 전력용 절연 게이트 바이폴라 트랜지스터
CN106816468A (zh) 具有resurf结构的横向扩散金属氧化物半导体场效应管
US8097914B2 (en) Semiconductor device and manufacturing method of the same
JPH0732249B2 (ja) 高速スイツチング横形絶縁ゲ−トトランジスタ
CN104253152A (zh) 一种igbt及其制造方法
CN101589471B (zh) 半导体器件及形成半导体器件的方法
KR19990006170A (ko) 수평 바이폴라형 전계 효과 트랜지스터 및 그 제조 방법
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
US7235825B2 (en) IGBT with injection regions between MOSFET cells
EP0103934A2 (en) Insulated-gate field-effect transistors
CN101388406B (zh) 半导体装置
US11316021B2 (en) High density power device with selectively shielded recessed field plate
CN101442069A (zh) 一种具有倾斜表面漂移区的绝缘体上硅横向功率晶体管
US11276762B2 (en) Interface layer control methods for semiconductor power devices and semiconductor devices formed thereof
US6727527B1 (en) Reverse blocking IGBT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: INFINEON TECHNOLOGIES AG

Free format text: FORMER OWNER: ELLISON TELEPHONE CO., LTD.

Effective date: 20040827

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040827

Address after: Munich, Germany

Patentee after: Infennian Technologies AG

Address before: Stockholm

Patentee before: Ericsson Telephone AB

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1023223

Country of ref document: HK

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee