CN1218572A - 具有检测电路的电路装置 - Google Patents

具有检测电路的电路装置 Download PDF

Info

Publication number
CN1218572A
CN1218572A CN97193448A CN97193448A CN1218572A CN 1218572 A CN1218572 A CN 1218572A CN 97193448 A CN97193448 A CN 97193448A CN 97193448 A CN97193448 A CN 97193448A CN 1218572 A CN1218572 A CN 1218572A
Authority
CN
China
Prior art keywords
circuit
group
blm
wlm
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97193448A
Other languages
English (en)
Inventor
T·泽特尔
D·萨默
G·格奥尔格阿科什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1218572A publication Critical patent/CN1218572A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS

Abstract

本发明涉及一个电路装置,其具有预定数目的在半导体衬底(26)上按规则并排形成的组线路(WL0、…、WLm,BL0、…BLm),在该电路装置上,连接多个在半导体衬底(26)上并且基本上互相同样形成的电子基本电路(7),同时,预先规定一个检测电路,其用于检查基本电路(7)和/或组线路(WL0、…、WLm,BL0、…、BLm)的电子作用能力,检测电路同样在电路装置的半导体衬底(26)上集成地形成并且具有分配给组线路(WL0、…、WLm,BL0、…、BLm)的开关装置(30),借助于该开关装置,可以把第一检查信号供给至少一个预定的组线路(WLn,BLn),可以把第二、与第一检查信号相比具有一不同检查电平的检查信号供给另一个、与预定的组线路(WLn,BLn)相比直接相邻装置的组线路(WLn′,WLn′,n′=n-1,n′=n+1),并且预先规定一个分配给组线路(WL0、…、WLm,BL0、…、BLm)的探测装置(31),其获得一个由组线路(WLn,BLn或者WLn′,BLn′)得出的输出信号,其中把第一或者第二检查信号供给组线路。

Description

具有检测电路的电路装置
本发明涉及一个电路装置,其具有预定数目的在半导体衬底上按规则并排形成的组线路,在该电路装置上,连接多个在半导体衬底上并且基本上互相同样形成的电子基本电路,对此,预先规定一个检测电路,其用于检查基本电路和/或组线路的电子作用能力。
根据高度集成的半导体电路的生产,检查其动态和静态的作用能力是必须的,对于生产者来说这意味着实施大部分昂贵的检测步骤。根据大量的所有可能的逻辑状态,在各种情况下的综合电路上,电路的全面检查只能消耗大量的时间。由于特别是在高度集成的半导体储存器上的检测费用是生产成本的主要部分,因此希望检测方法和检测电路在短时间内保证一个尽可能高的错误覆盖。从生产过程中尽可能早的挑选出错误电路使生产设备减轻负担,并且有助于时间和费用的节省。目前,下面使用的是特别对于电子可删除并且可编程的半导体储存装置(EEPROM)的典型的检测顺序。在真正的检测顺序开始前,删除全部的储存单元,接着根据确定的逻辑值或者对全部储存单元或者对按照预先确定的标准选择的储存单元进行编程。然后,在一般情况下通过较高温度和/或通过升高的漏级电压进行所谓重要处理。在接下来的检测过程中,例如通过确定储存单元的阀值电压位移检查储存单元的性能和EEPROM的电路元件。在储存单元的更新删除后,也许通过储存单元升高的栅级电压实施再次的重要处理,在确定储存单元的阀值电压位移的情况下这重复了性能检测。最后删除EEPROM的数据内容。在Springer-Verlag Wien NewYork,D.Rhein和H.Freitag所著的“微电子储存器”的117页,阐明了简化如此检查过程的电路技术措施。在所说的过程中,通过二或四字节的同时编程可以简化了编程方法。为了模拟在没选择的单元上正常运行中的干扰,在称为完全列队重要方法中在全部的字线或者位线上同时设置高的重要电压。在称为个别单元的临界方法中,所有的读电压以正常的工作电压运行,然而在字线上,电压在零伏和编程电压(典型的大约是+18V)之间变化,因此可以确定个别的单元截止电压。在全部的到目前为止已知的检测中,必须对储存电压反复编程并且再删除。可是这在EEPROM上正好是浪费时间的,并且引起相应的长的检测时间,因为EEPROM的编程和删除需要50ms/Byte以下。根据大量所需的编程周期,特别对于Flash-EEPROM不可以使用在DRAM检测中已知的其它算法(例如称为边界检测)。
本发明基于这个任务,给出一个开始已说明的种类的电路装置,其通过电路装置的作用能力以尽可能低的电路技术的额外花费使一个快的并且对此足够表现力的检测结果成为可能。
通过按照权利要求1的电路装置解决这个任务。
根据本发明,检测电路同样在该电路装置的半导体衬底上集成化形成,并且具有一个分配给组线路的开关装置,借助于该开关装置把第一个检测信号供给至少一个预先确定的组线路,并且把与第一检查信号相比具有不同检查电平的第二个检测信号供给一个另外的、与预先确定的组线路相比直接相邻装置的组线路。此外,预先规定一个分配给组线路的检波装置,其获得一个由组线路得出的输出信号,其中把第一或者第二检测信号供给组线路。
本发明基于这个认识,对于电路技术简单结构的并且以短的检查时间可以进行的组线路的通路和/或断路检测来说,利用了多个结构相似装置的电子电路的在各种情况下存在的空间对称性或者正规装置。在多种情况下表明,通过组线路的断路和通路检测可以查明大部分的生产限定的错误。因此发现特别有错误的组线路,同样能够查明由电子电路引起的在组线路彼此之间和在组线路与其它线路之间的有错误的电气连接。与基本电路的性能检查不同,组线路的通路和断路检测能够很快地进行。通过适合本发明的检测电路可以实施的检测过程在最短的时间内得出较多的错误覆盖,其可以以一个有错误的元件的有效的初选为基础。本发明的主要优点在于,可以电路技术非常简单地形成检测电路,并且仅包括少量的在半导体衬底上能够预先规定的附加部分,因此检测电路作为半导体电路的固定组成部分在相同的半导体衬底上集成。在多种情况下,对于检测电路的确定的组成部分来说可以同时使用必须检测的电路的本来存在的电路部分,因此减小了半导体衬底上的检测电路的附加的所需表面。
在本发明的一个考虑到短的检测时间的有益改进中可以预先规定,借助于分配给组线路的开关装置可以把第一个检查信号供给全部的偶数组线路,并且可以把第二个检查信号供给全部的奇数组线路,分配给组线路的检波装置获得一个从偶数或者奇数组线路中得出的输出信号,其中把第一或者第二检测信号供给偶数或者奇数组线路。这使以下的过程成为可能,通过仅一个唯一的检测,在该检测中二个不同的检查信号加在偶数的和奇数的组线路上,同时检查多个并排运行的组线路通路和断路,并且确定在相邻的组线路之间是否存在短路。
在适合本发明的电路装置的改进中可以预先规定,预先规定预定数目的并排位于半导体衬底上形成的公共线路垂直于组线路,同时在组线路和公共线路的每一个交叉点上预先规定一个与各自交叉点的组线路和公共线路电连接的基本电路。首先装置基本电路为矩阵状,此外把矩阵状的装置的行或列分配给各组线路或公共线路。这开创了这个可能性,通过比较组线路上的检查信号,在通过各自基本电路与一个组线路联接的公共线路上用该比较检查基本电路通路,并且在这时根据基本电路的按规定的性能得到结论。
在一个电路技术特别简单的扩展中可以预先规定,预先规定与组线路的数目相符的开关数,这些开关借助于接通的选出信号在组线路上或者控制第一检查信号或者控制第二检查信号。同时,分配给偶数组线路的开关的控制输入端共同连接在第一选出线路上,分配给奇数组线路的开关的控制输入端共同连接在第二选出线路上。这二个选出线路和当时分配给每一组线路的开关在此构成唯一的在半导体衬底上附加形成的检测电路的组成部分。不仅选出线路而且开关也能够以所有通用的半导体工艺(C0MS、TTL或其它)实现。如果在选出线路和检测电路的开关上使用同在组线路和能够检测的电路的基本电路上相同的半导体工艺,那么保持开关装置的低的研制技术和生产技术的额外费用。
为了鉴别单个的损坏组线路可以预先规定,开关装置把第一检查信号供给唯一的预定组线路,并且把第二检查信号供给所有其它的组线路。除了确定在二个任意的组线路之间短路外,这个检测使一个有错误的组线路的明确的鉴别成为可能。如果组线路存在,为了识别在这里需要这样的四个如此检测过程。每个检测过程把第一个检查信号供给一个唯一组线路,把第二检查信号供给所有其它的组线路。
为了特别快地识别相邻组线路之间的短路可以预先规定,开关装置具有分配给组线路的、由二个选出线路交替控制并且与所分配的组线路在输出端方向上连接的开关,同时,分配给预定组线路的开关在输入端方向上位于第一输入信号上,分配给其它组线路的开关在输入端方向上位于第二输入信号上,探测装置具有分配给偶数组线路的第一探测线路、分配给奇数组线路的第二探测线路和分配给每个组线路的、在控制输入端方向上与组线路电连接的探测开关,同时,探测开关在输入端方向上位于预定的不变的参考电位上,并且在输出端方向上根据在偶数或者奇数的组线路上的分配电连接在第一或者第二探测线路上,同时,探测装置具有一个连接在第一探测线路上的第一电流识别电路和一个连接在第二探测线路上的第二电流识别电路。与由开关装置在偶数或者奇数组线路供给的检查信号相反,如果在偶数或者奇数组线路上登记探测装置,这能够推端出至少二个相邻的组线路之间的至少一个短路,或者这也能够推断出一个损坏的探测线路。
此外为了鉴别损坏的组线路可以预先规定,检波装置具有分配给每一个组线路的电连接的信号识别电路。在大多数情况下,在开始已提到的类型的半导体电路上,分配给组线路的、作为信号识别电路使用的电路本来就存在,对于探测装置来说这不需要附加的电路技术费用。
这个结构可以通过以下方式进一步形成,即,检波装置具有与组线路数相符的分配给组线路的选择开关数目,该选择开关连接在组线路和信号识别电路之间,并且通过公共的选择线路控制。这例如使下面的情况成为可能,即通过选择开关转换为截止状态隔开处于一预定电位上的组线路,并检查,组线路是否没卸载并因此实际是绝缘的,或者是否其卸载,这意味与相邻的组线路或者其它电路部分的有错误连接。
根据开关装置的电路技术特别简单的实现可以预先规定,第一和第二检查信号的开关是开关晶体管或者配备一个可开关的接地线的倒相器。可以在用于集成适合本发明的检测电路的半导体衬底上没有附加生产费用地生产这些部件。
根据适合本发明的电路装置的特别优选的应用为,在组线路和公共线路的交叉点上的基本电路是在半导体衬底上形成的半导体储存器的储存单元。在半导体储存器上组线路的通路检测、断路检测和短路检测导致时间的节省。半导体储存器的编程、清除和读出需要很多时间,特别是如果这涉及电子可编程的和可清除半导体储存器。与现技术状况相符的检测方法对此持续在50ms/Byte以下,然而适合本发明的检测典型地需要少于大约50ns/Byte,这相当于106的量级差别。
对于各种的半导体储存器可以预先规定,组线路是字线或者位线,公共线路是位线或者字线,探测线路是自动检测(Sense)线路,探测开关是连接在自动检测线路上的开关,第一和第二电流识别电路是连接在自动检测线路上的读数放大器,信号识别电路是连接在位线上的读数放大器。这些电路是在半导体储存器中本来存在的电路组成部分,对于借助于适合本发明的电路实现的检测来说以有益的方式考虑这些电路。在半导体储存器上对于探测装置这不需要附加的电路技术费用,这可能适合于特有的已经存在的电路元件。
优点是从电路装置的分配给选出线路和每个字线的晶体管出发可以串接分配给字线的、在半导体储存器这本来存在的字线激励器。因此对于产生用于检查信号所必需的电压的电路装置的主要组成部分可以使用本来存在的相对昂贵的装置。
此外,转换开关装置应当串接包括晶体管开关装置,该换向开关电路使选出线路连接在一个不同于零的、主要是正的电压上,或者连接在一个零电压上。为此,对于零电压可以使用一个已经存在的接地线,对于正电压可以使用例如电源电压或者一个在半导体衬底上规定的另外的电压。
在一个其它的结构中可以预先规定,连接在位线上的开关装置是在半导体储存器中存在的用于在位线设置编程电压的设备。检测电路的电路技术的额外费用在这种情况下仅仅在于二个选出线路或者在于全部储存矩阵的选择或者隔离线路、以及每个组线路的晶体管或者倒相器。检测电路的所有其它组成部分比如字线激励器和电路装置的编程电压发生器和读数放大器和探测装置的自动检测线路在半导体储存器设备中本来存在的。
根据适合本发明的检测电路的优选应用,在检测半导体储存器,特别是电子可编程并且可删除的半导体储存器利用了有益的方法,即大部分的与过程有关的结果归咎于金属化接通和聚合物短路以及控制极氧化物短路。适合本发明的检测电路检查上面已说明的静态连接,不包括可以编程的单元,并且因此使在最短的时间内一个大量的错误覆盖成为可能。
借助附图由下面的实施例说明得出本发明的其它特征、优点和合理性。图示:
图1一个具有字线和位线的EEPROM储存单元的示意图结构;
图2具有检测电路的电路装置的示意电路图,该检测电路适合于按照第一实施例的EEPROM的字线检测和自动检测线路检测;
图3A具有检测电路的电路装置的示意电路图,该检测电路适合于按照第二实施例的EEPROM的字线检测和自动检测线路检测;
图3B一个倒相器的内部结构的示意电路图,在图3A中说明的电路装置中包含该倒相器;
图4具有检测电路的电路装置的示意电路图,该检测电路适合于按照第三实施例的具有电压读数放大器的EEPROM的位线检测;
图5具有检测电路的电路装置的示意电路图,该检测电路适合于按照第三实施例的具有电流读数放大器的EEPROM的位线检测;和
图6具有检测电路的电路装置的示意电路图,该检测电路适合于具有电流读数放大器的EEPROM的位线检测;
由于在电子可编程的和可删除的半导体储存器上可以特别有益地使用按照本发明的检测电路,所以下面详细说明的实施例全部涉及具有0TP(一次可编程的)储存单元或者闪电(多次可编程的)储存单元的电子可编程的和可删除的半导体储存器。在图1中以图说明一个电子可编程的和可删除的储存器的单个储存单元。按照本发明的电路的应用范围对此当然不局限于可编程的常值储存器或者另外不易失的储存器,而是也涉及任意的其它储存器类型和具有按规则布置的基本电路的逻辑电路。
图1表明一个作为基本电路的例子的储存单元,该基本电路包括一个控制电极1、一个自由电位的电极2、一个漏级3和一个源级4。自由电位的电极由绝缘体5围绕。控制电极1电连接在分配给置于储存单元7上的行的字线WL上,漏级3电连接在分配给置于储存单元上的列的位线BL上。储存单元的源级4互相连接并且位于一公共的、可确定的电位上。下面储存单元以本来已公开的方法起作用。储存单元7的二个状态相当于自由电位的电极2的加电和非加电状态。为了编程,通过在控制电极1上加一与漏极3相比正的高电压的方式在自由电位的电极2中注入电荷。该正的高电压值典型的在大约+18伏。为了删除,清除自由电位的电极2的电子,或者通过在控制电极1上加一与漏级3相比负的高电压的方式在未连接电位的电极2中注入欠缺电子,该负的高电压值典型的在大约-12伏。为了克服由绝缘体5建立的电位势垒,这个在数值上超过电源电压的电压是必须的。根据高的电场强度电子能够以隧道效应穿过(Fowler-Nordheim效应)绝缘体5的电位势垒,或者能够克服在漏级附近产生的绝缘体的热电子(沟道热电子作用)。为了读出,在控制电极1和漏级3之间加一大约5伏的正电压,可是这不足以改变未连接电位的电极2的电荷状态。
图2表明一个按照本发明的电路装置的第一实施例,该电路装置具有预定数目的在半导体衬底26上按规则并排形成的字线WL0、WL1、WL2、WL3,字线目前在一般形式中也称作组线路,以及具有垂直于字线以预定数目并排位于半导体衬底26上形成的位线BL0、BL1、BL2、BL3,位线目前一般也称作公共线路。在字线和位线的每个交叉点上连接一个电子可编程和可删除的半导体储存器28的称作基本电路的储存单元7。为了控制字线WL0至WL3预先规定字线激励器8,在本来已公开的方法中其与(未详细说明的)地址译码电路连接。为了从储存单元中读出存在于位线BL0至BL1上的数据内容预先规定读数放大器电路6,其结构和作用原理同样专家是熟悉的。字线WL0至WL3经过自动检测晶体管13、14上的自动检测线路15、16与读数放大器29连接,同时,自动检测线路15、16经过具有电阻17的分压器与电源电压Vdd连接,由此读数放大器29作为电流识别电路工作。字线激励器8、读数放大器电路6、以及具有自动检测线路15、16的电流读数放大器电路29作为电子可删除和可编程的半导体储存器的组成部分是专家熟悉的电路组成部分,因此不需要详细的功能说明。根据本发明预先规定一个电路装置30,其包括开关晶体管9和10,以及选出线路11、12,该电路装置的作用原理下面详细阐明。
以在图2中说明的第一实施例能够实施下面的检测过程。偶数字线WL0、WL2由字线激励器8加载到0伏上,并通过开关装置30的开关晶体管9隔离。由字线激励器8经过开关晶体管10把读电压供给奇数字线WL1、WL3。仅允许在二个自动检测线路15或16之一中流过电流。如果通过电流读数放大器29证明在二个自动检测线路15和16中都有电流,则或者在二个相邻的字线WL0、…、WL3之间存在短路或者存在译码错误。如果证明在二个自动检测线路15和16中都没有电流,则或者自动检测线路中断,或者存在译码错误。通过偶数字线WL0、WL2和奇数字线WL1、WL3互换作用重复检测过程。这个检测过程也通过在相邻的字线WL0、…、WL3之间可能的短路得出暗示,自动检测线路15、16中断或者译码错误。在相邻字线WL0、…、WL3之间的短路例如是金属化短路或者聚合物短路,或者通过在基本电路的电极上邻接的氧化物层引起的。在这个检测过程中,除用于编程的储存单元外,静态检查上述的连接。因此在短时间内实现相对高的错误覆盖。
在图3A中描述了按照本发明的电路装置的第二实施例,其在检查信号产生的开关装置30的结构上与图2中描述的第一实施例不同。代替开关晶体管9、10和选出线路11、12,这个开关装置30总是具有分配给字线WL0、…、WL3的倒相器18,其在输出端方向上连接在字线WL0、…、WL3上。倒相器18的电压供给端的接地线互相连接,并经过隔离线路19和一作为隔离开关工作的晶体管20与地27连接。该倒相器18作为字线激励器8是本来存在的。正如在第二实施例中,分配给位线BL0、…、BL3的读数放大器6、自动检测线路15、16、自动检测线路晶体管13、14和分配给各自动检测线路15、16的、经过一个电阻17连接在电源电源Vdd上、作为电流识别电路工作的读数放大器29作为探测装置31使用。在图3B中描述了倒相器18的内部结构,其包括一个连接在电源电压和隔离线路之间的一p沟道场效应管32和一n沟道场效应管33的串联电路。晶体管32、33的公共控制终端相当于倒相器18的输入端,晶体管32、33的电极的公共连接点相当于倒相器18的输出端。
以在图3A中说明的第二实施例能够实施下面的检测过程。首先分配给隔离线路19的隔离晶体管20是导通的,因此倒相器18的二个电压供给端位于电源电压Vdd和地27之间。选出一个字线WLn,并且借助于分配给它的倒相器18把一读数电压供给该字线。其它的字线WLn′(n′≠n)通过分配给他的倒相器18主动地激励到0伏上。当隔离开关20截止时,因此所有分配给字线WLn和WLn′的倒相器18与地电源分离。因此用0伏加载的字线WLn′不再连接电位。如果在选出的字线WLn和一相邻的字线字线WLn′之间存在短路,其中n′=n-1或者n′=n+1,则分配给字线Wln的倒相器18激励一通过短路连接的相邻的字线WLn′到一电压上,该电压位于读数电压和零电压之间。在这种情况下,电流在二个自动检测线路15、16中流过,该电流由读数放大器29证明。在二个自动检测短路15、16之间的电流除了表示在选出字线WLn和一相邻字线WLn′之间的短路外,可以暗示译码错误。如果证明在自动检测电路15、16中都无电流,则选出字线WLn或者自动检测电路15或16中断,或者存在译码错误。接下来选出每个检测过程的全部字线WL0、…、WL3作为这样的字线WLn,把读数电压供给该字线。如果在半导体衬底上已经存在的、分配给自动检测线路15、16的读数放大器29不是实现为电流读数放大器,并且因此保证没有到电源电压Vdd的电流路径,则例如作为负载元件工作的电阻或晶体管必须处于电阻工作状态。根据这个方式,高阻的电压读数放大器也可以作为电流识别电路使用。
图4表明按照本发明的电路装置的第三实施例,该电路装置适合于用于标识有错误的位线BL0、…、BL3的位线检测,这些位线在本实施例和下面的实施例中表示组线路,该电路装置是电子可编程的和可删除的半导体储存器28电路装置,该半导体储存器具有作为电压探测器工作的、连接在位线BL0、…、BL3上的读数放大器6,其形成探测装置31。分配给每个位线BL0、…、BL3的晶体管9、10作为检查信号产生的开关装置,该晶体管在位线BL0、…、BL3与一个转换开关21之间,该转换开关可在一预定正电压V+和地27之间转换。分配给偶数位线BL0、BL2的开关晶体管9的控制输入端互相连接并且连接在第一选出线路11上。分配给奇数位线BL1、BL3的开关晶体管10的控制输入端互相连接并且连接在第二选出线路12上。分配给每个位线BL0、…、BL3的、作为电压传感器工作的读数放大器6具有高组输入端,其形成探测装置31,并在半导体储存器上是本来存在的。
以在图4中说明的第三实施例能够实施下面的检测过程。所有储存单元7的源级4的公共终端和所有字线WL0、…、WL3在检测过程中处于0伏。所有的位线BL0、…、BL3通过控制选出线路11、12的晶体管9、10与转换到正电压V+的转换开关21加载到正电压V+上。如果在接下来的所有位线BL0、…、BL3的读出过程中一个读数放大器登记为0伏电平,则相应的位线BL0、…、BL3是中断的。此后,偶数位线BL0、BL2通过导通的晶体管9和转换到地27上的转换开关21置于0伏,而奇数位线BL0、BL2通过截止的晶体管10飘浮。在接下来的所有位线BL0、…、BL3的读出过程中,0伏电平必须附在偶数位线BL0、BL2的读数放大器6上,预加载的正电压V+附在奇数位线BL1、BL3的读数放大器6上。如果在奇数位线BL1、BL3上测得0伏电平,则在一个奇数位线BL1、BL3和一个相邻的偶数位线BL0、BL2之间存在短路或者相关的奇数位线BL1、BL3是中断的,并且因此不加载到正的电压V+上。重复这个检测过程,在这个检测过程中交换偶数位线BL0、BL2和奇数位线BL1、BL3和他们的作用。
图5表明第四实施例,其基本上是图4中描述的第三实施例的改进。与第三实施例相比,读数放大器6作为电流传感器工作。在每个位线BL0、…、BL3中,在位线BL0、…、BL3和读数放大器6之间附加中间连接作为选择开关工作的晶体管22。选择开关22的控制输入端共同连接在选择相邻23上。
以在图5中描述的第四实施例能够实施下面的四个检测过程。所有字线WL0、…、WL3和储存单元7的源级4的公共终端在全部四个检测过程中位于0伏电平。在第一检测过程中,首先通过选择线路23使选择开关22截止,使全部位线BL0、…、BL3分离,并通过读数放大器读出全部位线。如果在读数放大器6的一个中证明有电流,则在相应的位线BL0、…、BL3中存在隧道氧化物共聚介质击穿,或者存在一个例如通过金属粒子引起的与一个字线WL0、…、WL3的直接短路。在第二检测过程中,通过在选出线路11、12上加上电源电压Vdd所有的位线BL0、…、BL3被激励到0伏上并且通过读数放大器6读出。如果在位线BL0、…、BL3的一个位线中证明没有电流,则相应的位线BL0、…、BL3中断。第三检测过程在于,偶数位线BL0、BL2置于0伏,而奇数字线BL1、BL3保持自由电位。如果通过读数放大器6读出所有的位线BL0、…、BL3,则分配给偶数位线BL0、BL2的读数放大器6必须证明电流,分配给奇数位线BL1、BL3可以证明没有电流。如果电流在奇数位线BL1、BL3中流过,则在二个位线BL0、…、BL3之间存在低阻的短路。探测的前提是,开关装置30的晶体管9、10可以超过具有0伏的读数放大器6。该检测过程的缺点在于,在这种情况下,即在没有被激励的位线BL0、…BL3中没有足够的电流,引起在二个位线BL0、…、BL3之间的高阻短接,并因此保持不能识别。通过互换偶数和奇数位线BL0、…、BL3的作用重复第三检测过程。在第四检测过程中作为选择开关工作的晶体管22使一高阻的短接的识别成为可能。首先,所有的位线BL0、…、BL3通过开关9、10与地27分离,然后通过读数放大器激励到一正电位V+上。此时通过截止选择开关22分离读数放大器6,因此保持位线BL0、…、BL3上的负荷。然后以预定的时间通过在第一选出线路11上加上电源电压Vdd主动用0伏激励偶数位线BL0、BL2,而通过在第二选择线路12上加上零电压,自由电位的奇数位线BL1、BL3位于正电平V+上。在该预定时间内可以通过一个在二个位线BL0、…、BL3之间也许存在的高阻短接卸载自由电位的位线BL1、BL3。在预定时间的过去后,通过打开选择开关22读出所有位线BL0、…、BL3,并且在短的时间内与读数放大器6再次分离。由于在短时间内再次把一通过高阻短接而卸载的位线BL0、…、BL3加载到正电平V+上,因此未识别地保留故障是必然的。偶数位线BL0、BL2和奇数位线BL1。BL3的结果必须按照有电流状态或者无电流状态。如果在一个奇数位线BL1、BL3中证明有电流,则在二个位线BL0、…、BL3之间存在短路。通过在第一选出线路11上加一零电压和在第二选择线路12上加一电源电压Vdd,通过互换偶数和奇数位线BL0、…、BL3的作用重复这个检测过程。
在图6中描述了第五实施例,在本实施例中,在储存矩阵的同一面上存在检查信号产生的开关装置30以及探测装置31。所以虽然可以不实施位线BL0、…、BL3的通路检测,可是可以通过编程电路把电压供给位线BL0、…、BL3,因此节省了晶体管。每个位线BL0、…、BL3通过开关晶体管9、10连接在门电路24、25上。读数放大器作为激励器和电流传感器工作,并因此同时是开关装置30和探测装置31的组成部分。开关晶体管9、10的避开了门电路24、25的电极在位线BL0、…、BL3上位于选择开关22和储存单元7之间。分配给偶数位线BL0、BL2的开关晶体管9的控制输入端共同连接在第一选出线路11上,分配给奇数位线BL1、BL3的开关晶体管10的控制输入端共同连接在第二选出线路12上。
以在图6中描述的第五实施例能够实施下面的四个检测过程。所有字线WL0、…、WL3和储存单元7的源级4的公共终端在全部四个检测过程中位于0伏电平。在第一检测过程中,首先通过选出线路11、12使开关9、10截止,使全部位线BL0、…、BL3分离,并通过接通选择开关22经过读数放大器6读出全部位线。如果读数放大器6中的一个登记电流,则在分配给该读数放大器6的位线BL0、…、BL3中存在隧道氧化物共聚介质击穿,或者存在一个例如通过金属粒子引起的与一个字线WL0、…、WL3的直接短路。在第二检测过程中,通过在门电路24、25和第二选出线路12上加一零电压,并且通过在第一选出线路11上加一电源电压Vdd,偶数位线BL0、BL2被置于0伏上,而奇数位线BL1、BL3被设置为自由电位。如果通过读数放大器6读出全部位线BL0、…、BL3,则分配给偶数位线BL0、BL2的读数放大器6必须登记电流,分配给奇数位线BL1、BL3的读数放大器6必须不登记电流。如果电流在奇数位线BL1、BL3中流过,则在二个位线BL0、…、BL3之间存在低阻的短接。探测的前提是,开关装置30的晶体管9、10可以超过具有0伏的读数放大器6。该检测过程的缺点在于,在这种情况下,即在没有被激励的位线BL0、…BL3中没有足够的电流,引起在二个位线BL0、…、BL3之间的高阻短接,并因此保持不能识别。通过互换偶数和奇数位线BL0、…、BL3的作用重复第二检测过程。在第三检测过程中,作为选择开关工作的晶体管22使高阻短接的识别成为可能。首先所有门电路24、25被置于电源电压Vdd上,通过选择开关22的截止,位线BL0、…、BL3与读数放大器6隔开。然后通过门电路24,25的输出端所有位线BL0、…、BL3被置于电源电压Vdd上。通过开关9、10的截止隔开门电路24、25,同时保持位线BL0、…、BL3上的负荷。所有门电路24、25被置于零电压上。这时以预定的时间主动用0伏激励偶数位线BL0、BL2,而自由电位的奇数位线BL1、BL3位于正电平V+上。在该预定时间内可以通过一个在二个位线BL0、…、BL3之间也许存在的高阻短接卸载自由电位的位线BL1、BL3。在预定时间的过去后,通过打开选择开关22读出所有位线BL0、…、BL3,并且在短的时间内由门电路24、25把所有位线置于零电压上。由于在短时间内再次把通过高阻短接而卸载的位线BL0、…、BL3加载到正电平V+上,因此未识别地保留故障是必然的。偶数位线BL0、BL2和奇数位线BL1。BL3的结果必须按照有电流状态或者无电流状态。如果电流在一个奇数位线BL1、BL3中流过,则在二个位线BL0、…、BL3之间存在短路。通过在第一选出线路11上加一零电压和在第二选出线路12上加一电源电压Vdd,通过互换偶数和奇数位线BL0、…、BL3的作用重复这个检测过程。

Claims (17)

1.具有预定数目的组线路(WL0,…、WLm,BL0、…、BLm)的电路装置,该组线路在半导体衬底(26)上按规则并排形成,在该电路装置上连接多个在半导体衬底(26)上并且基本上互相同样形成的电子基本电路(7),同时预先规定检测电路,其用于检查基本电路(7)和/或组线路(WL0、…、WLm,BL0、…、BLm)的电子作用能力,其特征在于,检测电路同样在电路装置的半导体衬底(26)上集成地形成并且具有分配给组线路(WL0、…、WLm,BL0、…、BLm)的开关装置(30),借助于该开关装置,可以把第一检查信号供给至少一个预定的组线路(WLn,BLn),可以把第二、与第一检查信号相比具有一不同检查电平的检查信号供给另一个、与预定的组线路(WLn,BLn)相比直接相邻装置的组线路(WLn′,WLn′,n′=n-1,n′=n+1),并且预先规定一个分配给组线路(WL0、…、WLm,BL0、…、BLm)的探测装置(31),其获得一个由组线路(WLn,BLn或者WLn′,BLn′)得出的输出信号,其中把第一或者第二检查信号供给组线路。
2.按照要求1的电路装置,其特征在于,借助与分配给组线路(WL0、…、WLm,BL0、…、BLm)的开关装置(30),可以把第一检查信号供给全部的偶数组线路(WL0、WL2、…,BL0、BL2、…)并且可以把第二检查信号供给全部的奇数组线路(WL1、WL3、…,BL1、BL3、…),分配给组线路(WL0、…、WLm,BL0、…、BLm)的探测装置(31)总是获得由偶数或者奇数组线路(WL0、WL2、…,BL0、BL2、…,或者WL1、…、WL3、…,BL1、BL3、…)得出的输出信号,其中把第一或者第二检查信号供给偶数或者奇数组线路。
3.按照要求1或2的电路装置,其特征在于,预先规定垂直于组线路(WL0、…、WLm,BL0、…、BLm)的预定数目的相邻存在于半导体衬底(26)上形成的公共线路(BL0、…、BLq,或者WL0、…、WLq),同时在组线路和公共线路的每个交叉点上预先规定一个与各交叉点的组线路和公共线路电连接的基本电路(7)。
4.按照要求1至3的电路装置,其特征在于,预先规定相当于组线路(WL0、…、WLm,BL0、…、BLm)的数目的开关(9、10、18)数,该开关借助于接通的选出信号在组线路(WL0、…、WLm,BL0、…、BLm)上或者控制第一检查信号或者控制第二检查信号。
5.按照要求1至4的电路装置,其特征在于,分配给偶数组线路(WL0、WL2、…,BL0、BL2、…)的开关(9)的控制输入端共同连接在第一选出线路(11),分配给奇数组线路(WL1、WL3、…,BL1、BL3、…)的开关(10)的控制输入端共同连接在第二选出线路(12)。
6.按照要求1的电路装置,其特征在于,开关装置(30)把第一检查信号供给一个唯一的预定组线路(WLn),并且把第二检查信号供给所有其它的组线路(WLn′,n′≠n)(图3)。
7.按照要求1和2的电路装置,其特征在于,开关装置(30)具有分配给每个组线路(WL0、…、WLm,BL0、…、BLm)的、由二个选出线路(11、12)交替控制的并且与所分配的组线路(WL0、WL2、…,BL0、BL2、…或者WL1、WL3、…,BL1、BL3、…)在输出端方向上连接的开关(9、10),同时,分配给预定组线路(WL1、…、WLm,BL1、…、BLm)的开关(9或10)在输入端方向上位于第一输入信号上,分配给另外的组线路(WL1、WL3、…,BL1、BL3、…或者WL0、WL2、…,BL0、BL2、…)的开关(10或9)在输入端方向上位于第二输入信号上(图2)。
8.按照要求1或2的电路装置,其特征在于,探测装置(31)具有一个分配给偶数组线路的第一探测线路(15)、一个分配给奇数组线路第二探测线路(16)和分配给每个组线路(WL0、…、WLm,BL0、…、BLm)的在控制输入端方向上与组线路(WL0、…、WLm,BL0、…、BLm)电连接的探测开关(13、14),同时,探测开关在输入端方向上位于在一预定不变的参考电位上,在输出端方向上根据在偶数或者奇数组线路(WL0、WL2、…,BL0、BL2…或者WL1、WL3、…BL1、BL3、…)上的分配电连接在第一或者第二探测线路(15或者16)上。
9.按照要求8的电路装置,其特征在于,探测装置(31)总是具有连接在探测线路(15、16)上的电流识别电路(29)。
10.按照要求1或2的电路装置,其特征在于,探测装置(31)具有分配给每个组线路(WL0、…、WLm,BL0、…、BLm)的电连接的信号识别电路(6)(图4、5、6)。
11.按照要求10的电路装置,其特征在于,探测装置(31)具有相当于组线路数的数目的分配给组线路(WL0、…、WLm,BL0、…、BLm)的选择开关(22),其在组线路和信号识别电路(6)之间连接,并通过公共的选择线路(23)控制。
12.按照要求4的电路装置,其特征在于,第一或第二检查信号的开关是开关晶体管(9、10)(图2、3、4、6)或是配备有可开关的接地线的倒相器(18)(图3A)。
13.按照要求3至12的电路装置,其特征在于,在组线路和公共线路(WL0、…、WLm和BL0、…、BLm)的交叉点上的基本电路(7)是在半导体衬底(26)上形成的半导体储存器的储存单元(7)。
14.按照要求1至13的电路装置,其特征在于,组线路是字线或者位线(WL0、…、WLm,或BL0、…、BLm),公共线路是位线或者字线(BL0、…、BLm,或WL0、…、WLm),探测线路是自动检测线路(15、16),探测开关是连接在自动检测线路(15、16)上的开关(13、14),第一和第二电流识别电路是连接在自动检测电路上的读数放大器(29)和信号识别电路是连接在位线(BL0、…、BLm)上的读数放大器(6)。
15.按照要求1至14的电路装置,其特征在于,分配给字线(WL0、…、WLm)的开关装置(30)串接分配给字线(WL0、…、WLm)的并且在半导体储存器中本来存在的字线激励器(8)。
16.按照要求1至15的电路装置,其特征在于,开关装置(30)串接转换开关装置(21),该转换开关装置使选出线路(9、10)连接在一个与0不同的主要是正的电压(V+)上或者连接在零电压(27)上。
17.按照要求1至16的电路装置,其特征在于,连接在位线(BL0、…、BLm)上的开关装置(30)是在半导体储存器中本来存在的用于在位线(BL0、…、BLm)上设置编程电压的设备(24、25)。
CN97193448A 1996-03-28 1997-03-26 具有检测电路的电路装置 Pending CN1218572A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19612441A DE19612441C2 (de) 1996-03-28 1996-03-28 Schaltungsanordnung mit einer Testschaltung
DE19612441.7 1996-03-28

Publications (1)

Publication Number Publication Date
CN1218572A true CN1218572A (zh) 1999-06-02

Family

ID=7789784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97193448A Pending CN1218572A (zh) 1996-03-28 1997-03-26 具有检测电路的电路装置

Country Status (10)

Country Link
EP (1) EP0891623B1 (zh)
JP (1) JP3267301B2 (zh)
KR (1) KR20000005054A (zh)
CN (1) CN1218572A (zh)
AT (1) ATE189849T1 (zh)
BR (1) BR9708454A (zh)
DE (2) DE19612441C2 (zh)
ES (1) ES2143862T3 (zh)
RU (1) RU2183361C2 (zh)
WO (1) WO1997037357A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768815A (zh) * 2012-07-23 2012-11-07 京东方科技集团股份有限公司 Dds检测结构及检测方法
CN109932633A (zh) * 2017-12-18 2019-06-25 致伸科技股份有限公司 电路板的测试系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69937559T2 (de) 1999-09-10 2008-10-23 Stmicroelectronics S.R.L., Agrate Brianza Nicht-flüchtige Speicher mit Erkennung von Kurzschlüssen zwischen Wortleitungen
DE50106894D1 (de) 2000-03-10 2005-09-01 Infineon Technologies Ag Test-schaltungsanordnung und verfahren zum testen einer vielzahl von elektrischen komponenten
DE10245152B4 (de) * 2002-09-27 2013-10-10 Infineon Technologies Ag Integrierte Testschaltungsanordnung und Testverfahren
JP2009076176A (ja) * 2007-09-25 2009-04-09 Toshiba Corp 不揮発性半導体記憶装置
JP5651292B2 (ja) * 2008-04-24 2015-01-07 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体記憶装置及びそのテスト方法
JP5635924B2 (ja) * 2011-02-22 2014-12-03 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその試験方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595875A (en) * 1983-12-22 1986-06-17 Monolithic Memories, Incorporated Short detector for PROMS
JPS62157400A (ja) * 1985-12-27 1987-07-13 Fujitsu Ltd 半導体記憶回路
JPH0752597B2 (ja) * 1989-10-30 1995-06-05 三菱電機株式会社 半導体メモリ装置
US5181205A (en) * 1990-04-10 1993-01-19 National Semiconductor Corporation Short circuit detector circuit for memory arrays
JP2647546B2 (ja) * 1990-10-11 1997-08-27 シャープ株式会社 半導体記憶装置のテスト方法
KR950000305Y1 (ko) * 1991-12-23 1995-01-16 금성일렉트론 주식회사 메모리 장치의 테스트 모드회로
JP2978329B2 (ja) * 1992-04-21 1999-11-15 三菱電機株式会社 半導体メモリ装置及びそのビット線の短絡救済方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768815A (zh) * 2012-07-23 2012-11-07 京东方科技集团股份有限公司 Dds检测结构及检测方法
WO2014015635A1 (zh) * 2012-07-23 2014-01-30 京东方科技集团股份有限公司 数据线-数据线短路检测系统及检测方法
CN102768815B (zh) * 2012-07-23 2015-04-08 京东方科技集团股份有限公司 Dds检测结构及检测方法
CN109932633A (zh) * 2017-12-18 2019-06-25 致伸科技股份有限公司 电路板的测试系统

Also Published As

Publication number Publication date
DE59701136D1 (de) 2000-03-23
BR9708454A (pt) 1999-04-13
ES2143862T3 (es) 2000-05-16
EP0891623A1 (de) 1999-01-20
RU2183361C2 (ru) 2002-06-10
WO1997037357A1 (de) 1997-10-09
JPH11507166A (ja) 1999-06-22
DE19612441C2 (de) 1998-04-09
JP3267301B2 (ja) 2002-03-18
KR20000005054A (ko) 2000-01-25
DE19612441A1 (de) 1997-10-02
EP0891623B1 (de) 2000-02-16
ATE189849T1 (de) 2000-03-15

Similar Documents

Publication Publication Date Title
KR950011295B1 (ko) 불휘발성 반도체기억장치와 리드온리 메모리 및 그 임계치전압 측정방법
KR910003147B1 (ko) 반도체집적회로와 그 시험방법
US7042778B2 (en) Flash array implementation with local and global bit lines
US5313427A (en) EEPROM array with narrow margin of voltage thresholds after erase
US11688447B2 (en) Memory cell, memory cell arrangement, and methods thereof
CN1993770A (zh) 基于减小的面积、减小的编程电压的互补金属氧化物半导体电子熔丝的可扫描式非易失性存储器位单元
US11527551B2 (en) Memory cell arrangements and methods thereof
US4393474A (en) EPROM and RAM cell layout with equal pitch for use in fault tolerant memory device or the like
US20210082958A1 (en) Memory cell arrangement and methods thereof
US4429388A (en) Field programmable device with internal dynamic test circuit
EP0503100B1 (en) Semiconductor memory
CN1218572A (zh) 具有检测电路的电路装置
US6756645B2 (en) Embedded electrically programmable read only memory devices
US5400344A (en) Semiconductor device with function of testing insulation defect between bit lines and testing method therefor
EP0231507B1 (en) An electrically alterable non-volatile memory device
CN101174474A (zh) 分离栅极闪存的故障检测方法
CN1158706C (zh) 具有表面覆盖层的半导体芯片
EP0108114B1 (en) Pad for accelerated memory test
CN1343010A (zh) 2t-1c铁电随机存取存储器及其运行方法
US6339229B1 (en) Test structure for insulation-film evaluation
US5926417A (en) Read method for reading data from a high-density semiconductor read-only memory device
KR100458356B1 (ko) 각각 하나의 강유전성 메모리 트랜지스터를 갖는 메모리셀을 포함하는 집적 메모리
US5786702A (en) Method for detecting defects in integrated-circuit arrays
KR20030019553A (ko) 메모리 셀들의 어레이에서 장애가 있는 셀의 물리적위치에 대한 자동 결정 및 디스플레이
KR900002072B1 (ko) 검사회로를 갖는 반도체 메모리 회로

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication