CN1213187A - 光电器件,其制备方法,和氧化锌薄膜 - Google Patents

光电器件,其制备方法,和氧化锌薄膜 Download PDF

Info

Publication number
CN1213187A
CN1213187A CN98119801A CN98119801A CN1213187A CN 1213187 A CN1213187 A CN 1213187A CN 98119801 A CN98119801 A CN 98119801A CN 98119801 A CN98119801 A CN 98119801A CN 1213187 A CN1213187 A CN 1213187A
Authority
CN
China
Prior art keywords
oxide film
layer
zinc oxide
zinc
carbohydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98119801A
Other languages
English (en)
Other versions
CN1140932C (zh
Inventor
佐野政史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1213187A publication Critical patent/CN1213187A/zh
Application granted granted Critical
Publication of CN1140932C publication Critical patent/CN1140932C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

提供一种光电器件,包括基体上按序迭层的背反射层,氧化锌层和半导体层,其中氧化锌层包括一种碳水化合物。碳水化合物含量优选范围为1μg/cm3-100mg/cm3。由此,氧化锌层可以无异常生长地形成,具有粗糙表面,以取得足够的光约束效应,光电器件在耐久性和光电转换效率方面得到了改善。

Description

光电器件,其制备方法,和氧化锌薄膜
本发明涉及由非单晶半导体硅类材料构成的光电器件及其制备方法。本发明特别涉及一种显示高光电转换效率的廉价太阳能电池及其生产方法。本发明还涉及一种氧化锌薄膜及其生产方法。
近年来,对于作为发电装置的太阳能电池的需求日益增长。可安装在家居屋顶的约3KW的太阳能电池组件并可连接市电网的光致发电特别引人注目,由此可向市电网取电和供电。政府资助系统已开始实施。目前情况下,光致发电有其缺点,即发电成本太高,不能同市电网竞争,并且生产能力很低,难以满足电力需求。为了消除上述缺点,要求太阳能电池具有高的光电转换效率,大约20年或更长的稳定的发电能力,和低的价格/功率性能比。目前,太阳能电池所用材料包括晶体硅(c-Si),多晶硅(多-Si),非晶硅(a-Si),GaAs,和CdS。其中,在制造性能和价格/功率性能比方面,非晶硅太阳能电池是有利的。在Kobe-Osaka-Awaji大地震后,要求降低房顶材料重量。在这方面,轻质非晶硅太阳能电池是有利的。而且,非晶硅太阳能电池还有利于在弯曲的表面上安装。不过,当前非晶硅太阳能电池不能得到晶体硅太阳能电池那样高的光电转换效率,且裸露在强光下时,光电转换效率自然受损。
因此,对非单晶硅型太阳能电池的改进作了广泛的研究如下。例如,对非晶硅型材料,做了改进采光效率的试验,即通过向i-型层加入含量范围约1-50%的Ge或Sn,从而使能带隙变窄,或为了提高开路电压,通过加入含量范围约0.1-10%的C、N、O等使能带隙加宽。为了采集更宽范围的光,做了其它试验,即通过在入光一侧叠层具有较高开路电压的一种元素和在背部一侧叠层具有较低开路电压的一种元素。具有叠层型的太阳能电池,试图将i-型层的厚度做得较小,以延缓光退化。例如,S.Guha,J.Yang:1993年11月日本名古屋第七届国际光电科学和工程会议技术文摘第43页"多结非晶硅合金基太阳能电池和组件的进展"中,具有结构为a-Si/a-SiGe/a-SiGe,或a-Si/a-Si/a-SiGe的太阳能电池在光退化之后,得到光电转换效率为9.5%。k.Nomoto,Y.Yamamoto:1993年11月日本名古屋第七届国际光电科学和工程会议技术文摘"具有高稳定效率的a-Si合金三叠层太阳能电池"中,具有结构为a-SiC/a-SiGe/a-SiGe的太阳能电池在光退化之后得到光电转换效率为10.2%。
K.Saito,I.Kajita:非晶固体杂志146-166(1993)第689-692页"高沉积速率下沉积的高效率a-Si:H合金电池"中,做出努力用微波等离子CVD以高沉积速率形成a-Si层和a-SiGe层以降低电力成本。根据此报导,用沉积速率为75A/sec形成的a-Si和沉积速率为100A/sec形成的a-SiGe构成a-Si/a-SiGe/a-SiGe,获得光电转换效率为11.6%。
日本专利申请公开JP.05-121331中,公开一种等离子CVD装置,用辊对辊系统连续形成不同传导类型的半导体层。此装置具有多个沉积室和沿通道配置带状柔性基体,以便顺序通过沉积室。在每一个沉积室中形成所要求传导类型半导体层的同时,基体在其长度方向传递,由此连续制造具有p-i-n结的光电器件。以上披露的装置使用了一个气闸,该气闸用于阻止将价电子控制剂引入半导体层的原料气向另一个沉积室扩散,并由此阻止另一半导体层的污染。沉积室专门由沟槽型的分离的通道分开,在此引入例如Ar、H2和He的清扫气体,以阻止原料气的互相扩散,从而形成了要求的p-i-n结。形成薄膜的辊对辊系统明显改善了具有叠层结构的光电器件的生产率。
已知具有凸凹结构(纹理结构)表面的透明导电层可改善采光率。例如,第51届应用物理学会议预印集第747页(1990秋)29p-MF-2"不锈钢基底上a-SiGe太阳能电池的光约束效应";和Sannomiya等,国际PVSEC-5技术文摘,Kyoto,Japan,p387,1987,披露了通过以一适当的表面纹理结构形成由Ag组成的背反射层和由氧化锌组成的透明层方式,改善了短路光电流。T.Tiedje等:第16届IEEE专家会议(1982)1425页披露了通过将背电极做成尺寸接近散射光波长的凸凹形(纹理结构),以便散射半导体层未吸收的长波长光,和延长半导体层中的光路,从而提高光电器件响应长波长光的灵敏度来提高短路光电流,以此改善光电转换效率。
氧化锌比氧化锡和氧化铟更能耐受等离子体,且当氧化锌裸露在含氢等离子体时,不被还原。当用等离子CVD在氧化锌上形成由非晶硅组成的半导体层时,氧化锌以正极用作透明导电层。
日本专利申请JP60-84888(能量转换器件)披露了一种技术,通过在背电极和半导体层之间沉积一透明导电层,以此减少流经半导体层中有缺陷区域的电流。日本专利申请7-23775,和Masanobu Izaki,TakasiOmi:电化学协会杂志Vol.143,No.3"氧化锌膜阴极生长的电解优化"披露了通过在浸没硝酸锌水溶液中的反电极之间施加电流,以电化学沉积透明氧化锌薄膜。此方法既不需要昂贵的真空设备,也不需要昂贵的靶,从而显明降低氧化锌的生产费用。可用此方法在大面积基体上沉积,因此有利用于如太阳能电池的大面积光电器件的制备。
由前述披露所知,作为在表面具有纹理结构的透明导电层,氧化锌是合乎要求的。制备氧化锌薄膜的公知方法包括真空沉积,溅射,离子镀和CVD。这些方法使用昂贵的真空装置和昂贵的气相沉积源,且在光学波长范围600-1000nm内没有显示足够的光约束效应。其它方法包括湿法处理例如喷射热解法和溶胶法。在湿法处理中,要求基体加热到300-800℃温度范围,因此可用的基体受到限制。尽管有这许多研究,公知的光电器件的所有性能皆不能令人满意,如高光传导率,高耐用性,高产率和低成本。
本发明的目的是提供一种解决上述难题的光电器件。本发明的另一个目的特别是提供一种通过在导电基体上形成由氧化锌构成的透明导电层的光电器件。该层具有足够的粘附性,而无异常的生长部分,具有适当的表面粗糙度,以赋予光电器件足够的光约束。
本发明的另一个目的是提供一种轻质的,以低发电成本可长期发电的柔性太阳能电池。
本发明再一个目的是提供一种通过使用由安装在家居屋顶上的光电器件构成的太阳能电池组件的光致发电的方法。
本发明的更进一步的目的是提供一种与市电网不相连的在停车处和道路,指路灯,和室内通风装置中的夜间照明装置。
为了解决上述难题,本发明提供一种光电器件,包括在基体上依序叠层的背反射层,氧化锌层,和半导体层,其中氧化锌层含有一种碳水化合物。
氧化锌层中的碳水化合物含量范围优选1μg/cm3-100mg/cm3。与常规光电器件相比,本发明光电器件内氧化锌层中结合的碳水化合物明显改善了氧化锌层与邻接的背反射层或与诸如中间层的邻接下层的粘附性。另外,氧化锌结合的碳水化合物可适当控制氧化锌晶体的生长,以便得到合适的表面粗糙度,由此造成光约束或在波长600-1000nm范围内的光散射,以便获得本发明光电器件的优异性能。
上述背反射层可以由金,银,铝或铜形成。当用铝作背反射层时,在铝层上用溅射等方法优选提供一透明的和导电的中间层。
本发明提供一含碳水化合物,含量范围为1μg/cm3-100mg/cm3的氧化锌薄膜。
本发明进一步提供一种通过在浸入至少含锌离子和一碳水化合物的水溶液中的导电基体和反电极之间施加电流,电化学地形成氧化锌层的方法。本发明进一步提供一种用上述形成氧化锌层的方法来制造光电器件的方法。本发明电化学方法的生产成本约为溅射法的1/100。
导电基体和反电极间的电位差优选控制在0.1-30V范围。在此条件下,碳水化合物适当和稳定地结合进氧化锌层中,以便有效延缓异常的晶体生长并由此增加了产量。
上述水溶液优选含有至少含锌离子,一种碳水化合物和硝酸根离子;至少含锌离子,一种碳水化合物,铵离子和配离子例如锌氨配离子(包括氨配离子);或至少含锌离子,一种碳水化合物和锌酸氢离子或锌酸根离子。
图1A是表明本发明光电器件一个实例的简要截面图,图1B是取自光入射一侧的光电器件的简要平面图。
图2是形成氧化锌层(薄膜)装置的简要截面图。
图3是本发明光电器件的半导体层的一个实例的简要截面图。
图4A和图4B说明本发明光电器件的组件。图4A是其简要剖视图,图4B是其取自入射光一侧的简要平面图。
图5是表示没有中间层的本发明光电器件简要截面图。
图6A曲线表明氧化锌层中蔗糖含量与光电转换效率的关系。图6B曲线表示氧化锌层中蔗糖含量与氧化锌层剥离态的关系。
图7简要地表示连续形成氧化锌层(薄膜)的装置。
图8A曲线表示氧化锌层中糊精含量与光电转换效率的关系。图8B曲线表示氧化锌层中糊精含量与氧化锌层剥离态的关系。
图9A曲线表示在氧化锌层中形成的导电基体和反电极之间电位差与光电转换效率的关系。图9B曲线表示和氧化锌层中形成的导电基体反电极之间电位差与氧化锌层剥离态的关系。
下面参考附图详述氧化锌薄层,形成氧化锌薄层的方法,使用氧化锌薄层的光电器件,和生产光电器件的方法。
图1A是本发明光电器件一个实例的简要截面图。在图1A中,由不锈钢等制成的导电基体101支承器件。背反射层102主要由金,银,铜或铝组成。透明导电层104是本发明含有碳水化合物的氧化锌层,具有将半导体层105中未吸收的光返回半导体层,将光散射以延长半导体层内的光路,限制其中的光,并阻止短路的功能。半导体层105由非单晶硅材料组成,具有至少一种p-i-n结,并具有光电转换功能。上透明电极层106有效地将光引入半导体层,并将产生的光电流供给收集极。收集极107收集光电流并从入射光方向看使其梳状排列,以便有效地将光引入半导体层。图1B是图1A所示光电器件取自入射光一侧的简要平面图。多个收集极排列而并不穿越器件的表面,收集极的端头电连接汇流条108。汇流条108是由良导体金属材料例如铜箔在收集极107上形成的。汇流条通过插入一种绝缘双涂覆带粘附在上透明电极。
图2是形成本发明含碳水化合物的氧化锌层的装置的简要截面图。图2中,数字201表示导电基体。反电极202具有传导性,且是由碳,铂,镀铂钛,或锌制成。用于形成氧化锌层的水性电解质溶液203含有本发明的碳水化合物。水性电解质溶液至少含锌离子,一种碳水化合物,和硝酸根离子;它含有至少锌离子,碳水化合物,铵离子和配离子例如锌氨配离子(包括氨配离子);或其至少含锌离子,一种碳水化合物,和锌酸氢根离子或锌酸根离子。溶液的具体实例包括硝酸锌和蔗糖的水溶液;氧化锌和糊精的含氨水溶液;醋酸锌和葡萄糖的含氨水溶液;草酸锌和糊精的含氨水溶液;和氧化锌,醋酸与糊精的含氨水溶液。容器204由耐酸耐碱材料制成,例如塑料烧杯。DC电源205优选能设置相当于标准电极的电位。不过,工业上任何通常的DC电源均可用,要考虑电的极性来适当连接。传导性基体的两个表面上的绝缘带206阻止形成由本发明含碳水化合物的氧化锌组成的透光导电层。当透明导电层将在两个表面形成时,就不使用绝缘带。电路210有一个载荷电阻207。装置有加热器208,用于加热水溶液,并有磁力搅拌器209。下面专门叙述此装置的操作。在容器204中,制备含上述离子和本发明碳水化合物的水溶液203:例如,氧化锌,醋酸和糊精的氨水溶液。水溶液203用磁力搅拌器209充分搅拌,并用加热器208加热到预定的温度。然后反电极202和其上粘有绝缘带206的导电基体201连接电源205,以形成包括水溶液203的回路210,并以恒定电流模式对回路210施加电压。由此,透明的含本发明碳水化合物的氧化锌层沉积在负极导电基体的表面。当形成预定厚度的透明导电层(氧化锌层)时,停止加电压。将其中形成的具有透明导电层的导电基体取出,并用纯水冲洗。在上述氧化锌和醋酸的含氨水溶液;醋酸锌的含氨水溶液;草酸锌的含氨水溶液;氢氧化锌和醋酸的含氨水溶液;或类似溶液用作锌离子供给源,并且在过量的铵离子和配离子例如锌酸氢根离子或锌酸根离子的情况下,水溶液中的锌浓度优选范围为0.001-3.0摩尔/升。氧化锌层中所含碳水化合物可以是任意的单醣,二糖和多糖,并优选浓度范围为1μg/cm3-100mg/cm3。可以推测,氧化锌层中少量的碳水化合物作为热固化交联剂使用,以使其即使在形成半导体层的等离子体中也保持稳定。水溶液的氢离子指数(pH)优选控制在pH4.5-12范围内。溶液的温度优选不低于50℃。导电基体表面的电流密度范围优选0.1-100mA/cm2。导电基体和反电极之间电位差范围为0.1-30V。可以推测,用控制氧化锌生长的方式,可将少量碳水化合物稳定地并均匀地结合氧化锌层。上述层的形成条件取决于背反射层的种类,截面形状和结晶状态,且不能被明确地确定。在配合物例如锌酸氢根离子或锌酸根离子的较高浓度,和硝酸锌离子较高的浓度下,氧化锌的结晶颗粒一般趋于变大,且层表面趋于粗糙。在较低的成膜温度下,氧化锌的晶体颗粒趋于变大。然而,在较高电流密度下,表面粗糙度趋于变小。不过,由于层形成速率与电流密度近于成正比,为了降低由氧化锌层构成的透明导电层的成本,优选用高电流形成粗糙表面。
在本发明层形成过程中,例如蔗糖和糊精的少量的碳水化合物加入水溶液中,所以形成的氧化锌层可含有含量范围为1μg/cm3-100mg/cm3的碳水化合物。一般在氧化锌薄膜的形成中,在电流密度为5mA/cm2或更高时,会明显发生异常生长,导致10μm或更厚的片状物形成,尽管高电流密度对工业生产有利。这种导致片状物形成的异常生长,使得在异常生长处半导体层局部变薄,造成过度漏电,使器件失效。不过,蔗糖和糊精加入本发明的氧化锌薄膜中,几乎完全阻止了异常生长,且显著地改进了与下面基体的粘附性和该层的热稳定性。可以推测,高分子的蔗糖或糊精溶入水溶液,适当延缓了氧化锌层的生长,并适当地结合进氧化锌层中。这种形成方法改善了光电特性、产量、和光电器件的耐久性。也可使用蔗糖或糊精之外的碳水化合物,或蔗糖或糊精的混合物。氧化锌层中的碳水化合物含量少于1μg/cm3是无效的。另一方面,高于100mg/cm3的碳水化合物含量使氧化锌膜的表面变平坦,不适于表面的粗糙化,降低了800nm处的透光度,且因加热削弱了热稳定性,造成颜色因热变为黑褐色。
当用铝作背反射层材料时,由于铝对600-1000nm波长的光具有高反射率且不会造成电化学迁移,铝最适合做光电器件的背反射层。不过,在上述水溶液中,很难在铝上电化学生长氧化锌(电镀)。因此,本发明中,在铝上形成作为中间层的很薄的透明导电层。此中间层对600-1000nm波长的光应是透明的,且有一定程度的传导性。用于中间层的材料包括氧化锡(SnO2),氧化铟(In2O3),ITO(SnO2+In2O3),氧化锌(ZnO),氧化铟锌,和氧化锡锌。这种氧化物可用溅射,CVD,或真空气相沉积形成。在这种中间层上,可以根据本发明的方法形成氧化锌的透明导电层。在中间层上形成的氧化锌层能在光约束或散射600-1000nm波长范围的光。因此,本发明光电器件具有高质量并能以低成本生产电能。
图3截面简要说明半导体层105的层结构的一个实例,该层由一种含氢非单晶硅类材料和其内至少一个p-i-n结构成。图3所示半导体层有3个p-i-n结。图3中,在第一个透明导电层上形成第一个掺杂层301并有p-型或n-型传导性。如图所示,半导体层有含氢非单晶硅材料顺次迭层的结构。在此实例中,第一掺杂层301,第三掺杂层304,和第五掺杂层307具有相同的传导类型,且第二掺杂层303,第四掺杂层306,和第六掺杂层309具有不同于前述层的另一类型的传导性。第一i-型层302,第二i-型层305,和第三i-型层308具有固有的传导性。较高的集光效率优选要求第一i-型层的间隙<第二i-型层的带隙<第三i-型层的带隙这样的关系。
图4A和4B表示本发明光电器件组件的一个实施方案。图4A是其剖视简图。图4B是其平面简图。在图4A和4B中,多个光电器件排成一列,旁路二极管406平行连接各个光电器件上。籍此,即使遮住一个光电器件,其它光电器件产生的全部电压都不会施加到被遮住的上。本发明光电器件组件是按图4A所示顺序排列迭层形成的(EVA层402,404,409,411;尼龙树脂层403,光电器件407;玻璃无纺纤维布405,408,410,412),然后用氟树脂413密封和支承基体401,以防止潮气渗入。此实例中,光电组件的收集极415是通过在细铜线上形成银镀层,和有丙烯酸树脂作为粘合剂的碳层而制成的,并将其熔接在上透明电极层之上。银镀层可降低与铜线的接触电阻。具有丙烯酸树脂作为粘合剂的碳层与上透明电极层紧密连接,以减少银镀层的接触电阻,并防止银从银镀层扩散到半导体层中。
图5是本发明无中间层的光电器件的简要截面图。该装置包括与基体101相似的导电基体501,与层102相似的背反射层502,氧化锌层(透明导电层)503,与层105相似的半导体层505,与层106相似的上透明电极层506,和与电极107相似的收集极507。
下面详述各个部件。
(导电基体101,501)
本发明中使用的导电基体可以是单一体,或在其上可以形成一层或多层薄膜。基体本身可以是绝缘材料,只要其一个表面是导电就行。具有导电性的材料包括金属例如Cu,Ni,Cr,Fe,Al,Cr,Mo,Nb,Ta,V,Ti,Rh等及其合金。这种材料本身可用作基体的基材。从可加工性,强度,化学稳定性和成本考虑,不锈钢,Fe等特别合适。用于基体的绝缘基材包括合成树脂例如聚酯,聚乙烯,聚碳酸酯,醋酸纤维素,聚丙烯,聚氯乙烯,聚偏二氯乙烯,聚苯乙烯,和聚酰胺;玻璃;和陶瓷。绝缘材料的至少一个表面覆有由上述导电材料组成的薄膜,以形成导电基体。当上述材料用作基体时,优选以片状或卷绕在圆筒上的卷带状使用它们。基体基材上的薄膜是用真空沉积,溅射,网板印刷,浸渍,等离子CVD,电镀,无电敷镀等方法形成的。基体的表面平滑度是这样的,优选中心线平均表面粗糙度Ra不大于3.0μm。为使表面粗糙化,基体表面可以用酸性溶液例如HNO3,HF,HCl和H2SO4适当地腐蚀。当要求基体柔软时,基体的厚度尽可能薄,只要基体能起支承的作用。考虑到基体的生产、操作性能和机械强度,通常厚度优选不小于10μm。基体的表面优选用表面活性剂或有机物洗涤,以阻止背反射层或透明导电层脱落。
(背反射层102,502)
本发明中使用的背反射层是一层或多层结构,并含金,银,铜,铝等。如前述,透明导电层不易直接在铝层上形成,所以在铝层上形成具有透明性和导电性的中间层。无论如何,总厚度范围优选0.01-0.5μm。背反射层优选用真空沉积,溅射,或从水溶液中电化学沉积(电镀)形成。背反射层可以具有平坦表面或粗糙表面。在溅射形成背反射层情况下,基体温度优选设为150℃或更高,以使表面粗糙,改善与导电基体的粘附性。
(半导体层105,505)
此层是重要的,因为它直接有助于光电器件的光电特性例如转换效率,开路电压,和短路光电流。本发明的半导体层有一个或多个p-i-n结,并由非单晶硅型材料组成。p-i-n结在pn结上形成。非单晶硅型材料通常具有非晶结构(a-),微晶结构(μc-),或多晶结构(多-),具体包括a-Si,a-SiGe,a-SiSn,a-SiC,a-SiO,a-SiN,μc-Si,μc-SiC,和多-硅。为了从上述材料中得到p-型材料,可加入例如B和Al的元素,而为了从中得到n-型材料,则加入例如P,As和Sb的元素。对非晶或微晶材料,例如悬空键的缺陷应通过加入元素例如H,F,或Cl来补偿。藉此,可显著改善光电器件的填充因子。从基体一侧起,可以依次形成n-型层,i-型层,和p-型层,或相反次序形成p-型层,i-型层,和n-型层。当使用pn结时,层的次序可以是n-p/n-i-p或p-n/p-i-n。尽管p-i-n结可以是单一结构,优选提供二个或多个p-i-n结以延缓光电器件的光退化;光退化意味着强光裸露下造成填充因子和开路电压下降的现象,结果随时间的流逝降低光电转换效率。图3表示具有三个结的器件:例如,a-SiGe:H层作为第一个i-型层,a-SiGe:H作为第二个i-型层,和a-Si:H作为第三个i-型层。i-型层可以是单层结构,或可以是叠层结构例如a-Si/a-Si,或a-Si/a-SiGe/a-Si。为了使i-型层更具本征性,可以向层中加入B等。在形成pn结过程中,优选使用多-Si或μc-Si,并向其中加入用于p-型或n-型的上述元素。由于不遭受上述光退化,在室外长期使用时优选这些材料。这些材料比非晶材料对可见光具较低的吸收系数,其形成厚度不少于0.5μm的膜。
n-型层或p-型层优选由具有光吸收系数尽可能低的材料形成,该材料包括a-Si,a-SiC,a-SiO,a-SiN,μc-Si,μc-SiC,和多-硅。
通常用等离子CVD形成由非单晶硅材料的p-i-n结构,例如上述材料a-Si,a-SiC,a-SiO,a-SiN,μc-Si,μc-SiC,或多-硅。为了形成i-型层,特别优选微波等离子CVD,该方法可以高速率进行沉积。基体上-Si的形成可以用等离子CVD,溅射等方法在基体上形成a-硅来进行,接着用激光幅照、施加高频电源等方法使其变为多晶。为了用RF等离子CVD形成非晶硅层,优选用Ar,H2,He等稀释原料气,稀释因数为1-100。为了以相似方法形成具有微晶结构的非单晶硅层,优选用Ar,H2,He等稀释原料气,稀释因子为10-1000。
(上透明电极层106,506)
此层是重要的,因为它将光有效地引入半导体层并将光电流引至收集极而并不丢失。为了减少光吸收和改善反射阻挡效应,应当充分再现地控制层厚,且电阻率应最小化。其中适合的材料包括SnO2,In2O3,和ITO(氧化铟-锡)。在此层上可迭层MgF2,TiO2等,以提高反射阻挡效应。例如,上透明电极层的ITO其形成厚度范围优选700-800。以有效地将可见光引入半导体层。
在半导体层上以上述材料形成上部电极时通常用真空气相沉积并通常在温度范围100-300℃内,以得到低电阻率的透明层。工业上优选溅射,因为该法能在高沉积速率下形成大面积层。考虑到成本,反应溅射是适合的,其中在将Ar和O2引入进入沉积室的条件下,用In,Sn,或InSn(Sn:5重量%)靶形成层。
(收集极107,507)
为了减少光电流损失和有效地将光引入半导体层,如图1B所示,从入射方向看,收集极优选排成梳状。收集极一般是由具有高导电性材料例如Au,Ag,Cu和Al构成。本发明的收集极可以由单一金属层构成,或由一上述金属层和另一种金属层结合构成。不过,当使用会造成迁移的Au,Ag或Cu时,应阻止迁移。具体言之,优选的是上述金属用含有溶解在环己酮中作为粘结剂的尿烷树脂的碳糊剂涂覆,将涂覆金属丝置于上部电极上面并干燥。通过干燥,环己酮从丝中蒸发,使丝融接上收集极而导致足够低的接触电阻。另外,碳糊剂以上述电极形状可用丝网印刷涂覆,并在其上用丝网印刷将上述金属涂覆。单一铝层,或多层金属例如Cr/Al/Cr可用掩膜覆盖沉积表面的真空气相沉积或溅射形成。为了改进化学稳定性,可加入Ti,Mn,Si,Mo等,加入量范围约0.1-10%。在电流密度高的区域,可以同时融接铜箔汇流条,如图1B所示。当基体是导电性时,汇流条可融接到基体反面。
现在参考形成氧化锌膜的方法,和使用氧化锌膜的太阳能电池叙述本发明。然而绝非限制本发明。
(实施例1)
在形成本发明的氧化锌层的实验中使用如图2所示的装置。作为负电极的导电基体201是厚度为0.15mm的不锈钢430BA,其上溅射厚度为300nm的Ag,并在背面覆有绝缘带206。在阳极面上的反电极202是厚度为1mm的4-N锌板。水溶液203是将作为碳水化合物的蔗糖以浓度为10g/升溶解在0.23摩尔/升硝酸锌水溶液中制备的,并保持在83℃和pH4.9。为了形成氧化锌层,以范围为1.0mA/cm2(0.1A/dm2)-3.0mA/cm2(0.3A/dm2)的电流密度施加电流,导电基体和反电极间的电位差为1V。施加电流10分钟后,形成1μm的氧化锌层。在得到本发明含碳水化合物的氧化锌层(透明电极)上,制备出图5所示结构的太阳能电池,它具有如图3所示的三个p-i-n结。具体地说,在所得本发明含碳水化合物的氧化锌层上排布着第一掺杂层(n-型a-Si:H:P)/第一i-型层(a-SiGe:H)/第二掺杂层(P-型μc-Si:H:B)/第三掺杂层(n-型a-Si:H:P)/第二i-型层(a-SiGe:H)/第四掺杂层(P-型μc-Si:H:B)/第五掺杂层(n-型a-Si:H:P)/第三i-型层(a-Si:H)/第六掺杂层(P-型μc-Si:H:B)/上透明电极层(ITO)/收集极(Cu线/Ag/C),分别使用括弧中所示材料以生产太阳能电池。第一i-型层,和第二i-型层是由上述微波(MW)等离子CVD形成的,其它层是在表1所示条件下由RF等离子CVD形成的。上透明电极是由溅射形成的。如图1B所示,在其上已形成直至上透明电极层迭层的基体端面上,放置市售双面涂覆带、铜箔、由Cu线/Ag/C组成的导线(收集极)和汇流条,并加热干燥融接。生产了12个太阳能电池(样品1-1至1-12)。
表1半导体层        形成方法    膜形成温度    层厚
                          (℃)       (μm)第一掺杂层       RFCVD        300         0.02n-型,a-Si:H:P第一i-型层       微波CVD      275         0.1a-SiGe:H第二掺杂层       RFCVD        250         0.01P-型,μc-Si:H:B第三掺杂层       RFCVD        250         0.01n-型,a-Si:H:P第二i-型层       微波CVD      270         0.07a-SiGe:H第四掺杂层       RFCVD        245         0.01P-型,μc-Si:H:B第五掺杂层       RFCVD        230         0.01n-型,a-Si:H:P第三i-型层       RFCVD        200         0.1a-Si:H第六掺杂层       RFCVD        165         0.01P-型,μc-Si:H:B
(比较例1)
用与实施例1相同的方法生产12个太阳能电池(比较样品1-1至2-12),不同的是不加碳氢化合物。
实施例1和比较例1中形成的氧化锌薄层进行层内碳氢化合物分析。含碳氢化合物的氧化锌层溶解在2%的醋酸水溶液中,溶液用高速液相色谱分析。从本发明的含碳氢化合物的氧化锌层中,检测到的碳氢化合物的量相当于约0.1mg/cm3的蔗糖。从比较例1中的氧化锌层中,用同样的分析操作没有检测到碳氢化合物。对氧化锌层作了剥离实验。具体作法是,在实施例1或比较例1中形成了氧化锌膜后,用金刚石刀在其上施以100g的重力刮出36个刮痕,其形状为边长5mm的正方形。刮痕试样在60℃的热水中浸3天,并用聚酰亚胺带剥离检测。
结果,本发明实施例1中的含碳氢化合物的氧化锌层几乎不被剥离,而比较例1中的氧化锌层在两处刮痕处有剥离。这表明,本发明实施例1中的含碳氢化合物的氧化锌层已充分粘结下面的基体,进一步改善了光电器件的耐久性。
实施例1(样品1-1至1-12)和比较例1(比较样品1-1至1-12)的太阳能电池作了初始特性(光传导率和短路电流)检测。具体地说,用阳光模拟器(AM1.5,100mW/cm2,表面温度25℃)测量光电转换效率和短路光电流。结果,实施例1的光电器件的特性优于比较例1的,分别为1.1和1.15倍。然后将样品进行作为加速试验的HH-检测(高温高湿检测)。将两种太阳能电池置于环境检测箱中,并保持84℃温度和85%湿度达250小时。然后将环境检测箱的温度和湿度设为25℃和50%达1小时。取出12个太阳能电池用上述同样的方法测定光电转换效率和短路光电流。结果,实施例1器件的特性优于比较样品1的,平均分别为1.09和1.13倍。接着,样品1-6至1-12和比较样品1-6至1-12进行曝光检测。在上述阳光模拟器(AM1.5,100mW/cm2,表面温度50℃)中曝光950小时后,检测每个样品的外观未发现缺陷。曝光检测降低了光电转换效率。曝光检测之前和之后,对样品1-6至1-12,光电转换效率比率(检测后/检测前)平均为0.88,对比较样品1-6至1-12,同样的比率平均为0.83。
如上所述,本发明光电器件比常规光电器件性能优越。
(实施例2)
实施例2中,作为负电极的导电基体201是0.15mm厚的不锈钢430BA,其上有溅射厚度为80nm的铝和溅射厚度为100nm的氧化锌作为透明导电中间层。电极的背面覆有绝缘带206。阳性反电极202是1mm厚的4-N锌片。水溶液203是将作为碳水化合物的蔗糖以浓度为7g/升溶解在0.18摩尔/升硝酸锌水溶液中制备的,并保持在85℃和pH4.8。为了形成氧化锌层,以范围为0.8mA/cm2(0.08A/dm2)-2.0mA/cm2(0.2A/dm2)的电流密度施加电流,导电基体和反电极间的电位差为1.3V。在所得含碳氢化合物的本发明氧化锌层上以与实施例1相同的方式制成太阳能电池,该太阳能电池具有如图1所示三个p-i-n结的结构。生产了15个太阳能电池(样品2-1至2-15)。
(比较例2)
用与实施例2相同的方法生产15个太阳能电池(比较样品2-1至2-15),不同的是水溶液中不含碳氢化合物。
实施例2和比较例2中形成的氧化锌薄层接受层中碳氢化合物含量分析。含碳氢化合物的氧化锌层溶解在1%的醋酸水溶液中,溶液用高速液相色谱分析。从实施例2的含碳氢化合物的氧化锌层中,检测到的碳氢化合物的量对相当于约0.05mg/cm3的蔗糖。从比较例2中的氧化锌层中,用同样的分析操作没有检测到碳氢化合物。对氧化锌层作了剥离试验。具体地说,在实施例2或比较例2中形成了氧化锌膜后,用金刚石刀在其上施以150g的重力刮出49个刮痕,其形状为边长5mm的正方形。刮痕试样在65℃的热水中浸3天,并用Capton带剥离检测。
结果,本发明实施例2中的含碳氢化合物的氧化锌层几乎不被剥离,而比较例2中的氧化锌层在三处刮痕处有剥离。这表明,本发明含碳氢化合物的氧化锌层已充分粘结下面的基体,进一步改善了光电器件的耐久性。
实施例2(样品2-1至2-15)和比较例2(比较样品2-1至2-15)的太阳能电池作初始特性(光传导率和短路电流)检测。具体地说,用阳光模拟器(AM1.5,100mW/cm2,表面温度25℃)测定光电转换效率和短路光电流。结果,实施例2的光电器件的特性优于比较例2的,分别为1.13和1.16倍。然后将样品进行作为加速试验的HH-检测(高温高湿检测)。将两种太阳能电池置于环境检测箱中,并保持85℃温度和85%湿度达350小时。然后将环境检测箱的温度和湿度设为25℃和50%达1小时。取出15个太阳能电池并测定光电转换效率和短路光电流。结果,实施例2器件的特性优于比较例2,平均分别为1.08和1.12倍。接着,样品2-6至2-15和比较样品2-6至2-15接受曝光检测。在上述阳光模拟器(AM1.5,100mW/cm2,表面温度50℃)中曝光1000小时后,检测所有样品的外观未发现缺陷。曝光检测降低了光电转换效率。曝光检测之前和之后,对样品2-6至2-15,光电转换效率比率(检测后/检测前)平均为0.87,对样品2-6至2-15,同样的比率平均为0.83。
如上所述,本发明光电器件比常规光电器件性能优越。
(实施例3)
实验中改变用于形成氧化锌层水溶液中的蔗糖浓度。用与实施例1相同的方法生产太阳能电池,不同的是用于形成氧化锌层水溶液中的蔗糖浓度加以改变,将氧化锌层中的碳氢化合物含量变成0-1000mg/cm3范围。结果,如图6A所示,在蔗糖浓度范围为1μg/cm3-100mg/cm3时,光电转换效率最高。用与实施例1相同的方法进行剥离检测。结果发现,如图6B所示,在蔗糖浓度范围为1μg/cm3-100mg/cm3时,剥离几乎被阻止。剥离检测这后,用SEM观察太阳能电池的剥离部分的截面。当蔗糖浓度低于1μg/cm3,在下面的基体和氧化锌层之间趋于发生剥离,而当蔗糖浓度高于100mg/cm3时,在太阳能电池和透明导电层(氧化锌层)之间,趋于发生剥离。根据用SEM观察透明导电层的截面,当蔗糖浓度低于1μg/cm3时,观察到许多异常生长的凸起的片状晶体,该晶体似乎造成了大量电流的泄漏,降低了光电转换效率。另一方面,当蔗糖浓度高于100mg/cm3时,层的形状非常平坦,不足以满足光约束和光扩散,这似乎降低了光电转换效率。
(实施例4)
实验中改变用于形成氧化锌层水溶液中的糊精浓度。用与实施例1相同的方法生产太阳能电池,不同的是用糊精取代蔗糖并改变糊精浓度,使氧化锌层中的碳氢化合物含量变成为0-1000mg/cm3范围。结果,如图8A所示,在糊精浓度范围为1μg/cm3-100mg/cm3时,光电转换效率最高。用与实施例1相同的方法进行剥离检测。结果发现,如图8B所示,在糊精浓度范围为1μg/cm3-100mg/cm3时,剥离几乎被阻止。剥离检测之后,用SEM观察太阳能电池的剥离部分的截面。当糊精浓度低于1μg/cm3时。在下面的基体和氧化锌层(氧化锌层)之间,趋于发生剥离,而当糊精浓度高于100mg/cm3时,在太阳能电池和透明导电层(氧化锌层)之间,趋于发生剥离。根据用SEM观察透明导电层的截面,当蔗糖浓度低于1μg/cm3时,观察到许多异常生长的凸起的片状晶体,该晶体似乎造成了大量电流的泄漏,降低了光电转换效率。另一方面,当糊精浓度高于100mg/cm3,层的形状非常平坦,不足以满足光约束和光扩散,这似乎降低了光电转换效率。
(实施例5)
在氧化锌层形成实验中,改变导电基体和反电极之间的电位差。用实施例1相同的方法生产太阳能电池,不同的是将导电基体和反电极之间的电位差改为范围为0.01-100V。结果,导电基体和反电极之间的电位差范围为0.1-30V,光电转换效率最高,如图9A所示,用与实施例1相同的方法进行剥离检测。结果发现,如图9B所示,在导电基体和反电极之间的电位差范围为0.1-30V时,剥离几乎被阻止。剥离检测之后,用SEM观察太阳能电池的剥离部分的截面。当导电基体和反电极之间的电位差低于0.1V时,在下面的基体和透明导电层之间,趋于发生剥离,而当导电基体和反电极之间的电位差高于30V时,在太阳能电池和透明导电层之间,趋于发生剥离。用SEM观察透明导电层的截面。当电位差低于0.1V时,强定向c-轴的六棱柱以平坦形状规则地排布,不适合于光聚束和光扩散,这似乎降低了光电转换效率。另一方面,当电位差高于30V时,观察到许多异常生长的大晶体,层的形状非常平坦,不适合光和光扩散,这似乎增加了电流的泄漏,降低了光电转换效率。
(实施例6)
如另一个实施方案生产如图4A和4B所示的太阳能电池组件。光电器件的层结构如图1A和1B所示。半导体层具有如实施例1的三个p-i-n结。一长形薄片被用作基体。在长形薄片上,通过高生产率的辊对辊系统连续地形成全部的层。下面详细描述该方法。首先,用辊对辊系统通过溅射在0.15mm厚的SUS 430BA薄片上形成0.05μm厚的铝层和由氧化锌组成的0.1μm厚的中间层。再用图7所示设备在其上电化学形成含碳氢化合物的氧化锌层(透明导电层)。
图7所示设备700在长形薄基体701(ZnO/Al/SUS)的表面上连续形成本发明的含碳氢化合物的氧化锌层。作为基体701,可以使用一长形柔软的基体例如不锈钢片。图中未示出结合在其背面的绝缘带。基体被送料辊733卷绕,并被送料辊732输送穿过容器,被卷绕轴734卷绕。各轴的直径应根据导电基体101的材料质量来决定,以防止基体的塑性变形。例如,对0.15mm厚的SUS 430BA薄片,辊筒的直径不小于40cm。第一洗涤器702进行有机溶剂超声波洗涤,它被连接到其内装有用于除尘的过滤器的循环装置704上。洗涤容器内装有超声振动板703,和加热器705。电沉积容器706形成氧化锌层。此容器也被连接到内部装有用于除尘的过滤器的循环装置707上。电沉积容器有锌电极708和加热器709。电极708被连接到容器外面的稳流电源710。电沉积容器内充有含蔗糖浓度为9g/升的硝酸锌水溶液。循环装置707监视硝酸锌水溶液的浓度,并重新补足硝酸锌。第二洗涤器711进行纯水超声波洗涤,并被连接到内部装有用于除尘的过滤器的循环装置712上。第二洗涤器内部也装有超声振动板713和加热器714。第三洗涤器718用酒精等取代纯水,被连接到内部装有用于除尘的过滤器的循环装置719上。第三洗涤器718内部也装有超声振动板720和加热器721。被处理的基体通过干燥室731被热风干燥。
下面描述此设备的操作。容器分别充有一种预定溶液,启动循环装置,加热器和超声振动器。第一洗涤器的温度由加热器控制,其温度等于电解容器的温度,第二洗涤器的温度被控制在80℃。从送料辊送入基体(Zn/Al/SUS)并以预定速度通过第一洗涤器,电沉积器,第二洗涤器,第三洗涤器,和干燥室至卷绕辊。然后,施加来自稳流电源710的一预定密度的电流,以启动连续形成透明导电层。当800米长的基体被处理形成透明导电层后,通过停止输送基体、切断电沉积电源、停止加热和超声振动来停止操作,取出其上已形成氧化锌层的基体。
用上述方法在表2所列条件下形成氧化锌层。
表2
步骤:                  形成透明导电层
水溶液的种类:          硝酸锌水溶液
水溶液浓度(摩尔/升):    0.12
水溶液温度(℃):         82
电流密度(mA/cm2)        0.5-0.8
电极间的电位差(V):      1.6
蔗糖含量(g/升)**:      9
层厚度(μm)              1.3
**:氧化锌层中蔗糖含量为 0.1mg/cm3
然后,使用日本专利申请公开No.06-181325中给出的辊对辊系统在已形成的透明导电层上形成半导体层和透明电极层。具体地说,在表1所示条件下形成第一掺杂层(n-型a-Si:H:P)/第一i-型层(a-SiGe:H)/第二掺杂层(P-型μc-Si:H:B)/第三掺杂层(n-型a-Si:H:P)/第二i-型层(a-SiGe:H)/第四掺杂层(P-型μc-Si:H:B)/第五掺杂层(n-型a-Si:H:P)/第三i-型层(a-Si:H)/第六掺杂层(P-型μc-Si:H:B)/上透明电极层(ITO)。
从已经用ITO层叠层的所得太阳能电池卷上,将太阳能电池切成尺寸为30×30cm2。如图1B所示将类似于实施例1中的收集极和汇流条固定其上。串连四个太阳能电池,并且将旁路二极管并联太阳能电池上,如图4B所示。然后,在0.3mm厚的支承基体上叠层EVA、尼龙树脂、EVA、玻璃无纺布,串连太阳能电池、玻璃无纺布、EVA、玻璃无纺布、EVA,玻璃无纺布和氟树脂。用热真空密封叠层。
用与实施例1中的同样方法对上述尺寸为35×130cm2的太阳能电池组件(样品6)进行测定和检测。结果,通过初始特性测定,HH检测,和曝光检测测定,发现性能优良。
按照JIS C-8917进一步地,进行太阳能电池扭曲检测。在此检测中,三个角固定,一个角作3cm扭曲移位,共作100次。对其它角也作同样的检测。测定光传导性,电流泄漏,和低照度开路电压,发现是相对于扭曲检测之前值的0.99,1.09,和0.96倍。
如上所述,发现本发明光电组件具有优良性能。
(实施例7)
用图2所示装置形成含碳水化合物的氧化锌层。作为负极的导电基体201是0.15mm厚的不锈钢430BA,其上溅射厚度300nm的Ag,且在背面涂以绝缘带206。正级面上的反电极202是1mm厚的4-N锌板。水溶液是溶在10%氨水中的0.04摩尔/升氢氧化锌溶液,并含8g/升作为碳水化合物的蔗糖,pH为10.4,并保持在68℃。在导电基体和反电极之间电位差为0.8V条件下,施加范围为1.1-2.2mA/cm2(0.11-0.22A/dm2)的电流。在所得含碳水化合物的氧化锌层上,在如实施例1(样品7-1至7-15)同样条件下生产出15个太阳能电池,每个太阳能电池都有如图1所示的三个p-i-n结。
(比较例3)
用与实施例7中相同的方法生产15个太阳能电池(比较样品3-1至3-15),不同的是水溶液中不含碳水化合物。
分析实施例7和比较例3中形成的氧化锌层层中碳水化合物含量。含碳水化合物的氧化锌层被溶解在1%醋酸溶液中,溶液用高速液相色谱分析。从实施例7的含碳水化合物的氧化锌层,检测到碳水化合物量相对于约0.04mg/cm3的蔗糖。从比较例3的氧化锌层,用同样的分析操作未检测到碳水化合物。对氧化锌层作剥离检测。具体地说,当实施例7或比较例3中的氧化锌膜形成后,用金刚石刀在其上施以250g的重力,刮出64个刮痕,其形状为边长5mm的正方形。刮痕试样在65℃的热水中浸5天,并用Capton带剥离检测。
结果,本发明实施例7的含碳水化合物的氧化锌层几乎不剥离,而比较例3中的氧化锌层在5处刮痕处有剥离。这表明,本发明含碳氢化合物的氧化锌层充分粘结下面的基体,进一步改善了光电器件的耐久性。
为了比较实施例7的太阳能电池与比较例3的太阳能电池,进一步用与实施例2中的同样方法,进行初始特性(光传导率和短路电流),HH检测的加速检测(高温高温检测),和光幅照检测。结果发现,本发明的光电器件的特性优于常规光电器件的。
(实施例8)
用与实施例7中相同的方法生产图1所示结构的15个太阳能电池(样品8-1至8-15),不同的是水溶液是溶在12%氨水中的0.03摩尔/升氢氧化锌溶液,并含5g/升作为碳水化合物的蔗糖,pH为10.5,并保持在65℃。在导电基体和反电极之间电位差为2.5V条件下,施加密度范围为1.4-2.6mA/cm2(0.14-0.26A/dm2)的电流。
(比较例4)
用与实施例8中相同的方法生产15个太阳能电池(比较样品4-1至4-15),不同的是水溶液中不含碳水化合物。
分析实施例8和比较例4中形成的氧化锌层中碳水化合物的含量。含碳水化合物氧化锌层被溶解在1%醋酸溶液中,溶液用高速液相色谱分析。从实施例8的含碳水化合物的氧化锌层中,检测到碳水化合物量相对于约0.03mg/cm3的蔗糖。从比较例4的氧化锌层,用同样的分析操作未检测到碳水化合物。对氧化锌层作剥离检测。明确地说,在实施例8或比较例4的氧化锌膜上,用金刚石刀在其上施以200g的重力,刮出64个刮痕,其形状为边长5mm的正方形。刮痕试样在65℃的热水中浸5天,并用Capton带剥离检测。
结果,本发明实施例8的含碳水化合物的氧化锌层几乎不剥离,而比较例4中的氧化锌层在4处刮痕处有剥离。这表明,本发明的含碳氢化合物的氧化锌层充分粘结下面的基体,进一步改善了光电器件的耐久性。
另外,为了对实施例8的太阳能电池与比较例4的太阳能电池作比较,用与实施例2中的相同方法,进行初始特性(光传导率和短路电流)检测,HH检测的加速检测(高温高湿检测),和光幅照检测。
结果发现,本发明的光电器件优于常规光电器件。
使用本发明含碳水化合物的氧化锌层的光电器件能改进与下面基体的粘结,改进热稳定性,和对氧化锌形状的控制。结果,有可能改善光传导特性例如光电转换效率,短路光电流,和电流泄漏。另外,在室外曝露耐久性检测中,HH检测(高温高湿环境检测)和长期曝光中,光电器件也得到了改善。可以相当低的成本电化学形成氧化锌层,由此降低了太阳能电池的功率成本。

Claims (10)

1.一种光电器件包括在基体上按序迭层的背反射层,氧化锌层和半导体层,其中氧化锌层包括一种碳水化合物。
2.根据权利要求1的光电器件,其中包含的碳水化合物含量范围为1μg/cm3-100mg/cm3
3.根据权利要求1的光电器件,其中氧化锌层是将导电基体和反电极浸入至少含锌离子和碳水化合物的水溶液中,并在反电极和导电基体之间施加一电压,以此电化学形成的。
4.根据权利要求1的光电器件,其中背反射层是由铝或其化合物组成的,其中在背反射层和氧化锌层之间提供透明导电中间层。
5.根据权利要求4的光电器件,其中中间层是由溅射形成的。
6.根据权利要求3的光电器件,其中水溶液中至少含锌离子,碳水化合物和硝酸根离子;或水溶液中至少含锌离子,碳水化合物,铵离子和锌氨配离子;或水溶液中含锌离子,碳水化合物和锌酸氢根离子或锌酸根离子。
7.根据权利要求1的光电器件,其中半导体层包括非单晶半导体。
8.一种氧化锌薄膜的制备方法,包括将导电基体和反电极浸入至少含锌离子和碳水化合物的一水溶液,在导电电极和反电极之间施加电压,电化学地形成氧化锌薄膜,其中导电基体和反电极之间电位差为0.1-30V。
9.一种光电器件的制备方法,包括用权利要求8的方法生产氧化锌薄膜,和在氧化锌薄膜上形成半导体层的步骤。
10.一种氧化锌薄膜,含碳水化合物,其含量范围为1μg/cm3-100mg/cm3
CNB981198015A 1997-07-25 1998-07-24 氧化锌薄膜、含有其的光电器件及它们的制备方法 Expired - Fee Related CN1140932C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP200122/1997 1997-07-25
JP200122/97 1997-07-25
JP9200122A JPH1146006A (ja) 1997-07-25 1997-07-25 光起電力素子およびその製造方法

Publications (2)

Publication Number Publication Date
CN1213187A true CN1213187A (zh) 1999-04-07
CN1140932C CN1140932C (zh) 2004-03-03

Family

ID=16419197

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981198015A Expired - Fee Related CN1140932C (zh) 1997-07-25 1998-07-24 氧化锌薄膜、含有其的光电器件及它们的制备方法

Country Status (7)

Country Link
US (1) US6613603B1 (zh)
EP (1) EP0893833B1 (zh)
JP (1) JPH1146006A (zh)
KR (1) KR100324450B1 (zh)
CN (1) CN1140932C (zh)
AU (1) AU758272B2 (zh)
DE (1) DE69814751T2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134701A (zh) * 2010-01-25 2011-07-27 美国迅力光能公司 用于形成光伏器件的背反射层的工艺
TWI479668B (zh) * 2012-04-25 2015-04-01 Mitsubishi Electric Corp Solar cell and solar cell manufacturing method, solar cell module
TWI568003B (zh) * 2012-12-19 2017-01-21 茂迪股份有限公司 太陽能電池及其製造方法與太陽能電池模組
CN115706185A (zh) * 2021-08-11 2023-02-17 江苏宜兴德融科技有限公司 太阳能电池器件及太阳能电池制造方法

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247876B2 (ja) * 1999-03-09 2002-01-21 日本板硝子株式会社 透明導電膜付きガラス基板
US6787692B2 (en) 2000-10-31 2004-09-07 National Institute Of Advanced Industrial Science & Technology Solar cell substrate, thin-film solar cell, and multi-junction thin-film solar cell
US6750394B2 (en) * 2001-01-12 2004-06-15 Sharp Kabushiki Kaisha Thin-film solar cell and its manufacturing method
WO2002067335A1 (fr) 2001-02-19 2002-08-29 International Business Machines Corporation Structure de transistor en couches minces, procede de fabrication d'une structure de transistor en couches minces, et dispositif d'affichage utilisant une structure de transistor en couches minces
US6841000B2 (en) * 2001-10-01 2005-01-11 Ceramare Corporation Mineralizer composition and method for growing zinc oxide crystals, films and powders
JP2004311965A (ja) * 2003-03-26 2004-11-04 Canon Inc 光起電力素子の製造方法
JP2004335823A (ja) * 2003-05-09 2004-11-25 Canon Inc 光起電力素子及び光起電力素子の形成方法
JP4368151B2 (ja) * 2003-06-27 2009-11-18 三洋電機株式会社 太陽電池モジュール
US7132201B2 (en) * 2003-09-12 2006-11-07 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7129180B2 (en) * 2003-09-12 2006-10-31 Micron Technology, Inc. Masking structure having multiple layers including an amorphous carbon layer
US20050215059A1 (en) * 2004-03-24 2005-09-29 Davis Ian M Process for producing semi-conductor coated substrate
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP4560505B2 (ja) * 2005-11-08 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
US20070193624A1 (en) * 2006-02-23 2007-08-23 Guardian Industries Corp. Indium zinc oxide based front contact for photovoltaic device and method of making same
US20080047599A1 (en) * 2006-03-18 2008-02-28 Benyamin Buller Monolithic integration of nonplanar solar cells
US7871664B2 (en) 2006-03-23 2011-01-18 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
US20080047602A1 (en) 2006-08-22 2008-02-28 Guardian Industries Corp. Front contact with high-function TCO for use in photovoltaic device and method of making same
JP5127183B2 (ja) * 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
US20080047603A1 (en) * 2006-08-24 2008-02-28 Guardian Industries Corp. Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
US8076571B2 (en) * 2006-11-02 2011-12-13 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US7964788B2 (en) 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
WO2008063305A2 (en) 2006-11-02 2008-05-29 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8203073B2 (en) * 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8012317B2 (en) 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080178932A1 (en) * 2006-11-02 2008-07-31 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080105299A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US20080302414A1 (en) * 2006-11-02 2008-12-11 Den Boer Willem Front electrode for use in photovoltaic device and method of making same
US8334452B2 (en) 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
US20080169021A1 (en) * 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
JP2008204945A (ja) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd ガス拡散電極用基材、ガス拡散電極及びその製造方法、並びに燃料電池
US7767253B2 (en) * 2007-03-09 2010-08-03 Guardian Industries Corp. Method of making a photovoltaic device with antireflective coating
US20080223430A1 (en) * 2007-03-14 2008-09-18 Guardian Industries Corp. Buffer layer for front electrode structure in photovoltaic device or the like
US20080223436A1 (en) 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
US8237047B2 (en) * 2007-05-01 2012-08-07 Guardian Industries Corp. Method of making a photovoltaic device or front substrate for use in same with scratch-resistant coating and resulting product
US20080295884A1 (en) * 2007-05-29 2008-12-04 Sharma Pramod K Method of making a photovoltaic device or front substrate with barrier layer for use in same and resulting product
US7846750B2 (en) * 2007-06-12 2010-12-07 Guardian Industries Corp. Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
US20080308147A1 (en) * 2007-06-12 2008-12-18 Yiwei Lu Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20080308145A1 (en) 2007-06-12 2008-12-18 Guardian Industries Corp Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
US7875945B2 (en) * 2007-06-12 2011-01-25 Guardian Industries Corp. Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20080308146A1 (en) 2007-06-14 2008-12-18 Guardian Industries Corp. Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
US8114472B2 (en) * 2008-01-08 2012-02-14 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same
US20090194157A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US20090194155A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
GB0803702D0 (en) 2008-02-28 2008-04-09 Isis Innovation Transparent conducting oxides
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
EP2377166A4 (en) * 2008-12-18 2015-06-24 First Solar Inc PV MODULES WITH REAR METAL CONTACTS
KR20110122121A (ko) * 2009-01-22 2011-11-09 이 아이 듀폰 디 네모아 앤드 캄파니 태양 전지 모듈에 대한 킬레이트제를 포함하는 폴리(비닐 부티랄) 밀봉제
JP2010232454A (ja) * 2009-03-27 2010-10-14 Fujifilm Corp 基板とその位置決め方法、光電変換素子とその製造方法及び製造装置、及び太陽電池
TWI379430B (en) * 2009-04-16 2012-12-11 Atomic Energy Council A method of fabricating a thin interface for internal light reflection and impurities isolation
US8445373B2 (en) * 2009-05-28 2013-05-21 Guardian Industries Corp. Method of enhancing the conductive and optical properties of deposited indium tin oxide (ITO) thin films
KR20120052360A (ko) * 2009-07-31 2012-05-23 이 아이 듀폰 디 네모아 앤드 캄파니 광전지용 가교결합성 봉지제
US8507797B2 (en) * 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
US8236118B2 (en) 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
US10164135B2 (en) * 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US10167572B2 (en) 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US8526167B2 (en) 2009-09-03 2013-09-03 Applied Materials, Inc. Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications
GB0915376D0 (en) 2009-09-03 2009-10-07 Isis Innovation Transparent conducting oxides
US8003431B2 (en) 2009-10-21 2011-08-23 Electronics And Telecommunications Research Institute Method for antireflection treatment of a zinc oxide film and method for manufacturing solar cell using the same
US8502066B2 (en) * 2009-11-05 2013-08-06 Guardian Industries Corp. High haze transparent contact including insertion layer for solar cells, and/or method of making the same
US20110186120A1 (en) * 2009-11-05 2011-08-04 Guardian Industries Corp. Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
US20110168252A1 (en) 2009-11-05 2011-07-14 Guardian Industries Corp. Textured coating with etching-blocking layer for thin-film solar cells and/or methods of making the same
US20110100446A1 (en) 2009-11-05 2011-05-05 Guardian Industries Corp. High haze transparent contact including ion-beam treated layer for solar cells, and/or method of making the same
US8617641B2 (en) * 2009-11-12 2013-12-31 Guardian Industries Corp. Coated article comprising colloidal silica inclusive anti-reflective coating, and method of making the same
TWI426633B (zh) * 2009-12-10 2014-02-11 Univ Nat Chiao Tung 倒置式有機太陽能元件及其製作方法
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
US20110180130A1 (en) 2010-01-22 2011-07-28 Guardian Industries Corp. Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same
US8460747B2 (en) * 2010-03-04 2013-06-11 Guardian Industries Corp. Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
US8518472B2 (en) 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US8604332B2 (en) 2010-03-04 2013-12-10 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
US20110277806A1 (en) * 2010-03-26 2011-11-17 Carlisle Intangible Company Low profile flexible photovoltaic cell membrane system
US8609455B2 (en) 2010-04-26 2013-12-17 Guardian Industries Corp. Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same
US9151879B2 (en) 2010-04-26 2015-10-06 Guardian Industries Corp. Multi-functional photovoltaic skylight and/or methods of making the same
US9423533B2 (en) 2010-04-26 2016-08-23 Guardian Industries Corp. Patterned glass cylindrical lens arrays for concentrated photovoltaic systems, and/or methods of making the same
US9574352B2 (en) 2010-04-26 2017-02-21 Guardian Industries Corp. Multifunctional static or semi-static photovoltaic skylight and/or methods of making the same
US10294672B2 (en) 2010-04-26 2019-05-21 Guardian Glass, LLC Multifunctional photovoltaic skylight with dynamic solar heat gain coefficient and/or methods of making the same
US20110290295A1 (en) 2010-05-28 2011-12-01 Guardian Industries Corp. Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same
CN102280512A (zh) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 一种具有高转换效率的太阳能电池组件
US20130087200A1 (en) * 2010-06-17 2013-04-11 University Of Florida Research Foundation, Inc. Enhanced thin film solar cell performance using textured rear reflectors
US8609980B2 (en) 2010-07-30 2013-12-17 E I Du Pont De Nemours And Company Cross-linkable ionomeric encapsulants for photovoltaic cells
US8354586B2 (en) 2010-10-01 2013-01-15 Guardian Industries Corp. Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
US8834664B2 (en) 2010-10-22 2014-09-16 Guardian Industries Corp. Photovoltaic modules for use in vehicle roofs, and/or methods of making the same
US9312417B2 (en) 2010-10-22 2016-04-12 Guardian Industries Corp. Photovoltaic modules, and/or methods of making the same
GB201019212D0 (en) 2010-11-12 2010-12-29 Dupont Teijin Films Us Ltd Polyester film
US20120167971A1 (en) 2010-12-30 2012-07-05 Alexey Krasnov Textured coating for thin-film solar cells and/or methods of making the same
US8088990B1 (en) 2011-05-27 2012-01-03 Auria Solar Co., Ltd. Color building-integrated photovoltaic (BIPV) panel
US20120298177A1 (en) 2011-05-26 2012-11-29 Vandal Robert A Concentrating photovoltaic systems with offset photovoltaic devices and/or associated methods
JP5917082B2 (ja) * 2011-10-20 2016-05-11 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US9202958B2 (en) 2011-11-03 2015-12-01 Guardian Industries Corp. Photovoltaic systems and associated components that are used on buildings and/or associated methods
US9082914B2 (en) 2012-01-13 2015-07-14 Gaurdian Industries Corp. Photovoltaic module including high contact angle coating on one or more outer surfaces thereof, and/or methods of making the same
WO2013150708A1 (ja) * 2012-04-02 2013-10-10 パナソニック株式会社 太陽電池素子およびその製造方法
CN104395081B (zh) 2012-04-18 2016-12-07 葛迪恩实业公司 用于车顶的被改进的光伏模块和/或其制备方法
US10319872B2 (en) * 2012-05-10 2019-06-11 International Business Machines Corporation Cost-efficient high power PECVD deposition for solar cells
US9257579B2 (en) * 2012-07-30 2016-02-09 Electronics And Telecommunications Research Institute Electronic devices and method of fabricating the same
EP2934883B1 (en) 2012-12-19 2018-06-27 E. I. du Pont de Nemours and Company Cross-linked polymers and their use in packaging films and injection molded articles
US10431354B2 (en) 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
US9593019B2 (en) 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
EP3049589A1 (en) 2013-09-24 2016-08-03 Guardian Industries Corp. Multifunctional photovoltaic skylight with dynamic solar heat gain coefficient and/or methods of making the same
US20150325729A1 (en) 2014-05-09 2015-11-12 E. I. Du Pont De Nemours And Company Encapsulant composition comprising a copolymer of ethylene, vinyl acetate and a third comonomer
CN104018200B (zh) * 2014-05-13 2016-05-11 南昌航空大学 一种提高六棱柱状结构纳米氧化锌材料表面润湿性的方法
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
JP6204953B2 (ja) * 2015-09-18 2017-09-27 矢崎総業株式会社 端子付き電線及びそれを用いたワイヤーハーネス
US10483410B2 (en) 2015-10-20 2019-11-19 Alta Devices, Inc. Forming front metal contact on solar cell with enhanced resistance to stress
EP3762973B1 (en) 2018-03-08 2023-03-29 Dow Global Technologies LLC Photovoltaic module and encapsulant composition having improved resistance to potential induced degradation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN165761B (zh) 1983-07-28 1990-01-06 Energy Conversion Devices Inc
JPH02254199A (ja) 1989-03-27 1990-10-12 Ricoh Co Ltd 粒子被覆膜の形成方法
JP2784841B2 (ja) * 1990-08-09 1998-08-06 キヤノン株式会社 太陽電池用基板
JP3169243B2 (ja) 1991-10-24 2001-05-21 キヤノン株式会社 堆積膜の連続的形成方法
DE69218102T2 (de) 1991-10-22 1997-10-09 Canon Kk Photovoltaisches Bauelement
JP3081394B2 (ja) 1992-12-11 2000-08-28 キヤノン株式会社 光起電力素子及び発電システム
US5506420A (en) * 1994-09-14 1996-04-09 The Regents Of The University Of California Semiconductor bio-electronic devices incorporating biochemical stabilization layers
JP3273294B2 (ja) * 1995-02-13 2002-04-08 大阪市 酸化亜鉛膜作製用電解液
US5686368A (en) * 1995-12-13 1997-11-11 Quantum Group, Inc. Fibrous metal oxide textiles for spectral emitters
EP0794270B1 (en) 1996-03-06 2000-06-14 Canon Kabushiki Kaisha Process for production of zinc oxide thin film, and process for production of semiconductor device substrate and process for production of photoelectric conversion device using the same film
JPH10140373A (ja) * 1997-02-04 1998-05-26 Canon Inc 酸化亜鉛薄膜の製造方法、それを用いた半導体素子基板及び光起電力素子
US6242080B1 (en) * 1997-07-09 2001-06-05 Canon Kabushiki Kaisha Zinc oxide thin film and process for producing the film
US6238808B1 (en) 1998-01-23 2001-05-29 Canon Kabushiki Kaisha Substrate with zinc oxide layer, method for producing zinc oxide layer, photovoltaic device, and method for producing photovoltaic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134701A (zh) * 2010-01-25 2011-07-27 美国迅力光能公司 用于形成光伏器件的背反射层的工艺
TWI479668B (zh) * 2012-04-25 2015-04-01 Mitsubishi Electric Corp Solar cell and solar cell manufacturing method, solar cell module
TWI568003B (zh) * 2012-12-19 2017-01-21 茂迪股份有限公司 太陽能電池及其製造方法與太陽能電池模組
CN115706185A (zh) * 2021-08-11 2023-02-17 江苏宜兴德融科技有限公司 太阳能电池器件及太阳能电池制造方法
CN115706185B (zh) * 2021-08-11 2024-02-13 江苏宜兴德融科技有限公司 太阳能电池器件及太阳能电池制造方法

Also Published As

Publication number Publication date
KR100324450B1 (ko) 2002-05-09
AU7842798A (en) 1999-02-04
US6613603B1 (en) 2003-09-02
KR19990014190A (ko) 1999-02-25
EP0893833A2 (en) 1999-01-27
EP0893833A3 (en) 2000-02-09
AU758272B2 (en) 2003-03-20
CN1140932C (zh) 2004-03-03
DE69814751D1 (de) 2003-06-26
EP0893833B1 (en) 2003-05-21
JPH1146006A (ja) 1999-02-16
DE69814751T2 (de) 2004-03-18

Similar Documents

Publication Publication Date Title
CN1140932C (zh) 氧化锌薄膜、含有其的光电器件及它们的制备方法
US6576112B2 (en) Method of forming zinc oxide film and process for producing photovoltaic device using it
US6123824A (en) Process for producing photo-electricity generating device
JP3327811B2 (ja) 酸化亜鉛薄膜の製造方法、それを用いた光起電力素子及び半導体素子基板の製造方法
JP3667178B2 (ja) 酸化亜鉛薄膜の製造方法、それを用いた光起電力素子の製造方法、及び光起電力素子
CN1093985C (zh) 光电元件的制造方法
CN101447518A (zh) 一种背点接触异质结太阳能电池及其制造方法
US20130125974A1 (en) Solar cell with metal grid fabricated by electroplating
US6951770B2 (en) Method of manufacturing a photovoltaic foil
JPH0563218A (ja) 太陽電池及びその製造方法
CN201323204Y (zh) 一种背点接触异质结太阳能电池
JP3618986B2 (ja) 光起電力素子の製造方法
CN111876809A (zh) 一种硒化锑薄膜的制备方法及应用
JP2000199098A (ja) 酸化亜鉛膜の形成方法及び該酸化亜鉛膜を用いた光起電力素子
CN115274934A (zh) 轻质柔性碲化镉薄膜的制备方法和轻质柔性碲化镉基片
JP3078935B2 (ja) 太陽電池の製造方法
JPH06196732A (ja) 太陽電池
JPH06140648A (ja) 太陽電池及びその製造方法
JPH06204520A (ja) 太陽電池の欠陥部分封止法
JPH11145501A (ja) 光起電力素子
JPH0846230A (ja) 光起電力素子の電極及び光起電力素子

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040303

Termination date: 20140724

EXPY Termination of patent right or utility model