CN1187792C - 清洗多孔体的方法 - Google Patents

清洗多孔体的方法 Download PDF

Info

Publication number
CN1187792C
CN1187792C CNB001086626A CN00108662A CN1187792C CN 1187792 C CN1187792 C CN 1187792C CN B001086626 A CNB001086626 A CN B001086626A CN 00108662 A CN00108662 A CN 00108662A CN 1187792 C CN1187792 C CN 1187792C
Authority
CN
China
Prior art keywords
cleaning
porous body
porous
solution
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001086626A
Other languages
English (en)
Other versions
CN1271175A (zh
Inventor
山方憲二
松村聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08360099A external-priority patent/JP3245127B2/ja
Priority claimed from JP08359999A external-priority patent/JP3320379B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1271175A publication Critical patent/CN1271175A/zh
Application granted granted Critical
Publication of CN1187792C publication Critical patent/CN1187792C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/261Alcohols; Phenols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/40Specific cleaning or washing processes
    • C11D2111/46Specific cleaning or washing processes applying energy, e.g. irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • H01L33/346Materials of the light emitting region containing only elements of Group IV of the Periodic Table containing porous silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

为了在短时间清洗多孔体而不使它的结构发生任何变化,提供一种清洗通过阳极氧化形成的多孔体的清洗方法,利用包含至少一种醇和乙酸的清洗溶液,在阳极氧化后清洗多孔体。

Description

清洗多孔体的方法
技术领域
本发明涉及清洗多孔体的方法和制造多孔体,非多孔膜或键合衬底的工艺方法。更具体地说,本发明属于制造工艺的技术领域,其中能够提供阳极氧化后清洗多孔体的方法,形成具有均匀厚度的非多孔膜。
背景技术
下面用多孔硅作为多孔体的例子进行说明。
A.Uhlir和D.R.Turner在氟化氢(以后通常简称为“HF”)水溶液(即氢氟酸)中施加正电压,进行电解抛光单晶硅的研究过程中发现多孔硅。
然后利用多孔硅能够充分反应的特性,在制造硅集成电路工艺中把它应用到要求形成厚绝缘材料的层间绝缘步骤中,并且开发FIPOS(多孔氧化硅完全隔离)技术,其中利用多孔氧化硅膜完全隔离器件元件(K.Imai,Solid-state Electron24,159,1981)。
最近,例如由日本专利NO.2608351和美国专利U.S.NO.5371037公开的是通过氧化膜把生长在多孔硅衬底上的硅外延层可选地键合到非晶衬底或单晶硅衬底表面上,以便获得SOI(在绝缘体上生长硅)衬底的技术。
此外,日本专利申请公开NO.6-338631公开了作为诸如称为光致发光材料或场致发光材料的光发射材料的技术。
通常利用阳极氧化形成多孔体。
作为形成多孔体的例子,图18表示通过把硅衬底阳极氧化制造多孔硅的装置。
图18表示的设备或装置是日本专利申请公开NO.60-94737公开的一种设备或装置。该阳极氧化装置包括由耐HF材料TEFLON(美国Du Pont的商标)制造的阳极氧化槽61和62,以便在它们之间固定作为处理靶子的硅衬底W。阳极氧化槽61和62分别提供有负电极63和正电极64。阳极氧化槽61和62具有和硅衬底W接触的在侧壁上的凹槽。在这些凹槽中,分别填充由氟橡胶制造的诸如O-形环65和66的密封件。于是固定硅衬底W的阳极氧化槽61和65由O-形环65和66密封。分别用HF水溶液67和68来填充用这种方法密封的阳极氧化槽61和62。
除此之外还提出了某些阳极氧化装置。
目前,关于阳极氧化后清洗多孔半导体衬底的方法已经实现,例如在日本专利申请公开NO.10-64870已经披露,但是除了这种方法以外很少披露其它例子。
为了清洗结构上具有高表面活性的多孔体,不能利用液体化学药品,例如,硫酸和过氧化氢的水溶液(下文称为“SPM”),氨水和过氧化氢的水溶液(下文称为“SC-1”)和盐酸和过氧化氢的水溶液(下文称为“SC-2”),通常利用该液体化学药品除掉有机物质,颗粒淀积物或金属淀积物。因此,提出一种清洗方法,其中在这些位置利用具有超声能量的纯水除掉粘到多孔层表面的外来物质,这由日本专利申请公开NO.10-64870披露。图19是上述的清洗步骤的流程图。在步骤STP1阳极氧化后露出多孔体,在步骤STP2利用具有超声能量的纯水进行清洗,接着在步骤STP3进行干燥处理。
上述公布也公开了一种方法,其中利用臭氧水或过氧化氢水亲水地处理多孔层表面,然后利用具有超声能量的纯水进行清洗。
然而,在清洗多孔半导体过程中,当然表面的清洗是绝对必要的,但是重要的是如何除掉进入细孔中的阳极氧化电解溶液。这是因为清洗表面会在细孔中残留电解溶液(通常HF水溶液按照重量比具有10%到50%的浓度),引起多孔体结构的变化。
此外,HF从细孔内部逐渐蒸发成HF气体,可能腐蚀周围的器件。并且腐蚀产生的颗粒可能污染衬底。
还有,因为在细孔中用纯水代替HF要花时间,所以用纯水进行清洗必须花长时间。在上述的情况中,多孔体可能在纯水中压碎,则引起产生大量微粒的困难。
制造SOI技术中所用的键合衬底,最好利用上述的多孔体。
图20表示制造键合衬底工艺的略图。
首先,在步骤S1,制备诸如单晶硅片的非多孔衬底1,通过阳极氧化使其表面多孔,形成由单晶硅构成的多孔层。
接着,在步骤S2,利用纯水进行清洗掉粘附到多孔层的外来物质或用作阳极氧化的电解液。
接着在步骤S3,在多孔层2上例如通过CVD(化学汽相淀积)外延生长由单晶硅构成的非多孔层。
然后,在步骤S4,热氧化非多孔层的表面形成绝缘层4。
在随后的步骤S5,把绝缘层4的表面键合到单独制备的支撑基底5上,形成非多孔层4位于其内部的多层结构。
在步骤S6,通过研磨和接着进行的离子腐蚀,除掉没有形成多孔的衬底1的非多孔部分。
然后,在步骤S7,利用包含HF和H2O2的水溶液除掉没有覆盖的多孔层2。
通过在包含氢的还原气氛中热处理,可以可选地使非多孔半导体层表面平滑,于是获得具有形成在支撑底座绝缘膜上的薄半导体层的键合衬底。图21表示利用这种方法获得的键合衬底的顶表面。标号12表示槽口。
但是,观察这样形成的非多孔半导体层的表面,几乎看不到圆斑点11(薄雾),这与经常看到它们的周围区域不同。仔细观察圆斑点11的结果,发现这是由于下述事实引起的,位于形成在支撑底座绝缘膜上的非多孔层局部厚度小(或薄)。也就是说,证明非多孔层在局部上引起微观不均匀膜厚度。
发明内容
本发明的目的是提供多孔体的清洗方法,利用该方法即使短时间也能够很好地除掉多孔体的阳极氧化溶液,没有引起多孔体的多孔结构的任何变化,并且提供制造多孔体的方法。
本发明的另一个目的是提供多孔体的清洗方法,该方法几乎可能不侵蚀周围器件,并且提供制造多孔体的方法。
本发明的清洗方法是清洗由阳极氧化形成多孔体的清洗方法,该方法包括在完成阳极氧化后清洗多孔体的步骤,所用清洗溶液包括至少醇和乙酸之一,其中在多孔体的孔中保留有阳极氧化溶液。
本发明多孔体的制造方法包括下列步骤:阳极氧化非多孔体,然后用包括至少醇和乙酸之一的清洗溶液清洗多孔体,其中该多孔体的孔中保留有阳极氧化溶液。
本发明的又一个目的是提供制造消除不均匀膜厚的非多孔膜和键合衬底的方法。
本发明上述的制造非多孔膜或键合衬底的方法包括下述步骤:利用阳极氧化形成多孔层,把基底键合到形成在多孔层的非多孔层上,然后除掉多孔层,
该方法还包括完成阳极氧化后利用包括至少醇和乙酸之一的清洗溶液清洗多孔层的步骤,其中该多孔层中保留有阳极氧化溶液。
首先,本发明人认为前述的薄雾发生是因为在从非多孔层表面除掉多孔层时没有选择最佳氧化时间和腐蚀条件引起的。但是,发现任何这些条件的调节不是那样非常有效控制不均匀膜的厚度。然后本发明人进一步研究揭示出引起不均匀膜厚度取决于氧化后的处理情况。
因此,本发明在阳极氧化后进行在湿式清洗中采用上述的清洗方法可使键合衬底几乎不引起不均匀的膜厚度。
附图说明
图1是按照本发明的清洗多孔体各步骤的流程图。
图2是刚刚阳极氧化后所确定的多孔体的横截面图。
图3是刚刚阳极氧化后利用纯水清洗如图2所示的多孔体的多孔体横截面图。
图4是表示按照本发明利用醇清洗作用的简图。
图5是表示用于本发明的利用纯水清洗作用的简图。
图6是表示用于本发明的阳极氧化和清洗装置的简图。
图7是表示用于本发明另一种类型的具有分离的阳极氧化装置和清洗装置的简图。
图8是表示用于本发明另一种类型的清洗和干燥装置的简图。
图9是表示用于本发明又一种类型的清洗和干燥装置的简图。
图10是按照本发明制造键合衬底工艺的流程图。
图11是用于本发明的阳极氧化装置部件的简图。
图12是表示用于本发明阳极氧化装置的简图。
图13是表示用于本发明具有分离阳极氧化装置和清洗装置的简图。
图14是表示用于本发明另一种类型具有分离阳极氧化装置和清洗装置的简图。
图15A,图15B,图15C,图15D是表示用于常规方法清洗的简图。
图16A,图16B,图16C是表示按照本发明清洗作用的简图。
图17是表示利用本发明工艺获得键合衬底的顶面平面图。
图18是表示常规阳极氧化装置的简图。
图19是按照常规方法清洗多孔体各步骤的流程图。
图20是制造键合衬底常规工艺的流程图。
图21是利用常规工艺获得的键合衬底的顶面平面图。
具体实施方式
图1是按照本发明的清洗方法的流程图。
首先,在步骤S1,利用阳极氧化处理非多孔体形成多孔体。(“多孔体”在此包含整体上多孔的材料和具有后面所述多孔层的材料。)
接着,在步骤S2,通过把多孔体浸入100%醇或醇水溶液,或者通过将100%醇或醇水溶液点滴到多孔体,或把多孔体暴露到100%醇或醇水溶液的蒸汽中来清洗多孔体。
接着,在步骤S3选择纯水清洗多孔体。在这步骤也把多孔体浸入纯水中,或者可以把纯水点滴到多孔体上,或把多孔体暴露到水蒸气(水汽)中。这里最好利用超声振荡器提供具有超声能量的纯水来清洗多孔体。
在步骤S4,干燥多孔体以便完成一系列清洗步骤。
通常,在阳极氧化诸如硅的半导体形成多孔体的情况,把电场施加到相对高浓度HF水溶液中的硅衬底上来进行阳极氧化。这样腐蚀和负极相对的硅表面(该硅表面基本上作为阳极),以便沿着电场方向形成细孔,结果使它具有多孔结构。
这样形成的孔隙具有几十到几百毫微米的尺寸,并且具有1011/cm2以上的密度。孔隙尺寸和浓度变化取决于阳极氧化的条件,即HF浓度,阳极氧化电压或阳极氧化电流值,衬底的导电类型或电阻率。通过调节这些条件可以控制孔隙率,因此,能够相对容易地制造非常适合光发射材料的结构或非常适合关于外延生长底座结构的多孔体。
但是,即使按照设计精确地获得多孔体,它们可以引起多孔层的结构变化或可以被包括在2次污染物中,除非阳极氧化后充分地清洗它们。图2到图5是表示多孔体孔隙内部处于何种状态。
如图2所示,由保持在所述的孔隙中的HF水溶液80和逐渐以气体形式蒸发,引起所述的结构变化和二次污染。因此,清洗方法要求不允许任何HF水溶液80保留在孔隙中。标号81表示多孔体的孔壁。
如果在完成阳极氧化后仅仅用纯水清洗衬底,虽然可以除掉多孔体表面上的HF成分,但是难于除掉保留在孔隙中的HF。如图3所示,这是因为多孔层表面和HF水溶液82接触的结果使多孔层表面变成疏水表面,即使以后用水漂洗它也难于使水渗入孔隙中。更具体地说,把多孔体进行阳极氧化,浸入在纯水中,测量纯水电阻率随时间的变化,发生电阻率不能返回到原始值的现象。这正是因为在孔隙中逐渐蒸发的HF以低速率溶解在纯水中。
为了清洗孔隙内部,在完成阳极氧化后在实验上需在3分钟内至少用纯水代替槽中的阳极氧化溶液,和充分地用纯水进行漂洗。但是,所述程序缩小清洗工艺的自由度和使清洗装置的设计受到限制。
本发明人重复各种实验。结果,他们发现,利用加入100%醇或醇水溶液的纯水清洗,能够容易地用清洗溶液代替孔隙中的阳极氧化溶液,于是完成本发明。
如图4所示,一旦把多孔体浸入包括醇的清洗溶液,清洗溶液83进入细孔和保持在细孔中的阳极氧化溶液混合。然后,即使把多孔体实际暴露在大气中,它的表面也暂时保持湿的状态。更具体地说,清洗溶液或阳极氧化溶液形成的层84也覆盖多孔体的表面。如图5所示,把多孔体重新浸入纯水85中,使纯水85容易浸入孔隙中,于是,能够利用纯水85代替保持在其中的阳极氧化溶液80。
在那以后,即使纯水85保留在多孔体的孔隙中,该水也会自然蒸发。在此过程中,蒸发的仅仅是水,因此很少侵蚀周围器件或改变特性或损害多孔体本身的结构。
用于本发明的多孔体可以包括诸如Si,Ge,GaAs,GaAlAs,SiC,SiGe和C的半导体。特别是,孔隙率低于70%的多孔硅最好作为外延生长的基底材料,孔隙率为70%或更高的硅作为光发射材料。
在HF水溶液或HF和醇的水溶液中进行用于本发明的阳极氧化。
作为本发明清洗步骤中利用的醇可用的是甲醇,乙醇和丙醇。清洗溶液可以是包含至少按照重量比为4%,最好为10%醇的任何清洗溶液。
在利用包含醇的清洗溶液清洗后,最好可利用纯水清洗(或冲洗)多孔体。这里,如前所述,可能利用具有600KHz到2MHz超声能量的纯水清洗它。这更能提高用水替换HF的效率。
在本发明的情况,在完成阳极氧化后,最好可用尽可能短的时间把多孔体从阳极氧化溶液移到清洗溶液,但是这不是指限于3分钟,可以延长到大约10分钟。
下面将参照图6叙述用于本发明的清洗装置(阳极氧化和清洗装置)。
如图6所示构成的清洗装置也作为阳极氧化装置。这样构成的装置主要包括,作为衬底固定器和能够保存阳极氧化溶液和清洗溶液的槽61,提供许多孔的平板负电极63,相对槽61上下可动的正电极64。槽61由诸如聚四氟乙烯树脂的碳氟化合物型耐氟材料构成,在槽61底部具有开口69。然后沿着该开口69的边缘内部,设置诸如衬底吸附环的密封件65到槽61的底部。衬底吸引(吸附)环65在它吸引部分是平的,在它的平面中形成和通路22沟通的真空槽(没有表示),用于抽真空/加压它的空间以便抽真空吸引或加压释放处理靶W。把诸如硅片的处理靶W在它下部周围吸引保持到衬底吸附环65。在这种情况下,把作为阳极氧化溶液67的电解液从输送管口27倒入槽61,直到浸入电解液中的负电极63。负电极63由铂板构成,铂板具有基本上和处理靶相同直径和在其中制造类似冲孔方法制造的许多孔,所以能够除掉在阳极氧化期间产生的诸如氢气等反应副产品气体。正电极64通过槽61的开口69直接和处理靶W的背面接触。该正电极64决不和电解液接触,因此由铝形成。正电极64和上升和下降部件24一起位于在一个台25上,并且装有通路23,用于抽真空/增压它的空间以便抽真空吸引或增压释放处理靶W。
为了进行阳极氧化,利用上升和下降部件24把正电极升高到最高位置,把处理靶W放在其上。把通路23抽真空利用吸力吸引处理靶到正电极64。下降正电极64使处理靶W和槽61的底部接触。然后把通路22抽真空利用吸力在它周围吸引处理靶到密封件65。在准备好阳极氧化后,通过输送管口27把HF水溶液倒入槽61中。在它达到预定数量后,把直流电压加到负电极63和正电极64上。此时,可以连续阳极氧化,同时连续地输送HF水溶液并且允许它溢出。在图6中,标号26表示溢出槽。
完成阳极氧化后,降低正电极64,把负电极63取出槽61。打开排水孔,由该孔放出阳极氧化溶液67,一次清空槽61。以后,通过输送管口输入包含醇的清洗溶液。此时,可以进行清洗,同时允许清洗溶液溢出。可以和HF溶液输送管口无关地提供清洗溶液。
接着,再打开排水管21放出包含醇的清洗溶液,然后通过输入管口27把纯水输入槽61。最好可选地把超声振荡器附加到输入管口27或槽61,以便纯水清洗溶液能够具备超声能量。
在用纯水清洗后,打开排水管21放出纯水。停止通过通路22进行真空吸引,下降正电极64,在这里停止通过通路23进行真空吸引,取出处理靶W。
图6表示正电极64处在下降位置的简图,这样,则容易了解该装置的结构。在阳极氧化期间,它在该位置和处理靶W接触。
图7表示作为本发明另一个实施例的多孔体清洗系统。
如图7所示系统具有基本上和图6所示相同的阳极氧化装置40,醇清洗装置41,和纯水清洗装置42。
在阳极氧化装置40中进行阳极氧化后,在完全排除槽61中阳极氧化溶液后,利用传输机械手(没有表示)将阳极氧化后的处理靶W移到醇清洗装置41。在醇清洗槽33中,旋转吸盘固定器34通过抽真空吸引使处理靶W位于它的背面,以便固定它。在那种情况下,通过处理靶上面的喷嘴35输入包含醇的清洗溶液。在这个装置中,包含醇的清洗溶液朝向处理靶喷射,同时以预定转数旋转它。于是,实现了用醇进行的清洗。
接着,利用水平传输机械手把用醇完成清洗的处理靶移到纯水清洗装置42中。这样设置处理靶W,以便利用外力在它的周围边缘紧密地和衬底夹盘37固定。然后,通过上部喷嘴38和下部喷嘴39输入纯水。在这个装置中,纯水从上部喷嘴38和下部喷嘴39喷出,同时以预定的转数旋转处理靶W。停止喷射纯水,处理靶W可以在继续旋转时被进一步旋转干燥。
图8表示本发明的纯水清洗溶液装置。该装置是如图7所示纯水清洗装置42的改型,是具有装配密封盖51的槽36的装置,这样在用纯水清洗后,通过排气管道52能够对由槽36和盖51限定的密封空间抽真空以便旋转干燥,同时使密封空间内部保持真空。在孔隙中保存水的地方,它可能有害地影响后续工艺步骤。例如,当在多孔硅上外延生长时,微量水可能从多孔体孔隙内部蒸发,扩进外延生长室,在外延生长膜中引起缺陷。为了防止上述情况,最后进行真空除气是相当有效的。
图9表示用于本发明的醇清洗装置。其中装有喷嘴54的清洗槽53,通过喷嘴输入包含醇的清洗溶液的蒸气。从槽53的上面把处理靶W插入槽的内部,通过喷嘴54输入包含醇的清洗溶液的蒸气,填充到具有蒸气的槽内以便进行清洗。然后,可以从槽缓慢地取出处理靶W放到外部干燥气氛中,使保存在处理靶W中的醇蒸发,于是能够干燥处理靶W。如果直接把纯水喷射到具有很高孔隙率,例如70%以上的多孔体中,或把超声水加到那里进行物理清洗,则多孔体趋于破碎。因此可以利用所述的装置,甚至能够清洗具有高孔隙率的多孔体,而没有击碎多孔体。最好利用孔隙率为70%以上的多孔硅作为光发射材料。和阳极氧化后只用纯水处理靶的常规情况相比,在阳极氧化后利用醇蒸汽进行清洗靶,并且阳极氧化后还进行干燥处理,则可能不引起多孔结构变化。因此,能够长时间稳定地保持光发射强度。
在上述情况中,所述的是利用包含醇溶液作为清洗溶液。但是,在本发明中,也可能利用乙酸代替醇。
下面将叙述按照本发明制造非多孔膜的工艺和制造键合衬底的工艺。
图10是表示按照本发明制造键合衬底的工艺流程图。
首先,在步骤S11中,非多孔体通过阳极氧化处理,至少在其表面形成多孔层。
在步骤S12中,通过下述方法清洗多孔层2:将其浸入100%醇或含水醇溶液中;将100%醇或含水醇溶液在多孔层2上进行点滴;或将多孔层2暴露在100%醇或含水醇溶液的蒸汽内进行清洗。在步骤S12中,可利用乙酸代替醇。清洗方法的举例如上所述。
在下一步S13中,利用纯净水清洗多孔层2。在该步骤中,同样采用上述的清洗方法,把多孔层2浸泡在纯水中,向多孔层2点滴纯水或把多孔层2暴露在水蒸汽(蒸汽)进行清洗。在此,最好通过使用超声波振荡器用具备超声波能量的纯净水来清洗多孔层2。随后通过烘干多孔层2,最终完成了一系列清洗步骤。利用纯净水清洗和烘干的实例如上所述。
接下来,在低温中氧化多孔层2,并在孔壁内表面生成一层薄薄的氧化层。
随后在步骤S14中,将在多孔层2上生成非多孔层3。步骤S14可以在步骤S11之前进行操作,即在非多孔体1上生成非多孔层3,随后整个单晶硅从背面形成多孔层。或者,可进行阳极氧化在非多孔体1的背面形成多孔层,而在其表面留下非多孔层3。
在步骤S15中,将在非多孔层3的表面生成绝缘层4,并且如步骤S16所示,通过位于它们之间的绝缘层4将非多孔层3与单独制备的支撑底座5相连。
在步骤S17中,为了从这样形成的多层结构体中去除多孔层2,需要进行相应的预处理。在如图10所示保留非多孔体1的情况,通过研磨,磨光,抛光,腐蚀方法可从多层结构体中去除非多孔体1。随后如S18所示,通过使用湿法腐蚀,即利用包含HF,H2O2和水的腐蚀剂来去除没有覆盖的多孔层2。
此外,通过对多层结构体施加外力或在多层结构体内部产生应力,从而分离出非多孔体1(S17),并导致在多孔层2或是在其上下层接口处发生断裂。通过上文提到的腐蚀方法(S18),可以选择性去除非多孔层3上剩余的一些多孔层2。
可将经过上述处理得到的键合衬底在含氢还原气氛中进一步进行热处理从而使表面更加光滑。
由于表面留有HF或含水HF溶液,所以多孔层在多孔结构内部几乎不会产生任何变化。因而该键合衬底不会导致薄膜的厚度微观上的不均匀,即通过此方法形成的键合衬底将会具备很高的质量。
本发明所使用的多孔层2,如前所述,可包括如下半导体层,诸如Si,Ge,GaAs,GaAlAs,SiC,SiGe和C。尤其对于多孔性低于70%的多孔硅而言,其可作为用于外延性生长的基底材料。更可取的是,与非多孔层部分邻接或相邻的多孔层可以具备不高于30%的多孔性。多孔层的厚度范围可以由约1微米到30微米。
本发明采用的阳极氧化方法将在含水HF溶液或含水的HF与醇混合溶液中进行处理。
甲醇、乙醇、丙醇均适用于本发明涉及的清洗步骤中使用的溶液。清洗溶液可以是包含按照重量比至少4%醇的任何溶液。
在经过含有醇的清洗溶液清洗过后,多孔体还应经纯净水进行清洗。如前所述,该纯净水所具备的超声波能量范围从600KHz到2MHz。如果用水替代HF,能够提高清洗效率。
本发明在完成阳极氧化处理过后,最好在尽可能短的时间内将多孔体从电解液中取出并放到清洗溶液,然而所需时间并不限于3分钟,可以延长至10分钟。
本发明使用的非多孔层所采用的元素最好可为:半导体如,Si,Ge,或化合物半导体GaAs,GaAlAs,SiC和SiGe,金属或超导体。具体来讲,单晶硅层,多晶硅层和非晶硅层是优选的。在非多孔层内,可以形成器件或半导体结诸如MOSFET,p-n结,p-i-n结和MIS结。
如果选择使用绝缘层,则最好可利用的是绝缘体或电介质层,诸如氧化硅,氮化硅,或氮氧化硅。可以作为单层或用多种相同材料或由不同的材料形成多层形成这些层。
本发明使用的支撑底座可包含半导体如硅,金属如铝或不锈钢,陶瓷如氧化铝,和绝缘材料如石英玻璃和塑料薄膜。在该支撑底座表面层使用的材料与构成支撑底座自身材料并不相同。在生成键合SOI衬底时,绝缘层最好在非多孔层的表面形成,此后键合到硅晶片或石英晶片。此外,此支撑底座可以是仅用于隔离的夹具。
为了选择性去除多孔层,应选用特定的腐蚀剂,其腐蚀速率对非多孔体腐蚀速率的比例至少应为10000倍,优选至少为100000倍的腐蚀剂。对于多孔硅和非多孔硅,优选溶液应包含HF和氧化剂。诸如含有氢氟酸、硝酸、乙酸的混合溶液;含有氢氟酸、过氧化氢水溶液、水的混合溶液;含有氢氟酸、醇和水的混合溶液;含有氢氟酸、过氧化氢水溶液和醇的混合溶液等。
                   (阳极氧化和清洗处理装置)
在本发明中,图6到图9所示装置为阳极氧化和清洗处理装置。除此之外,也可利用图11到图14所示的阳极氧化和清洗处理装置。
图11表示了本发明阳极氧化处理装置所使用的支架和衬底传输机械手。图12表示了阳极氧化装置,图13和图14表示了本发明所使用的阳极氧化和清洗系统。
如图12所示,可同时将三个衬底作为处理靶进行阳极氧化处理。如图11所示,在阳极氧化装置内的衬底支撑部件(下文简称“支撑件”)102为一个正方形金属板,在其中心有一个很大的圆形开口103。沿着开口103,嵌入了一个环形的衬底吸引(吸附)垫片(下文简称“垫片”)104。在垫片的表面开了一道凹槽,凹槽内部可利用从垫片后部引入的真空管道105将空气抽成真空。图11中所示的106a和106b均代表衬底传输机械手,它们成对地进行工作。首先,机械手106a通过真空吸引在其后侧固定住处理靶W,并将其逐步接近支撑件102以便与它的表面相平行。下一步,机械手106b将其成L形的弯曲部分穿越支撑件102的开口103,等待处理靶W向其靠近,同机械手106a一样,106b具有真空吸引的功能。当处理靶W的后部接触到机械手106b的引导端时,106b通过吸引力(吸引)将处理靶W固定住,随后机械手106a释放其引力并沿上方滑开。随后,机械手106b向右移动,从而使处理靶W的后部接触到垫片104。此时垫片104的凹槽内部已通过真空管道105将空气抽成真空,垫片104同样采用吸引方式将处理靶W固定。则机械手106b穿过开口103,并沿上方滑开。此时,处理靶W已被支撑件102固定住。同样,如果支撑件102要移开处理靶W,则按照上文描述的操作过程以相反顺序执行即可。
如图12所示,阳极氧化装置的阳极氧化电解槽210分别在其两端装配负电极206a和正电极206b。在电解槽内的正负电极之间连续放置了3个支撑件102。图12表示的状态表明每个支撑件102均固定了一个处理靶W。在电极206a与电极206b之间以及各支撑件102之间的空间均被电解液209所填充,并由各自的处理靶所隔开。在此状态下,通过在电极206a与206b之间施加直流电压,进行相应的阳极氧化处理。阳极氧化处理完毕后,废液排泄口208将打开,电解溶液209将通过该口排放出来。这些支撑件的功能如同图6所示的装置内电解槽底部61所完成的功能。
如图13所示,在装有上述的阳极氧化装置的阳极氧化系统中,如图所示从左到右的顺序分别安装了装料器301,阳极氧化槽302,清洗槽303,旋转干燥器304和卸料器305。该系统还按此方向放置了一个衬底(垫片)逐层传输机械手306和一个载体传输机械手307。如图13所示,衬底(晶片)逐片传输机械手306由306a和306b两个部分组成。清洗槽303用于循环至少含有醇或乙酸的水溶液,并且可引入纯水。该系统还配置了系统308,其中阳极氧化槽中的电解波将被循环过滤。
放置在装料器301上的作为处理靶W的衬底通过晶片传输机械手306固定在支撑件102上,并在阳极氧化槽302内进行处理。
在阳极氧化槽302内经过阳极氧化处理后的衬底将通过机械手306从支撑件102上移开,并被送到清洗槽303。在清洗槽303内,采用至少含有醇和乙酸之一的水溶液进行冲洗衬底,随后仍在该槽内用纯净水进行清洗。
经过清洗后的衬底通过机械手307连通载体一起传输到自动干燥器309,在那里进行干燥处理。
随后,从载体中逐片取出衬底,并在旋转干燥器304中进行旋转式干燥处理。
经过干燥处理后的衬底将被送往卸料器305。
至此,从S11到S13的处理步骤进行完毕。
图14表示图13所示系统经过修改后的阳极氧化系统,其中,增加另一个清洗槽到图13所示系统中单独装配的清洗槽中。第一个清洗槽310是可循环含有醇和/或乙酸的水溶液的槽,并且具有过滤系统。第二个清洗槽303仅提供纯净水,并在最后用水进行清洗。
在本发明采用的图13和14所示的系统中,与图6至9,11和12中所示的结构相似的装置可作为阳极氧化槽或清洗槽使用。图14中其它标号的含义与图13中的含义相同。
                           实旋例1
重新参考图1和其它图,现以硅为例,下文将详述本发明实施例的非多孔薄膜和键合衬底的制造工艺。
制备单晶硅晶片作为非多孔体1(图10),利用图6或图12所示的阳极氧化装置,在每个晶片的表面生成多个深度为约1微米至约30微米的小孔,因而形成了多孔的单晶硅层,作为多孔层2。此处形成的多孔层其孔隙率可从5%到70%,一般范围在10%到50%之间。此外,最好在阳极氧化过程中改变阳极氧化电流密度,HF浓度等,以便使多孔层形成至少为两层的具有不同孔隙率的多层结构。
随后,使用如图7至9,13或14中所示的系统,将多孔表面的硅片在按照重量至少为4%浓度的含有醇和/或乙酸清洗水溶液中进行清洗。接着,用纯净水替换清洗水溶液继续清洗硅片,最后对其进行干燥处理。
经过清洗后的硅片通过从200℃至600℃的温度下热处理用以氧化多孔层的小孔内壁,从而在小孔内壁表面形成一层氧化膜。构成该小孔壁的主要成分为硅。
通过化学汽相淀积(CVD),溅射,分子束外延或液相外延方法,在多孔层2上面形成由单晶硅构成的非多孔层3。
在非多孔层3的表面选择地形成了作为绝缘膜4的氧化硅膜。
绝缘膜4的表面与单晶硅晶片或由石英玻璃构成的支撑底座5的表面相互接触并键合。如果没有形成绝缘膜4,非多孔层3将与支撑底座5键合。为了增强两层之间的键合强度,可利用惰性气体或氧化气体对通过键合形成的多层结构进行热处理,或进行阳极键合。
在键合表面的反面,即硅晶片1的背面进行研磨,抛光或RIE(离子腐蚀反应)处理,从多层结构去除没有形成多孔的剩余硅晶片1。
利用前述的腐蚀剂,通过进一步腐蚀处理,使多孔层2暴露在外面。因而我们获得了位于支撑底座5上的具有非多孔层膜的键合衬底。
在诸如HF水溶液中进行阳极氧化处理,使硅衬底形成多孔层,即在其中形成孔隙。众所周知,关于这种处理,在硅晶体内出现空穴是必不可少的。其相应的反应处理机制如下:
首先,硅衬底中的空穴在HF水溶液中经过电解处理后被引到负电极的表面。结果,Si-H键的密度增强,并以此方式补偿了表面上未键合的臂。此时HF水溶液中的氟离子侵占Si-H键,因其亲核性,从而形成Si-F键。作为此反应的结果,一个电子朝正电极方向释放,同时生成H2分子。由于Si-F键的极化特性,表面附近的Si-Si键变弱。此变弱的Si-Si键受到HF或H2O的攻击,使得在晶体表面的硅原子转变成SiF4,即从晶体表面获得自由。结果,在晶体的表面生成了多个小洞(凹面),并在此部分产生了吸引这些小洞的分布电场,以至于该表面发生异质扩展,并使得硅原子的腐蚀处理可以沿磁场持续进行。顺便说明,阳极氧化处理使用的溶液并不仅限于HF水溶液,可以是其它电解水溶液。
阳极氧化过程中腐蚀硅的步骤按照下述反应原理
与氢氟酸的化学反应将会生成硅化合物H2SiF6,从而将硅进行腐蚀。上述反应原理表明通过增加HF的浓度,会生成大量的H2SiF6。H2SiF6的特性是它很难和酸性溶液(包括氢氟酸)或碱性溶液进行化学反应,即它很难溶于酸性溶液(包括氢氟酸)或碱性溶液中。
进行阳极氧化反应也在衬底表面形成几十到几百埃孔隙,并且这些孔隙沿着电场方向延伸。也就是电解溶液(氢氟酸水溶液)进入孔隙中,并且在孔隙末端引起反应。于是即使在电场消失时,也限制保存氢氟酸溶液的孔隙任意形成。在该阶段引起的问题是在该孔中限定的氢氟酸溶液在电场消失后继续反应,从而继续形成H2SiF6。于是形成的H2SiF6粘附到空隙的内壁,在最后进行选择腐蚀时引起不均匀。
在选择腐蚀多孔层的过程中,在很多情况下留下没有腐蚀的非多孔层和被除掉的多孔层都是同样的单晶硅。因此虽然化学腐蚀速率基本上相等,但是腐蚀剂进入多孔层的孔隙腐蚀孔隙壁表面,不仅从表面腐蚀而且也从内部进行腐蚀。这样,腐蚀多孔体是处于物理上击穿整个层的模式。
因此为了均匀地腐蚀多孔层,必须阻止H2SiF6在孔隙中任意形成。为此,重要的是尽可能利用没有腐蚀作用的液体代替容易保留在孔隙中的HF。还有,为了均匀地除掉多孔层,最好在多孔层的孔隙内壁形成氧化膜,也希望在那里防止形成H2SiF6
图15A-15D简略表示在利用纯水清洗时和阳极氧化后完成干燥处理后时,多孔层孔隙内部处于什么状态。
图15A表示完成阳极氧化后刚刚把多孔层放到大气中的多孔层的横截面图。由于阳极氧化衬底601则形成孔隙602,并且把电解溶液80保留在孔隙中。如前所述,电解溶液在很多情况下是HF和醇的混合物。
图15B表示把多孔层放到大气中几分钟后,孔隙内部处于什么状态。在电解溶液80中水成分或醇成分部分蒸发,HF水溶液保留在孔隙的深部,在该状态HF水溶液被浓缩了。
图15C表示如何利用纯水82清洗多孔层。
通常,利用毛细管作用使液体进入孔隙,和浓HF水溶液混合。接着,氢氟酸向孔隙外面扩散,在孔隙中逐渐由纯水代替它。这样进行了清洗。
在这阶段,在利用毛细管作用使液体进入孔隙的情况下,利用下述的方程式表示进入的深度H,
H=2γ·cosθ/aρg
其中,γ是表面张力;θ是液体和衬底的接触角;a是多孔体的孔隙尺寸;ρ是液体的密度;g是重力加速度。在这阶段,多孔层表面对于氢氟酸保持亲水性,所以具有很大的接触角θ。因此水的进入深度H接近于零。也就是,清洗的纯水82很少进入孔隙602。因此,在孔隙602表面附近必须形成空气层604。一旦这种情况发生,即使在用水清洗后利用旋转干燥机等进行干燥除掉用过的水,也不能利用水代替孔隙602中氢氟酸,因为浓度越来越高。最后,保存在孔隙602中的溶液完全弄干,则如图15D所示,把副产品干燥物质606粘附到全部孔隙壁表面。该干燥物质606是上述的H2SiF6。在图15D中,展示干燥物质606竖直地粘到所有孔隙的状态。实际上,它只粘接到粗大孔隙的部分,或对于每个孔隙可能产生具有不同厚度的干燥物质,因此变成不均匀。
另一方面,图16A-图16C简略表示阳极氧化后利用包含醇和/或乙酸的水溶液进行清洗时,多孔层的孔隙内部处于什么状态。
图16A表示刚刚阳极氧化后把它取出放到大气中的多孔层的横截面图。标号701表示衬底;702表示孔隙;80表示电解液。
图16B表示如何利用包含醇和/或乙酸的水溶液进行清洗多孔层。由于作用类似表面活化剂的醇和/或乙酸,则所述的接触角θ是这样小,以至于溶液能够容易进入孔隙中。因此含醇和/或乙酸的水溶液83和电解液80很快相互混合。然后,可以利用水充分地进行清洗,以便显著地降低电解液80的浓度,利用水代替几乎全部电解液。然后利用旋转干燥机等对它干燥处理,于是,如图16C所示,能够获得多孔层,此处任何副产品可归因于存在孔隙中的HF。
(实施例2)
下面以硅为例详细叙述本发明另一个最佳实施例的制造非多孔膜和键合衬底的方法。
制备单晶硅片作为非多孔体1,利用如图6或图12所示阳极氧化装置使各晶片表面形成大约1μm到30μm深度的多孔层,这样,形成多孔单晶硅层作为多孔层2。优选多孔层的孔隙率为5%到70%,最好为大约10%到50%。还有,在阳极氧化过程中,改变阳极氧化电流密度和HF浓度等,使多孔层具有至少二层以上的多层结构,它具有内部衬底比表面更高的孔隙率。
接着,利用图7到图9,13或14所示的系统,利用包含醇和/或乙酸的浓度按照重量至少为4%的水溶液的清洗溶液,清洗具有多孔表面的硅片。以后利用纯水代替清洗溶液来清洗硅片,接着进行干燥处理。
每个这样清洗的硅片可选地在大约200℃到大约600℃进行热处理,以便氧化多孔层的孔隙内壁,在内壁表面上形成氧化膜。
利用CVD,溅射,分子束外延或液相外延在多孔层2上形成由单晶硅构成的非多孔层3。
在非多孔层3表面上形成氧化硅膜作为绝缘膜4。
绝缘膜4的表面和单晶硅片表面或由石英玻璃构成的支撑底座5相互接触并键合。为了增强它们的键合强度可以把得到的多层结构在惰性气体气氛或氧化气体气氛中进行热处理,或阳极键合。
然后把诸如楔子或刀片的分离部件插入多层结构的侧面,以便将多层结构分离成两部分。这样在它的内部或表面使低机械强度的多孔层裂开,把多层结构分成两部分。可把诸如液体和气体的流体喷到多层结构的侧面以便机械地分离多层结构。此外,可以利用光照射多层结构在其中产生热,或可以从外部加热能够在多层结构中产生内部应力,因此可以利用该力分离多层结构。
分离结果使非多孔层转移到支撑底座上。因为在非多孔层上存在多孔层2的剩余层,所以利用所述的腐蚀剂选择地腐蚀掉这层。按照本发明,任何不想要的副产品不保留在非多孔层上,因此非多孔层在腐蚀后能够免除任何不均匀的膜厚度。
然后,可以把位于支撑底座上的非多孔层在包含氢的还原气氛中进行热处理,使表面光滑,向外扩散和除掉包含在非多孔层中的硼等杂质。
这样,能够获得作为SOI衬底的具有非多孔层的键合衬底。
(实施例3)
下面以硅为例详细叙述本发明又一个最佳实施例的制造非多孔膜和键合衬底的方法。
制备单晶硅片作为非多孔处理靶。利用图6或图12所示的阳极氧化装置阳极氧化这些晶片形成如图10中步骤S11所示的多孔硅层2。
首先,作为阳极氧化的条件,利用由氢氟酸和乙醇的混合液,在低电流密度下可以形成厚度为1μm到29μm厚孔隙率为5%到30%低孔隙率的第1多孔层。接着,在改变成高电流密度之后,在第1多孔层下形成其厚度为1nm到3μm且其多孔率为30%到70%的第2多孔层。
接着,如图10中步骤S12所示,利用图7到9和13或14所示的系统进行清洗。于是利用包含醇和/或乙酸的清洗溶液清洗具有孔隙率不同的双层结构的多孔层2孔隙内部。在表面侧形成低孔隙率层的情况,本发明清洗特别有效。
以后,如图10中步骤S13所示,利用纯水清洗多孔硅层2,接着进行干燥处理。
把多孔硅层2在氧化气氛中200℃到600℃的温度下进行热处理,在孔隙内壁上形成氧化膜。
利用稀释的氢氟酸除掉其孔隙内壁已经氧化了的多孔硅层2表面上形成的氧化膜。在这阶段,孔隙内壁上氧化膜的较大部分还保留着。
把其表面已经形成多孔硅层2的各晶片放入外延生长装置中,在温度上升到900℃到1000℃的氢气气氛中预烘多孔层2。
输入诸如SiH4硅气体塞住多孔硅层2的表面孔隙。一旦停止输入硅气体,就在温度升高到1000℃到1200℃的氢气氛下进行热处理。然后输入诸如SiH2Cl2的硅气体,在温度下降到900℃到1000℃时进行外延生长,在其孔隙内壁已经氧化的多孔硅层2上形成非多孔层3。
在非多孔层3上形成绝缘层。
把形成的绝缘层键合到支撑底座5上,以便形成多层结构,接着在温度1000℃到1200℃下进行热处理。
把由树脂或金属构成的楔形物插入多层结构的侧面,使多层结构的多孔层在它侧面裂开。
把包含液体或气体的流体喷到多层结构的侧面,使多孔层进一步向内裂开。
这样,使多层结构在高孔隙率的第2多孔层和低孔隙率的第1多孔层之间分离。
利用腐蚀等方法除掉转移到支撑底座5上的在它的孔隙内壁上具有氧化膜和保留在非多孔层3上的低孔隙率的第1多孔层。因为阳极氧化后进行清洗能够很好的除掉孔隙中的HF,所以能够均匀地除掉残留的多孔层。
利用氢气退火等使非多孔层3表面光滑。
这样获得的非多孔层3能够具有光滑的表面,并且避免任何不均匀的膜厚度。
                           举例
(例1)
在图6所示的装置中设置作为处理靶的硅片,按照体积比为1∶1∶1混合HF浓度按照重量比为49%的氢氟酸,水和乙醇,制备阳极氧化电解溶液,然后输入槽中。把能够提供7mA/cm2稳定电流的直流电压施加到晶片上,时间为10分。结果,孔隙率大约为20%的多孔硅,均匀地形成在晶片的一表面上,厚度为12μm。
接着,通过排水管排除电解液,把按照体积比为1∶1混合异丙醇和水制备的清洗溶液从上部输入到槽中。把该清洗溶液在用它填充的槽中保持1分钟。进行清洗,然后把清洗液排除槽外。
接着,从上部输入纯水。允许纯水溢出,用水清洗(漂洗)大约20分钟。然后,排除水,利用旋转干燥机进行干燥处理。以后,把该晶片保留在大气中,时间为一周,但是在多孔硅晶片中,完全没有发现变化。
(比较例1)
省略如上所述的在例1中利用包含醇的清洗溶液的清洗步骤,刚一阳极氧化后就旋转干燥用水清洗的晶片。把这样获得的晶片放在大气中10小时。结果,结构上变化了的晶片多孔硅表面变成云状。
(例2)
利用图7所示的装置40,在和例1相同的条件下进行阳极氧化。接着,阳极氧化后完全排除电解溶液,利用水平传输机械手将阳极氧化后的晶片移动到清洗装置41。以500r.p.m.旋转晶片,同时从喷嘴输送乙醇(100%)到晶片,以便清洗晶片表面20秒。
接着,利用水平传输机械手移动晶片到纯水清洗装置42,在那里以400r.p.m.旋转晶片,同时从上部喷嘴和下部喷嘴喷出纯水来清洗晶片15分钟。清洗后,停止喷出纯水,用相同的装置以800r.p.m.旋转晶片以便干燥处理。
以这种方法清洗的晶片多孔层表面,即使以和例1相同的方法把它保留一周也不发生变化,保持很稳定的状态。
(例3)
在该例中,除了在利用纯水清洗过程中在上部喷嘴顶端设置超声振荡器以外,利用图7所示的装置,进行阳极氧化,利用醇进行清洗,利用纯水进行清洗,和干燥处理都和例2所述方法相同,这样把具备超声振动的纯水传输到晶片上,以便更大地改善清洗的效果。
例2中利用纯水进行清洗15分钟,而该清洗10分钟能够获得和例2相同的效果,这是因为利用了具有超声作用的纯水。
(例4)
例4是利用图8所示的装置进行纯水清洗和干燥的例子。
在和例2相同的条件下,进行阳极氧化和用醇清洗。以后利用图8所示的装置用纯水清洗衬底。接着,保持衬底和相同的槽牢固地接触,然后旋转干燥和同时通过抽真空进行干燥。结果在孔隙中保持很少的水量,获得比较稳定的多孔硅。
(例5)
利用按照体积比氢氟酸为10%的水溶液作为电解溶液,加电压7分钟,在阳极氧化时提供电流密度为10mA/cm2的稳定电流,形成电阻率为0.007Ω.cm的多孔n-型硅片。结果,孔隙率大约为70%的多孔硅层形成在晶片的一面,厚度为12μm。立刻把该晶片放入图9所示的清洗装置中,利用丙醇蒸气进行醇清洗,干燥这样清洗的晶片,同时向上提拉晶片。
由于利用这种清洗和干燥方法,即使高孔隙率的多孔硅是可清洗的,也不会对它的结构引起任何变化。
如上所述,在清洗多孔体的过程中,阳极氧化后把多孔体暴露到清洗溶液或包含醇清洗蒸气的气氛中。可以防止由于不能充分除掉保留在孔隙中的阳极氧化溶液引起多孔体本身变坏,还防止由于蒸发清洗溶液组分对周围器件的侵蚀,还防止由此引起的污染。
(例6)
制备6英寸p-型(0.01-0.02Ω.cm)硅片(厚度:625μm)作为处理靶。利用图6所示的装置,把HF浓度按照重量比为49%的氢氟酸和乙醇按照体积比为2∶1进行混合制备的HF水溶液作为电解溶液,输入阳极氧化槽中。设置阳极氧化电流为1mA/cm2,连续阳极氧化11分钟,在硅片表面形成多孔硅层。把这样阳极氧化的硅片浸入包含按照重量比为10%异丙醇的水溶液中,保存3分钟。以后,把硅片浸入纯水中10分钟,对它进行清洗,接着进行干燥处理。
在氧化炉中在氧气中温度为400℃热处理硅片1小时,以便氧化多孔层孔隙壁表面。接着,利用氢氟酸水溶液除掉形成在多孔层的氧化膜。然后,把晶片放进CVD系统在氢气中进行烘焙,接着进行外延生长,在它的孔隙壁已经氧化了的多孔层上,形成由非多孔单晶硅构成的0.3μm厚的外延层。通过燃烧氢在1100℃氧化外延层表面,形成0.2μm厚的氧化硅膜。接着,键合到分开制备的6-英寸硅片上,然后在氮和氧气氛中在1100℃热处理2小时,获得多层结构。利用称为背面研磨机的研磨机,研磨其表面为多孔的硅片背面,研磨深度大约为615μm,剥离多孔层。把剥离多孔硅层的多层结构浸入下述制备的溶液中,该溶液把氢氟酸和过氧化氢水溶液按照体积比1∶100进行混合,以便通过选择腐蚀除掉多孔硅层。
作为观察这样获得的键合衬底的结果,如图17所示,没有看见任何斑点状不均匀膜厚度。然后把键合衬底进行氢气退火,获得具有0.2μm厚有源层和0.2μm厚掩埋氧化膜的SOI衬底,它是由非多孔单晶硅形成的,具有光滑的表面。
(例7)
制备和例6相同的硅片,并且在和例6相同的条件下进行阳极氧化。
阳极氧化后,把晶片浸入到填充由纯水和按照重量比为15%异丙醇构成的清洗溶液的槽中3分钟。以后,从槽中排除清洗溶液,然后用纯水填充相同的槽清洗晶片10分钟。
然后,进行和例6相同的处理,以便选择地腐蚀多孔硅层。
所述的工艺生产具有0.2μm厚有源层和0.2μm厚掩埋氧化膜的SOI衬底。
(比较例2)
制备和例6相同的硅片,并且在和例6相同的条件下进行阳极氧化。把这样阳极氧化的晶片浸入到纯水中,保持10分钟,以便有效地清洗,然后干燥处理。
然后,进行和例6相同的处理,以便选择地腐蚀多孔硅层。
作为观察这样获得的键合衬底的结果,如图21所示,看见斑点状不均匀膜厚度11是直径为2mm到大约7mm,是比周围区域厚度小大约2nm到大约7nm的膜厚。这样发生的不均匀膜厚,即使在以后氢气退火晶片时也不容易消失。
如上所述,在清洗多孔体的过程中,阳极氧化后把多孔体暴露在清洗溶液或包含醇的清洗蒸气的气氛中。这可能防止由于不充分地除掉保存在孔隙中的清洗溶液引起的不均匀膜厚发生。

Claims (14)

1.一种清洗阳极氧化形成的多孔体的方法,包括:利用包含醇和乙酸中至少一种的清洗溶液,在完成阳极氧化后清洗多孔体的步骤,其中,该多孔体的孔中保留有阳极氧化溶液。
2.按照权利要求1所述的清洗多孔体的方法,其中在所述清洗步骤后再用纯水清洗所述多孔体。
3.按照权利要求1所述的清洗多孔体的方法,其中所述清洗溶液是包含醇的水溶液。
4.按照权利要求1所述的清洗多孔体的方法,其中所述清洗溶液包含醇。
5.按照权利要求1所述的清洗多孔体的方法,其中所述清洗步骤包括利用包含醇的清洗溶液进行清洗的步骤,和利用包含醇的水溶液的清洗溶液进行清洗的步骤。
6.按照权利要求1所述的清洗多孔体的方法,其中所述清洗步骤包括将多孔体暴露到清洗溶液蒸汽中的步骤。
7.按照权利要求1所述的清洗多孔体的方法,其中所述清洗步骤包括把多孔体浸入到清洗溶液中的步骤。
8.按照权利要求1所述的清洗多孔体的方法,其中在所述清洗步骤后利用具有超声能量的纯水清洗多孔体。
9.按照权利要求8所述的清洗多孔体的方法,其中所述多孔体具有孔隙率小于70%的区域。
10.按照权利要求1所述的清洗多孔体的方法,其中在所述清洗步骤后,利用纯水清洗多孔体,此后旋转干燥这样清洗的多孔体和通过通风进一步干燥该多孔体。
11.按照权利要求1所述的清洗多孔体的方法,其中所述清洗步骤包括将多孔体暴露到清洗溶液的蒸汽中,以及将这样清洗的多孔体从蒸汽内部相对地移到蒸汽外部以进行干燥处理。
12.按照权利要求11所述的清洗多孔体的方法,其中所述多孔体具有孔隙率为70%或更高的区域。
13.按照权利要求1所述的清洗多孔体的方法,其中所述多孔体形成在非多孔体基座部件的表面上。
14.按照权利要求1所述的清洗多孔体的方法,其中所述多孔体包括半导体。
CNB001086626A 1999-03-26 2000-03-24 清洗多孔体的方法 Expired - Fee Related CN1187792C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP08360099A JP3245127B2 (ja) 1999-03-26 1999-03-26 多孔質体の洗浄方法
JP083600/1999 1999-03-26
JP08359999A JP3320379B2 (ja) 1999-03-26 1999-03-26 貼り合わせ基板の作製方法
JP083599/1999 1999-03-26

Publications (2)

Publication Number Publication Date
CN1271175A CN1271175A (zh) 2000-10-25
CN1187792C true CN1187792C (zh) 2005-02-02

Family

ID=26424646

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001086626A Expired - Fee Related CN1187792C (zh) 1999-03-26 2000-03-24 清洗多孔体的方法

Country Status (6)

Country Link
US (1) US6410436B2 (zh)
EP (1) EP1039517A3 (zh)
KR (1) KR100385255B1 (zh)
CN (1) CN1187792C (zh)
MY (1) MY135992A (zh)
TW (1) TW487984B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410436B2 (en) * 1999-03-26 2002-06-25 Canon Kabushiki Kaisha Method of cleaning porous body, and process for producing porous body, non-porous film or bonded substrate
US6653209B1 (en) * 1999-09-30 2003-11-25 Canon Kabushiki Kaisha Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device
US8507361B2 (en) * 2000-11-27 2013-08-13 Soitec Fabrication of substrates with a useful layer of monocrystalline semiconductor material
JP4628580B2 (ja) * 2001-04-18 2011-02-09 信越半導体株式会社 貼り合せ基板の製造方法
US6890864B2 (en) * 2001-07-12 2005-05-10 Nec Electronics Corporation Semiconductor device fabricating method and treating liquid
US6764201B2 (en) 2002-01-09 2004-07-20 Gemmy Industries Corporation Inflatable figure assembly
JP2004006819A (ja) * 2002-04-26 2004-01-08 Nec Electronics Corp 半導体装置の製造方法
US20040031167A1 (en) 2002-06-13 2004-02-19 Stein Nathan D. Single wafer method and apparatus for drying semiconductor substrates using an inert gas air-knife
JP2004241754A (ja) * 2002-07-16 2004-08-26 Chem Art Technol:Kk 基板処理方法及び基板処理装置
TWI272641B (en) * 2002-07-16 2007-02-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
JP4373085B2 (ja) 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法、剥離方法及び転写方法
TWI330269B (en) * 2002-12-27 2010-09-11 Semiconductor Energy Lab Separating method
KR20040110391A (ko) * 2003-06-19 2004-12-31 삼성전자주식회사 기판 처리 장치
FR2857155B1 (fr) * 2003-07-01 2005-10-21 St Microelectronics Sa Procede de fabrication de couches contraintes de silicium ou d'un alliage de silicium-germanium
US20060035475A1 (en) * 2004-08-12 2006-02-16 Applied Materials, Inc. Semiconductor substrate processing apparatus
US7410883B2 (en) * 2005-04-13 2008-08-12 Corning Incorporated Glass-based semiconductor on insulator structures and methods of making same
KR100842738B1 (ko) * 2005-12-19 2008-07-01 주식회사 하이닉스반도체 반도체 소자의 세정방법
JP2008019495A (ja) * 2006-07-14 2008-01-31 Ebara Corp 多孔質体の洗浄方法および洗浄装置
EP1918985B1 (en) * 2006-10-31 2010-05-26 S.O.I.TEC. Silicon on Insulator Technologies S.A. Methods for characterizing defects on silicon surfaces, etching composition for silicon surfaces and process of treating silicon surfaces with the etching composition
EP1926132A1 (en) * 2006-11-23 2008-05-28 S.O.I.Tec Silicon on Insulator Technologies Chromium-free etching solution for Si-substrates and SiGe-substrates, method for revealing defects using the etching solution and process for treating Si-substrates and SiGe-substrates using the etching solution
CN101205617A (zh) * 2006-12-20 2008-06-25 深圳富泰宏精密工业有限公司 金属工件的表面处理方法
KR100782368B1 (ko) * 2007-01-24 2007-12-07 삼성전자주식회사 반도체 제조장치
KR20120064364A (ko) * 2010-12-09 2012-06-19 삼성전자주식회사 태양 전지의 제조 방법
US8961772B2 (en) * 2011-05-03 2015-02-24 JR Manufacturing, Inc. Method and apparatus for electroplating metal parts
US20130068248A1 (en) * 2011-09-15 2013-03-21 Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") Semiconductor device cleaning method
US9136134B2 (en) 2012-02-22 2015-09-15 Soitec Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
US20130337601A1 (en) * 2012-02-29 2013-12-19 Solexel, Inc. Structures and methods for high efficiency compound semiconductor solar cells
WO2014082212A1 (en) * 2012-11-28 2014-06-05 Acm Research (Shanghai) Inc. Method and apparatus for cleaning semiconductor wafer
JP6600480B2 (ja) * 2015-04-20 2019-10-30 東京エレクトロン株式会社 被処理体を処理する方法
CN107413715A (zh) * 2016-05-24 2017-12-01 合肥江丰电子材料有限公司 靶材的清洁方法
CN106435682A (zh) * 2016-11-11 2017-02-22 苏州胜禹材料科技股份有限公司 铝板阳极氧化设备及着色工艺
CN108746092B (zh) * 2018-05-02 2021-12-07 佛山市高明区杨和金属材料专业镇技术创新中心 一种用于元素分析的移液枪头的清洗方法
CN109326544B (zh) * 2018-11-20 2024-04-26 西安建筑科技大学 一种用于亲水性圆片直接键合的键合装置及方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898351A (en) 1972-05-26 1975-08-05 Ibm Substrate cleaning process
JPS6094737A (ja) 1983-10-28 1985-05-27 Matsushita Electric Works Ltd 半導体装置の製法
US4543130A (en) 1984-08-28 1985-09-24 Rca Corporation Megasonic cleaning apparatus and method
US4695327A (en) 1985-06-13 1987-09-22 Purusar Corporation Surface treatment to remove impurities in microrecesses
DE69133359T2 (de) 1990-08-03 2004-12-16 Canon K.K. Verfahren zur Herstellung eines SOI-Substrats
US5750000A (en) 1990-08-03 1998-05-12 Canon Kabushiki Kaisha Semiconductor member, and process for preparing same and semiconductor device formed by use of same
US5143103A (en) 1991-01-04 1992-09-01 International Business Machines Corporation Apparatus for cleaning and drying workpieces
EP1347505A3 (en) 1991-02-15 2004-10-20 Canon Kabushiki Kaisha Method of preparing semiconductor member using an etching solution
US6171512B1 (en) * 1991-02-15 2001-01-09 Canon Kabushiki Kaisha Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
JP3112106B2 (ja) 1991-10-11 2000-11-27 キヤノン株式会社 半導体基材の作製方法
DE69233314T2 (de) 1991-10-11 2005-03-24 Canon K.K. Verfahren zur Herstellung von Halbleiter-Produkten
EP1251556B1 (en) 1992-01-30 2010-03-24 Canon Kabushiki Kaisha Process for producing semiconductor substrate
JPH05243203A (ja) 1992-02-28 1993-09-21 Fujitsu Ltd 超音波洗浄装置
EP0597428B1 (en) 1992-11-09 1997-07-30 Canon Kabushiki Kaisha Anodization apparatus with supporting device for substrate to be treated
JPH06216101A (ja) 1993-01-18 1994-08-05 Hitachi Ltd 洗浄方法および装置
JPH06338631A (ja) 1993-03-29 1994-12-06 Canon Inc 発光素子及びその製造方法
TW330313B (en) * 1993-12-28 1998-04-21 Canon Kk A semiconductor substrate and process for producing same
JPH08238463A (ja) 1995-03-03 1996-09-17 Ebara Corp 洗浄方法及び洗浄装置
JPH08241863A (ja) 1995-03-06 1996-09-17 Canon Inc 半導体基板の製造方法
US5660642A (en) 1995-05-26 1997-08-26 The Regents Of The University Of California Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
US6103598A (en) * 1995-07-13 2000-08-15 Canon Kabushiki Kaisha Process for producing semiconductor substrate
US6058945A (en) * 1996-05-28 2000-05-09 Canon Kabushiki Kaisha Cleaning methods of porous surface and semiconductor surface
JP3192610B2 (ja) 1996-05-28 2001-07-30 キヤノン株式会社 多孔質表面の洗浄方法、半導体表面の洗浄方法および半導体基体の製造方法
TW355815B (en) 1996-05-28 1999-04-11 Canon Kasei Kk Cleaning methods of porous surface and semiconductor surface
CA2225131C (en) * 1996-12-18 2002-01-01 Canon Kabushiki Kaisha Process for producing semiconductor article
SG63810A1 (en) 1997-02-21 1999-03-30 Canon Kk Wafer processing apparatus wafer processing method and semiconductor substrate fabrication method
US6180497B1 (en) 1998-07-23 2001-01-30 Canon Kabushiki Kaisha Method for producing semiconductor base members
US6410436B2 (en) * 1999-03-26 2002-06-25 Canon Kabushiki Kaisha Method of cleaning porous body, and process for producing porous body, non-porous film or bonded substrate

Also Published As

Publication number Publication date
EP1039517A2 (en) 2000-09-27
KR20000063022A (ko) 2000-10-25
EP1039517A3 (en) 2001-01-17
CN1271175A (zh) 2000-10-25
MY135992A (en) 2008-07-31
KR100385255B1 (ko) 2003-05-27
US6410436B2 (en) 2002-06-25
TW487984B (en) 2002-05-21
US20020016067A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
CN1187792C (zh) 清洗多孔体的方法
CN1175498C (zh) 复合部件及其分离方法和半导体衬底的制备方法
CN1090381C (zh) 绝缘体上的硅衬底的制造方法
CN1058354C (zh) 半导体部件的制造方法
CN1157768C (zh) 腐蚀半导体工件的方法和制备半导体工件的方法
CN1127122C (zh) 衬底的处理方法
CN1111900C (zh) 晶片处理装置、晶片处理方法、和半导体衬底制备方法
CN1136604C (zh) 制造半导体基底部件的方法
CN1155065C (zh) 半导体衬底的制造方法
CN1076862C (zh) 绝缘体上的硅(soi)衬底的制造工艺
CN1036813C (zh) 半导体衬底及其制造方法
CN1249531A (zh) 半导体衬底的制造工艺
CN1127120C (zh) 半导体衬底及其制造方法
CN1875465A (zh) 氮化镓半导体衬底及其制造方法
CN1132229C (zh) 多孔表面和半导体表面的清洗方法
CN1227405A (zh) 阳极氧化方法和装置以及半导体衬底制造方法
CN1152187A (zh) 半导体基片及其制造方法
CN1521805A (zh) 等离子体处理装置、环形部件和等离子体处理方法
CN1250945A (zh) 半导体基片及其制造方法
CN1842896A (zh) 杂质导入层的形成方法、被处理物的清洗方法、杂质导入装置、和器件的制造方法
CN1806315A (zh) Ti膜及TiN膜的成膜方法、接触结构、计算机能够读取的存储介质以及计算机程序
CN1698206A (zh) 衬底、其制造方法以及半导体器件
CN1153264C (zh) 物体分离装置和方法以及半导体衬底制造方法
CN1828841A (zh) 基板表面的处理方法、基板的清洗方法及程序
CN1663045A (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee