CN117866899A - 产生富含肿瘤抗原特异性t细胞的til产品的方法 - Google Patents

产生富含肿瘤抗原特异性t细胞的til产品的方法 Download PDF

Info

Publication number
CN117866899A
CN117866899A CN202311292767.1A CN202311292767A CN117866899A CN 117866899 A CN117866899 A CN 117866899A CN 202311292767 A CN202311292767 A CN 202311292767A CN 117866899 A CN117866899 A CN 117866899A
Authority
CN
China
Prior art keywords
til
days
rna
amplification
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311292767.1A
Other languages
English (en)
Inventor
C·沙尔捷-库尔托
K·里特皮柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iovance Biotherapeutics Inc
Original Assignee
Iovance Biotherapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iovance Biotherapeutics Inc filed Critical Iovance Biotherapeutics Inc
Publication of CN117866899A publication Critical patent/CN117866899A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464499Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/57Skin; melanoma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2315Interleukin-15 (IL-15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2321Interleukin-21 (IL-21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明提供了重编程TIL的改进和/或缩短的过程和方法,以制备具有增加的治疗功效的治疗性TIL群。此种重编程的TIL可用于治疗方案中。

Description

产生富含肿瘤抗原特异性T细胞的TIL产品的方法
本申请是申请日为2019年1月8日、申请号为201980017442.8(国际申请号为PCT/US2019/012729)、名称为“产生富含肿瘤抗原特异性T细胞的TIL产品的方法”的发明专利申请的分案申请。
相关申请
本申请要求2018年1月8日提交的美国临时专利申请号62/614,887、2018年4月27日提交的美国临时专利申请号62/664,034、2018年5月9日提交的美国临时专利申请号62/669,319、2018年7月13日提交的美国临时专利申请号62/697,921、2018年9月21日提交的美国临时专利申请号62/734,868和2018年11月30日提交的美国临时专利申请号62/773,715的优先权,其全部内容通过引用并入本文。
序列表
本申请包含序列表,该序列表已以ASCII格式电子提交,其全部内容通过引用并入本文。所述ASCII副本创建于2019年1月7日,名称为116983-5034-WO_ST25.txt,大小为122KB。
背景技术
使用过继性转移的肿瘤浸润淋巴细胞(TIL,tumor infiltrating lymphocyte)治疗大体积、难治性的癌症代表了一种治疗预后不良患者的有效方法。Gattinoni等,Nat.Rev.I mmunol.,2006,6,383-393。成功的免疫治疗需要大量的TIL,商业化需要稳健可靠的方法。由于细胞扩增的技术、物流和监管问题,这是一项需要实现的挑战。由于其速度和效率,基于IL-2的TIL扩增随后进行“快速扩增过程”(REP,rapid expansion process)已成为TIL扩增的优选方法。Dudley等,Science,2002,298,850-54;Dudley等,J.Clin.Oncol.,2005,23,2346-57;Dudley等,J.Clin.Oncol.,2008,26,5233-39;Riddell等,Science 1992,257,238-41;Dudley等,J.I mmunother.,2003,26,332-42。REP可在14天内使TIL扩增1000倍,尽管它需要通常来自多个供体的、大量过量(例如200倍)的经辐照的同种异体外周血单核细胞((PBMC,peripheral blood mononuclear cell),也称为单核细胞(MNC))作为饲养细胞(feeder cell),以及抗CD3抗体(OKT3)和高剂量的IL-2。Dudley等J.I mmunother.2003,26,332-42。经历REP程序的TIL在黑色素瘤患者的宿主免疫抑制后产生了成功的过继性细胞治疗。
迫切需要提供更强有力或更有效的TIL生产方法以及基于此类方法的疗法,其适用于商业规模生产并获得监管批准用于多个临床中心的人类患者。本发明通过提供瞬时基因改变方法来满足此需求,所述方法用于重编程(reprogramming)TIL以制备治疗功效增加的治疗性TIL群。
发明内容
本发明提供了扩增TIL并产生治疗性TIL群的改进和/或缩短的方法。
本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:(i)由患者切除的肿瘤获得第一TIL群;(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;以及(iv)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变。
在一些实施方式中,该方法还包括将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变。
本发明还提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变;
(f)收获从步骤(d)获得的治疗性TIL群;其中,步骤(d)向步骤(e)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生。
在一些实施方式中,该方法还包括:在步骤(iv)之前或之后,通过向第三TIL群的细胞培养基中补充另外的IL-2、另外的OKT-3和另外的APC来进行另外的第二次扩增;其中,另外的第二次扩增进行至少14天,获得比步骤(iii)中所获得的治疗性TIL群更大的治疗性TIL群;其中,更大的治疗性TIL群表现出肿瘤抗原特异性T细胞数量的改变。
在一些实施方式中,该方法还包括以下步骤:使用冷冻保存方法冷冻保存包含从步骤(f)收获的TIL群的输液袋。
在一些实施方式中,冷冻保存方法使用1:1比率的收获的TIL群对冷冻保存培养基进行。
在一些实施方式中,抗原呈递细胞是外周血单核细胞(PBMC)。在一些实施方式中,PBMC是经辐照且同种异体的。在一些实施方式中,在步骤(d)的第9天至14天中的任一天,将PBMC添加至细胞培养物。在一些实施方式中,抗原呈递细胞是人工抗原呈递细胞。
在一些实施方式中,使用基于膜的细胞处理系统来进行步骤(e)中的收获。
在一些实施方式中,使用LOVO细胞处理系统来进行步骤(e)中的收获。
在一些实施方式中,多个碎片包括约4至约50个碎片,每个碎片的体积为约27mm3
在一些实施方式中,多个碎片包括约30至约60个碎片,总体积为约1300mm3至约1500mm3
在一些实施方式中,多个碎片包括约50个碎片,总体积为约1350mm3
在一些实施方式中,多个碎片包括约50个碎片,总质量为约1克至约1.5克。
在一些实施方式中,细胞培养基装在选自G容器和Xuri细胞袋的容器中提供。
在一些实施方式中,步骤(d)中的细胞培养基还包含IL-15和/或IL-21。
在一些实施方式中,IL-2浓度为约10,000IU/mL至约5,000IU/mL。
在一些实施方式中,IL-15浓度为约500IU/mL至约100IU/mL。
在一些实施方式中,IL-21浓度为约20IU/mL至约0.5IU/mL。
在一些实施方式中,步骤(f)中的输液袋是含有HypoThermosol的输液袋。
在一些实施方式中,冷冻保存培养基包含二甲基亚砜(DMSO)。在一些实施方式中,冷冻保存培养基包含7%至10%的二甲基亚砜(DMSO)。
在一些实施方式中,步骤(c)中的第一阶段和步骤(e)中的第二阶段分别进行10天、11天或12天的时间。
在一些实施方式中,步骤(c)中的第一阶段和步骤(e)中的第二阶段分别进行11天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行约10天至约22天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行约20天至约22天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行约15天至约20天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行约10天至约20天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行约10天至约15天的时间。
在一些实施方式中,步骤(a)至步骤(f)进行22天以下。
在一些实施方式中,步骤(a)至步骤(f)进行20天以下。
在一些实施方式中,步骤(a)至步骤(f)进行15天以下。
在一些实施方式中,步骤(a)至步骤(f)进行10天以下。
在一些实施方式中,步骤(a)至步骤(f)和冷冻保存进行22天以下。
在一些实施方式中,步骤(e)中收获的治疗性TIL群包含对于TIL的治疗有效剂量来说足够的TIL。
在一些实施方式中,对于治疗有效剂量来说足够的TIL的数量为约2.3×1010至约13.7×1010
在一些实施方式中,步骤(b)至步骤(e)在单个容器中进行;其中,与在超过一个容器中进行步骤(b)至步骤(e)相比,在单个容器中进行步骤(b)至步骤(e)使得每个切除肿瘤的TIL产量增加。
在一些实施方式中,在步骤(d)的第二阶段期间,在不打开系统的情况下将抗原呈递细胞添加至TIL。
在一些实施方式中,当施用于受试者时,步骤(d)中的第三TIL群提供至少5倍以上的干扰素-γ产生。
在一些实施方式中,与开放系统相比,降低了微生物污染的风险。
在一些实施方式中,将来自步骤(f)或步骤(g)的TIL注入患者体内。
在一些实施方式中,多个碎片包括约4个碎片。
本发明还提供了治疗患有癌症的受试者的方法,该方法包括施用扩增的肿瘤浸润淋巴细胞(TIL),该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由受试者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加;
(f)收获从步骤(d)获得的治疗性TIL群;其中,步骤(d)向步骤(e)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;
(h)可选地,使用冷冻保存方法冷冻保存包含从步骤(f)收获的TIL群的输液袋;以及
(i)向患者施用步骤(g)的输液袋中的治疗有效剂量的第三TIL群。
在一些实施方式中,步骤(f)中收获的治疗性TIL群包含足够的TIL,用于在步骤(h)中施用治疗有效剂量的TIL。
在一些实施方式中,足够用于在步骤(h)中施用治疗有效剂量的TIL的数量为约2.3×1010至约13.7×1010
在一些实施方式中,抗原呈递细胞(APC)是PBMC。
在一些实施方式中,在步骤(d)的第9天至14天中的任一天,将PBMC添加至细胞培养物中。
在一些实施方式中,在步骤(h)中施用治疗有效剂量的TIL细胞之前,已给患者施用了非清髓性(non-myeloablative)淋巴细胞耗竭(lymphodepletion)方案。
在一些实施方式中,非清髓性淋巴细胞耗竭方案包括以60mg/m2/天的剂量施用环磷酰胺2天、然后以25mg/m2/天的剂量施用氟达拉滨5天的步骤。
在一些实施方式中,该方法还包括如下步骤:在步骤(h)中给患者施用TIL细胞后的第二天开始用高剂量IL-2方案治疗患者。
在一些实施方式中,高剂量IL-2方案包括每8小时以15分钟静脉推注(bolusintravenous infusion)方式施用600,000或720,000IU/kg,直至耐受。
在一些实施方式中,癌症选自:黑色素瘤、卵巢癌、宫颈癌、非小细胞肺癌(NSCLC)、肺癌、膀胱癌、乳腺癌、由人乳头状瘤病毒引起的癌症、头颈癌(包括头颈鳞状细胞癌(HNSCC))、肾癌和肾脏上皮肾细胞癌。
在一些实施方式中,癌症选自黑色素瘤、HNSCC、子宫颈癌和NSCLC。
在一些实施方式中,癌症是黑色素瘤。
在一些实施方式中,癌症是HNSCC。
在一些实施方式中,癌症是宫颈癌。
在一些实施方式中,癌症是NSCLC。
本发明还提供了将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)将来自患者切除肿瘤的经处理的肿瘤碎片添加至封闭系统中,获得第一TIL群;
(b)通过在包含IL-2的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(a)向步骤(b)的过渡在不打开系统的情况下发生;
(c)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)收获从步骤(c)获得的治疗性TIL群;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;以及
(e)将从步骤(d)收获的TIL群转移至输液袋;其中,步骤(d)向步骤(e)的转移在不打开系统的情况下发生。
在一些实施方式中,步骤(d)中收获的治疗性TIL群包含对于TIL的治疗有效剂量来说足够的TIL。
在一些实施方式中,对于治疗有效剂量来说足够的TIL的数量为约2.3×1010至约13.7×1010
在一些实施方式中,该方法还包括使用冷冻保存方法冷冻保存包含收获的TIL群的输液袋的步骤。
在一些实施方式中,冷冻保存方法使用1:1比率的收获的TIL群对冷冻保存培养基进行。
在一些实施方式中,抗原呈递细胞是外周血单核细胞(PBMC)。
在一些实施方式中,PBMC是经辐照且同种异体的。
根据权利要求68所述的方法,其中,在步骤(c)的第9天至14天中的任一天将PBMC添加至细胞培养物中。
在一些实施方式中,抗原呈递细胞是人工抗原呈递细胞。
在一些实施方式中,使用LOVO细胞处理系统进行步骤(d)中的收获。
在一些实施方式中,多个碎片包括约4至约50个碎片,其中,每个碎片的体积为约27mm3
在一些实施方式中,多个碎片包括约30至约60个碎片,总体积为约1300mm3至约1500mm3
在一些实施方式中,多个碎片包括约50个碎片,总体积为约1350mm3
在一些实施方式中,多个碎片包括约50个碎片,总质量为约1克至约1.5克。
在一些实施方式中,多个碎片包括约4个碎片。
在一些实施方式中,第二细胞培养基装在选自G容器和Xuri细胞袋的容器中提供。
在一些实施方式中,步骤(e)中的输液袋是含有HypoThermosol的输液袋。
在一些实施方式中,步骤(b)中的第一阶段和步骤(c)中的第二阶段分别进行10天、11天或12天的时间。
在一些实施方式中,步骤(b)中的第一阶段和步骤(c)中的第二阶段分别进行11天的时间。
在一些实施方式中,步骤(a)至步骤(e)进行约10天至约22天的时间。
在一些实施方式中,步骤(a)至步骤(e)进行约10天至约20天的时间。
在一些实施方式中,步骤(a)至步骤(e)进行约10天至约15天的时间。
在一些实施方式中,步骤(a)至步骤(e)进行22天以下。
在一些实施方式中,步骤(a)至步骤(e)和冷冻保存进行22天以下。
在一些实施方式中,步骤(b)至步骤(e)在单个容器中进行;其中,与在超过一个容器中进行步骤(b)至步骤(e)相比,在单个容器中进行步骤(b)至步骤(e)使得每个切除肿瘤的TIL产量增加。
在一些实施方式中,在不打开系统的情况下,在步骤(c)的第二阶段期间将抗原呈递细胞添加至TIL中。
在一些实施方式中,与开放系统相比,降低了微生物污染的风险。
在一些实施方式中,将来自步骤(e)的TIL注入患者体内。
在一些实施方式中,封闭容器包括单个生物反应器。
在一些实施方式中,封闭容器包括G-REX-10。
在一些实施方式中,封闭容器包括G-REX-100。
在一些实施方式中,在步骤(d)中,以25:1至100:1的APC:TIL比率将抗原呈递细胞(APC)添加至第二TIL群的细胞培养物中。
在一些实施方式中,细胞培养物具有2.5×109APC比100×106TIL的比率。
在一些实施方式中,在步骤(c)中,以25:1至100:1的APC:TIL比率将抗原呈递细胞(APC)添加至第二TIL群的细胞培养物中。
在一些实施方式中,细胞培养物具有2.5×109APC与100×106TIL的比率。
本发明还提供了用于治疗患有癌症的受试者的扩增的TIL群,其中,所述扩增的TIL群是可通过包括以下步骤的方法获得的第三TIL群:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由受试者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加;
(f)收获从步骤(d)获得的治疗性TIL群;其中,步骤(d)向步骤(e)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(h)可选地,使用冷冻保存方法冷冻保存包含从步骤(f)收获的TIL群的输液袋。
在一些实施方式中,根据上文和此处所述的方法,TIL群用于治疗患有癌症的受试者,其中,该方法还包括上文和此处所述的一个以上特征。
本发明还提供了测定TIL活力的测定方法。本公开提供了通过将肿瘤浸润淋巴细胞(TIL)扩增为更大的TIL群来测定TIL活力的方法,包括:
(i)获得先前已扩增的第一TIL群;
(ii)通过在包含IL-2的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;以及
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,进一步分析第三TIL群的活力。
在一些实施方式中,该方法还包括:
(iv)通过向第三TIL群的细胞培养基中补充另外的IL-2、另外的OKT-3和另外的APC进行另外的第二次扩增;其中,另外的第二次扩增进行至少14天,获得比步骤(iii)中所获得的TIL群更大的TIL群;其中,进一步分析第三TIL群的活力。
在一些实施方式中,在步骤(i)之前冷冻保存细胞。
在一些实施方式中,在进行步骤(i)之前解冻细胞。
在一些实施方式中,重复步骤(iv)1至4次以获得足够的TIL进行分析。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约40天至约50天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约42天至约48天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约42天至约45天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约44天的时间。
在一些实施方式中,来自步骤(iii)或(iv)的细胞与新鲜收获的细胞表达相似水平的CD4、CD8和TCRαβ。
在一些实施方式中,抗原呈递细胞是外周血单核细胞(PBMC)。
在一些实施方式中,在步骤(iii)的第9天至17天中的任一天将PBMC添加至细胞培养物中。
在一些实施方式中,APC是人工APC(aAPC)。
在一些实施方式中,该方法还包括用表达载体转导第一TIL群的步骤,该表达载体包含编码高亲和力T细胞受体的核酸。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,该方法还包括用表达载体转导第一TIL群的步骤,该表达载体包含编码嵌合抗原受体(CAR)的核酸,该嵌合抗原受体包含与T细胞信号分子的至少一个胞内结构域(endodomain)融合的单链可变片段抗体。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,测定TIL的活力。
在一些实施方式中,在冷冻保存之后测定TIL的活力。
在一些实施方式中,在冷冻保存之后和步骤(iv)之后测定TIL的活力。
本发明还提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括将TIL暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子,产生治疗性TIL群;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加。
在一些实施方式中,蛋白质表达的瞬时改变导致诱导蛋白质表达。
在一些实施方式中,蛋白质表达的瞬时改变导致蛋白质表达降低。
在一些实施方式中,使用一种以上sd-RNA来减少瞬时蛋白质表达。
本发明还提供了一种评估转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子的方法;其中,该方法包括将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群,使TIL暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子,产生治疗性TIL群;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变。
在一些实施方式中,蛋白质表达的瞬时改变靶向选自下组的基因:PD-1、TGFBR2、CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1和cAMP蛋白激酶A(PKA)。
在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)使第一TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μMsd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(e)可选地,对第一TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(f)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)静置第二TIL群约1天;
(h)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(h)的过渡在不打开系统的情况下发生;
(i)收获从步骤(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(h)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)使第一TIL群与至少一种sd-RNA接触,其中,sd-RNA以如下浓度添加:0.1μMsd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(e)可选地对第一TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(f)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)静置第二TIL群约1天;
(h)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;
(i)收获从步骤(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(h)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间,使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(e)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间,使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μMsd-RNA/10,000TIL;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(e)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(h)向步骤(i)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些实施方式中,在第一次扩增期间,每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将sd-RNA添加至第一细胞群中。
在一些实施方式中,在第一次扩增期间,每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将sd-RNA添加至第二细胞群中。
在一些实施方式中,添加两种sd-RNA以抑制两种分子的表达,所述两种分子选自PD-1、LAG-3、TIM-3、CISH和CBLB。
在一些实施方式中,添加两种sd-RNA以抑制两种分子的表达,其中,所述两种分子选自:
i.PD-1和LAG-3;
ii.PD-1和TIM-3;
iii.PD-1和CISH;
iv.PD-1和CBLB;
v.LAG-3和TIM-3;
vi.LAG-3和CISH;
vii.LAG-3和CBLB;
viii.TIM-3和CISH;
ix.TIM-3和CBLB;以及
X.CISH和CBLB。
在一些实施方式中,添加超过两种sd-RNA以抑制超过两种分子的表达,所述超过两种分子选自PD-1、LAG-3、TIM-3、CISH和CBLB。
在一些实施方式中,在与至少一种sd-RNA接触的TIL中,至少一种分子的表达降低了至少80%、85%、90%或95%,所述至少一种分子选自PD-1、LAG-3、TIM-3、CISH和CBLB。
在一些实施方式中,在与至少一种sd-RNA接触的TIL中,至少一种分子的表达降低了至少80%、85%、90%或95%,持续至少12小时、至少24小时或至少48小时,所述至少一种分子选自PD-1、LAG-3、TIM-3、CISH和CBLB。
附图说明
图1:显示了过程2A(生产TIL的22天过程)的实施方式的图。
图2:显示了生产TIL的1C过程与2A过程的实施方式的比较。
图3:显示了1C过程时间线。
图4:显示了细胞计数较高的使用过程2A进行TIL生产的TIL疗法(包括施用和联合治疗步骤)的实施方式的过程。
图5:显示了细胞计数较低的使用过程2A进行TIL生产的TIL疗法(包括施用和联合治疗步骤)的实施方式的过程。
图6:显示了2A过程的实施方式的详细示意图。
图7A-图7C:描述了过程2A(包括冷冻保存步骤)的实施方式的主要步骤。
图8:示例性过程2A图表,提供了步骤A至步骤F的概述。
图9:关于过程2A数据收集计划的过程流程图。
图10:快速扩增方案(REP)的示例性实施方式的方案。肿瘤到达后,将肿瘤破碎,放入含有IL-2的G-Rex烧瓶中以进行TIL扩增(pre-REP扩增),持续11天。对于三重混合物研究,在pre-REP开始时添加IL-2/IL-15/IL-21。对于快速扩增方案(REP),将TIL与饲养细胞和OKT3一起培养以进行REP扩增另外11天。
图11:冷冻保存的TIL示例性生产过程(约22天)。
图12:显示了过程2A(生产TIL的22天过程)的实施方式的图。
图13:过程1C和过程2A的示例性实施方式的步骤A至步骤F的比较表。
图14:过程1C的实施方式和过程2A的实施方式的详细比较。
图15:冷冻保存的TIL生产过程的实施方式的描述(22天)。
图16:从Gen 1到Gen 2的过程改进的表。
图17:Gen 2冷冻保存的LN-144生产过程的方案。
图18:显示了过程2A(生产TIL的22天过程)的实施方式的图。
图19:显示了将TIL悬液转移包无菌焊接(参见实施例16的过程注释5.11)至重力血液过滤器的底部(单线)的示意图。
图20:显示了将红色培养基取出管线从GRex100MCS无菌焊接(参见实施例16的过程注释5.11)至“上清液”转移包的示意图。
图21:显示了将4S-4M60焊接(参见实施例16的过程注释5.11)至CC2 CellConnect的示意图,在(G)处用4S-4M60歧管(manifold)的4个尖嘴(spike)端代替CellConnect装置(B)的单个尖嘴。
图22:显示了将中继流体转移套件(repeater fluid transfer set)焊接(参见实施例16的过程注释5.11)至4S-4M60的公鲁尔接口端之一的示意图。
图23:显示了将重力血液过滤器的长末端无菌焊接(参见实施例16的过程注释5.11)至LOVO来源袋的示意图。
图24:显示了将过滤器的两个来源管线之一无菌焊接(参见实施例16的过程注释5.11)至“合并的TIL悬液”收集袋的示意图。
图25:显示了将4S-4M60无菌焊接(参见实施例16的过程注释5.11)至CC2CellConnect的示意图,在(G)处用4S-4M60歧管的4个尖嘴端代替Cell Connect装置(B)的单个尖嘴。
图26:显示了将CS750冻存袋无菌焊接(参见实施例16的过程注释5.11)至步骤8.14.8中准备的线束(harness)的示意图,用各个袋替换4个公鲁尔接口端(E)之一。
图27:显示了将CS-10袋焊接(参见实施例16的过程注释5.11)至4S-4M60的尖嘴的示意图。
图28:显示了将“配制的TIL(Formulated TIL)”袋焊接(参见实施例16的过程注释5.11)至步骤8.14.10中准备的装置上的剩余尖嘴(A)的示意图。
图29:显示了在F处的热封(参见实施例16中的过程注释5.12)的示意图,移去了空的保留物(retentate)袋和CS-10袋。
图30:显示了用于瞬时基因编辑的TIL过程的实施方式的示意图。
图31:显示了用于瞬时基因编辑的TIL过程的实施方式的示意图。
图32:显示了关于为了瞬时基因重编程目的将RNA转移步骤并入TIL过程的示意图。
图33:显示了提出的用于瞬时改变TIL中的基因表达的基因工程方法的概述。
图34:显示了趋化因子和趋化因子受体的概况,该趋化因子和趋化因子受体的基因表达瞬时改变可用于改善向肿瘤部位的TIL运输。
图35:显示了趋化因子和趋化因子受体的第二种概况,该趋化因子和趋化因子受体的基因表达瞬时改变可用于改善向肿瘤部位的TIL运输。
图36:显示了示例性自递送核糖核酸(sd-RNA)实施方式的示意性结构表示。参见Ligtenberg等,Mol.Therapy,2018。
图37:显示了示例性sd-RNA实施方式的示意性结构表示。参见美国专利公开号2016/0304873。
图38:显示了使用DNA模板的mRNA合成的示例性方案,该DNA模板通过使用特殊设计的引物的PCR获得。正向引物包含适于体外转录的噬菌体启动子,反向引物包含polyT段(stretch)。PCR产物是适合于体外转录的表达盒(expression cassette)。新生mRNA的3'端的聚腺苷酸可阻止异常的RNA失控(runoff)合成和双链RNA产物的产生。转录完成后,polyA尾巴可以另外用poly(A)聚合酶延伸(参见美国专利号8,859,229。)
图39:显示了PDCD1、TIM3、CBLB、LAG3和CISH的Sd-rxRNA介导的沉默的图。
图40:TIL中Sd-rxRNA介导的基因沉默;示例性方案。示例性肿瘤包括黑色素瘤(新鲜或冷冻;n=6)、乳腺肿瘤(新鲜或冷冻;n=5)、肺肿瘤(n=1)、肉瘤(n=1)和/或卵巢癌(n=1)。
图41:5个靶标中有4个检测到蛋白质表达降低。PD1:n=9,TIM3:n=8,LAG3/CISH:n=2,Cbl-b:n=2。来自pre-REP黑色素瘤和新鲜乳腺癌TIL的制剂(prep),2uM sd-rxRNA。计算为KD%(100-(100*(目的基因/NTC)))。
图42:Sd-rxRNA诱导的KD随时间和刺激而下降。n=3,来自pre-REP黑色素瘤TIL的制剂,2uM sd-rxRNA。
图43:PDCD1 sd-rxRNA轻微影响了TIL的活力。PD1,TIM3 n>6,来自pre-REP黑色素瘤/新鲜乳腺癌TIL的制剂。LAG3,CISH n=2,pre-REP黑色素瘤和乳腺癌TIL,2uM sd-rxRNA。
图44:PD1和TIM3的Sd-rxRNA介导的KD与表型改变(指示TIL活化)有关。n=3,来自pre-REP黑色素瘤TIL的制剂,2uM sd-rxRNA。
图45A和图45B:由sd-rxRNA敲除的PD1和TIM3不影响其他抑制/耗竭标志物的表达。A)和B)n=3,TIM3:n=2,来自pre-REP黑色素瘤TIL的制剂,2uM sd-rxRNA。
图46:PD1和TIM3 KD未显著改善IFNγ分泌。n=3,来自pre-REP黑色素瘤TIL的制剂,2uM sd-rxRNA。
图47A-图47F:CD107a动员(mobilization)不受任何sd-rxRNA的影响。A)n=6,来自pre-REP黑色素瘤TIL的制剂,2uM sd-rxRNA。B)n=2,来自pre-REP黑色素瘤和乳腺癌TIL的制剂,2uM sd-rxRNA。C)n=3,冷冻黑色素瘤和新鲜乳腺癌TIL。D)n=3,冷冻黑色素瘤以及新鲜的乳腺癌和肺癌TIL。E)和F)n=3,来自乳腺癌肿瘤的新鲜制剂。
图48:xCELLigence实时细胞分析(RTCA)。
图49A和图49B:PD1 KD TIL引起更大的杀伤效率。A)杀伤效率的代表性图。B)n=3的代表性图,黑色素瘤TIL,2uM sd-rxRNA。
图50A和图50B:Sd-rxRNA剂量反应(dose-response)实验。A)n=3,来自乳腺癌肿瘤的新鲜制剂。B)n=3,来自pre-REP黑色素瘤TIL的制剂。
图51:无法检测到Sd-rxRNA介导的CBLB敲除。A)图。B)流式细胞术分析图。n=2,来自pre-REP黑色素瘤和新鲜乳腺癌TIL的制剂。与NTC相比,CBLB的mRNA水平无变化。使用流式细胞术测定,Cbl-b的蛋白质水平无变化。
图52A和图52B:显示了在艾欧凡斯(Iovance)的TIL生产过程中sd-rxRNA介导的基因沉默检测,评估了TIL表型。sd-rxRNA介导的PD-1敲除与表型改变(指示TIL活化)有关。PD-1,n>6,来自pre-REP黑色素瘤/新鲜乳腺癌TIL的制剂,2uM sd-rxRNA。A)CD25、CCR7、CD27、CD28、CD56、CD95、4-1BB和OX40。B)CD25、CD56、CCR7、4-1BB和OX40。N=12,新鲜TIL和冷冻TIL;乳腺、黑色素瘤、卵巢和肺。
图53A和图53B:添加PD1 sd-rxRNA显著降低了细胞生长,但未降低TIL活力。A)倍数扩增。B)细胞活力。n=7,乳腺TIL、肉瘤TIL和肺TIL。
图54A和图54B:响应于非特异性刺激,PD1 KD没有改善CD107a动员和IFNγ分泌。A)在刺激前后表达CD107a的CD8细胞的百分比。B)刺激前后的IFNγ分泌。n=6,黑色素瘤TIL。
图55:显示了实施例13的实验设计。
序列表说明
SEQ ID NO:1是莫罗单抗(muromonab)的重链的氨基酸序列。
SEQ ID NO:2是莫罗单抗的轻链的氨基酸序列。
SEQ ID NO:3是重组人IL-2蛋白的氨基酸序列。
SEQ ID NO:4是阿地白介素的氨基酸序列。
SEQ ID NO:5是重组人IL-4蛋白的氨基酸序列。
SEQ ID NO:6是重组人IL-7蛋白的氨基酸序列。
SEQ ID NO:7是重组人IL-15蛋白的氨基酸序列。
SEQ ID NO:8是重组人IL-21蛋白的氨基酸序列。
SEQ ID NO:9是人4-1BB的氨基酸序列。
SEQ ID NO:10是鼠4-1BB的氨基酸序列。
SEQ ID NO:11是4-1BB激动剂单克隆抗体乌托鲁单抗(utomilumab)(PF-05082566)的重链。
SEQ ID NO:12是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的轻链。
SEQ ID NO:13是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的重链可变区(VH)。
SEQ ID NO:14是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的轻链可变区(VL)。
SEQ ID NO:15是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的重链CDR1。
SEQ ID NO:16是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的重链CDR2。
SEQ ID NO:17是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的重链CDR3。
SEQ ID NO:18是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的轻链CDR1。
SEQ ID NO:19是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的轻链CDR2。
SEQ ID NO:20是4-1BB激动剂单克隆抗体乌托鲁单抗(PF-05082566)的轻链CDR3。
SEQ ID NO:21是4-1BB激动剂单克隆抗体乌瑞鲁单抗(urelumab)(BMS-663513)的重链。
SEQ ID NO:22是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的轻链。
SEQ ID NO:23是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的重链可变区(VH)。
SEQ ID NO:24是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的轻链可变区(VL)。
SEQ ID NO:25是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的重链CDR1。
SEQ ID NO:26是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的重链CDR2。
SEQ ID NO:27是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的重链CDR3。
SEQ ID NO:28是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的轻链CDR1。
SEQ ID NO:29是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的轻链CDR2。
SEQ ID NO:30是4-1BB激动剂单克隆抗体乌瑞鲁单抗(BMS-663513)的轻链CDR3。
SEQ ID NO:31是TNFRSF激动剂融合蛋白的Fc结构域。
SEQ ID NO:32是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:33是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:34是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:35是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:36是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:37是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:38是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:39是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:40是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:41是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:42是TNFRSF激动剂融合蛋白的Fc结构域。
SEQ ID NO:43是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:44是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:45是TNFRSF激动剂融合蛋白的接头。
SEQ ID NO:46是4-1BB配体(4-1BBL)的氨基酸序列。
SEQ ID NO:47是4-1BBL多肽的可溶部分。
SEQ ID NO:48是4-1BB激动剂抗体4B4-1-1版本1的重链可变区(VH)。
SEQ ID NO:49是4-1BB激动剂抗体4B4-1-1版本1的轻链可变区(VL)。
SEQ ID NO:50是4-1BB激动剂抗体4B4-1-1版本2的重链可变区(VH)。
SEQ ID NO:51是4-1BB激动剂抗体4B4-1-1版本2的轻链可变区(VL)。
SEQ ID NO:52是4-1BB激动剂抗体H39E3-2的重链可变区(VH)。
SEQ ID NO:53是4-1BB激动剂抗体H39E3-2的轻链可变区(VL)。
SEQ ID NO:54是人OX40的氨基酸序列。
SEQ ID NO:55是鼠OX40的氨基酸序列。
SEQ ID NO:56是OX40激动剂单克隆抗体他利昔珠单抗(tavolixizumab)(MEDI-0562)的重链。
SEQ ID NO:57是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的轻链。
SEQ ID NO:58是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的重链可变区(VH)。
SEQ ID NO:59是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的轻链可变区(VL)。
SEQ ID NO:60是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的重链CDR1。
SEQ ID NO:61是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的重链CDR2。
SEQ ID NO:62是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的重链CDR3。
SEQ ID NO:63是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的轻链CDR1。
SEQ ID NO:64是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的轻链CDR2。
SEQ ID NO:65是OX40激动剂单克隆抗体他利昔珠单抗(MEDI-0562)的轻链CDR3。
SEQ ID NO:66是OX40激动剂单克隆抗体11D4的重链。
SEQ ID NO:67是OX40激动剂单克隆抗体11D4的轻链。
SEQ ID NO:68是OX40激动剂单克隆抗体11D4的重链可变区(VH)。
SEQ ID NO:69是OX40激动剂单克隆抗体11D4的轻链可变区(VL)。
SEQ ID NO:70是OX40激动剂单克隆抗体11D4的重链CDR1。
SEQ ID NO:71是OX40激动剂单克隆抗体11D4的重链CDR2。
SEQ ID NO:72是OX40激动剂单克隆抗体11D4的重链CDR3。
SEQ ID NO:73是OX40激动剂单克隆抗体11D4的轻链CDR1。
SEQ ID NO:74是OX40激动剂单克隆抗体11D4的轻链CDR2。
SEQ ID NO:75是OX40激动剂单克隆抗体11D4的轻链CDR3。
SEQ ID NO:76是OX40激动剂单克隆抗体18D8的重链。
SEQ ID NO:77是OX40激动剂单克隆抗体18D8的轻链。
SEQ ID NO:78是OX40激动剂单克隆抗体18D8的重链可变区(VH)。
SEQ ID NO:79是OX40激动剂单克隆抗体18D8的轻链可变区(VL)。
SEQ ID NO:80是OX40激动剂单克隆抗体18D8的重链CDR1。
SEQ ID NO:81是OX40激动剂单克隆抗体18D8的重链CDR2。
SEQ ID NO:82是OX40激动剂单克隆抗体18D8的重链CDR3。
SEQ ID NO:83是OX40激动剂单克隆抗体18D8的轻链CDR1。
SEQ ID NO:84是OX40激动剂单克隆抗体18D8的轻链CDR2。
SEQ ID NO:85是OX40激动剂单克隆抗体18D8的轻链CDR3。
SEQ ID NO:86是OX40激动剂单克隆抗体Hu119-122的重链可变区(VH)。
SEQ ID NO:87是OX40激动剂单克隆抗体Hu119-122的轻链可变区(VL)。
SEQ ID NO:88是OX40激动剂单克隆抗体Hu119-122的重链CDR1。
SEQ ID NO:89是OX40激动剂单克隆抗体Hu119-122的重链CDR2。
SEQ ID NO:90是OX40激动剂单克隆抗体Hu119-122的重链CDR3。
SEQ ID NO:91是OX40激动剂单克隆抗体Hu119-122的轻链CDR1。
SEQ ID NO:92是OX40激动剂单克隆抗体Hu119-122的轻链CDR2。
SEQ ID NO:93是OX40激动剂单克隆抗体Hu119-122的轻链CDR3。
SEQ ID NO:94是OX40激动剂单克隆抗体Hu106-222的重链可变区(VH)。
SEQ ID NO:95是OX40激动剂单克隆抗体Hu106-222的轻链可变区(VL)。
SEQ ID NO:96是OX40激动剂单克隆抗体Hu106-222的重链CDR1。
SEQ ID NO:97是OX40激动剂单克隆抗体Hu106-222的重链CDR2。
SEQ ID NO:98是OX40激动剂单克隆抗体Hu106-222的重链CDR3。
SEQ ID NO:99是OX40激动剂单克隆抗体Hu106-222的轻链CDR1。
SEQ ID NO:100是OX40激动剂单克隆抗体Hu106-222的轻链CDR2。
SEQ ID NO:101是OX40激动剂单克隆抗体Hu106-222的轻链CDR3。
SEQ ID NO:102是OX40配体(OX40L)的氨基酸序列。
SEQ ID NO:103是OX40L多肽的可溶部分。
SEQ ID NO:104是OX40L多肽的替代性可溶部分。
SEQ ID NO:105是OX40激动剂单克隆抗体008的重链可变区(VH)。
SEQ ID NO:106是OX40激动剂单克隆抗体008的轻链可变区(VL)。
SEQ ID NO:107是OX40激动剂单克隆抗体011的重链可变区(VH)。
SEQ ID NO:108是OX40激动剂单克隆抗体011的轻链可变区(VL)。
SEQ ID NO:109是OX40激动剂单克隆抗体021的重链可变区(VH)。
SEQ ID NO:110是OX40激动剂单克隆抗体021的轻链可变区(VL)。
SEQ ID NO:111是OX40激动剂单克隆抗体023的重链可变区(VH)。
SEQ ID NO:112是OX40激动剂单克隆抗体023的轻链可变区(VL)。
SEQ ID NO:113是OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:114是OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:115是OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:116是OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:117是人源化的OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:118是人源化的OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:119是人源化的OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:120是人源化的OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:121是人源化的OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:122是人源化的OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:123是人源化的OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:124是人源化的OX40激动剂单克隆抗体的轻链可变区(VL)。
SEQ ID NO:125是OX40激动剂单克隆抗体的重链可变区(VH)。
SEQ ID NO:126是OX40激动剂单克隆抗体的轻链可变区(VL)。
具体实施方式
I.引言
利用通过快速扩增方案(REP)离体培养的TIL的过继性细胞疗法已经在黑色素瘤患者的宿主免疫抑制后产生了成功的过继性细胞治疗。目前的输注接受参数依赖于TIL组成的读数(例如CD28、CD8或者CD4阳性)以及REP产物的扩增数值倍数和活力。
目前的REP方案很少考虑将要被注入患者体内的TIL的健康状况。T细胞在从幼稚T细胞到效应T细胞的成熟过程中经历了深刻的代谢转变(参见Chang等,Nat.Immunol.2016,17,364,在此明确地整体并入,特别是对于厌氧和有氧代谢的讨论和标志物)。例如幼稚T细胞依靠线粒体呼吸产生ATP,而成熟、健康的效应T细胞如TIL是高度糖酵解的,依靠有氧糖酵解提供它们增殖、迁移、活化和抗肿瘤疗效所需的生物能量学底物。
目前的TIL生产过程受到长度、成本、无菌问题以及本文所述其他因素的限制,使得此类方法商业化的潜力被严重限制;由于这些和其他原因,目前尚无商业方法可用。本发明提供了TIL制造方法和基于此类方法的疗法,TIL制造方法利用瞬时蛋白质表达改变方法,该TIL制造方法和疗法适用于商业规模生产并获得监管批准用于多个临床中心的人类患者。本发明提供了瞬时基因改变方法,用于重编程TIL以制备治疗功效增加的治疗性TIL群。
II.定义
除非另有定义,否则本文所用的所有技术术语和科学术语具有与本发明所属领域的技术人员通常所理解的相同含义。本文引用的所有专利和出版物均通过引用全文并入本文。
术语“体内”指发生在受试者体内的事件。
术语“体外”指在受试者体外发生的事件。体外检测包括使用活细胞或死细胞的基于细胞的检测,并且还可包括不使用完整细胞的无细胞检测。
术语“离体”指涉及对已从受试者身体取出的细胞、组织和/或器官进行处理或进行程序的事件。适当地,该细胞、组织和/或器官可在手术或治疗方法中返回受试者体内。
术语“快速扩增”指在一周的时间内抗原特异性TIL的数量增加至少约3倍(或者4倍、5倍、6倍、7倍、8倍或者9倍),更优选在一周的时间内增加至少约10倍(或者20倍、30倍、40倍、50倍、60倍、70倍、80倍或者90倍),或者最优选在一周的时间内增加至少约100倍。下文概述了一些快速扩增方案。
本文中的“肿瘤浸润淋巴细胞”或者“TIL”指最初作为白细胞获得的细胞群,它们已经离开受试者的血流并迁移至肿瘤。TIL包括但不限于CD8+细胞毒性T细胞(淋巴细胞)、Th1和Th17 CD4+T细胞、天然杀伤细胞、树突状细胞和M1巨噬细胞。TIL包括原代TIL和次代TIL。“原代TIL”是如本文所述由患者组织样品获得的那些(有时称为“新鲜收获的”),“次代TIL”是如本文所讨论的已经扩增或者增殖的任何TIL细胞群,包括但不限于大量TIL(bulkTIL)和扩增的TIL(“REP TIL”或者“post-REP TIL”)。TIL细胞群可包括基因修饰的TIL。
本文的“细胞群”(包括TIL)指具有共同特征的若干细胞。通常,群的数量通常为1×106至1×1010,不同的TIL群包含不同的数量。例如,在IL-2存在下,原代TIL的初始增长产生约1×108个细胞的大量TIL群。通常,进行REP扩增以提供1.5×109至1.5×1010个细胞的群用于输注。
本文的“冷冻保存的TIL”指在约-150℃至-60℃进行处理和储存的原代、大量或扩增的TIL(REP TIL)。用于冷冻保存的一般方法也在本文其他地方描述,包括在实施例中。为清楚起见,“冷冻保存的TIL”能够与可用作原代TIL来源的冷冻组织样品区分开。
本文的“解冻的冷冻保存的TIL”指先前被冷冻保存然后被处理而恢复至室温以上温度(包括但不限于细胞培养温度或可将TIL施用于患者的温度)的TIL群。
TIL通常可以利用细胞表面标志物在生物化学上定义,或者通过其浸润肿瘤和影响治疗的能力在功能上来定义。TIL通常可通过表达以下生物标志物中的一种以上来分类:CD4、CD8、TCRαβ、CD27、CD28、CD56、CCR7、CD45Ra、CD95、PD-1和CD25。此外,或者,TIL可通过其在重新引入患者后浸润实体瘤的能力在功能上定义。
术语“冷冻保存培养基(cryopreservation media)”或者“冷冻保存培养基(cryopreservation medium)”指可用于细胞的冷冻保存的任何培养基。此类培养基可包括包含7%至10%DMSO的培养基。示例性的培养基包括CryoStor CS10、Hyperthermasol以及它们的组合。术语“CS10”指从Stemcell Technologies或者Biolife Solutions商购的冷冻保存培养基。CS10培养基可以用商品名“CS10”来指代。CS10培养基是包含DMSO的无血清无动物成分的培养基。
术语“中枢记忆T细胞”指人细胞中CD45R0+并且组成性地表达CCR7(CCR7)和CD62L(CD62)的T细胞亚群。中枢记忆T细胞的表面表型还包括TCR、CD3、CD127(IL-7R)和IL-15R。中枢记忆T细胞的转录因子包括BCL-6、BCL-6B、MBD2和BMI1。在TCR触发后,中枢记忆T细胞主要分泌IL-2和CD40L作为效应分子。中枢记忆T细胞在血液中的CD4区室(compartment)中占优势,并且在人体中按比率富集在淋巴结和扁桃体。
术语“效应记忆T细胞”指人或哺乳动物T细胞的亚群,其与中枢记忆T细胞一样,为CD45R0+,但丧失CCR7的组成型表达(CCR7),并且异质性或CD62L的表达低(CD62L)。中枢记忆T细胞的表面表型还包括TCR、CD3、CD127(IL-7R)和IL-15R。中枢记忆T细胞的转录因子包括BLIMP1。效应记忆T细胞在抗原刺激后迅速分泌高水平的炎性细胞因子,包括干扰素-γ、IL-4和IL-5。效应记忆T细胞在血液的CD8区室中占优势,并且在人体中在肺、肝和肠中按比率富集。CD8+效应记忆T细胞携带大量的穿孔素。
术语“封闭系统”指的是对外部环境封闭的系统。适用于细胞培养方法的任何封闭系统均可用于本发明的方法。封闭系统包括例如但不限于封闭的G容器。一旦将肿瘤碎片加入封闭系统中,系统就不会向外部环境开放,直至TIL准备好施用于患者。
本文用于描述破坏肿瘤的方法的术语“碎片化”(fragmenting)、“碎片化”(fragment)和“经碎片化”(fragmented)包括机械破碎方法,例如破碎、切片、分割和粉碎肿瘤组织,以及破坏肿瘤组织的物理结构的任何其他方法。
术语“外周血单核细胞”和“PBMC”指具有圆形核的外周血细胞,包括淋巴细胞(T细胞、B细胞、NK细胞)和单核细胞。优选地,外周血单核细胞是经辐照的同种异体外周血单核细胞。PBMC是一种抗原呈递细胞。
术语“抗CD3抗体”指抗体或者它的变体(例如单克隆抗体),包括:针对成熟T细胞的T细胞抗原受体中CD3受体的人、人源化、嵌合或者鼠抗体。抗CD3抗体包括OKT-3,也称为莫罗单抗。抗CD3抗体还包括UHCT1克隆,也称为T3和CD3ε。其他抗CD3抗体包括例如奥特昔珠单抗(otelixizumab)、特普利珠单抗(teplizumab)和威司利珠单抗(visilizumab)。
术语“OKT-3”(本文也称为“OKT3”)指单克隆抗体或者其生物类似物或者变体,包括针对成熟T细胞的T细胞抗原受体中CD3受体的人、人源化、嵌合或者鼠抗体,还包括市售形式,如OKT-3(30ng/mL,纯MACS GMP CD3,Miltenyi Biotech,Inc.,圣地亚哥,加利福尼亚州,美国)和莫罗单抗或者其变体、保守性氨基酸取代、糖型(glycoform)或者生物类似物。莫罗单抗的重链和轻链的氨基酸序列在表1中给出(SEQ ID NO:1和SEQ ID NO:2)。能够产生OKT-3的杂交瘤保藏在美国典型培养物保藏中心(ATCC,American Type CultureCollection),并且其分配的ATCC登录号为CRL 8001。能够产生OKT-3的杂交瘤也保藏在欧洲认证细胞培养物保藏中心(ECACC,European Collection of Authenticated CellCultures)中,并且其分配的目录号为86022706。
表1:莫罗单抗的氨基酸序列
术语“IL-2”(本文也称为“IL2”)指称为白细胞介素-2的T细胞生长因子,包括所有形式的IL-2,包括人和哺乳动物形式,保守性氨基酸取代、糖型、生物类似物及其变体。IL-2描述于例如Nelson,J.I mmunol.2004,172,3983-88和Malek,Annu.Rev.I mmunol.2008,26,453-79,其公开内容在此引入作为参考。适用于本发明的重组人IL-2的氨基酸序列在表2中给出(SEQ ID NO:3)。例如,术语IL-2包括人类重组形式的IL-2,例如,阿地白介素(PROLEUKIN,可从多个供应商商购,每个单独使用的小瓶2200万IU),以及可从美国新罕布什尔州朴茨茅斯的CellGenix,Inc.(CELLGRO GMP)或美国新泽西州东布朗士维克的ProSpec-Tany TechnoGene Ltd.(目录号CYT-209-b)商购的重组形式的IL-2和其他供应商的其他商业等价物。阿地白介素(des-alanyl-1,丝氨酸-125人IL-2)是IL-2的非糖基化人重组形式,分子量为约15kDa。适用于本发明的阿地白介素的氨基酸序列在表2中给出(SEQID NO:4)。术语IL-2还包括如本文所述的聚乙二醇化形式的IL-2,包括聚乙二醇化的IL2前药NKTR-214,可从美国加利福尼亚州南旧金山的Nektar Therapeutics公司商购。适用于本发明的NKTR-214和聚乙二醇化IL-2描述于美国专利申请公开号US2014/0328791A1和国际专利申请公开号WO2012/065086A1中,其公开内容在此引入作为参考。适用于本发明的缀合的IL-2的替代形式描述于美国专利4,766,106、5,206,344、5,089,261和4,902,502中,其公开内容在此引入作为参考。适用于本发明的IL-2制剂描述于美国专利号6,706,289中,其公开内容在此引入作为参考。
表2:白细胞介素的氨基酸序列
术语“IL-4”(本文也称为“IL4”)指称为白细胞介素4的细胞因子,其由Th2 T细胞和嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞产生。IL-4调节幼稚辅助性T细胞(Th0细胞)向Th2 T细胞的分化。Steinke和Borish,Respir.Res.2001,2,66-70。在被IL-4活化后,Th2 T细胞随后在正反馈环中产生另外的IL-4。IL-4还刺激B细胞增殖和II类MHC表达,并诱导B细胞转换为IgE和IgG1表达。适用于本发明的重组人IL-4可从多个供应商商购,包括美国新泽西州东布朗士维克的ProSpec-Tany TechnoGene Ltd.(目录号CYT-211)和美国Waltham,MA的ThermoFisher Scientific,Inc.(人IL-15重组蛋白,目录号Gibco CTP0043)。适用于本发明的重组人IL-4的氨基酸序列在表2中给出(SEQ ID NO:5)。
术语“IL-7”(本文也称为“IL7”)指称为白细胞介素7的糖基化组织衍生细胞因子,其可从基质细胞和上皮细胞以及树突状细胞中获得。Fry和Mackall,Blood 2002,99,3892-904。IL-7可以刺激T细胞的生长。IL-7与IL-7受体结合,IL-7受体是由IL-7受体α和共用γ链受体(common gamma chain receptor)组成的异二聚体,其在一系列信号中对T细胞的胸腺内发育和外周存活具有重要作用。适用于本发明的重组人IL-7可从多个供应商商购,包括美国新泽西州东布朗士维克的ProSpec-Tany TechnoGene Ltd.(目录号CYT-254)和美国Waltham,MA的ThermoFisher Scientific,Inc.(人IL-15重组蛋白,目录号GibcoPHC0071)。适用于本发明的重组人IL-7的氨基酸序列在表2中给出(SEQ ID NO:6)。
术语“IL-15”(本文也称为“IL15”)指称为白细胞介素-15的T细胞生长因子,并且包括所有形式的IL-2,包括人和哺乳动物形式,保守性氨基酸取代、糖型、生物类似物及其变体。IL-15描述于例如Fehniger和Caligiuri,Blood 2001,97,14-32中,其公开内容在此引入作为参考。IL-15与IL-2共享β和γ信号传导受体亚单位。重组人IL-15是非糖基化多肽单链,含有114个氨基酸(和N-末端甲硫氨酸),分子量为12.8kDa。重组人IL-15可从多个供应商商购,包括美国新泽西州东布朗士维克的ProSpec-Tany TechnoGene Ltd.(目录号CYT-230-b)和美国Waltham,MA的ThermoFisher Scientific,Inc.(人IL-15重组蛋白,目录号34-8159-82)。适用于本发明的重组人IL-15的氨基酸序列在表2中给出(SEQ ID NO:7)。
术语“IL-21”(本文也称为“IL21”)指称为白细胞介素-21的多效细胞因子蛋白,并且包括所有形式的IL-21,包括人和哺乳动物形式,保守性氨基酸取代、糖型、生物类似物及其变体。IL-21描述于例如Spolski和Leonard,Nat.Rev.Drug.Disc.2014,13,379-95,其公开内容在此引入作为参考。IL-21主要由天然杀伤T细胞和活化的人CD4+T细胞产生。重组人IL-21是非糖基化多肽单链,含有132个氨基酸,分子量为15.4kDa。重组人IL-21可从多个供应商商购,包括美国新泽西州东布朗士维克的ProSpec-Tany TechnoGene Ltd.(目录号CYT-408-b)和美国Waltham,MA的ThermoFisher Scientific,Inc.(人IL-21重组蛋白,目录号14-8219-80)。适用于本发明的重组人IL-21的氨基酸序列在表2中给出(SEQ ID NO:8)。
当指示“抗肿瘤有效量”、“肿瘤抑制有效量”或“治疗量”时,待施用的本发明组合物的精确量可由医生确定,考虑年龄、体重、肿瘤大小、感染或转移程度以及患者(受试者)状况的个体差异。通常可以说,包含本文所述的肿瘤浸润淋巴细胞(例如,次代TIL或经基因修饰的细胞毒性淋巴细胞)的药物组合物可以104至1011个细胞/kg体重(例如105至106、105至1010、105至1011、106至1010、106至1011、107至1011、107至1010、108至1011、108至1010、109至1011或109至1010个细胞/kg体重)的剂量施用,包括这些范围内的所有整数值。肿瘤浸润淋巴细胞(在某些情况下,包括经基因修饰的细胞毒性淋巴细胞)组合物也可以这些剂量多次施用。肿瘤浸润淋巴细胞(在某些情况下,包括基因上的)可通过使用免疫治疗中通常已知的输注技术来施用(参见例如Rosenberg等,“新的”Eng.J.of Med.319:1676,1988)。通过监测患者的疾病迹象并相应地调整治疗,医学领域的技术人员可以容易地确定特定患者的最佳剂量和治疗方案。
术语“血液恶性肿瘤”指造血和淋巴组织(包括但不限于血液、骨髓、淋巴结和淋巴系统的组织)的哺乳动物癌症和肿瘤。血液恶性肿瘤也称为“液体肿瘤”。血液恶性肿瘤包括但不限于急性淋巴细胞白血病(ALL)、慢性淋巴细胞淋巴瘤(CLL)、小淋巴细胞淋巴瘤(SLL)、急性髓样白血病(A ML)、慢性粒细胞白血病(CML)、急性单核细胞白血病(AMoL)、霍奇金淋巴瘤和非霍奇金淋巴瘤。术语“B细胞血液恶性肿瘤”指影响B细胞的血液恶性肿瘤。
术语“实体瘤”指通常不包含囊肿或液体区域的异常组织块。实体瘤可为良性或恶性的。术语实体瘤癌症指恶性、肿瘤性或癌性实体瘤。实体瘤癌症包括但不限于肉瘤、恶性上皮肿瘤和淋巴瘤,例如肺癌、乳腺癌、前列腺癌、结肠癌、直肠癌和膀胱癌。实体瘤的组织结构包括相互依赖的组织隔室,包括实质(癌细胞)和支持的基质细胞(癌细胞分散在其中并且可以提供支持的微环境)。
术语“液体肿瘤”指本质上是流体的异常细胞团。液体肿瘤癌症包括但不限于白血病、骨髓瘤和淋巴瘤,以及其他血液恶性肿瘤。从液体肿瘤获得的TIL在本文中也可称为骨髓浸润淋巴细胞(MIL)。
如本文所用,术语“微环境”可以指整个实体瘤或血液肿瘤微环境,或指微环境内的单个细胞亚群。如本文所用,肿瘤微环境指“细胞、可溶性因子、信号分子、细胞外基质,以及促进肿瘤转化、支持肿瘤生长和侵袭、保护肿瘤免受宿主免疫、促进对治疗的抵抗并为显性转移灶的繁殖提供利基的机制线索”的复杂混合物,如Swartz等,Cancer Res.,2012,72,2473中所述。尽管肿瘤表达应该被T细胞识别到的抗原,但由于微环境的免疫抑制,免疫系统很少清除肿瘤。
在一个实施方式中,本发明包括用TIL群治疗癌症的方法;其中,在输注本发明的TIL之前用非清髓性化学疗法预治疗患者。在一些实施方式中,可提供TIL群;其中,在输注本发明的TIL之前,用非清髓性化学疗法预治疗患者。在一个实施方式中,非清髓性化学疗法是环磷酰胺60mg/kg/天、持续2天(TIL输注前第27和第26天)和氟达拉滨25mg/m2/天、持续5天(TIL输注前第27至第23天)。在一个实施方式中,在根据本发明的非清髓性化学疗法和TIL输注(在第0天)后,患者以720,000IU/kg每8小时接受一次IL-2的静脉输注,直至生理耐受。
实验发现表明,过继性转移肿瘤特异性T淋巴细胞之前的淋巴细胞耗竭通过消除调节性T细胞和免疫系统的竞争成分(“细胞因子沉降”)而在增强治疗疗效中起关键作用。因此,本发明的一些实施方式在引入本发明的rTIL之前对患者使用淋巴细胞耗竭步骤(有时也称为“免疫抑制调节”)。
如本文所用,术语“共同施用”、“共同施用”、“与...组合施用”、“与...组合施用”、“同时”和“共同”包括向受试者施用两种以上活性药物成分(在本发明的一个优选实施方式中,例如至少一种钾通道激动剂与多TIL群组合),使得活性药物成分和/或它们的代谢物同时存在于受试者体内。共同施用包括:同时施用不同的组合物、在不同时间施用不同的组合物,或者施用其中存在两种以上活性药物成分的组合物。优选同时施用不同的组合物和施用其中存在两种药剂的组合物。
术语“有效量”或者“治疗有效量”指如本文所述的化合物或者化合物组合的量足够实现预期应用,包括但不限于疾病治疗。治疗有效量可根据预期应用(体外或者体内)或者所治疗的受试者和疾病状况(例如受试者的体重、年龄和性别)、疾病状况的严重程度或者施用方式而变化。该术语还适用于会在靶细胞中诱导特定应答(例如血小板粘附和/或细胞迁移的减少)的剂量。具体剂量将取决于所选择的具体化合物、要遵循的施用方案、化合物是否与其他化合物联合施用、施用时间、施用组织以及携带化合物的物理递送系统。
术语“治疗(treatment)”、“治疗(treating)”、“治疗(treat)”等指获得所需的药理学和/或生理学作用。就完全或部分预防疾病或其症状而言,该作用可为预防性的,和/或就部分或完全治愈疾病和/或由疾病引起的不良反应而言,该作用可为治疗性的。如本文所用,“治疗”包括哺乳动物,特别是人类中疾病的任何治疗,包括:(a)在可能易患该疾病但尚未被诊断为患有该疾病的受试者中防止疾病发生;(b)抑制疾病,即阻止其发展或进展;以及(c)缓解疾病,即引起疾病消退和/或缓解一种以上疾病症状。“治疗”还意味着包括递送药剂以提供药理学作用,即使在没有疾病或病症的情况下也是如此。例如,“治疗”包括递送可在没有疾病的情况下引发免疫应答或赋予免疫力的组合物,例如在疫苗的情况下。
当涉及核酸或者蛋白质部分的使用时,术语“异源”表示核酸或者蛋白质包含两个以上在自然界中彼此不存在相同关系的子序列。例如核酸通常是重组产生的,具有来自无关基因的两个以上序列,它被排列以产生新的功能性核酸,例如来自一个来源的启动子和来自另一个来源的编码区,或者来自不同来源的编码区。类似地,异源蛋白质表示该蛋白质包含两个以上在自然界中彼此不存在相同关系的子序列(例如融合蛋白)。
在两个以上核酸或多肽的情况下,术语“序列同一性”,“百分比同一性”和“序列百分比同一性”(或其同义词,例如“99%相同”)指,当比较和比对(如果需要的话,引入空位)以获得最大对应性时,两个以上序列或子序列相同或具有指定百分比的相同核苷酸或氨基酸残基,不考虑任何保守性氨基酸取代作为序列同一性的一部分。可使用序列比较软件或算法或通过目视检查,来测量同一性百分比。本领域已知各种算法和软件可用于获得氨基酸或核苷酸序列的比对。测定序列同一性百分比的合适程序包括,例如可从美国政府的国家生物技术信息中心BLAST网站获得的BLAST程序套件。可使用BLASTN或BLASTP算法进行两个序列之间的比较。BLASTN用于比较核酸序列,而BLASTP用于比较氨基酸序列。ALIGN、ALIGN-2(加利福尼亚州南旧金山的Genentech)或可从DNASTAR获得的MegAlign是可用于比对序列的其他公共可用软件程序。本领域技术人员可通过特定的比对软件确定用于最大比对的适当参数。在一些实施方式中,使用比对软件的默认参数。
如本文所用,术语“变体”包括但不限于如下的抗体或融合蛋白:其通过在参考抗体的氨基酸序列内或附近的某些位置处的一个以上取代、缺失和/或添加而包含与参考抗体的氨基酸序列不同的氨基酸序列。与参考抗体的氨基酸序列相比,变体在其氨基酸序列中可包含一个以上保守性取代。保守性取代可涉及例如取代相似带电荷或不带电荷的氨基酸。该变体保留了特异性结合参考抗体的抗原的能力。术语“变体”还包括聚乙二醇化的抗体或蛋白质。
本文中的“肿瘤浸润淋巴细胞”或者“TIL”指最初作为白细胞获得的细胞群,它们已经离开受试者的血流并迁移至肿瘤。TIL包括但不限于CD8+细胞毒性T细胞(淋巴细胞)、Th1和Th17 CD4+T细胞、天然杀伤细胞、树突状细胞和M1巨噬细胞。TIL包括原代TIL和次代TIL。“原代TIL”是如本文所述由患者组织样品获得的那些(有时称为“新鲜收获的”),“次代TIL”是如本文所讨论的已经扩增或者增殖的任何TIL细胞群,包括但不限于大量TIL、扩增的TIL(“REP TIL”)以及“reREP TIL”。例如,reREP TIL可包括第二次扩增TIL或者另外的第二次扩增TIL(例如,图8的步骤D中所描述的那些,包括称为reREP TIL的TIL)。
TIL通常可以利用细胞表面标志物在生物化学上定义,或者通过其浸润肿瘤和影响治疗的能力在功能上来定义。TIL通常可通过表达以下生物标志物中的一种以上来分类:CD4、CD8、TCRαβ、CD27、CD28、CD56、CCR7、CD45Ra、CD95、PD-1和CD25。此外,或者,TIL可通过在其重新引入患者后浸润实体瘤的能力在功能上定义。TIL还可通过效价强度来表征——例如,如果例如干扰素(IFN)的释放大于约50pg/mL、大于约100pg/mL、大于约150pg/mL或大于约200pg/mL,则TIL可被认为有效。
术语“脱氧核糖核苷酸”涵盖天然的和合成的未经修饰的和经修饰的脱氧核糖核苷酸。修饰包括寡核苷酸中糖部分、碱基部分和/或脱氧核糖核苷酸之间的键的改变。
术语“RNA”定义了包含至少一个核糖核苷酸残基的分子。术语“核糖核苷酸”定义了在b-D-核呋喃糖部分的2'位具有羟基的核苷酸。术语“RNA”包括双链RNA、单链RNA、分离的RNA(例如部分纯化的RNA、基本上纯的RNA、合成RNA、重组产生的RNA,以及通过添加、缺失、取代和/或改变一个以上核苷酸而不同于天然存在的RNA的改变的RNA)。本文所述RNA分子的核苷酸还可包括非标准核苷酸,例如非天然存在的核苷酸或化学合成的核苷酸或脱氧核苷酸。这些改变的RNA可被称为类似物或天然存在的RNA的类似物。
术语“经修饰的核苷酸”指对核苷、核碱基、戊糖环或磷酸基进行一种以上修饰的核苷酸。例如,经修饰的核苷酸不包括含有腺苷单磷酸、鸟苷单磷酸、尿苷单磷酸和胞苷单磷酸的核糖核苷酸以及含有脱氧腺苷单磷酸、脱氧鸟苷单磷酸、脱氧胸苷单磷酸和脱氧胞苷单磷酸的脱氧核糖核苷酸。修饰包括由于修饰核苷酸的酶(例如甲基转移酶)的修饰而天然存在的修饰。
经修饰的核苷酸还包括合成核苷酸或非天然存在的核苷酸。核苷酸中合成修饰或非天然存在的修饰包括具有2'修饰的修饰,(例如2'-O-甲基、2'-甲氧基乙氧基、2'-氟、2'-烯丙基、2'-O-[2-(甲基氨基)-2-氧乙基]、4'-硫代、4'-CH2-O-2'-桥、4'-(CH2)2-O-2'-桥、2'-LNA和2'-O--(N-氨基甲酸甲酯))或包含碱基类似物的那些。关于如本公开所述的2'-修饰的核苷酸,“氨基”指经修饰或未经修饰的2'-NH2或2'-O--NH2。例如,此类修饰基团描述于美国专利号5,672,695和6,248,878;通过引用并入本文。
术语“microRNA”或“miRNA”指形成单链RNA的核酸,当miRNA与基因或靶基因(target gene)在同一细胞中表达时,该单链RNA具有改变基因或靶基因的表达的能力(减少或抑制表达;调节表达;直接或间接增强表达)。在一个实施方式中,miRNA指与靶基因基本上或完全同一性且形成单链miRNA的核酸。在一些实施方式中,miRNA可为pre-miRNA的形式,其中,pre-miRNA是双链RNA。miRNA的序列可对应于全长靶基因或其子序列。通常,miRNA的长度为至少约15至50个核苷酸(例如,单链miRNA的每个序列的长度为15至50个核苷酸,双链pre-miRNA的长度为约15至50个碱基对)。在一些实施方式中,miRNA为20至30个碱基核苷酸。在一些实施方式中,miRNA的长度为20至25个核苷酸。在一些实施方式中,miRNA的长度为20、21、22、23、24、25、26、27、28、29或30个核苷酸。
术语“靶基因”包括已知或鉴定为调节参与免疫抗性机制的基因的表达的基因,可为几组基因中的一种,例如,抑制受体,如CTLA4和PD1;使免疫细胞失活的细胞因子受体,例如TGF-β受体、LAG3和/或TIM3,及它们的组合。在一些实施方式中,靶基因包括PD-1、TGFBR2、CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-4、IL-7、IL-10、IL-12、IL-15、IL-21、NOTCH 1/2细胞内结构域(ICD,intracellular domain)、NOTCH配体mDLL1、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1和/或cAMP蛋白激酶A(PKA)中的一种以上。
术语“小干扰RNA”或“siRNA”或“短干扰RNA”或“沉默RNA”定义了一组双链RNA分子,包括有义RNA链和反义RNA链,每个链的长度通常为约1022个核苷酸,可选地包含1至3个核苷酸的3'突出端(overhang)。siRNA在RNA干扰(RNAi)通路中具有活性,并通过互补核苷酸序列干扰特定靶基因的表达。
术语sd-RNA指形成为不对称双链RNA-反义寡核苷酸杂合体的“自递送”RNAi试剂。双链RNA包括约19至25个核苷酸的引导(有义)链和约10至19个核苷酸的随从(反义)链,并形成双链体,导致约5至9个核苷酸的单链硫代磷酸化尾巴(phosphorothiolated tail)。在一些实施方式中,可以用稳定化和疏水性修饰(例如甾醇类,例如胆固醇、维生素D、萘基、异丁基、苄基、吲哚、色氨酸和苯基)修饰RNA序列,所述修饰在不存在任何转染试剂或制剂的情况下提供稳定性和有效的细胞摄取。在一些实施方式中,IFN诱导的蛋白的免疫应答测定检测表明,与其他RNAi试剂相比,sd-RNA产生降低的免疫刺激性。参见例如Byrne等,2013年12月,J.Ocular Pharmacology and Therapeutics,29(10):855-864,其通过引用并入本文。在一些实施方式中,本文所述的sd-RNA可购自Advirna LLC(Worcester,MA,美国)。
术语“药学上可接受的载体”或者“药学上可接受的赋形剂”旨在包括任何和所有的溶剂、分散介质、包衣、抗细菌和抗真菌剂、等渗和吸收延迟剂,以及惰性成分。此种药学上可接受的载体或者药学上可接受的赋形剂对活性药物成分的用途是本领域熟知的。除非任何常规的药学上可接受的载体或者药学上可接受的赋形剂与活性药物成分不相容,否则可预期其在本发明的治疗性组合物中的应用。其他活性药物成分(例如其他药物)也可以掺入所描述的组合物和方法中。
术语“约”和“大约”表示在统计上有意义的数值范围内。这样的范围可在给定值或者范围的一个数量级内,优选在50%内,更优选在20%内,更优选在10%内,甚至更优选在5%内。术语“约”或者“大约”所包含的可允许变化取决于所研究的特定系统,并且本领域普通技术人员可以容易地理解。此外,如本文所用,术语“约”和“大约”表示大小、尺寸、配方、参数、形状和其他性质和特性不是、也不必是精确的,但可以视需要是近似的和/或更大的或者更小的,反映公差、转换因子、四舍五入、测量误差等,以及本领域技术人员已知的其他因素。通常,大小、尺寸、配方、参数、形状或者其他性质或者特性是“约”或者“近似”的,无论是否明确说明如此。应注意,具有非常不同的尺寸、形状和大小的实施方式可采用所述安排。
当在所附权利要求中以原始和修改的形式使用时,过渡术语“包含”、“基本上由...组成”和“由...组成”定义了关于被排除在权利要求的范围之外的未列举的另外的权利要求要素或者步骤(如果有的话)的权利要求范围。术语“包含”旨在是包含性的或者开放式的,并且不排除任何另外的、未列举的要素、方法、步骤或者材料。术语“由......组成”不包括除权利要求中所述那些之外的任何元素、步骤或者材料,并且在材料的情况下,术语“由...组成”不包括与指定材料相关的普通杂质。术语“基本上由......组成”将权利要求的范围限制为指定的元素、步骤或者材料以及不会实质上影响所要求保护的发明的基本和新颖特征的那些。在替代实施方式中,本文所述的体现本发明的所有组合物、方法和试剂盒可以更具体地由任意过渡术语“包含”、“基本上由......组成”和“由......组成”定义。
III.瞬时改变TIL中蛋白质表达的方法
在一些实施方式中,在扩增步骤之前、期间或之后(包括在如本文所述的封闭无菌生产方法期间),对本发明的扩增的TIL进行进一步操作以改变蛋白质表达。在一些实施方式中,瞬时改变的蛋白质表达是由于瞬时基因编辑。在一些实施方式中,用转录因子(TF)和/或其他能够瞬时改变TIL中蛋白质表达的分子处理本发明的扩增的TIL。在一些实施方式中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变。
在一些实施方式中,本发明包括通过核苷酸插入(例如通过核糖核酸(RNA)插入,包括信使RNA(mRNA)或小(或短)干扰RNA(siRNA)插入)TIL群进行基因编辑,以促进一种以上蛋白质表达或抑制一种以上蛋白质表达,以及同时促进一组蛋白质与抑制另一组蛋白质的组合。
在一些实施方式中,本发明的扩增的TIL经历蛋白质表达的瞬时改变。在一些实施方式中,蛋白质表达的瞬时改变发生在第一次扩增之前的大量TIL群中,包括例如由图8所示的例如步骤A获得的TIL群。在一些实施方式中,蛋白质表达的瞬时改变发生在第一次扩增期间,包括例如图8所示的例如步骤B中扩增的TIL群。在一些实施方式中,蛋白质表达的瞬时改变发生在第一次扩增之后,包括例如第一次扩增和第二次扩增之间的过渡的TIL群,由图8所示的例如步骤B获得且包括在步骤C中的TIL群。在一些实施方式中,蛋白质表达的瞬时改变发生在第二次扩增之前的大量TIL群中,包括例如由图8所示的例如步骤C获得且在步骤D的扩增之前的TIL群。在一些实施方式中,蛋白质表达的瞬时改变发生在第二次扩增期间,包括例如在图8所示的例如步骤D中扩增的TIL群。在一些实施方式中,蛋白质表达的瞬时改变发生在第二次扩增之后,包括例如由图8所示的例如步骤D的扩增而获得的TIL群。
在一个实施方式中,瞬时改变TIL群中的蛋白质表达的方法包括电穿孔的步骤。在一个实施方式中,根据图30和图31中所示方法进行瞬时改变TIL群中蛋白质表达的方法。电穿孔方法是本领域已知的且描述于例如Tsong,Biophys.J.1991,60,297-306和美国专利申请公开号2014/0227237A1,其各自公开内容通过引用并入本文。在一个实施方式中,瞬时改变TIL群中蛋白质表达的方法包括磷酸钙转染的步骤。磷酸钙转染方法(磷酸钙DNA沉淀、细胞表面包被和内吞作用)在本领域中是已知的且描述于Graham和van der Eb,Virology1973,52,456-467;Wigler等,Proc.Natl.Acad.Sci.1979,76,1373-1376;Chen和Okayarea,Mol.Cell.Biol.1987,7,2745-2752;以及美国专利号5,593,875,其各自公开内容通过引用并入本文。在一个实施方式中,瞬时改变TIL群中蛋白质表达的方法包括脂质体转染的步骤。脂质体转染方法,例如在过滤水中采用阳离子脂质N-[1-(2,3-二油氧基)丙基]-n,n,n-三甲基氯化铵(DOTMA)和二油酰基磷脂酰乙醇胺(DOPE)的1:1(w/w)脂质制剂的方法是本领域已知的,并描述于Rose等,Biotechniques 1991,10,520-525和Felgner等,Proc.Natl.Acad.Sci.美国,1987,84,7413-7417以及美国专利号5279833;5,908,635;6,056,938;6,110,490;6,534,484和7,687,070,其各自公开内容通过引用并入本文。在一个实施方式中,瞬时改变TIL群中的蛋白质表达的方法包括使用美国专利号5,766,902;6,025,337;6,410,517;6,475,994和7,189,705中所述的方法进行转染的步骤,其各自公开内容通过引用并入本文。
在一些实施方式中,蛋白质表达的瞬时改变导致T记忆干细胞(TSCM)增加。TSCM是经历过抗原的中枢记忆T细胞的早期祖细胞。TSCM通常显示出定义干细胞的长期存活、自我更新和多潜能性,通常是产生有效的TIL产物所需的。与过继细胞转移的小鼠模型中的其他T细胞亚群相比,TSCM已显示出增强的抗肿瘤活性(Gattinoni等,Nat Med 2009,2011;Gattinoni,Nature Rev.Cancer,2012;Cieri等,Blood 2013)。在一些实施方式中,蛋白质表达的瞬时改变使得TIL群具有包含高比例TSCM的组成。在一些实施方式中,蛋白质表达的瞬时改变使得TSCM百分比增加至少5%、至少10%、至少10%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%。在一些实施方式中,蛋白质表达的瞬时改变使得TIL群中TSCM增加至少1倍、2倍、3倍、4倍、5倍或10倍。在一些实施方式中,蛋白质表达的瞬时改变使得TIL群的TSCM为至少5%、至少10%、至少10%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%。在一些实施方式中,蛋白质表达的瞬时改变使得治疗性TIL群的TSCM为至少5%、至少10%、至少10%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%。
在一些实施方式中,蛋白质表达的瞬时改变使得经历抗原的T细胞恢复活力(rejuvenation)。在一些实施方式中,恢复活力包括例如增殖增加、T细胞活化增加和/或抗原识别增加。
在一些实施方式中,蛋白质表达的瞬时改变改变了大部分T细胞中的表达,以保留肿瘤来源的TCR库(TCR repertoire)。在一些实施方式中,蛋白质表达的瞬时改变不改变肿瘤来源的TCR库。在一些实施方式中,蛋白质表达的瞬时改变维持肿瘤来源的TCR库。
在一些实施方式中,蛋白质的瞬时改变导致特定基因的表达改变。在一些实施方式中,蛋白质表达的瞬时改变靶向的基因包括但不限于PD-1(也称为PDCD1或CC279)、TGFBR2、CCR4/5、CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1和/或cAMP蛋白激酶A(PKA)。在一些实施方式中,蛋白质表达的瞬时改变靶向的基因选自PD-1、TGFBR2、CCR4/5、CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1和/或cAMP蛋白激酶A(PKA)。在一些实施方式中,蛋白质表达的瞬时改变靶向PD-1。在一些实施方式中,蛋白质表达的瞬时改变靶向TGFBR2。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR4/5。在一些实施方式中,蛋白质表达的瞬时改变靶向CBLB。在一些实施方式中,蛋白质表达的瞬时改变靶向CISH。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR(嵌合共刺激受体)。在一些实施方式中,蛋白质表达的瞬时改变靶向IL-2。在一些实施方式中,蛋白质表达的瞬时改变靶向IL-12。在一些实施方式中,蛋白质表达的瞬时改变靶向IL-15。在一些实施方式中,蛋白质表达的瞬时改变靶向IL-21。在一些实施方式中,蛋白质表达的瞬时改变靶向NOTCH 1/2ICD。
在一些实施方式中,蛋白质表达的瞬时改变靶向NOTCH信号通路,例如通过NOTCH1/2ICD和/或通过其他NOTCH配体,例如mDLL1(参见,例如,Kondo,T.等,NOTCH-mediatedconversion of activated T cells into stem cell memory-like T cells foradoptive immunotherapy,Nature Communications,第8卷,文章编号:15338(2017),其全部内容通过引用并入本文)。
在一些实施方式中,蛋白质表达的瞬时改变靶向TIM3。在一些实施方式中,蛋白质表达的瞬时改变靶向LAG3。在一些实施方式中,蛋白质表达的瞬时改变靶向TIGIT。在一些实施方式中,蛋白质表达的瞬时改变靶向TGFβ。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR1。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR2。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR4。在一些实施方式中,蛋白质表达的瞬时改变靶向CCR5。在一些实施方式中,蛋白质表达的瞬时改变靶向CXCR1。在一些实施方式中,蛋白质表达的瞬时改变靶向CXCR2。在一些实施方式中,蛋白质表达的瞬时改变靶向CSCR3。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL2(MCP-1)。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL3(MIP-1α)。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL4(MIP1-β)。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL5(RANTES)。在一些实施方式中,蛋白质表达的瞬时改变靶向CXCL1。在一些实施方式中,蛋白质表达的瞬时改变靶向CXCL8。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL22。在一些实施方式中,蛋白质表达的瞬时改变靶向CCL17。在一些实施方式中,蛋白质表达的瞬时改变靶向VHL。在一些实施方式中,蛋白质表达的瞬时改变靶向CD44。在一些实施方式中,蛋白质表达的瞬时改变靶向PIK3CD。在一些实施方式中,蛋白质表达的瞬时改变靶向SOCS1。在一些实施方式中,蛋白质表达的瞬时改变靶向cAMP蛋白激酶A(PKA)。
在一些实施方式中,蛋白质表达的瞬时改变使得趋化因子受体增加和/或过表达。在一些实施方式中,由瞬时蛋白质表达过度表达的趋化因子受体包括具有配体的受体,该配体包括但不限于CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1、CXCL8、CCL22和/或CCL17。在一些实施方式中,由瞬时蛋白质表达过度表达的趋化因子受体包括具有配体的受体,该配体包括但不限于IL-2、IL-7、IL-10、IL-15和IL-21,以及NOTCH1/2细胞内结构域(ICD)。在一些实施方式中,蛋白质表达的瞬时改变靶向NOTCH信号通路,例如通过NOTCH 1/2ICD和/或通过其他NOTCH配体,例如mDLL1(参见,例如,Kondo,T.等,NOTCH-mediated conversion of activated T cells into stem cell memory-like Tcells for adoptive immunotherapy,Nature Communications,第8卷,文章编号:15338(2017),其全部内容通过引用并入本文)。
在一些实施方式中,蛋白质表达的瞬时改变导致PD-1、CTLA-4、TIM-3、LAG-3、TIGIT、TGFβR2和/或TGFβ的表达降低和/或减少(包括例如导致TGFβ通路阻滞)。在一些实施方式中,蛋白质表达的瞬时改变导致CBLB(CBL-B)表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变导致CISH表达降低和/或减少。
在一些实施方式中,蛋白质表达的瞬时改变导致趋化因子受体的增加和/或过表达,从而例如改善TIL运输或向肿瘤部位的运动。在一些实施方式中,蛋白质表达的瞬时改变导致CCR(嵌合共刺激受体)增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致选自CCR1、CCR2、CCR4、CCR5、CXCR1、CXCR2和/或CSCR3的趋化因子受体增加和/或过表达。
在一些实施方式中,蛋白质表达的瞬时改变导致白介素增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致选自IL-2、IL-12、IL-15和/或IL-21的白介素增加和/或过表达。
在一些实施方式中,蛋白质表达的瞬时改变靶向NOTCH信号通路,例如通过NOTCH1/2ICD和/或通过其他NOTCH配体,例如mDLL1(参见,例如Kondo,T.等,NOTCH-mediatedconversion of activated T cells into stem cell memory-like T cells foradoptive immunotherapy,Nature Communications,第8卷,文章编号:15338(2017),其全部内容通过引用并入本文)。在一些实施方式中,蛋白质表达的瞬时改变导致NOTCH 1/2ICD增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致NOTCH配体(例如mDLL1)的增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致VHL增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致CD44增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致PIK3CD增加和/或过表达。在一些实施方式中,蛋白质表达的瞬时改变导致SOCS1增加和/或过表达。
在一些实施方式中,蛋白质表达的瞬时改变导致cAMP蛋白激酶A(PKA)表达降低和/或减少。
在一些实施方式中,蛋白质表达的瞬时改变使得选自PD-1、LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合的一种分子表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得选自PD-1、LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合的两种分子表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1和选自LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合的一种分子的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1、LAG-3、CISH、CBLB、TIM3及它们的组合的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1以及LAG3、CISH、CBLB、TIM3及它们的组合之一的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1和LAG3的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1和CISH的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得PD-1和CBLB的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得LAG3和CISH的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得LAG3和CBLB的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得CISH和CBLB的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得TIM3和PD-1的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得TIM3和LAG3的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得TIM3和CISH的表达降低和/或减少。在一些实施方式中,蛋白质表达的瞬时改变使得TIM3和CBLB的表达降低和/或减少。
在一些实施方式中,通过γ-逆转录病毒或慢病毒方法将选自CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1及它们的组合的粘附分子插入第一TIL群、第二TIL群或收获的TIL群(例如粘附分子表达增加)。
在一些实施方式中,蛋白质表达的瞬时改变使得选自PD-1、LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合的分子的表达降低和/或减少,并且CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1及它们的组合的表达增加和/或增强。在一些实施方式中,蛋白质表达的瞬时改变使得选自PD-1、LAG3、TIM3、CISH、CBLB及它们的组合的分子的表达降低和/或减少,并且CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1及它们的组合的表达增加和/或增强。
在一些实施方式中,表达降低约5%、约10%、约10%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约85%、约90%或约95%。在一些实施方式中,表达降低至少约80%。在一些实施方式中,表达降低至少约85%。在一些实施方式中,表达降低至少约90%。在一些实施方式中,表达降低至少约95%。在一些实施方式中,表达降低至少约99%。
在一些实施方式中,表达增加约5%、约10%、约10%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达增加至少约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达增加至少约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达增加至少约80%、约85%、约90%或约95%。在一些实施方式中,表达增加至少约85%、约90%或约95%。在一些实施方式中,表达增加至少约80%。在一些实施方式中,表达增加至少约85%。在一些实施方式中,表达增加至少约90%。在一些实施方式中,表达增加至少约95%。在一些实施方式中,表达增加至少约99%。
在一些实施方式中,通过用转录因子(TF)和/或其他能够瞬时改变TIL中蛋白质表达的分子处理TIL来诱导蛋白质表达的瞬时改变。在一些实施方式中,利用无SQZ载体的微流体平台细胞内递送转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子。证明了向多种原代人类细胞(包括T细胞)递送蛋白质(包括转录因子)能力的此类方法已描述于(Sharei等,PNAS2013,以及Sharei等,PLOS ONE 2015和Greisbeck等,J.Immunology 2015,第195卷),包括使用微流体缢缩(microfluidic constriction)使细胞变形从而使TF或其他分子进入细胞的快速方法;参见例如国际专利申请公开号WO2013/059343A1、WO2017/008063A1或WO2017/123663A1或美国专利申请公开号US2014/0287509A1、US2018/0201889A1或US2018/0245089A1,所有这些均通过引用整体并入本文。如国际专利申请公开号WO2013/059343A1、WO2017/008063A1或WO2017/123663A1或美国专利申请公开号US2014/0287509A1、US2018/0201889A1或US2018/0245089A1所述的方法可与本发明一起使用,使TIL群暴露于转录因子(TF)和/或其他能够诱导瞬时蛋白质表达的分子,其中,所述TF和/或其他能够诱导瞬时蛋白质表达的分子提供TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加,从而导致TIL群的重编程,并且与未重编程的TIL群相比,重编程的TIL群的治疗功效提高。在一些实施方式中,如本文所述,相对于起始TIL群或先前(即在重编程之前)的TIL群,重编程使得效应T细胞和/或中枢记忆T细胞的亚群增加。
在一些实施方式中,转录因子(TF)包括但不限于TCF-1、NOTCH 1/2ICD和/或MYB。在一些实施方式中,转录因子(TF)是TCF-1。在一些实施方式中,转录因子(TF)是NOTCH 1/2ICD。在一些实施方式中,转录因子(TF)是MYB。在一些实施方式中,将转录因子(TF)与诱导的多能干细胞培养物(iPSC)(例如市售的KNOCKOUT血清替代品(Gibco/ThermoFisher))一起施用,以诱导另外的TIL重编程。在一些实施方式中,将转录因子(TF)与iPSC混合物一起施用以诱导另外的TIL重编程。在一些实施方式中,在没有iPSC混合物的情况下施用转录因子(TF)。在一些实施方式中,重编程导致TSCM的百分比增加。在一些实施方式中,重编程导致TSCM百分比增加约5%、约10%、约10%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%或约95%的TSCM。
在一些实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(i)由患者切除的肿瘤获得第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;以及
(iv)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变。
在一个实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种短干扰RNA或一种信使RNA的转移;
(f)静置第二TIL群约1天;
(g)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(f)向步骤(g)的过渡在不打开系统的情况下发生;
(h)收获从步骤(g)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(i)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(j)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群;
其中,无菌电穿孔步骤包括递送短干扰RNA以抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。
根据一个实施方式,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)对第二TIL群进行SQZ微流体膜破坏步骤;其中,所述SQZ微流体膜破坏步骤介导至少一种短干扰RNA或一种信使RNA的转移;
(f)静置第二TIL群约1天;
(g)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(f)向步骤(g)的过渡在不打开系统的情况下发生;
(h)收获从步骤(g)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(i)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(j)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群;
其中,SQZ微流体膜破坏步骤包括递送短干扰RNA以抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。
在一些实施方式中,如上所述的瞬时改变蛋白质表达的方法可与基因修饰TIL群的方法结合,包括稳定掺入用于产生一种以上蛋白质的基因的步骤。在一个实施方式中,基因修饰TIL群的方法包括逆转录病毒转导的步骤。在一个实施方式中,基因修饰TIL群的方法包括慢病毒转导的步骤。慢病毒转导体系在本领域中是已知的,并描述于例如Levine等,Proc.Nat’l Acad.Sci.2006,103,17372-77;Zufferey等,Nat.Biotechnol.1997,15,871-75;Dull等,J.Virology 1998,72,8463-71和美国专利号6,627,442,其各自公开内容通过引用并入本文。在一个实施方式中,基因修饰TIL群的方法包括γ-逆转录病毒转导的步骤。γ-逆转录病毒转导体系在本领域中是已知的,并描述于例如Cepko和Pear,Cur.Prot.Mol.Biol.1996,9.9.1-9.9.16,其公开内容通过引用并入本文。在一个实施方式中,基因修饰TIL群的方法包括转座子介导的基因转移的步骤。转座子介导的基因转移系统是本领域已知的,且包括如下系统:其中,所述转座酶以DNA表达载体或可表达的RNA或蛋白质的形式提供,使得转座酶不会在转基因细胞中长期表达,例如以mRNA(例如包含帽和poly-A尾巴的mRNA)形式提供的转座酶。合适的转座子介导的基因转移体系,包括鲑鱼型(salmonid-type)Tel样转座酶(SB或Sleeping Beauty转座酶),例如SB10、SB11和SB100x,以及酶活性提高的工程化酶,描述于例如Hackett等,Mol.Therapy 2010,18,674-83和美国专利号6,489,458,其各自公开内容通过引用并入本文。
在一个实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)对第二TIL群进行无菌电穿孔步骤或SQZ微流体膜破坏步骤;其中,无菌电穿孔步骤或SQZ微流体膜破坏步骤介导至少一种短干扰RNA或一种信使RNA的转移;
(f)静置第二TIL群约1天;
(g)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(f)向步骤(g)的过渡在不打开系统的情况下发生;
(h)收获从步骤(g)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(i)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(j)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群;
其中,电穿孔步骤包括递送短干扰RNA以抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合;进一步地,其中,通过γ-逆转录病毒方法或慢病毒方法将粘附分子插入第一TIL群、第二TIL群或收获的TIL群,该粘附分子选自CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1及它们的组合。
在一些实施方式中,蛋白质表达的瞬时改变是由自递送RNA干扰(sd-RNA,self-delivering RNA interference)诱导的表达降低,所述sd-RNA是具有高百分比的2'-OH取代(通常是氟或-OCH3)的化学合成的不对称siRNA双链体,所述sd-RNA包含一个20个核苷酸的有义(引导)链和一个在其3'端使用四乙基乙二醇(TEG)接头缀合至胆固醇的13至15个碱基的正义(随从)链。使用sd-RNA的方法已描述于Khvorova和Watts,Nat.Biotechnol.2017,35,238–248;Byrne等,J.Ocul.Pharmacol.Ther.2013,29,855-864;以及Ligtenberg等,Mol.Therapy,2018,印刷中,其公开内容通过引用并入本文。在一个实施方式中,完成sd-RNA至TIL群的递送不使用电穿孔、SQZ或其他方法,而是使用以下步骤完成:在培养基中将TIL群暴露于浓度为1μM/10,000TIL的sd-RNA,持续1天至3天。在某些实施方式中,sd-RNA至TIL群的递送使用以下步骤完成:在培养基中将TIL群暴露于浓度为10μM/10,000TIL的sd-RNA,持续1天至3天。在一个实施方式中,sd-RNA至TIL群的递送使用以下步骤完成:在培养基中将TIL群暴露于浓度为50μM/10,000TIL的sd-RNA,持续1天至3天。在一个实施方式中,sd-RNA至TIL群的递送使用以下步骤完成:在培养基中将TIL群暴露于浓度为0.1μM/10,000TIL至50μM/10,000TIL的sd-RNA,持续1天至3天。在一个实施方式中,sd-RNA至TIL群的递送使用以下步骤完成:在培养基中将TIL群暴露于浓度为0.1μM/10,000TIL至50μM/10,000TIL的sd-RNA,持续1天至3天;其中,通过向培养基中添加新鲜的sd-RNA,暴露于sd-RNA进行两次、三次、四次或五次。其他合适的方法描述于例如美国专利申请公开号US2011/0039914A1、US2013/0131141A1和US2013/0131142A1以及美国专利号9,080,171,其公开内容通过引用并入本文。
在一些实施方式中,使用图32的方法在生产过程中将sd-RNA插入TIL群。在一些实施方式中,sd-RNA编码干扰NOTCH 1/2ICD、NOTCH配体mDLLl、PD-1、CTLA-4TIM-3、LAG-3、TIGIT、TGFβ、TGFBR2、cAMP蛋白激酶A(PKA)、BAFF BR3、CISH和/或CBLB的RNA。在一些实施方式中,基于基因沉默的百分比来确定表达的减少,例如通过流式细胞术和/或qPCR来评估。在一些实施方式中,表达降低约5%、约10%、约10%、约20%、约25%、约30%、约35%、约40%、约45%、约50%约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约65%、约70%、约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约75%、约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约80%、约85%、约90%或约95%。在一些实施方式中,表达降低至少约85%、约90%或约95%。在一些实施方式中,表达降低至少约80%。在一些实施方式中,表达降低至少约85%。在一些实施方式中,表达降低至少约90%。在一些实施方式中,表达降低至少约95%。在一些实施方式中,表达降低至少约99%。
在一个实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)通过向第二TIL群的细胞培养基中补充另外的IL-2、一种以上自递送RNA(sd-RNA)、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(f)向步骤(g)的过渡在不打开系统的情况下发生;
(h)收获从步骤(g)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(i)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(j)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群;
其中,一种以上sd-RNA瞬时抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。
在一个实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)通过向第二TIL群的细胞培养基中补充另外的IL-2、一种以上自递送RNA(sd-RNA)、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(f)向步骤(g)的过渡在不打开系统的情况下发生;
(h)收获从步骤(g)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(i)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;以及
(j)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群;
其中,一种以上sd-RNA瞬时抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合;其中,通过γ-逆转录病毒方法或慢病毒方法将粘附分子插入第一TIL群、第二TIL群或收获的TIL群,该粘附分子选自CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1及它们的组合。
A.sd-RNA方法
基于siRNA的化学修饰的自递送RNAi技术可与本发明的方法一起使用,以成功地将sd-RNA递送至本文所述的TIL。骨架修饰不对称siRNA结构和疏水配体的结合(参见例如Ligtenberg等,Mol.Therapy,2018和US20160304873,以及本文的图36和37)使sd-RNA利用sd-RNA的核酸酶稳定性通过简单的添加至培养基而无需其他制剂和方法即可穿透到培养的哺乳动物细胞中。仅通过保持培养基中sd-RNA的活性浓度,此种稳定性可以支持恒定水平的RNAi介导的靶基因活性降低。不受理论的束缚,sd-RNA的主链稳定作用可延长基因表达效应的降低,在非分裂细胞中可持续数月。
在一个实施方式中,本文所用的靶向本文所公开基因的sd-RNA具有图36或图37所示的结构。
在一些实施方式中,发生超过95%的TIL转染效率和各种特异性sd-RNA的靶标表达降低。在一些实施方式中,用完全修饰的序列替代含有几个未经修饰的核糖残基的sd-RNA,以增加RNAi作用的效价和/或寿命。在一些实施方式中,表达效果的降低维持12小时、24小时、36小时、48小时、5天、6天、7天或8天或更长时间。在一些实施方式中,在TIL的sd-RNA处理后10天以上,表达降低的效果下降。在一些实施方式中,维持目标表达的表达减少超过70%。在一些实施方式中,维持TIL目标表达的表达减少超过70%。在一些实施方式中,PD-1/PD-L1通路中表达的减少允许TIL表现出更有效的体内作用,这在一些实施方式中是由于避免了PD-1/PD-L1通路的抑制作用。在一些实施方式中,通过sd-RNA的PD-1表达的减少导致TIL增殖的增加。
1.sd-RNA的选择和特征
a.sd-RNA寡核苷酸结构
小干扰RNA(siRNA,small interfering RNA),有时也称为短干扰RNA或沉默RNA,是双链RNA分子,其长度通常为19至25个碱基对。siRNA用于RNA干扰(RNAi),在其中siRNA干扰具有互补核苷酸序列的特定基因的表达。
双链DNA(dsRNA)通常可用于定义包含一对RNA互补链的任何分子,所述互补链通常是有义(随从)和反义(引导)链,并且可包括单链突出端区域。与siRNA相反,术语dsRNA通常指包含siRNA分子序列的前体分子,该siRNA分子序列通过切割酶系统(包括Dicer)的作用从较大的dsRNA分子中释放出来。
sd-RNA(自递送RNA)是一类新的共价修饰的RNAi化合物,其进入细胞不需要递送载体并且与传统的siRNA相比具有改善的药理学。“自递送RNA”或“sd-RNA”是疏水修饰的RNA干扰-反义杂合体,其在体外在原代细胞中和在局部施用时在体内被证明是高效的。已证明了无毒的稳健摄取和/或沉默。sd-RNA通常是具有最小双链区的不对称化学修饰核酸分子。sd-RNA分子通常包含单链区域和双链区域,并且可在分子的单链和双链区域内包含多种化学修饰。此外,如本文所述,sd-RNA分子可以连接至疏水缀合物,例如常规和高级固醇型分子。sd-RNA(和/或能够以类似于sd-RNA的方式使用的RNA)以及制备此类sd-RNA的相关方法也已广泛描述于例如美国专利公开号US2016/0304873、国际专利申请公开号WO2010/033246、国际专利申请公开号WO2017/070151,国际专利申请公开号WO2009/102427,国际专利申请公开号WO201/1119887,国际专利申请公开号WO2010/033247,国际专利申请公开号WO2009045457,国际专利申请公开号WO2011/119852,国际专利申请公开号WO2011/119871,美国专利公开号US2011/0263680,国际专利申请公开号WO2010/033248,国际专利申请公开号WO2010/078536,国际专利申请公开号WO2010/090762,美国专利公开号US20110039914,国际公开号WO2011/109698,国际专利申请公开号WO2010/090762,美国专利号US8,815,818,国际专利申请公开号WO2016/094845,国际专利申请公开号WO2017/193053,美国专利公开美国专利公开号US2006/0276635,国际专利申请公开号WO2001/009312,美国专利公开号US2017/0043024,美国专利公开号US2017/0312367,美国专利公开号US2016/0319278,美国专利公开号美国专利申请号US2017/0369882,美国专利号US8,501,706,美国专利号US2004/0224405,美国专利号US8,252,755,美国专利号US2007/0031844,美国专利号US2007/0039072,美国专利公开号US2007/0207974,美国专利公开号US2007/0213520,美国专利公开号US2007/0213521,美国专利公开号US2007/0219362,美国专利公开号US2007/0238868,美国专利公开号US2014/0148362,美国专利公开号US2016/0193242,美国专利公开号US2016/01946461,美国专利公开号US2016/0201058,美国专利公开号US2016/0201065,美国专利公开号US2017/0349904,美国专利公开号US2018/0119144,美国专利号US7,834,170,美国专利号US8,090,542和美国专利公开号US2012/0052487,其全部内容通过引用并入本文以用于所有目的;sd-RNA也可从Advirna LLC(Worcester,MA,美国)商购。为优化sd-RNA的结构、化学性质、靶向位置、序列偏好等,已开发了专有算法并将其用于sd-RNA效价预测(参见例如US20160304873)。基于这些分析,通常将功能性sd-RNA序列定义为在1μM浓度下表达降低超过70%,概率超过40%。
b.sd-RNA寡核苷酸结构
在一些实施方式中,可由线性双链DNA模板产生一种以上用于本发明的sd-RNA。在一些实施方式中,用于产生一种以上sd-RNA的线性双链DNA模板是如美国专利号US8,859,229以及下文所述的模板。
在一些实施方式中,通过聚合酶链式反应(PCR)获得且适用于mRNA的体外转录的线性双链DNA模板从5'至3'包含:双链DNA的编码链上的RNA聚合酶启动子、5'非翻译区(长度小于3,000个核苷酸,在转染到真核细胞后可有效地将mRNA翻译成可检测的多肽)、编码该多肽的开放阅读框;其中,该多肽与待转染细胞是异源的;其中,该多肽选自:免疫细胞的配体或受体、刺激或抑制免疫系统功能的多肽、抑制致癌多肽的功能的多肽、在转染到真核细胞后可有效地将mRNA翻译成可检测多肽的3'非翻译区,以及双链DNA的编码链上的50至5,000个核苷酸的poly(A)段;其中,启动子与开放阅读框是异源的;其中,DNA模板不包含在DNA载体内且终止于poly(A)段的3'端。在一些实施方式中,RNA聚合酶启动子包含RNA聚合酶的共有结合序列,该RNA聚合酶选自T7、T3或SP6 RNA聚合酶。在一些实施方式中,开放阅读框编码融合多肽。在一些实施方式中,开放阅读框编码选自下组的多肽:PD-1,TGFBR2,CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1、cAMP蛋白激酶A(PKA)及它们的组合。在一些实施方式中,开放阅读框编码选自下组的多肽:PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。在一些实施方式中,线性双链DNA模板还包含内部核糖体进入位点。在一些实施方式中,poly(A)段的长度为300-400个核苷酸。
在一些实施方式中,权利要求1的线性双链DNA模板;其中,该模板从5'至3'由以下组成:双链DNA的编码链上的RNA聚合酶启动子、5'非翻译区(长度小于3,000个核苷酸,在转染到真核细胞后可有效地将mRNA翻译成可检测的多肽)、编码该多肽的开放阅读框;其中,该多肽与待转染细胞是异源的;其中,该多肽选自:免疫细胞的配体或受体、刺激或抑制免疫系统功能的多肽、抑制致癌多肽的功能的多肽、在转染到真核细胞后可有效地将mRNA翻译成可检测多肽的3'非翻译区,以及双链DNA的编码链上的50至5,000个核苷酸的poly(A)段;其中,启动子与开放阅读框是异源的;其中,DNA模板不包含在DNA载体内且终止于poly(A)段的3'端。在一些实施方式中,3'非翻译区的长度为至少100个核苷酸。
在一些实施方式中,本发明提供了一种产生上述线性双链DNA模板的方法;其中,该方法包括:产生正向引物和反向引物;其中,该正向引物包含:与目的靶标双链DNA的非编码链基本上互补的多个核苷酸,以及充当RNA聚合酶结合位点的多个核苷酸;其中,反向引物包含:与目的靶标双链DNA的编码链基本上互补的多个核苷酸,以及多个脱氧胸苷核苷酸;以及,使用正向引物和反向引物对目标DNA进行聚合酶链式反应扩增,形成线性双链DNA模板。在一些实施方式中,本发明提供了产生上述线性双链DNA模板的方法,其中,该方法包括:产生正向引物和反向引物;其中,该正向引物包含与目的靶标双链DNA的直接上游的核苷酸区域基本上互补的多个核苷酸;其中,该反向引物包含与目的靶标双链DNA的直接下游的核苷酸区域基本上互补的多个核苷酸;以及,使用正向引物和反向引物对目标DNA进行聚合酶链式反应扩增,形成线性双链DNA模板。在一些实施方式中,引物包含与目的双链DNA的5'非翻译区和3'非翻译区中的核苷酸段(stretches of nucleotides)基本上互补的核苷酸序列。在一些实施方式中,引物包含与目的双链DNA的开放阅读框内的核苷酸段基本上互补的核苷酸序列。在一些实施方式中,引物包含与目的双链DNA的开放阅读框内的核苷酸段基本上互补的核苷酸序列;其中,该引物还包含包含5'非翻译区和3'非翻译区的核苷酸段;其中,包含5'非翻译区的正向引物中的核苷酸段在包含RNA聚合酶启动子的核苷酸和与目的靶标双链DNA的非编码链基本上互补的核苷酸之间;其中,包含3'非翻译区的反向引物中的核苷酸段在多个脱氧胸苷核苷酸和与目的靶标双链DNA的编码链基本上互补的核苷酸之间。在一些实施方式中,正向引物和开放阅读框包含共有Kozak序列。
在一些实施方式中,本发明提供了产生用于转染细胞的一种以上RNA的方法,该方法包括由线性双链DNA模板进行体外转录。在一些实施方式中,该方法还包括使用poly(A)聚合酶用一个以上腺嘌呤核苷酸或其类似物延伸RNA的poly(A)尾巴。在一些实施方式中,该方法还包括在转录过程中添加核苷酸,该核苷酸充当被转录的RNA的5'帽。在一些实施方式中,RNA靶向选自下组的多肽:PD-1、TGFBR2、CBLB(CBL-B)、CISH、CCR(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1、cAMP蛋白激酶A(PKA)及它们的组合。在一些实施方式中,RNA靶向选自下组的多肽:PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。
在一些实施方式中,本发明使用一种以上分离的RNA的用途,所述分离的RNA由线性双链DNA模板产生且包含一个以上开放阅读框。在一些实施方式中,本发明提供了在细胞中表达一种以上RNA的方法,该方法包括使细胞与由线性双链DNA模板产生的一种以上RNA接触。在一些实施方式中,在细胞中RNA以不相等的摩尔量存在以提供RNA的不同表达水平。在一些实施方式中,一种以上RNA靶向选自下组的多肽:PD-1、TGFBR2、CBLB(CBL-B)、CISH、CCRs(嵌合共刺激受体)、IL-2、IL-12、IL-15、IL-21、NOTCH 1/2ICD、TIM3、LAG3、TIGIT、TGFβ、CCR2、CCR4、CCR5、CXCR1、CXCR2、CSCR3、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1/CXCL8、CCL22、CCL17、CXCL1/CXCL8、VHL、CD44、PIK3CD、SOCS1、cAMP蛋白激酶A(PKA)及它们的组合。在一些实施方式中,一种以上RNA靶向选自下组的多肽:PD-1、LAG-3、TIM-3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)及它们的组合。
(i)非翻译区
也可使用具有促进稳定性和/或翻译效率的能力的化学结构。RNA优选具有5'UTR和3'UTR。下文实施例表明,与仅含6个碱基对的5'UTR的PCR模板相比,将44个碱基对的5'UTR包含在PCR模板中可使转录的CFP RNA的翻译效率更高。实施例还表明,与仅包含11个碱基对的3'UTR的PCR模板相比,添加113个碱基对的3'UTR可使转录的GFP RNA的翻译效率更高。通常,3'UTR的长度超过100个核苷酸,因此长于100个核苷酸的3'UTR是优选的。在一个实施方式中,3'UTR序列为100至5000个核苷酸。5'UTR的长度不如3'UTR的长度重要,且5'UTR的长度可以更短。在一个实施方式中,5'UTR的长度为0至3000个核苷酸。可通过不同的方法来改变要添加至编码区的5'UTR和3'UTR序列的长度,方法包括但不限于,设计用于退火至不同UTR区的PCR引物。使用这种方法,在转录RNA的转染后,本领域普通技术人员可修饰所需的5'UTR和3'UTR长度以实现最佳翻译效率。
5'UTR和3'UTR可为目的基因的天然存在的内源5'UTR和3'UTR。或者,可通过将UTR序列加入正向引物和反向引物中或通过模板的任何其他修饰,来添加目的基因非内源的UTR序列。目的基因非内源的UTR序列的使用可用于改变RNA的稳定性和/或翻译效率。例如,已知3'UTR序列中富含AU的元件可降低mRNA的稳定性。因此,基于本领域众所周知的UTR的特性,可以选择或设计3'UTR以增加转录的RNA的稳定性。
在一个实施方式中,5'UTR可包含内源基因的Kozak序列。或者,当如上所述通过PCR添加目的基因的非内源5'UTR时,可通过添加5'UTR序列来重新设计共有Kozak序列。Kozak序列可提高一些RNA转录物的翻译效率,但似乎并非所有RNA都需要Kozak序列才能有效翻译。许多mRNA对Kozak序列的需求是本领域已知的。在其他实施方式中,5'UTR可来自RNA病毒,该RNA病毒的RNA基因组在细胞中是稳定的。在其他实施方式中,各种核苷酸类似物可用于3'UTR或5'UTR以阻止mRNA的核酸外切酶降解。
(ii)RNA聚合酶启动子
为了由DNA模板合成RNA而无需基因克隆,转录启动子应连接至要转录序列上游的DNA模板上。噬菌体RNA聚合酶启动子序列可通过不同的基因工程方法(例如DNA连接)连接到St UTR,或者噬菌体RNA聚合酶启动子序列可添加至与目标DNA基本上互补的序列的正向引物(5')上。当将充当RNA聚合酶启动子的序列添加至正向引物的5'端时,RNA聚合酶启动子被掺入到要转录的开放阅读框上游的PCR产物中。在一个优选实施方式中,启动子是如上所述的T7聚合酶启动子。其他有用的启动子包括但不限于T3和SP6 RNA聚合酶启动子。T7、T3和SP6启动子的共有核苷酸序列是本领域已知的。
(iii)Poly(A)尾巴和5'帽
在一个优选实施方式中,mRNA在5'末端和3'poly(A)尾巴均具有帽,其确定核糖体结合、翻译起始和细胞中的mRNA稳定性。在环状DNA模板(例如质粒DNA)上,RNA聚合酶产生长的多联体(concatameric)产物,该产物不适合在真核细胞中表达。在3'UTR末端线性化的质粒DNA的转录产生正常大小的mRNA,即使该mRNA在转录后被聚腺苷酸化,该mRNA在真核生物转染中也不起作用。
在线性DNA模板上,噬菌体T7 RNA聚合酶可将转录物的3'末端延伸到模板的最后碱基之外(Schenborn和Mierendorf,Nuc.Acids Res.,13:6223-36(1985);Nacheva andBerzal-Herranz,Eur.J.Biochem.,270:1485-65(2003))。这可能导致失控转录物(runofftranscript)弯曲,然后与第二条DNA链的模板交换或RNA本身的转录(Triana-Alonso等,J.Biol.Chem.,270:6298-307(1995);Dunn和Studier,J.Mol.Biol.,166:477-535(1983);Arnaud-Barbe等,Nuc.Acids Res.,26:3550-54(1998);Macdonald等,1993)),然后导致反向异常转录和双链RNA积累,从而抑制基因表达。DNA线性化本身不足以进行正确转录(Triana-Alonso等,J.Biol.Chem.,270:6298-307(1995);Dunn和Studier,J.Mol.Biol.,166:477-535(1983);Arnaud-Barbe等,1998Nuc.Acids Res.,26:3550-54(1998);Macdonald等,J.Mol.Biol.,232:1030-47(1993);Nakano等,Biotechnol.Bioeng.,64:194-99(1999)),在64至100个核苷酸的poly(A/T)段的下游线性化的质粒DNA产生良好的模板(Saeboe-Larssen等,J.Immunol.Meth.,259:191-203(2002);Boczkowski等,Cancer Res.,60:1028-34(2000);Elango等,Biochem Riophys Res Commun.,330:958-966 2005)。T7RNA聚合酶的内源性终止信号编码尿苷残基踪迹后可折叠成茎环结构的RNA(Dunn和J.Mol.Biol.,166:477-535(1983);Arnaud-Barbe等,1998Nuc.Acids Res.,26:3550-54(1998))。即使没有发夹,合成的尿苷的踪迹也能减弱转录(Kiyama和Oishi,Nuc.AcidsRes.,24:4577-4583(1996))。假设poly(A/T)段下游的质粒DNA线性化可能形成了一种防止潜在的异常转录的“动态”终止子:在poly(A/T)段上RNA转录物的3'延伸和反向转录将会产生一个不断增长的类似终端的信号——延伸的poly(U)段和poly(A/U)发夹。由此,设计了反向PCR引物,其具有GFP基因下游的3'锚定序列和poly(T)的100个碱基段的5'(图38)。
将polyA/T段整合到DNA模板中的常规方法是分子克隆。但是,整合到质粒DNA中的polyA/T序列会导致质粒不稳定,这是从细菌细胞获得的质粒DNA模板通常被缺失和其他畸变高度污染的原因。这使得克隆过程不仅费时费力且常常不可靠。这就是非常需要一种可以构建具有polyA/T 3'段的DNA模板而无需克隆的方法的原因。
转录DNA模板的polyA/T区段可在PCR期间通过使用含有polyT尾巴(例如100T尾巴(尺寸可以为50T至5000T))的反向引物产生,或者在PCR之后通过任何其他方法产生,包括但不限于DNA连接或体外重组。poly(A)尾巴还可以为RNA提供稳定性并减少RNA的降解。通常,poly(A)尾巴的长度与转录的RNA的稳定性呈正相关。在一个实施方式中,poly(A)尾巴为100至5000个腺苷。下文实施例表明,100个碱基对的poly(A)段足以使RNA转录物有效翻译。
在体外转录后,可使用poly(A)聚合酶(例如大肠杆菌polyA聚合酶(E-PAP))进一步延伸RNA的poly(A)尾巴。下文实施例表明,将poly(A)尾巴的长度从100个核苷酸增加到300至400个核苷酸,会使RNA的翻译效率提高约两倍。此外,将不同化学基团连接到3'末端可增加mRNA的稳定性。此种连接可包含修饰/人工核苷酸、适配体和其他化合物。例如,可使用poly(A)聚合酶将ATP类似物加入poly(A)尾巴。ATP类似物可进一步提高RNA的稳定性。合适的ATP类似物包括但不限于cordiocipin和8-氮杂腺苷。
5'帽也可为RNA分子提供稳定性。在一个优选实施方式中,通过本文公开的方法产生的RNA包括5'帽。例如,5'帽可为m7G(5')ppp(5')G、m7G(5')ppp(5')A、G(5')ppp(5')G或G(5')ppp(5')A'帽类似物,这些均可商购。5'帽也可为抗-反向帽类似物(ARCA,anti-reverse-cap-analog)(参见Stepinski等,RNA,7:1468-95(2001))或任何其他合适的类似物。使用本领域已知的和本文所述的技术提供5'帽(Cougot等,Trends in Biochem.Sci.,29:436-444(2001);Stepinski等,RNA,7:1468-95(2001);Elango等,Biochim.Biophys.Res.Commun.,330:958-966(2005))。
通过本文公开方法产生的RNA还可包含内部核糖体进入位点(IRES)序列。IRES序列可为任何病毒、染色体或人工设计的序列,其启动与mRNA结合的非帽依赖性核糖体并促进翻译的启动。可包含任何适合细胞电穿孔的溶质,该溶质中可包含促进细胞渗透性和活力的因子,例如糖类、多肽类、脂类、蛋白质、抗氧化剂和表面活性剂。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中,约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM/10,000TIL至约10μM/10,000TIL或约0.25μM/10,000TIL至约4μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM/10,000TIL的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约0.25μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约0.5μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约0.75μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约1.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约1.25μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约1.5μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约1.75μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约2.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约2.25μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约2.5μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约2.75μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。当以约3.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM/10,000TIL/100μL培养基的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。
c.sd-RNA修饰
在一些实施方式中,寡核苷酸试剂包含一种以上修饰,以增加治疗剂的稳定性和/或有效性,并实现寡核苷酸向待治疗细胞或组织的有效递送。此类修饰可包括2'-O-甲基修饰、2'-O-氟代修饰、二硫代磷酸酯修饰、2'F修饰的核苷酸、2'-O-甲基修饰的核苷酸和/或2'脱氧核苷酸。在一些实施方式中,寡核苷酸被修饰以包括一种以上疏水性修饰,包括例如固醇、胆固醇、维生素D、萘基、异丁基、苄基、吲哚、色氨酸和/或苯基。在另一个特定的实施方式中,化学修饰的核苷酸是硫代磷酸酯、2'-O-甲基、2'脱氧、疏水性修饰和硫代磷酸酯的组合。在一些实施方式中,可对糖类进行修饰,修饰的糖类可包括但不限于D-核糖、2'-O-烷基(包括2'-O-甲基和2'-O-乙基)、即2'-烷氧基、2'-氨基、2'-S-烷基、2'-卤代(包括2'-氟)、T-甲氧基乙氧基、2'-烯丙氧基(-OCH2CH=CH2)、2'-炔丙基、2'-丙基、乙炔基、乙烯基、丙烯基和氰基等。在一个实施方式中,糖部分可为己糖,并如所述被掺入寡核苷酸中(Augustyns,K.等,Nucl.Acids.Res.18:4711(1992))。
在一些实施方式中,本发明的双链寡核苷酸在其整个长度上是双链,即在分子的任一端没有突出的单链序列,即,为平末端的。在一些实施方式中,各个核酸分子可具有不同的长度。换言之,本发明的双链寡核苷酸在其整个长度上不是双链。例如,当使用两个单独的核酸分子时,分子之一(例如包含反义序列的第一分子)可以比与其杂交的第二分子更长(导致分子的一部分是单链)。在一些实施方式中,当使用单个核酸分子时,该分子在任一端的一部分可保持单链。
在一些实施方式中,本发明的双链寡核苷酸含有错配和/或环或凸起,但寡核苷酸的长度的至少约70%是双链。在一些实施方式中,本发明的双链寡核苷酸在寡核苷酸的长度的至少约80%是双链。在另一个实施方式中,本发明的双链寡核苷酸在寡核苷酸的长度的至少约90%-95%是双链。在一些实施方式中,本发明的双链寡核苷酸在寡核苷酸的长度的至少约96%-98%是双链。在一些实施方式中,本发明的双链寡核苷酸包含至少或至多1、2、3、4、5、6、7、8、9、10、11、12、13、14或15个错配。
在一些实施方式中,例如可通过修饰3'或5'键来保护寡核苷酸基本上免受核酸酶的影响(例如美国专利号5,849,902和WO98/13526)。例如,可通过包含“阻断基团”使寡核苷酸具有抗性。如本文所用,如本文所用,术语“阻断基团”指可以连接至寡核苷酸或核单体的取代基(例如除OH基之外的取代基),作为用于合成的保护基或偶联基团(例如FITC、丙基(CH2-CH2-CH3)、乙二醇(-O-CH2-CH2-O-)、磷酸盐(PO3 2+)、膦酸氢盐或亚磷酰胺)“阻断基团”还可包括“末端阻断基团”或“核酸外切酶阻断基团”,其保护寡核苷酸的5'和3'末端,包括经修饰的核苷酸和非核苷酸核酸外切酶抗性结构。
在一些实施方式中,sd-RNA内的至少一部分连续多核苷酸通过替代键(例如硫代磷酸酯键)连接。
在一些实施方式中,化学修饰可导致细胞摄取增强至少1.5、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175、180、185、190、195、200、225、250、275、300、325、350、375、400、425、450、475、500。在一些实施方式中,C或U残基中的至少一个包括疏水性修饰。在一些实施方式中,多个C和U包含疏水性修饰。在一些实施方式中,至少10%,15%,20%,30%,40%,50%,55%,60%,65%,70%,75%,80%,85%,90%或至少95%的C和U可包含疏水性修饰。在一些实施方式中,所有的C和U均包含疏水性修饰。
在一些实施方式中,sd-RNA或sd-rxRNA通过掺入可质子化的胺表现出增强的sd-rxRNA分子的核内体释放。在一些实施方式中,将可质子化的胺掺入有义链中(在RISC加载后被丢弃的分子的一部分中)。在一些实施方式中,本发明的sd-RNA化合物包含不对称化合物,该不对称化合物包含双链体区域(10-15个碱基长的有效RISC条目(entry)所需的)和4-12个核苷酸长的单链区域;具有13个核苷酸的双链体。在一些实施方式中,采用6个核苷酸的单链区。在一些实施方式中,sd-RNA的单链区包含2-12个硫代磷酸酯核苷酸间键(称为硫代磷酸酯修饰)。在一些实施方式中,采用6-8个硫代磷酸酯核苷酸间键。在一些实施方式中,本发明的sd-RNA化合物还包括独特的化学修饰模式,其提供稳定性并与RISC条目相容。
例如,引导链还可通过任何化学修饰来修饰,该化学修饰在不干扰RISC条目的情况下巩固稳定性。在一些实施方式中,引导链中的化学修饰模式包括:大部分的C和U核苷酸为2'F修饰的且5'端为磷酸化的。
在一些实施方式中,sd-RNA或sd-rxRNA中至少30%的核苷酸被修饰。在一些实施方式中,sd-RNA或sd-rxRNA中至少30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的核苷酸被修饰。在一些实施方式中,sd-RNA或sd-rxRNA中100%的核苷酸被修饰。
在一些实施方式中,sd-RNA分子具有最小的双链区。在一些实施方式中,分子的双链区的长度为8-15个核苷酸。在一些实施方式中,分子的双链区为8、9、10、11、12、13、14或15个核苷酸长。在一些实施方式中,双链区为13个核苷酸长。引导链和随从链之间可以有100%的互补性,或者引导链和随从链之间可能存在一个以上错配。在一些实施方式中,在双链分子的一端,该分子是平末端的或具有一个核苷酸的突出端。在一些实施方式中,分子的单链区为4-12个核苷酸长。在一些实施方式中,单链区可为4、5、6、7、8、9、10、11或12个核苷酸长。在一些实施方式中,单链区也可小于4个核苷酸或大于12个核苷酸长。在某些实施方式中,单链区为6或7个核苷酸长。
在一些实施方式中,sd-RNA分子具有增加的稳定性。在某些情况下,化学修饰的sd-RNA或sd-rxRNA分子在培养基中的半衰期长于1、2、3、4、5、6、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24小时或超过24小时,包括任何中间值。在一些实施方式中,sd-rxRNA在培养基中的半衰期长于12小时。
在一些实施方式中,对sd-RNA进行优化以提高效价和/或降低毒性。在一些实施方式中,引导链和/或随从链的核苷酸长度和/或引导链和/或随从链中硫代磷酸酯修饰的数量可在某些方面影响RNA分子的效价,而用2'-O-甲基(2'OMe)修饰替换2'-氟(2'F)修饰可在某些方面影响分子的毒性。在一些实施方式中,预期分子中2'F含量的减少会降低分子的毒性。在一些实施方式中,RNA分子中硫代磷酸酯修饰的数量可以影响该分子被摄取到细胞中,例如,该分子被被动摄取到细胞中的效率。在一些实施方式中,sd-RNA没有2'F修饰,但在细胞摄取和组织渗透方面的功效相等。
在一些实施方式中,引导链的长度约为18至19个核苷酸,并且具有约2-14个磷酸酯修饰。例如,引导链可包含2、3、4、5、6、7、8、9、10、11、12、13、14或多于14个经磷酸修饰的核苷酸。引导链可包含一种以上赋予增加的稳定性而不干扰RISC条目的修饰。磷酸修饰的核苷酸,例如硫代磷酸酯修饰的核苷酸,可位于3'端、5'端或遍布整个引导链。在一些实施方式中,引导链的3'末端10个核苷酸包含1、2、3、4、5、6、7、8、9或10个硫代磷酸酯修饰的核苷酸。引导链还可包含2'F和/或2'OMe修饰,其可位于整个分子中。在一些实施方式中,在引导链的第一位的核苷酸(在引导链的最5'位置的核苷酸)是2'OMe修饰的和/或磷酸化的。引导链内的C和U核苷酸可以为2'F修饰的。例如,在19nt的引导链的2-10位(或在不同长度的引导链中的相应位置)的C和U核苷酸可以为2'F修饰的。引导链内的C和U核苷酸也可以为2'OMe修饰的。例如,在19nt的引导链的11-18位(或在不同长度的引导链中的相应位置)的C和U核苷酸可以为2'OMe修饰的。在一些实施方式中,在引导链的最3'端的核苷酸未经修饰。在某些实施方式中,引导链内的大多数C和U为2'F修饰的,并且引导链的5'端为磷酸化的。在其他实施方式中,1位和11-18位的C或U为2'OMe修饰的,并且引导链的5'端为磷酸化的。在其他实施方式中,1位和11-18位的C或U为2'OMe修饰的,引导链的5'末端为磷酸化的,并且2-10位的C或U为2'F修饰的。
d.sd-RNA的递送
自递送RNAi技术提供了用RNAi剂直接转染细胞的方法,无需额外制剂或技术。转染难以转染的细胞系的能力、高体内活性和使用简便是组合物和方法的特征,与传统的基于siRNA的技术相比,它们具有明显的功能优势,因此,在涉及在本发明的TIL中减少靶基因表达的方法的一些实施方式中采用了sd-RNA方法。sd-RNAi方法可将化学合成的化合物直接递送至体内和体外的各种原代细胞和组织中。在本发明的一些实施方式中描述的sd-RNA可购自Advirna LLC(Worcester,MA,美国)。
sd-RNA分子的一般结构如图36所示。sd-RNA形成为疏水修饰的siRNA-反义寡核苷酸杂合体结构,公开于例如Byrne等,2013年12月,J.Ocular Pharmacology andTherapeutics,29(10):855-864,其内容通过引用并入本文。
在一些实施方式中,可使用无菌电穿孔将sd-RNA寡核苷酸递送至本文所述的TIL。
在一些实施方式中,寡核苷酸可与跨膜递送系统结合递送至细胞。在一些实施方式中,该跨膜递送系统包含脂质、病毒载体等。在一些实施方式中,寡核苷酸剂是无需任何递送剂的自递送RNAi剂。
在实施方式中,可使用不同的方法将寡核苷酸(例如本文所述的RNA或sd-RNA)引入靶细胞,方法例如为可商购的方法,包括但不限于电穿孔(Amaxa Nucleofector-II(Amaxa Biosystems,德国科隆))、(ECM 830(BTX)(Harvard Instruments,马塞诸塞州波士顿)、NeonTM Transfection System(可从ThermoFisher Scientific,马塞诸塞州沃尔瑟姆商购)和/或Gene Pulser II(BioRad,科罗拉多州丹佛)、Multiporator(Eppendort,德国汉堡)、使用脂质转染的阳离子脂质体介导的转染、聚合物包封、肽介导的转染或生物射弹颗粒递送系统,例如“基因枪”(参见例如Nishikawa等,Hum Gene Ther.,12(8):861-70(2001),其全部内容通过引用并入本文。另请参见美国专利号8,859,229、美国专利申请号2016/0230188以及Amaxa II手册(可在万维网http://icob.sinica.edu.tw/pubweb/bio-chem/Core%20Facilities/Data/R401-core/Nucleofector_Ma nual_II_Apr06.pdf获得)。
在一些实施方式中,可根据制造商的建议使用Amaxa NUCLEOFECTOR.TM.-II进行电穿孔。在一些实施方式中,可使用NUCLEOFECTOR.TM.-II溶液V和一组推荐的用于电穿孔的方案转染TIL。在一些实施方式中,可使用溶液V、T和R以及不同的电穿孔方案转染TIL。在一些实施方式中,可使用T细胞NUCLEOFECTOR.TM.-II溶液和不同的电穿孔方案转染TIL。核酸递送的替代方法也可用于转染所用的本文所述寡核苷酸:使用LIPOFECTIN或LIPOFECTAMIN(Invitrogen)进行阳离子脂质体介导的转染。也可用ECM 830(BTX)(HarvardInstruments,马萨诸塞州波士顿)、Gene Pulser II(BioRad,科罗拉多州丹佛),Multiporator(Eppendorf,德国汉堡)和/或NeonTM Transfection System(可从ThermoFisher Scientific,马塞诸塞州沃尔瑟姆商购)进行电穿孔。在一些实施方式中,可将pmaxGFP质粒DNA(Amaxa Biosystems)用作DNA对照。在一些实施方式中,可在转染后约3、6、9、12、15和/或18小时通过荧光激活细胞分选(FACS)确定转染效率(ET)。在一些实验中,可以每12小时至24小时对转染子进行进一步分析,直至GFP对照无法检测到GFP。在一些实施方式中,可通过台盼蓝染料排除来确定细胞活力。
寡核苷酸和寡核苷酸组合物与本文所述的TIL接触(例如,与之接触,本文也称为施用或递送至)并被其吸收,包括通过TIL的被动摄取。可在第一次扩增期间(例如步骤B)、第一次扩增之后(例如步骤C期间)、第二次扩增之前或期间(例如步骤D之前或期间、步骤D之后且步骤E的收获之前、步骤F中的收获期间或之后、步骤F的最终配制和/或转移至输液袋之前或期间,以及步骤F中的任何可选的冷冻保存步骤之前),将sd-RNA如本文所述添加到TIL中。此外,可在步骤F中的任何冷冻保存步骤解冻之后添加sd-RNA。在一个实施方式中,一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA可以100nM至20mM、200nM至10mM、500nm至1mM、1μM至100μM和1μM至100μM的浓度添加到包含TIL和其他试剂的细胞培养基中。在一个实施方式中,可以选自下组的量将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至包含TIL和其他试剂的细胞培养基中:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μMsd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一个实施方式中,在pre-REP或REP阶段期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。在一个实施方式中,可以选自下组的量将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至包含TIL和其他试剂的细胞培养基中:0.1μMsd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一个实施方式中,在第一次扩增、第二次扩增和/或另外的扩增阶段期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。
本发明的包括sd-RNA的寡核苷酸组合物可以如本文所述在扩增过程中与TIL接触,例如通过将高浓度的sd-RNA溶解在细胞培养基中并留有足够的时间进行被动摄取。在一些实施方式中,高浓度包括0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μMsd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一些实施方式中,高浓度包括2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一些实施方式中,高浓度包括5μM sd-RNA/10,000TIL或至多10μM sd-RNA/10,000TIL。
在一些实施方式中,可使用本领域已知的方法(参见例如WO90/14074;WO91/16024;WO91/17424;美国专利号4,897,355;Bergan等,Nucleic Acids Research 1993,21:3567),通过合适的本领域公认的方法(包括磷酸钙、DMSO、甘油或葡聚糖、电穿孔或通过转染,例如使用阳离子、阴离子或中性脂质组合物或脂质体)来增强寡核苷酸向细胞内的递送。
e.sd-RNA组合
在一些实施方式中,使用超过一种sd-RNA来减少靶基因的表达。在一些实施方式中,靶向PD-1、TIM-3、CBLB、LAG3和/或CISH的sd-RNA中的一种以上一起使用。在一些实施方式中,PD-1sd-RNA与TIM-3、CBLB、LAG3和/或CISH中的一种以上一起使用,以减少一种以上基因靶的表达。在一些实施方式中,LAG3 sd-RNA与靶向CISH的sd-RNA组合使用以减少两个靶标的基因表达。在一些实施方式中,本文中靶向PD-1、TIM-3、CBLB、LAG3和/或CISH中的一种以上的sd-RNA可商购自Advirna LLC(Worcester,MA,美国)。在一些实施方式中,靶向PD-1、TIM-3、CBLB、LAG3和/或CISH中的一种以上的sd-RNA具有图36或图37所示的结构。
在一些实施方式中,sd-RNA靶向选自PD-1、LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)的基因及它们的组合。在一些实施方式中,sd-RNA靶向选自PD-1、LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)的基因及它们的组合。在一些实施方式中,一种sd-RNA靶向PD-1,另一种sd-RNA靶向选自LAG3、TIM3、CTLA-4、TIGIT、CISH、TGFβR2、PKA、CBLB、BAFF(BR3)的基因及它们的组合。在一些实施方式中,sd-RNA靶向选自PD-1、LAG-3、CISH、CBLB、TIM3及它们的组合的基因。在一些实施方式中,sd-RNA靶向选自PD-1和LAG3、CISH、CBLB、TIM3的基因及它们的组合。在一些实施方式中,一种sd-RNA靶向PD-1,一种sd-RNA靶向LAG3。在一些实施方式中,一种sd-RNA靶向PD-1,一种sd-RNA靶向CISH。在一些实施方式中,一种sd-RNA靶向PD-1,一种sd-RNA靶向CBLB。在一些实施方式中,一种sd-RNA靶向LAG3,一种sd-RNA靶向CISH。在一些实施方式中,一种sd-RNA靶向LAG3,一种sd-RNA靶向CBLB。在一些实施方式中,一种sd-RNA靶向CISH,一种sd-RNA靶向CBLB。在一些实施方式中,一种sd-RNA靶向TIM3,一种sd-RNA靶向PD-1。在一些实施方式中,一种sd-RNA靶向TIM3,一种sd-RNA靶向LAG3。在一些实施方式中,一种sd-RNA靶向TIM3,一种sd-RNA靶向CISH。在一些实施方式中,一种sd-RNA靶向TIM3,一种sd-RNA靶向CBLB。
f.共刺激受体或粘附分子的过表达
根据其他实施方式,在TIL扩增方法期间改变TIL的蛋白质表达还可允许在至少一部分治疗性TIL群中增强一种以上免疫检查点基因的表达。例如,改变蛋白质表达可引起刺激性受体的表达增强,这意味着与未经基因修饰的刺激性受体的表达相比,该刺激性受体被过表达。可通过瞬时改变本发明的TIL中的蛋白质表达而表现出表达增强的免疫检查点基因的非限制性实例包括某些趋化因子受体和白介素,例如CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1、IL-2、IL-4、IL-7、IL-10、IL-15、IL-21、NOTCH 1/2细胞内结构域(ICD)和/或NOTCH配体mDLL1。
(i)CCR和CCL
为使过继性T细胞免疫疗法有效,需要通过趋化因子将T细胞适当地运输到肿瘤中。肿瘤细胞分泌的趋化因子、周围存在的趋化因子和T细胞表达的趋化因子受体之间的匹配对于将T细胞成功运输到肿瘤床至关重要。
根据特定实施方式,本发明的改变蛋白质表达的方法可用于增加TIL中某些趋化因子受体的表达,例如CCR2、CCR4、CCR5、CXCR2、CXCR3和/或CX3CR1中的一种以上。在过继性转移后,CCR的过表达可能有助于促进效应子功能和TIL的增殖。在一些实施方式中,本发明的改变蛋白质表达的方法可用于增加TIL中CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1、CXCL8、CCL22和/或CCL17的表达。
根据特定实施方式,本发明的组合物和方法增强了TIL中CCR2、CCR4、CCR5、CXCR2、CXCR3和/或CX3CR1中的一种以上的表达。例如,可根据本文所述方法的任何实施方式(例如过程2A或图20和21所示的方法)进行将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,其中,该方法包括通过增强CCR2、CCR4、CCR5、CXCR2、CXCR3和/或CX3CR1中的一种以上的表达来基因编辑至少一部分TIL。如下文更详细描述的,基因编辑过程可包括使用可编程的核酸酶,该核酸酶介导趋化因子受体基因产生双链或单链断裂。例如,可使用CRISPR方法、TALE方法或锌指方法来增强TIL中某些趋化因子受体的表达。
在一个实施方式中,使用本文所述的γ-逆转录病毒或慢病毒方法,将CCR4和/或CCR5粘附分子插入TIL群。在一个实施方式中,使用Forget等(Frontiers Immunology2017,8,908或Peng等,Clin.Cancer Res.2010,16,5458(其公开内容通过引用并入本文))所描述的γ-逆转录病毒或慢病毒方法,将CXCR2粘附分子插入TIL群。
在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(i)由患者切除的肿瘤获得第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;以及
(iv)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变;其中,表达的改变是CCR2、CCR4、CCR5、CXCR2、CXCR3、CX3CR1、CCL2(MCP-1)、CCL3(MIP-1α)、CCL4(MIP1-β)、CCL5(RANTES)、CXCL1、CXCL8和/或CCL22中一种以上的表达的增加。
(ii)白介素及其他
根据另外的实施方式,本发明的基因编辑方法可用于增加某些白介素(例如IL-2、IL-4、IL-7、IL-10、IL-15和IL-21中的一种以上)以及NOTCH 1/2细胞内结构域(ICD)的表达。已证明某些白介素可以增强T细胞的效应子功能并调节肿瘤控制。
根据特定实施方式,本发明的组合物和方法增强了TIL中IL-2、IL-4、IL-7、IL-10、IL-15和IL-21中的一种以上以及NOTCH 1/2细胞内结构域(ICD)的表达。在一些实施方式中,本发明提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(i)由患者切除的肿瘤获得第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;以及
(iv)将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变;其中,表达的改变是IL-2、IL-4、IL-7、IL-10、IL-15和IL-21中的一种以上以及NOTCH 1/2细胞内结构域(ICD)的表达的增加。
IV.TIL生产过程
图1描述了包含这些特征中的一些特征的示例性TIL过程(称为过程2A),图2描述了相对于过程1C的本发明的本实施方式的一些优点,如图13和图14所示。图3显示了过程1C以进行比较。图4(细胞数较高)和图5(细胞数较低)显示了基于过程2A进行TIL治疗的两个替代时间线。图6以及图8显示了过程2A的实施方式。图13和图14还提供了与示例性1C过程相比的示例性2A过程。
如本文所述,本发明可包括与冷冻保存的TIL的再刺激有关的步骤,以在移植入患者之前增加其代谢活性并因此增加相对健康,以及检测所述代谢健康的方法。如本文一般概述的,TIL通常取自患者样品并在移植入患者之前进行操作以扩增其数量。在一些实施方式中,可选地,TIL可进行如下所述的基因操作。
在一些实施方式中,可以冷冻保存TIL。一旦解冻,在输注给患者之前,也可对它们进行再刺激以增加它们的代谢。
在一些实施方式中,如下文详述以及实施例和附图所述,第一次扩增(包括称为pre-REP的过程以及图8中显示为步骤A的过程)缩短为3天至14天,第二次扩增(包括称为REP的过程以及图8中显示为步骤B的过程)缩短为7天至14天。在一些实施方式中,如实施例中所述以及如图4、图5、图6和图7中所示,第一次扩增(例如图8中步骤B所述的扩增)缩短为11天,并且第二次扩增(例如图8中步骤D所述的扩增)缩短为11天。在一些实施方式中,如下文详述以及实施例和附图所述,第一次扩增和第二次扩增(例如图8中步骤B和步骤D所述的扩增)总和缩短为22天。
以下标记A、B、C等的“步骤”参考图8和本文所述某些实施方式。下述的和图8中步骤的顺序是示例性的,本申请和本文公开的方法预期步骤的任何组合或顺序,以及附加步骤、步骤的重复和/或步骤的省略。
A.步骤A:获取患者肿瘤样品
通常,TIL最初由患者肿瘤样品(“原代TIL”)获得,然后如本文所述地扩增为更大的群用于进一步操作,可选地冷冻保存,如本文所述地再刺激,并可选地评估表型和代谢参数作为TIL健康的指标。
可使用本领域已知的方法获得患者肿瘤样品,通常通过外科手术切除,针吸活检或用于获得含有肿瘤和TIL细胞混合物的样品的其他手段。通常,肿瘤样品可以来自任何实体瘤,包括原发性肿瘤、侵袭性肿瘤或转移性肿瘤。肿瘤样品也可为液体肿瘤,例如从血液恶性肿瘤获得的肿瘤。实体瘤可为任何癌症类型,包括但不限于乳腺癌、胰腺癌、前列腺癌、结肠直肠癌、肺癌、脑癌、肾癌、胃癌和皮肤癌(包括但不限于鳞状细胞癌、基底细胞癌和黑色素瘤)。在一些实施方式中,有用的TIL获自恶性黑色素瘤肿瘤,因为据报道其具有特别高水平的TIL。
术语“实体瘤”指通常不包含囊肿或者液体区域的异常组织块。实体瘤可为良性或者恶性的。术语“实体瘤癌”指恶性、肿瘤性或者癌性实体瘤。实体瘤癌症包括但不限于肉瘤、恶性上皮肿瘤(carcinoma)和淋巴瘤,例如肺癌、乳腺癌、三阴性乳腺癌、前列腺癌、结肠癌、直肠癌和膀胱癌。在一些实施方式中,癌症选自宫颈癌、头颈癌(包括例如头颈鳞状细胞癌(HNSCC))、胶质母细胞瘤、卵巢癌、肉瘤、胰腺癌、膀胱癌、乳腺癌、三阴性乳腺癌和非小细胞肺癌。实体瘤的组织结构包括相互依赖的组织隔室,包括实质(癌细胞)和支持的基质细胞(癌细胞分散在其中并且可以提供支持的微环境)。
术语“血液恶性肿瘤”指哺乳动物造血组织和淋巴组织的癌症和肿瘤,包括但不限于血液、骨髓、淋巴结和淋巴系统的组织。血液恶性肿瘤也称为“液体肿瘤”。血液恶性肿瘤包括但不限于:急性淋巴细胞白血病(ALL)、慢性淋巴细胞性淋巴瘤(CLL)、小淋巴细胞性淋巴瘤(SLL)、急性骨髓性白血病(AML)、慢性骨髓性白血病(CML)、急性单核细胞白血病(AMoL)、霍奇金淋巴瘤和非霍奇金淋巴瘤。术语“B细胞血液恶性肿瘤”指影响B细胞的血液恶性肿瘤。
一旦获得,通常使用锐利解剖将肿瘤样品破碎成1mm3至约8mm3的小块,其中约2mm3至3mm3是特别有用的。使用酶促肿瘤消化物由这些碎片培养TIL。可通过在酶培养基(例如,罗斯威尔公园纪念研究所(RPMI,Roswell Park Memorial Institute)1640缓冲液、2mM谷氨酸、10mcg/mL庆大霉素、30U/mL DNase和1.0mg/mL胶原酶)中孵育然后进行机械解离(例如使用组织解离器)来产生此类肿瘤消化物。可通过将肿瘤置于酶培养基中、机械分离肿瘤约1分钟,然后在5%CO2、37℃孵育30分钟,然后在上述条件下重复进行机械解离和孵育直至只存在小的组织碎片,由此产生肿瘤消化物。在此过程结束时,如果细胞悬液中含有大量的红细胞或死细胞,则可使用FICOLL支链亲水性多糖进行密度梯度分离来去除这些细胞。可使用本领域已知的替代方法,例如美国专利申请公开号2012/0244133A1中描述的那些方法,其公开内容通过引用并入本文。任何前述方法可用于本文所述的扩增TIL或治疗癌症的方法的任何实施方式中。
通常,收获的细胞悬液称为“原代细胞群”或者“新鲜收获的”细胞群。
在一些实施方式中,破碎包括物理破碎,包括例如解剖以及消化。在一些实施方式中,破碎是物理破碎。在一些实施方式中,破碎是解剖。在一些实施方式中,破碎是通过消化。在一些实施方式中,可由酶促肿瘤消化物和获自患者的肿瘤碎片来最初培养TIL。在一个实施方式中,可由酶促肿瘤消化物和获自患者的肿瘤碎片来最初培养TIL。
在一些实施方式中,当肿瘤是实体瘤时,在例如步骤A中获得肿瘤样品后,对肿瘤进行物理破碎(如图8所示)。在一些实施方式中,破碎发生在冷冻保存之前。在一些实施方式中,破碎发生在冷冻保存之后。在一些实施方式中,破碎发生在获得肿瘤之后且无任何冷冻保存的情况下。在一些实施方式中,破碎肿瘤,将10、20、30、40或更多个碎片或小块放在每个容器中用于第一次扩增。在一些实施方式中,破碎肿瘤,将30或40个碎片或小块放置在每个容器中用于第一次扩增。在一些实施方式中,破碎肿瘤,将40个碎片或小块放在每个容器中用于第一次扩增。在一些实施方式中,多个碎片包括约4至约50个碎片,其中,每个碎片的体积为约27mm3。在一些实施方式中,多个碎片包括约30至约60个碎片,总体积为约1300mm3至约1500mm3。在一些实施方式中,多个碎片包括约50个碎片,总体积为约1350mm3。在一些实施方式中,多个碎片包括约50个碎片,总质量为约1克至约1.5克。在一些实施方式中,多个碎片包括约4个碎片。
在一些实施方式中,TIL获自肿瘤碎片。在一些实施方式中,所述肿瘤碎片通过锐利解剖获得。在一些实施方式中,肿瘤碎片为约1mm3至10mm3。在一些实施方式中,肿瘤碎片为约1mm3至8mm3。在一些实施方式中,肿瘤碎片为约1mm3。在一些实施方式中,肿瘤碎片为约2mm3。在一些实施方式中,肿瘤碎片为约3mm3。在一些实施方式中,肿瘤碎片为约4mm3。在一些实施方式中,肿瘤碎片为约5mm3。在一些实施方式中,肿瘤碎片为约6mm3。在一些实施方式中,肿瘤碎片为约7mm3。在一些实施方式中,肿瘤碎片为约8mm3。在一些实施方式中,肿瘤碎片为约9mm3。在一些实施方式中,肿瘤碎片为约10mm3。在一些实施方式中,肿瘤为1mm至4mm×1mm至4mm×1mm至4mm。在一些实施方式中,肿瘤为1mm×1mm×1mm。在一些实施方式中,肿瘤为2mm×2mm×2mm。在一些实施方式中,肿瘤为3mm×3mm×3mm。在一些实施方式中,肿瘤为4mm×4mm×4mm。
在一些实施方式中,切除肿瘤以使各个小块上的出血组织、坏死组织和/或脂肪组织的量最小化。在一些实施方式中,切除肿瘤以使各个小块上的出血组织的量最小化。在一些实施方式中,切除肿瘤以使各个小块上的坏死组织的量最小化。在一些实施方式中,切除肿瘤以使各个小块上的脂肪组织的量最小化。
在一些实施方式中,进行肿瘤破碎以便维持肿瘤内部结构。在一些实施方式中,在不用手术刀进行拉锯运动的情况下进行肿瘤破碎。在一些实施方式中,TIL获自肿瘤消化物。在一些实施方式中,通过在酶培养基(例如但不限于RPMI 1640、2mm GlutaMAX、10mg/mL庆大霉素、30U/mL DNase和1.0mg/mL胶原酶)中孵育,然后机械解离(GentleMACS,MiltenyiBiotec,Aubum,加利福尼亚州),来产生肿瘤消化物。将肿瘤置于酶培养基中后,可以机械解离肿瘤约1分钟。然后将溶液在37℃、5%CO2中孵育30分钟,然后再次机械破碎约1分钟。在37℃、5%CO2中再次孵育30分钟后,可以第三次机械破碎肿瘤约1分钟。在一些实施方式中,在第三次机械破碎后,如果存在大块组织,则对样品施加1或者2次另外的机械解离,进行或不进行在37℃、5%CO2下的另外的30分钟孵育。在一些实施方式中,在最终孵育结束时,如果细胞悬液含有大量红细胞或者死细胞,则可使用Ficoll进行密度梯度分离以除去这些细胞。
在一些实施方式中,在第一次扩增步骤之前收获的细胞悬液称为“原代细胞群”或者“新鲜收获的”细胞群。
在一些实施方式中,可选地,可在收获样品后将细胞冷冻,并在进入步骤B所述扩增之前冷冻保存,这将在下文进一步详细描述,并在图8中进行示例性说明。
B.步骤B:第一次扩增
在一些实施方式中,本发明方法提供获得年轻TIL,相对于较老TIL(即,在施用给受试者/患者之前进一步经历了更多轮复制的TIL),年轻TIL能够在施用给受试者/患者后增加复制周期,因此可以提供额外治疗益处。文献中已经描述了年轻TIL的特征,例如Donia等,Scandinavian Journalof Immunology,75:157-167(2012);Dudley等,Clin CancerRes,16:6122-6131(2010);Huang等,J Immunother,28(3):258-267(2005);Besser等,ClinCancer Res,19(17):OF1-OF9(2013);Besser等,J Immunother,32:415-423(2009);Bunds等,J Immunother,32:415-423(2009);Robbins等,J Immunol,2004;173:7125-7130;Shen等,J Immunother,30:123-129(2007);Zhou等,J Immunother,28:53-62(2005)和Tran等,JImmunother,31:742-751(2008),其全部内容通过引用整体并入本文。
T和B淋巴细胞的多种抗原受体通过有限但大量的基因片段的体细胞重组来产生。这些基因片段:V(可变段)、D(多样段)、J(连接段)和C(恒定段)确定免疫球蛋白和T细胞受体(TCR)的结合特异性和下游应用。本发明提供了产生TIL的方法,其显示并增加T细胞库(T-cell repertoire)的多样性。在一些实施方式中,通过本方法获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,与新鲜收获的TIL和/或使用除本文提供的方法之外的其他方法(包括例如除了图8中所示那些之外的方法)制备的TIL相比,通过本发明方法获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,与新鲜收获的TIL和/或使用如图13所示的称为过程1C的方法制备的TIL相比,通过本方法获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,第一次扩增获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,多样性的增加是免疫球蛋白多样性和/或T细胞受体多样性的增加。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白重链多样性。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白轻链多样性。在一些实施方式中,多样性是T细胞受体多样性。在一些实施方式中,多样性是选自α、β、γ和δ受体之一的T细胞受体的多样性。在一些实施方式中,T细胞受体(TCR)α和/或β的表达增加。在一些实施方式中,T细胞受体(TCR)α的表达增加。在一些实施方式中,T细胞受体(TCR)β的表达增加。在一些实施方式中,TCRab(即TCRα/β)的表达增加。
在解剖或消化肿瘤碎片后(例如如图8中步骤A所述),在与肿瘤和其他细胞相比更有利于TIL生长的条件下,在含有IL-2的血清中培养所得细胞。在一些实施方式中,在2mL孔中的包含灭活的人AB血清和6000IU/mL IL-2的培养基中孵育肿瘤消化物。培养此原代细胞群一段时间,通常为3天至14天,产生大量TIL群,通常为约1×108个大量TIL细胞。在一些实施方式中,培养此原代细胞群7天至14天,产生大量TIL群,通常约1×108个大量TIL细胞。在一些实施方式中,培养此原代细胞群10至14天,产生大量TIL群,通常约1×108个大量TIL细胞。在一些实施方式中,培养此原代细胞群约11天,产生大量TIL群,通常约1×108个大量TIL细胞。
在一个优选实施方式中,TIL的扩增可以如下进行:使用如下文和此处所述的初始大量TIL扩增步骤(例如,如图8的步骤B中所述的那些,其可包括称为pre-REP的过程),然后进行如下文步骤D和此处所述的第二次扩增(步骤D,包括称为快速扩增方案(REP)步骤的过程),随后可选地进行冷冻保存,然后进行如下文和此处所述的第二次步骤D(包括称为再刺激REP步骤的过程)。可选地,可对从该过程获得的TIL进行如本文所述的表型特征和代谢参数的表征。
在用24孔板开始TIL培养的实施方式中,例如,使用Costar 24孔细胞培养板、平底(康宁公司,康宁,纽约),可在每个孔接种在2mL含IL-2的完全培养基(CM)(6000IU/mL;Chiron Corp.,Emeryville,CA)中的1×106个肿瘤消化细胞或一个肿瘤碎片。在一些实施方式中,所述肿瘤碎片为约1mm3至10mm3
在一些实施方式中,第一次扩增培养基被称为“CM”,其中,CM是培养基的缩写。在一些实施方式中,步骤B的CM由含有GlutaMAX的RPMI 1640组成,补充有10%人AB血清、25mmHEPES和10mg/mL庆大霉素。在用容量为40mL、透气性硅底为10cm2的透气性烧瓶(例如,G-Rex10;Wilson Wolf Manufacturing,新布莱顿,MN)开始培养的实施方式中(图1),各个烧瓶装有在10至40mL含有IL-2的CM中的10×106至40×106个活肿瘤消化细胞或5至30个肿瘤碎片。在37℃、5%CO2的湿润培养箱中孵育G-Rex10和24孔板,培养开始5天后,移除一半培养基,换上新鲜的CM和IL-2,在第5天后,每2至3天更换一半的培养基。
在制备肿瘤碎片之后,在与肿瘤和其他细胞相比更有利于TIL生长的条件下,在含有IL-2的血清中培养所得细胞(即碎片)。在一些实施方式中,肿瘤碎片在含有灭活的人AB血清(或在一些情况下,如本文所述,在aAPC细胞群存在下)和6000IU/mL IL-2的培养基的2mL孔中孵育。将该原代细胞群培养一段时间,通常为10至14天,产生大量TIL群,通常约1×108个大量TIL细胞。在一些实施方式中,第一次扩增期间的生长培养基包含IL-2或其变体。在一些实施方式中,IL是重组人IL-2(rhIL-2)。在一些实施方式中,1mg小瓶的IL-2储备溶液具有20×106IU/mg至30×106IU/mg的比活性。在一些实施方式中,1mg小瓶的IL-2储备溶液具有20×106IU/mg至30×106IU/mg的比活性。在一些实施方式中,1mg小瓶的IL-2储备溶液具有25×106IU/mg的比活性。在一些实施方式中,1mg小瓶的IL-2储备溶液具有30×106IU/mg的比活性。在一些实施方式中,IL-2储备溶液的终浓度为4×106IU/mg至8×106IU/mg IL-2。在一些实施方式中,IL-2储备溶液的终浓度为5×106IU/mg至7×106IU/mg IL-2。在一些实施方式中,IL-2储备溶液的终浓度为6×106IU/mg IL-2。在一些实施方式中,如实施例4中所述制备IL-2储备溶液。在一些实施方式中,第一次扩增培养基包含约10,000IU/mL IL-2、约9,000IU/mL IL-2、约8,000IU/mL IL-2、约7,000IU/mL IL-2、约6000IU/mL IL-2或约5,000IU/mL IL-2。在一些实施方式中,第一次扩增培养基包含约9,000IU/mL至约5,000IU/mL IL-2。在一些实施方式中,第一次扩增培养基包含约8,000IU/mL至约6,000IU/mLIL-2。在一些实施方式中,第一次扩增培养基包含约7,000IU/mL至约6,000IU/mL IL-2。在一些实施方式中,第一次扩增培养基包含约6,000IU/mL IL-2。在一个实施方式中,细胞培养基还包含IL-2。在一些实施方式中,细胞培养基包含约3000IU/mL IL-2。在一个实施方式中,细胞培养基还包含IL-2。在一个优选实施方式中,细胞培养基包含约3000IU/mL IL-2。在一个实施方式中,细胞培养基包含约1000IU/mL、约1500IU/mL、约2000IU/mL、约2500IU/mL、约3000IU/mL、约3500IU/mL、约4000IU/mL、约4500IU/mL、约5000IU/mL、约5500IU/mL、约6000IU/mL、约6500IU/mL、约7000IU/mL、约7500IU/mL或约8000IU/mL IL-2。在一个实施方式中,细胞培养基包含1000至2000IU/mL、2000至3000IU/mL、3000至4000IU/mL、4000至5000IU/mL、5000至6000IU/mL、6000至7000IU/mL、7000至8000IU/mL或约8000IU/mL IL-2。
在一些实施方式中,第一次扩增培养基包含约500IU/mL IL-15、约400IU/mL IL-15、约300IU/mL IL-15、约200IU/mL IL-15、约300IU/mL IL-15、180IU/mL IL-15、约160IU/mL IL-15、约140IU/mL IL-15、约120IU/mL IL-15或者约100IU/mL IL-15。在一些实施方式中,第一次扩增培养基包含约500IU/mL IL-15至约100IU/mL IL-15。在一些实施方式中,第一次扩增培养基包含约400IU/mL IL-15至约100IU/mL IL-15。在一些实施方式中,第一次扩增培养基包含约300IU/mL IL-15至约100IU/mL IL-15。在一些实施方式中,第一次扩增培养基包含约200IU/mL IL-15。在一些实施方式中,细胞培养基包含约180IU/mL IL-15。在一个实施方式中,细胞培养基还包含IL-15。在一个优选实施方式中,细胞培养基包含约180IU/mL IL-15。
在一些实施方式中,第一次扩增培养基包含约20IU/mL IL-21、约15IU/mL IL-21、约12IU/mL IL-21、约10IU/mL IL-21、约5IU/mL IL-21、约4IU/mL IL-21、约3IU/mL IL-21、约2IU/mL IL-21、约1IU/mL IL-21或者约0.5IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约20IU/mL IL-21至约0.5IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约15IU/mL IL-21至约0.5IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约12IU/mL IL-21至约0.5IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约10IU/mL IL-21至约0.5IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约5IU/mL IL-21至约1IU/mL IL-21。在一些实施方式中,第一次扩增培养基包含约2IU/mL IL-21。在一些实施方式中,细胞培养基包含约1IU/mL IL-21。在一些实施方式中,细胞培养基包含约0.5IU/mL IL-21。在一个实施方式中,细胞培养基还包含IL-21。在一个优选实施方式中,细胞培养基包含约1IU/mL IL-21。
在一个实施方式中,细胞培养基包含OKT-3抗体。在一个优选实施方式中,细胞培养基包含约30ng/mL的OKT3抗体。在一个实施方式中,细胞培养基包含约0.1ng/mL、约0.5ng/mL、约1ng/mL、约2.5ng/mL、约5ng/mL、约7.5ng/mL、约10ng/mL、约15ng/mL、约20ng/mL、约25ng/mL、约30ng/mL、约35ng/mL、约40ng/mL、约50ng/mL、约60ng/mL、约70ng/mL、约80ng/mL、约90ng/mL、约100ng/mL、约200ng/mL、约500ng/mL和约1μg/mL的OKT3抗体。在一个实施方式中,细胞培养基包含0.1ng/mL至1ng/mL、1ng/mL至5ng/mL、5ng/mL至10ng/mL、10ng/mL至20ng/mL,20ng/mL至30ng/mL、30ng/mL至40ng/mL、40ng/mL至50ng/mL、50ng/mL至100ng/mL的OKT3抗体。在一些实施方式中,细胞培养基不包含OKT-3抗体。
在一些实施方式中,细胞培养基包含一种以上TNFRSF激动剂。在一些实施方式中,TNFRSF激动剂包括4-1BB激动剂。在一些实施方式中,TNFRSF激动剂是4-1BB激动剂,4-1BB激动剂选自由乌瑞鲁单抗、乌托鲁单抗、EU-101、融合蛋白以及它们的片段、衍生物、变体、生物类似物和组合。在一些实施方式中,以足以在细胞培养基中达到0.1μg/mL至100μg/mL的浓度添加TNFRSF激动剂。在一些实施方式中,以足以在细胞培养基中达到20μg/mL至40μg/mL的浓度添加TNFRSF激动剂。
在一些实施方式中,除一种以上TNFRSF激动剂之外,细胞培养基还包含初始浓度为约3000IU/mL的IL-2和初始浓度为约30ng/mL的OKT-3抗体,其中,一种以上TNFRSF激动剂包括4-1BB激动剂。
在一些实施方式中,第一次扩增培养基被称为“CM(培养基的缩写)”。在一些实施方式中,其被称为CM1(培养基1)。在一些实施方式中,CM由RPMI 1640和GlutaMAX组成,补充有10%人AB血清、25mM Hepes和10mg/mL庆大霉素。在一些实施方式中,在具有40mL容量和10cm2的可透气硅底的可透气烧瓶(例如,G-Rex10;Wilson Wolf Manufacturing,NewBrighton,MN)中开始培养,各个烧瓶装有10mL至40mL加有IL-2的CM,CM中有10×106至40×106个活肿瘤消化细胞或5至30个肿瘤碎片。G-Rex10和24孔板均在潮湿培养箱中于37℃、5%CO2中孵育,在培养开始后5天进行培养,取出一半培养基并用新鲜的CM和IL-2更换,第5天后,每2至3天更换一半的培养基。在一些实施方式中,CM是实施例中所述的CM1,参见实施例5。在一些实施方式中,第一次扩增发生在初始细胞培养基或第一细胞培养基中。在一些实施方式中,初始细胞培养基或第一细胞培养基包含IL-2。
在一些实施方式中,如实施例和附图所述,第一次扩增(包括例如图8的步骤B中所述的那些,其可包括有时称为pre-REP的那些)过程缩短为3天至14天。在一些实施方式中,如实施例所述和图4和5所示,以及包括例如图8的步骤B中所述的扩增,第一次扩增(包括例如图8的步骤B中所述的那些,其可包括有时称为pre-REP的那些)缩短为7天至14天。在一些实施方式中,如实施例所述和图4和5所示,步骤B的第一次扩增缩短为10天至14天。在一些实施方式中,在第一实施例中,如实施例所述和图4和5所示,以及包括例如图8的步骤B中所述的扩增,第一次扩增缩短为11天。
在一些实施方式中,第一次TIL扩增可进行1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天或14天。在一些实施方式中,第一次TIL扩增可进行1天至14天。在一些实施方式中,第一次TIL扩增可进行2天至14天。在一些实施方式中,第一次TIL扩增可进行3天至14天。在一些实施方式中,第一次TIL扩增可进行4天至14天。在一些实施方式中,第一次TIL扩增可进行5天至14天。在一些实施方式中,第一次TIL扩增可进行6天至14天。在一些实施方式中,第一次TIL扩增可进行7天至14天。在一些实施方式中,第一次TIL扩增可进行8天至14天。在一些实施方式中,第一次TIL扩增可进行9天至14天。在一些实施方式中,第一次TIL扩增可进行10天至14天。在一些实施方式中,第一次TIL扩增可进行11天至14天。在一些实施方式中,第一次TIL扩增可进行12天至14天。在一些实施方式中,第一次TIL扩增可进行13天至14天。在一些实施方式中,第一次TIL扩增可进行14天。在一些实施方式中,第一次TIL扩增可进行1天至11天。在一些实施方式中,第一次TIL扩增可进行2天至11天。在一些实施方式中,第一次TIL扩增可进行3天至11天。在一些实施方式中,第一次TIL扩增可进行4天至11天。在一些实施方式中,第一次TIL扩增可进行5天至11天。在一些实施方式中,第一次TIL扩增可进行6天至11天。在一些实施方式中,第一次TIL扩增可进行7天至11天。在一些实施方式中,第一次TIL扩增可进行8天至11天。在一些实施方式中,第一次TIL扩增可进行9天至11天。在一些实施方式中,第一次TIL扩增可进行10天至11天。在一些实施方式中,第一次TIL扩增可以进行11天。
在一些实施方式中,在第一次扩增期间,采用IL-2、IL-7、IL-15和/或IL-21的组合作为组合。在一些实施方式中,在第一次扩增期间,包括例如在根据图8的步骤B期间以及如此处所述,可包括IL-2、IL-7、IL-15和/或IL-21以及它们的任何组合。在一些实施方式中,在第一次扩增期间,采用IL-2、IL-15和IL-21的组合作为组合。在一些实施方式中,在根据图8的步骤B期间以及如此处所述,可包括IL-2、IL-15和IL-21以及它们的任何组合。
在一些实施方式中,如实施例所述和图4和5所示,第一次扩增(包括称为pre-REP的过程;例如根据图8的步骤B)过程缩短为3天至14天。在一些实施方式中,如实施例所述和图4和5所示,步骤B的第一次扩增缩短为7天至14天。在一些实施方式中,如实施例所述和图4、图5、图6和图7所示,步骤B的第一次扩增缩短为10天至14天。在一些实施方式中,如实施例所述和图4、图5、图6和图7所示,第一次扩增缩短为11天。
在一些实施方式中,第一次扩增(例如根据图8的步骤B)在封闭系统生物反应器中进行。在一些实施方式中,如此处所述,采用封闭系统进行TIL扩增。在一些实施方式中,采用单个生物反应器。在一些实施方式中,例如,采用的单个生物反应器是G-REX-10或者G-REX-100。在一些实施方式中,封闭系统生物反应器是单个生物反应器。
在一些实施方式中,在第一次扩增期间(例如根据图8的步骤B),可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μMsd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一些实施方式中,在第一次扩增期间(例如根据图8的步骤B),可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。在一个实施方式中,在第一次扩增期间(例如根据图8的步骤B),可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一个实施方式中,在第一次扩增期间(例如根据图8的步骤B),可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。
C.步骤C:第一次扩增向第二次扩增过渡
在一些情况下,可使用下文讨论的方案,立即冷冻保存从第一次扩增获得的大量TIL群,包括例如从例如图8所示的步骤B获得的TIL群。可选地,可对第一次扩增收获的TIL群(称为第二TIL群)进行第二次扩增(其可包括有时被称为REP的扩增),然后如下文所述冷冻保存。类似地,在基因修饰的TIL将被用于治疗的情况下,第一TIL群(有时被称为大量TIL群)或者第二TIL群(在一些实施方式中可包括被称为REP TIL群的群)可在扩增之前或者在第一次扩增之后且第二次扩增之前进行基因修饰,以用于合适的治疗。
在一些实施方式中,储存从第一次扩增(例如,如图7所示的步骤B)获得的TIL直至进行表型选择。在一些实施方式中,从第一次扩增(例如,如图7所示的步骤B)获得的TIL不储存而是直接进行第二次扩增。在一些实施方式中,在第一次扩增之后且在第二次扩增之前,不冷冻保存从第一次扩增获得的TIL。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天或14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约3天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约4天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约4天至10天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约7天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约14天。
在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的约3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天或14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的1天至14天。在一些实施方式中,第一次TIL扩增可进行2天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的3天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的4天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的5天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的6天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的7天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的8天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的9天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的10天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的11天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的12天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的13天至14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的14天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的1天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的2天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的3天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的8天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的9天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的10天至11天。在一些实施方式中,第一次扩增向第二次扩增的过渡发生在从进行碎片化起的11天。
在一些实施方式中,在第一次扩增之后和第二次扩增之前不储存TIL,并且TIL直接进行第二次扩增(例如,在一些实施方式中,如图8所示,从步骤B向步骤D过渡的期间不进行储存)。在一些实施方式中,如本文所述,过渡在封闭系统中发生。在一些实施方式中,来自第一次扩增的TIL(即第二TIL群)不经历过渡期而直接进入第二次扩增。
在一些实施方式中,在封闭系统生物反应器中进行第一次扩增向第二次扩增的过渡(例如根据图8的步骤C)。在一些实施方式中,如本文所述,采用封闭系统进行TIL扩增。在一些实施方式中,采用单个生物反应器。在一些实施方式中,例如,采用的单个生物反应器是G-REX-10或者G-REX-100。在一些实施方式中,封闭系统生物反应器是单个生物反应器。
在一些实施方式中,在第一次扩增向第二次扩增过渡(例如根据图8的步骤C)期间,可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一些实施方式中,在第一次扩增向第二次扩增过渡(例如根据图8的步骤C)期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。在一个实施方式中,在第一次扩增向第二次扩增过渡(例如根据图8的步骤C)期间,可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一些实施方式中,在第一次扩增向第二次扩增过渡(例如根据图8的步骤C)期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。
1.细胞因子
如本领域已知,本文所述的扩增方法通常使用具有高剂量细胞因子(特别是IL-2)的培养基。
或者,另外可使用细胞因子的组合进行TIL的快速扩增和/或第二次扩增;其中,IL-2、IL-15和IL-21中的两种以上的组合如国际公开号WO2015/189356和国际公开号WO2015/189357中概述的那样,其全部内容通过引用明确并入本文。因此,可能的组合包括IL-2和IL-15、IL-2和IL-21、IL-15和IL-21,以及IL-2、IL-15和IL-21,发现后者在许多实施方式中特别有用。使用细胞因子的组合特别有利于淋巴细胞(特别是本文所述的T细胞)的产生。
D.步骤D:第二次扩增
在一些实施方式中,在收获和初始大量处理之后,例如在步骤A和步骤B之后,TIL细胞群的数量增加,该过渡称为步骤C,如图8所示。此种进一步的扩增在本文中称为第二次扩增,其可包括本领域中通常称为快速扩增过程(REP;以及图8的步骤D所示的过程)的扩增过程。通常在透气容器中使用包含多种组分的培养基来完成第二次扩增,所述组分包括饲养细胞、细胞因子源(cytokine source)和抗CD3抗体。
在一些实施方式中,第二次扩增或第二次TIL扩增(其可包括有时称为REP的扩增;以及图8的步骤D中所示的过程)可使用本领域技术人员已知的任何TIL烧瓶或容器进行。在一些实施方式中,第二TIL扩增可进行10天、11天、12天、13天或者14天。在一些实施方式中,第二次TIL扩增可进行约7天至约14天。在一些实施方式中,第二次TIL扩增可进行约8天至约14天。在一些实施方式中,第二次TIL扩增可进行约9天至约14天。在一些实施方式中,第二次TIL扩增可进行约10天至约14天。在一些实施方式中,第二次TIL扩增可进行约11天至约14天。在一些实施方式中,第二次TIL扩增可进行约12天至约14天。在一些实施方式中,第二次TIL扩增可进行约13天至约14天。在一些实施方式中,第二次TIL扩增可进行约14天。
在一个实施方式中,第二次扩增可使用本公开的方法在透气容器中进行(包括例如称为REP的扩增;以及如图7的步骤D中所示的过程)。例如,可在白细胞介素2(IL-2)或白细胞介素-15(IL-15)的存在下,使用非特异性T细胞受体刺激来快速扩增TIL。非特异性T细胞受体刺激可包括例如抗CD3抗体,例如约30ng/mL的OKT3,一种小鼠单克隆抗CD3抗体(可从Ortho-McNeil,Raritan,NJ或Miltenyi Biotech,Auburn,CA商购)或UHCT-1(可从BioLegend,San Diego,CA,美国商购)。在第二次扩增期间,可通过在体外用包括一种以上癌症抗原(包括其抗原性部分,例如表位)诱导TIL的进一步刺激来快速扩增TIL,该抗原可可选地由载体表达,例如人白细胞抗原A2(HLA-A2)结合肽,例如0.3μM MART-L26-35(27L)或gp 100:209-217(210M)。其他合适的抗原可包括例如NY-ESO-1、TRP-1、TRP-2、酪氨酸酶癌抗原、MAGE-A3、SSX-2和VEGFR2,或其抗原性部分。也可通过用表达HLA-A2的抗原呈递细胞脉冲的相同癌症抗原再刺激,来快速扩增TIL。或者,可以用例如经辐照的自体淋巴细胞或用经辐照的HLA-A2+同种异体淋巴细胞和IL-2进一步再刺激TIL。在一些实施方式中,再刺激作为第二次扩增的一部分发生。在一些实施方式中,在经辐照的自体淋巴细胞或者经辐照的HLA-A2+同种异体淋巴细胞和IL-2的存在下,发生第二次扩增。
在一个实施方式中,细胞培养基还包含IL-2。在一些实施方式中,细胞培养基包含约3000IU/mL IL-2。在一个实施方式中,细胞培养基包含约1000IU/mL、约1500IU/mL、约2000IU/mL、约2500IU/mL、约3000IU/mL、约3500IU/mL、约4000IU/mL、约4500IU/mL、约5000IU/mL、约5500IU/mL、约6000IU/mL、约6500IU/mL、约7000IU/mL、约7500IU/mL,或约8000IU/mL IL-2。在一个实施方式中,细胞培养基包含1000至2000IU/mL、2000至3000IU/mL、3000至4000IU/mL、4000至5000IU/mL、5000至6000IU/mL、6000至7000IU/mL、7000至8000IU/mL,或8000IU/mL IL-2。
在一个实施方式中,细胞培养基包含OKT3抗体。在一些实施方式中,细胞培养基包含约30ng/mL的OKT3抗体。在一个实施方式中,细胞培养基包含约0.1ng/mL、约0.5ng/mL、约1ng/mL、约2.5ng/mL、约5ng/mL、约7.5ng/mL、约10ng/mL、约15ng/mL、约20ng/mL、约25ng/mL、约30ng/mL、约35ng/mL、约40ng/mL、约50ng/mL、约60ng/mL、约70ng/mL、约80ng/mL、约90ng/mL、约100ng/mL、约200ng/mL、约500ng/mL和约1μg/mL的OKT3抗体。在一个实施方式中,细胞培养基包含0.1ng/mL至1ng/mL、1ng/mL至5ng/mL、5ng/mL至10ng/mL、10ng/mL至20ng/mL,20ng/mL至30ng/mL、30ng/mL至40ng/mL、40ng/mL至50ng/mL、50ng/mL至100ng/mL的OKT3抗体。在一些实施方式中,细胞培养基不包含OKT-3抗体。
在一些实施方式中,启动第一次扩增细胞培养基在细胞培养基中包含一种以上TNFRSF激动剂。在一些实施方式中,TNFRSF激动剂包括4-1BB激动剂。在一些实施方式中,TNFRSF激动剂是4-1BB激动剂,4-1BB激动剂选自:乌瑞鲁单抗、乌托鲁单抗、EU-101、融合蛋白以及片段、衍生物、变体、生物类似物及它们的组合。在一些实施方式中,以足以在细胞培养基中达到0.1μg/mL至100μg/mL的浓度添加TNFRSF激动剂。在一些实施方式中,以足以在细胞培养基中达到20μg/mL至40μg/mL的浓度添加TNFRSF激动剂。
在一些实施方式中,除一种以上TNFRSF激动剂之外,启动第一次扩增的第一次扩增细胞培养基还包含初始浓度为约3000IU/mL的IL-2和初始浓度为约30IU/mL的OKT-3抗体,其中,一种以上TNFRSF激动剂包括4-1BB激动剂。
在一些实施方式中,在第二次扩增期间采用IL-2、IL-7、IL-15和/或IL-21的组合作为组合。在一些实施方式中,第二次扩增期间(包括例如根据图8的步骤D过程,以及如此处所述)可包括IL-2、IL-7、IL-15和/或IL-21以及它们的任何组合。在一些实施方式中,在第二次扩增期间采用IL-2、IL-15和IL-21的组合作为组合。在一些实施方式中,在根据图8的步骤D过程中,以及如此处所述,可包括IL-2、IL-15和IL-21及它们的任何组合。
在一些实施方式中,第二次扩增可在包含IL-2、OKT-3、抗原呈递饲养细胞和可选的TNFRSF激动剂的补充细胞培养基中进行。在一些实施方式中,第二次扩增发生在补充细胞培养基中。在一些实施方式中,补充细胞培养基包含IL-2、OKT-3和抗原呈递饲养细胞。在一些实施方式中,第二细胞培养基包含IL-2、OKT-3和抗原呈递细胞(APC;也称为抗原呈递饲养细胞)。在一些实施方式中,第二次扩增在包含IL-2、OKT-3和抗原呈递饲养细胞(即抗原呈递细胞)的细胞培养基中发生。
在一些实施方式中,第二扩增培养基包含约500IU/mL的IL-15、约400IU/mL的IL-15、约300IU/mL的IL-15、约200IU/mL的IL-15、约180IU/mL的IL-15、约160IU/mL的IL-15、约140IU/mL的IL-15、约120IU/mL的IL-15或约100IU/mL的IL-15。在一些实施方式中,第二扩增培养基包含约500IU/mL的IL-15至约100IU/mL的IL-15。在一些实施方式中,第二扩增培养基包含约400IU/mL的IL-15至约100IU/mL的IL-15。在一些实施方式中,第二扩增培养基包含约300IU/mL的IL-15至约100IU/mL的IL-15。在一些实施方式中,第二扩增培养基包含约200IU/mL的IL-15。在一些实施方式中,细胞培养基包含约180IU/mL的IL-15。在一个实施方式中,细胞培养基还包含IL-15。在一个优选实施方式中,细胞培养基包含约180IU/mL的IL-15。
在一些实施方式中,第二扩增培养基包含约20IU/mL的IL-21、约15IU/mL的IL-21、约12IU/mL的IL-21、约10IU/mL的IL-21、约5IU/mL IL-21、约4IU/mL IL-21、约3IU/mL IL-21、约2IU/mL IL-21、约1IU/mL IL-21或约0.5IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约20IU/mL的IL-21至约0.5IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约15IU/mL的IL-21至约0.5IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约12IU/mL的IL-21至约0.5IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约10IU/mL的IL-21至约0.5IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约5IU/mL的IL-21至约1IU/mL的IL-21。在一些实施方式中,第二扩增培养基包含约2IU/mL的IL-21。在一些实施方式中,细胞培养基包含约1IU/mL的IL-21。在一些实施方式中,细胞培养基包含约0.5IU/mL的IL-21。在一个实施方式中,细胞培养基还包含IL-21。在一个优选实施方式中,细胞培养基包含约1IU/mL的IL-21。
在一些实施方式中,抗原呈递饲养细胞(APC)是PBMC。在一个实施方式中,在快速扩增和/或第二次扩增中,TIL比PBMC和/或抗原呈递细胞的比率为约1:25、约1:50、约1:100、约1:125、约1:150、约1:175、约1:200、约1:225、约1:250、约1:275、约1:300、约1:325、约1:350、约1:375、约1:400,或约1:500。在一个实施方式中,在快速扩增和/或第二次扩增中,TIL比PBMC的比率为1:50至1:300。在一个实施方式中,在快速扩增和/或第二次扩增中,TIL比PBMC的比率为1:100至1:200。
在一个实施方式中,REP和/或第二次扩增在烧瓶中进行;其中,大量TIL与100或200倍过量的灭活饲养细胞、30mg/mL的OKT3抗CD3抗体和3000IU/mL IL-2混合于150mL培养基中。进行培养基更换(通常通过吸入新鲜培养基替换2/3培养基),直至细胞转移至替代生长室。如下文更充分讨论的,替代生长室包括G-REX烧瓶和透气容器。
在一些实施方式中,如实施例和附图中所述,第二次扩增(可包括称为REP过程的过程)缩短为7天至14天。在一些实施方式中,第二次扩增缩短为11天。
在一个实施方式中,REP和/或第二次扩增可使用如前所述的T-175烧瓶和透气袋(Tran等,J.I mmunother.,2008,31,742-51;Dudley等,J.I mmunother.,2003,26,332-42)或透气性培养皿(G-REX烧瓶)进行。在一些实施方式中,第二次扩增(包括称为快速扩增的扩增)在T-175烧瓶中进行,并且可将悬浮于150mL培养基中的约1×106TIL添加至每个T-175烧瓶中。TIL可在CM和AFM-V培养基的1:1混合物中培养,补充有3000IU/mL IL-2和30ng/mL的抗CD3。T-175烧瓶可在37℃、5%CO2中孵育。在第5天,可使用含有3000IU/mL IL-2的50/50培养基更换一半培养基。在一些实施方式中,在第7天,可将来自两个T-175烧瓶的细胞合并在3L袋中,将含有5%人AB血清和3000IU/mL IL-2的300mL AIM V添加至300mL TIL悬液中。每天或每2天计数各个袋中的细胞数,并添加新鲜培养基以使细胞计数保持为0.5×106至2.0×106个细胞/mL。
在一个实施方式中,第二次扩增(其可包括称为REP的扩增,以及图7的步骤D中提到的那些)可在容量为500mL、透气性硅底为100cm2的透气性烧瓶(G-Rex 100,可从WilsonWolf Manufacturing Corporation,新布莱顿,MN,美国商购)中进行,5×106或10×106TIL可与PBMC一起培养在400mL的50/50培养基中,补充有5%人AB血清、3000IU/mL IL-2和30ng/mL抗CD3(OKT3)。G-REX 100烧瓶可在37℃、5%CO2中孵育。在第5天,可以取出250mL上清液并置于离心瓶中并以1500rpm(491×g)离心10分钟。可以用含有5%人AB血清、3000IU/mL IL-2的150mL新鲜培养基重悬TIL沉淀,并加回到原来的G-REX 100烧瓶中。当TIL在G-REX 100烧瓶中连续扩增时,在第7天,可将每个G-REX 100中的TIL悬浮于各个烧瓶中存在的300mL培养基中,并且可将细胞悬液分成可用于接种3个G-REX 100烧瓶的3个100mL等分试样。然后可以向各个烧瓶中添加150mL含有5%人AB血清和3000IU/mL IL-2的AIM-V。G-Rex 100烧瓶可在37℃、5%CO2中孵育,4天后,可以向每个G-REX 100烧瓶中添加150mL含有3000IU/mL IL-2的AIM-V。可在培养的第14天收获细胞。
在一个实施方式中,第二次扩增(包括称为REP的扩增)在烧瓶中进行;其中,大量TIL与100或200倍过量的灭活饲养细胞、30mg/mL OKT3抗CD3抗体和3000IU/mL IL-2混合于150mL培养基中。在一些实施方式中,进行培养基更换,直至细胞转移至替代生长室。在一些实施方式中,用新鲜培养基呼吸来更换2/3的培养基。在一些实施方式中,如下文更充分地讨论,替代生长室包括G-REX烧瓶和透气容器。
在一个实施方式中,进行第二次扩增(包括称为REP的扩增),并且还包括选择肿瘤反应性优异的TIL的步骤。可使用本领域已知的任何选择方法。例如,美国专利申请公开号2016/0010058A1(其公开内容通过引用并入本文)中描述的方法可用于选择肿瘤反应性优异的TIL。
可选地,可使用本领域已知的标准检测法,在第二次扩增(包括称为REP扩增的扩增)之后进行细胞活力检测。例如,可对大量TIL样品进行台盼蓝拒染试验实验(trypanblue exclusion assay),其选择性地标记死细胞并允许活力评估。在一些实施方式中,可使用Cellometer K2自动细胞计数器(Nexcelom Bioscience,Lawrence,MA)对TIL样品进行计数和检测活力。在一些实施方式中,根据例如实施例15中所述的Cellometer K2ImageCytometer Automatic Cell Counter(Cellometer K2图像细胞仪自动细胞计数器)方案测定活力。
在一些实施方式中,TIL的第二次扩增(包括称为REP的扩增)可使用如前所述的T-175烧瓶和透气袋(Tran KQ、Zhou J、Durflinger KH等,2008,J.Immunother.,31:742-751和Dudley ME、Wunderlich JR、Shelton TE等,2003,J.Immunother.,26:332-342)或透气性G-REX烧瓶进行。在一些实施方式中,第二次扩增使用烧瓶进行。在一些实施方式中,第二次扩增使用透气性G-REX烧瓶进行。在一些实施方式中,第二次扩增在T-175烧瓶中进行,将约1×106TIL悬浮于约150mL培养基中,将它加至每个T-175烧瓶中。将TIL与经辐照的(50Gy)同种异体PBMC(作为“饲养”细胞)以1:100比率一起培养,将细胞在CM和AIM-V培养基的1:1混合物(50/50培养基)中培养,补充有3000IU/mL IL-2和30ng/mL的抗CD3。将T-175烧瓶在37℃、5%CO2中孵育。在一些实施方式中,在第5天,使用含有3000IU/mL IL-2的50/50培养基更换一半培养基。在一些实施方式中,在第7天,将来自2个T-175烧瓶的细胞合并于3L袋中,将含有5%人AB血清和3000IU/mL IL-2的300mL AIM-V添加至300mL TIL悬液中。可以每天或每2天计数各个袋中的细胞数,并且可以添加新鲜培养基以使细胞计数保持为约0.5×106至约2.0×106个细胞/mL。
在一些实施方式中,第二次扩增(包括称为REP的扩增)在具有100cm2透气性硅底的500mL容量的烧瓶(G-REX 100,Wilson Wolf)中进行(图1),约5×106或10×106TIL与经辐照同种异体PBMC以1:100的比率在400mL的50/50培养基中培养,该50/50培养基补充有3000IU/mL IL-2和30ng/mL的抗CD3。将G-REX 100烧瓶在37℃、5%CO2中孵育。在一些实施方式中,在第5天,取出250mL上清液并置于离心瓶中并以1500rpm(491g)离心10分钟。然后可以用150mL含有3000IU/mL IL-2的新鲜50/50培养基重悬TIL沉淀,并加回到原来的G-REX100烧瓶中。在TIL在G-REX 100烧瓶中连续扩增的实施方式中,在第7天,将每个G-REX 100中的TIL悬浮于各个烧瓶中存在的300mL培养基中,将细胞悬液分成用于接种3个G-REX 100烧瓶的3个100mL等分试样。然后向各个烧瓶中添加含有5%人AB血清和3000IU/mL IL-2的150mL AIM-V。G-REX 100烧瓶在37℃、5%CO2中孵育,4天后,向每个G-REX 100烧瓶中添加含有3000IU/mL IL-2的150mL AIM-V。在培养的第14天收获细胞。
T和B淋巴细胞的多种抗原受体通过有限但大量的基因片段的体细胞重组来产生。这些基因片段:V(可变区)、D(多变区)、J(连接区)和C(恒定区)确定免疫球蛋白和T细胞受体(TCR)的结合特异性和下游应用。本发明提供了产生TIL的方法,其显示并增加T细胞库的多样性。在一些实施方式中,通过本方法获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,第二次扩增获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,多样性的增加是免疫球蛋白多样性和/或T细胞受体多样性的增加。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白重链多样性。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白轻链多样性。在一些实施方式中,多样性是T细胞受体多样性。在一些实施方式中,多样性是选自α、β、γ和δ受体之一的T细胞受体的多样性。在一些实施方式中,T细胞受体(TCR)α和/或β的表达增加。在一些实施方式中,T细胞受体(TCR)α的表达增加。在一些实施方式中,T细胞受体(TCR)β的表达增加。在一些实施方式中,TCRab(即TCRα/β)的表达增加。
在一些实施方式中,第二扩增培养基(例如有时称为CM2或第二细胞培养基)包含IL-2、OKT-3以及抗原呈递饲养细胞(APC),如下文更详细讨论的。
在一些实施方式中,第二次扩增(例如根据图8的步骤D)在封闭系统生物反应器中进行。在一些实施方式中,如本文所述,采用封闭系统进行TIL扩增。在一些实施方式中,采用单个生物反应器。在一些实施方式中,例如,采用的单个生物反应器是G-REX-10或者G-REX-100。在一些实施方式中,封闭系统生物反应器是单个生物反应器。
在一些实施方式中,在第二次扩增(例如根据图8的步骤D)期间,可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μMsd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一些实施方式中,在第二次扩增(例如根据图8的步骤D)期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。在一个实施方式中,在第二次扩增(例如根据图8的步骤D)期间,可将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至细胞培养基中,该细胞培养基包含选自下组的量的TIL和其他试剂:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一些实施方式中,在第二次扩增(例如根据图8的步骤D)期间,可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。
1.饲养细胞和抗原呈递细胞
在一个实施方式中,在REP TIL扩增期间和/或在第二次扩增期间,本文所述的第二次扩增步骤(例如,包括例如图8的步骤D中所述的那些以及称为REP的那些扩增)需要过量的饲养细胞。在许多实施方式中,饲养细胞是从健康献血者的标准全血单位获得的外周血单核细胞(PBMC)。使用标准方法(如Ficoll-Paque梯度分离)获得PBMC。
通常,同种异体PBMC通过辐照或热处理被灭活并用于REP步骤,如实施例所述,它提供了评估经辐照的同种异体PBMC的复制机能不全(replication incompetence)的示例性方案。
在一些实施方式中,如果第14天的活细胞总数小于在REP的第0天和/或第二次扩增的第0天(即第二次扩增的开始日)投入培养的初始活细胞数,则认为PBMC复制机能不全并接受PBMC用于本文所述的TIL扩增步骤。
在一些实施方式中,如果与REP的第0天和/或第二次扩增的第0天(即第二次扩增的开始日)投入培养的初始活细胞数相比,第7天和第14天在OKT3和IL-2存在下培养的活细胞的总数没有增加,则认为PBMC复制机能不全并接受PBMC用于本文所述的TIL扩增步骤。在一些实施方式中,PBMC在30ng/mL OKT3抗体和3000IU/mL IL-2的存在下培养。
在一些实施方式中,如果与REP的第0天和/或第二次扩增的第0天(即第二次扩增的开始日)投入培养的初始活细胞数相比,第7天和第14天在OKT3和IL-2存在下培养的活细胞的总数没有增加,则认为PBMC复制机能不全并接受PBMC用于本文所述的TIL扩增步骤。在一些实施方式中,PBMC在5ng/mL至60ng/mL OKT3抗体和1000IU/mL至6000IU/mL IL-2的存在下培养。在一些实施方式中,PBMC在10ng/mL至50ng/mL的OKT3抗体和2000IU/mL至5000IU/mL IL-2的存在下培养。在一些实施方式中,PBMC在20ng/mL至40ng/mL OKT3抗体和2000IU/mL至4000IU/mL IL-2的存在下培养。在一些实施方式中,PBMC在25ng/mL至35ng/mLOKT3抗体和2500IU/mL至3500IU/mL IL-2的存在下培养。
在一些实施方式中,抗原呈递饲养细胞是PBMC。在一些实施方式中,抗原呈递饲养细胞是人工抗原呈递饲养细胞。在一个实施方式中,第二次扩增中TIL与抗原呈递饲养细胞的比率为约1:25、约1:50、约1:100、约1:125、约1:150、约1:175、约1:200、约1:225、约1:250、约1:275、约1:300、约1:325、约1:350、约1:375、约1:400,或者约1:500。在一个实施方式中,第二次扩增中TIL与抗原呈递饲养细胞的比率为1:50至1:300。在一个实施方式中,第二次扩增中TIL与抗原呈递饲养细胞的比率为1:100至1:200。
在一个实施方式中,本文所述的第二次扩增程序需要约2.5×109饲养细胞比约100×106TIL的比率。在另一个实施方式中,本文所述的第二次扩增程序需要约2.5×109饲养细胞比约50×106TIL的比率。在又一个实施方式中,本文所述的第二次扩增程序需要约2.5×109饲养细胞至约25×106TIL的比率。
在一个实施方式中,本文所述的第二次扩增步骤在第二次扩增期间需要过量的饲养细胞。在许多实施方式中,饲养细胞是从健康献血者的标准全血单位获得的外周血单核细胞(PBMC)。使用标准方法如Ficoll-Paque梯度分离获得PBMC。在一个实施方式中,使用人工抗原呈递(aAPC)细胞代替PBMC。
通常,同种异体PBMC通过辐照或者热处理被灭活,并用于本文所述的TIL扩增步骤,包括例如图4、5、6和7中所述的示例性步骤。
在一个实施方式中,在第二次扩增中使用人工抗原呈递细胞替代PBMC或者与PBMC组合。
2.细胞因子
如本领域已知,本文所述的扩增方法通常使用具有高剂量细胞因子(特别是IL-2)的培养基。
或者,另外可使用细胞因子的组合进行TIL的快速扩增和/或第二次扩增;其中,IL-2、IL-15和IL-21中的两种以上的组合如国际公开号WO2015/189356和国际公开号WO2015/189357中概述的那样,其全部内容通过引用明确并入本文。因此,可能的组合包括IL-2和IL-15、IL-2和IL-21、IL-15和IL-21,以及IL-2、IL-15和IL-21,发现后者在许多实施方式中特别有用。使用细胞因子的组合特别有利于淋巴细胞(特别是本文所述的T细胞)的产生。
E.步骤E:收获TIL
在第二次扩增步骤后,可以收获细胞。在一些实施方式中,例如,在如图8中所提供的一个、两个、三个、4个或者更多次扩增步骤之后收获TIL。在一些实施方式中,例如,在如图8中所提供的两次扩增步骤之后收获TIL。
可以以任何适当和无菌的方式收获TIL,包括例如通过离心。收获TIL的方法是本领域熟知的,并且任何这样的已知方法可与本发明方法一起使用。在一些实施方式中,使用自动化系统收获TIL。
细胞收集器和/或细胞处理系统可从多种来源商购,包括例如Fresenius Kabi、Tomtec Life Science、Perkin Elmer和Inotech Biosystems International,Inc.。任何基于细胞的收集器均可用于本发明方法。在一些实施方式中,细胞收集器和/或细胞处理系统是基于膜的细胞收集器。在一些实施方式中,通过细胞处理系统,例如LOVO系统(Fresenius Kabi制造),收获细胞。术语“LOVO细胞处理系统”还指任何供应商制造的可在无菌和/或封闭系统环境中泵送包含细胞的溶液通过膜或过滤器(如旋转膜或旋转过滤器)的任何仪器或设备,允许用于连续流动和细胞处理,以去除不含沉淀的上清液或细胞培养基。在一些实施方式中,细胞收集器和/或细胞处理系统可在封闭无菌系统中进行细胞分离、洗涤、流体交换、浓缩和/或其他细胞处理步骤。
在一些实施方式中,收获(例如根据图8的步骤E)在封闭系统生物反应器中进行。在一些实施方式中,如本文所述,采用封闭系统进行TIL扩增。在一些实施方式中,采用单个生物反应器。在一些实施方式中,例如,采用的单个生物反应器是G-REX-10或者G-REX-100。在一些实施方式中,封闭系统生物反应器是单个生物反应器。
在一些实施方式中,根据实施例16中所述的过程进行图8的步骤E。在一些实施方式中,为保持系统的无菌性和封闭性,通过注射器在无菌条件下进入封闭系统。在一些实施方式中,采用如实施例16中所述的封闭系统。
在一些实施方式中,根据实施例16中所述的方法收获TIL。在一些实施方式中,使用第8.5节中所述的方法(实施例16中称为:第11天TIL收获)收获第1天至第11天的TIL。在一些实施方式中,使用第8.12节中所述的方法(实施例16中称为:第22天TIL收获)收获第12天至第22天的TIL。
F.步骤F:最终配方/转移至输液袋
在如图7中示例性顺序提供的步骤A至E之后以及如上述和于此详述的概述完成后,将细胞转移至容器以用于对患者施用。在一些实施方式中,一旦使用上述扩增方法获得治疗足够数量的TIL,则将它们转移至容器以用于对患者施用。
在一个实施方式中,使用本公开APC扩增的TIL作为药物组合物施用于患者。在一个实施方式中,药物组合物是TIL在无菌缓冲液中的悬液。使用本公开PBMC扩增的TIL可通过本领域已知的任何合适的途径施用。在一些实施方式中,T细胞以单次动脉内或静脉内输注施用,输注优选持续约30至60分钟。其他合适的施用途径包括腹膜内、鞘内和淋巴管内。
1.药物组合物、剂量和施用方案
在一个实施方式中,将使用本公开的方法扩增的TIL作为药物组合物施用于患者。在一个实施方式中,药物组合物是TIL在无菌缓冲液中的悬液。使用本公开的PBMC扩增的TIL可通过本领域已知的任何合适途径施用。在一些实施方式中,T细胞以单次动脉内或静脉内输注施用,输注优选持续约30至60分钟。其他合适的施用途径包括腹膜内、鞘内和淋巴管内施用。
可以施用任何合适剂量的TIL。在一些实施方式中,特别是当癌是黑色素瘤时,施用约2.3×1010至约13.7×1010TIL群,平均约7.8×1010TIL群。在一个实施方式中,施用约1.2×1010至约4.3×1010TIL群。在一些实施方式中,施用约3×1010至约12×1010TIL群。在一些实施方式中,施用约4×1010至约10×1010TIL群。在一些实施方式中,施用约5×1010至约8×1010TIL群。在一些实施方式中,施用约6×1010至约8×1010TIL群。在一些实施方式中,施用约7×1010至约8×1010TIL群。在一些实施方式中,治疗有效剂量为约2.3×1010至约13.7×1010。在一些实施方式中,特别是当癌是黑色素瘤时,治疗有效剂量为约7.8×1010TIL群。在一些实施方式中,治疗有效剂量为约1.2×1010至约4.3×1010TIL群。在一些实施方式中,治疗有效剂量为约3×1010至约12×1010TIL群。在一些实施方式中,治疗有效剂量为约4×1010至约10×1010TIL群。在一些实施方式中,治疗有效剂量为约5×1010至约8×1010TIL群。在一些实施方式中,治疗有效剂量为约6×1010至约8×1010TIL群。在一些实施方式中,治疗有效剂量为约7×1010至约8×1010TIL群。
在一些实施方式中,本发明的药物组合物中提供的TIL的数量为约1×106、2×106、3×106、4×106、5×106、6×106、7×106、8×106、9×106、1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107、1×108、2×108、3×108、4×108、5×108、6×108、7×108、8×108、9×108、1×109、2×109、3×109、4×109、5×109、6×109、7×109、8×109、9×109、1×1010、2×1010、3×1010、4×1010、5×1010、6×1010、7×1010、8×1010、9×1010、1×1011、2×1011、3×1011、4×1011、5×1011、6×1011、7×1011、8×1011、9×1011、1×1012、2×1012、3×1012、4×1012、5×1012、6×1012、7×1012、8×1012、9×1012、1×1013、2×1013、3×1013、4×1013、5×1013、6×1013、7×1013、8×1013,以及9×1013。在一个实施方式中,本发明的药物组合物中提供的TIL数量的范围为1×106至5×106、5×106至1×107、1×107至5×107、5×107至1×108、1×108至5×108、5×108至1×109、1×109至5×109、5×109至1×1010、1×1010至5×1010、5×1010至1×1011、5×1011至1×1012、1×1012至5×1012,以及5×1012至1×1013
在一些实施方式中,本发明的药物组合物中提供的TIL的浓度小于药物组合物的例如100%、90%、80%、70%、60%、50%、40%、30%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.4%、0.3%、0.2%、0.1%、0.09%、0.08%、0.07%、0.06%、0.05%、0.04%、0.03%、0.02%、0.01%、0.009%、0.008%、0.007%、0.006%、0.005%、0.004%、0.003%、0.002%、0.001%、0.0009%、0.0008%、0.0007%、0.0006%、0.0005%、0.0004%、0.0003%、0.0002%,或0.0001%w/w、w/v或v/v。
在一些实施方式中,本发明的药物组合物中提供的TIL的浓度大于药物组合物的90%、80%、70%、60%、50%、40%、30%、20%、19.75%、19.50%、19.25%、19%、18.75%、18.50%、18.25%、18%、17.75%、17.50%、17.25%、17%、16.75%、16.50%、16.25%、16%、15.75%、15.50%、15.25%、15%、14.75%、14.50%、14.25%、14%、13.75%、13.50%、13.25%13%、12.75%、12.50%、12.25%、12%、11.75%、11.50%、11.25%、11%、10.75%、10.50%、10.25%、10%、9.75%、9.50%、9.25%、9%、8.75%、8.50%、8.25%、8%、7.75%、7.50%、7.25%、7%、6.75%、6.50%、6.25%、6%、5.75%、5.50%、5.25%、5%、4.75%、4.50%、4.25%、4%、3.75%、3.50%、3.25%、3%、2.75%、2.50%、2.25%、2%、1.75%、1.50%、125%、1%、0.5%、0.4%、0.3%、0.2%、0.1%、0.09%、0.08%、0.07%、0.06%、0.05%、0.04%、0.03%、0.02%、0.01%、0.009%、0.008%、0.007%、0.006%、0.005%、0.004%、0.003%、0.002%、0.001%、0.0009%、0.0008%、0.0007%、0.0006%、0.0005%、0.0004%、0.0003%、0.0002%,或0.0001%w/w、w/v或v/v。
在一些实施方式中,本发明的药物组合物中提供的TIL的浓度范围为药物组合物的约0.0001%至约50%、约0.001%至约40%、约0.01%至约30%、约0.02%至约29%、约0.03%至约28%、约0.04%至约27%、约0.05%至约26%、约0.06%至约25%、约0.07%至约24%、约0.08%至约23%、约0.09%至约22%、约0.1%至约21%、约0.2%至约20%、约0.3%至约19%、约0.4%至约18%、约0.5%至约17%、约0.6%至约16%、约0.7%至约15%、约0.8%至约14%、约0.9%至约12%,或约1%至约10%w/w、w/v或v/v。
在一些实施方式中,本发明的药物组合物中提供的TIL的浓度范围为药物组合物的约0.001%至约10%、约0.01%至约5%、约0.02%至约4.5%、约0.03%至约4%、约0.04%至约3.5%、约0.05%至约3%、约0.06%至约2.5%、约0.07%至约2%、约0.08%至约1.5%、约0.09%至约1%、约0.1%至约0.9%w/w、w/v或v/v。
在一些实施方式中,本发明的药物组合物中提供的TIL的量等于或小于10g、9.5g、9.0g、8.5g、8.0g、7.5g、7.0g、6.5g、6.0g、5.5g、5.0g、4.5g、4.0g、3.5g、3.0g、2.5g、2.0g、1.5g、1.0g、0.95g、0.9g、0.85g、0.8g、0.75g、0.7g、0.65g、0.6g、0.55g、0.5g、0.45g、0.4g、0.35g、0.3g、0.25g、0.2g、0.15g、0.1g、0.09g、0.08g、0.07g、0.06g、0.05g、0.04g、0.03g、0.02g、0.01g、0.009g、0.008g、0.007g、0.006g、0.005g、0.004g、0.003g、0.002g、0.001g、0.0009g、0.0008g、0.0007g、0.0006g、0.0005g、0.0004g、0.0003g、0.0002g或0.0001g。
在一些实施方式中,本发明的药物组合物中提供的TIL的量大于0.0001g、0.0002g、0.0003g、0.0004g、0.0005g、0.0006g、0.0007g、0.0008g、0.0009g、0.001g、0.0015g、0.002g、0.0025g、0.003g、0.0035g、0.004g、0.0045g、0.005g、0.0055g、0.006g、0.0065g、0.007g、0.0075g、0.008g、0.0085g、0.009g、0.0095g、0.01g、0.015g、0.02g、0.025g、0.03g、0.035g、0.04g、0.045g、0.05g、0.055g、0.06g、0.065g、0.07g、0.075g、0.08g、0.085g、0.09g、0.095g、0.1g、0.15g、0.2g、0.25g、0.3g、0.35g、0.4g、0.45g、0.5g、0.55g、0.6g、0.65g、0.7g、0.75g、0.8g、0.85g、0.9g、0.95g、1g、1.5g、2g、2.5g、3g、3.5g、4g、4.5g、5g、5.5g、6g、6.5g、7g、7.5g、8g、8.5g、9g、9.5g或10g。
本发明的药物组合物中提供的TIL在宽剂量范围内有效。精确的剂量取决于施用途径、施用化合物的形式、待治疗对象的性别和年龄、待治疗对象的体重,以及主治医师的偏好和经验。如果合适,也可使用临床确定的TIL剂量。使用本文方法施用的药物组合物的量(例如TIL的剂量)将取决于所治疗的人或哺乳动物、病症或病症的严重程度、施用率、活性药物成分的配置和处方医生的自由裁量权。
在一些实施方式中,TIL可以单剂量施用。此种施用可通过注射,例如静脉内注射。在一些实施方式中,TIL可以多剂量施用。剂量可为每年一次、两次、三次、四次、五次、六次或超过六次。剂量可为每月一次、每两周一次、每周一次或每2天一次。只要有必要,TIL的施用可以继续。
在一些实施方式中,TIL的有效剂量为约1×106、2×106、3×106、4×106、5×106、6×106、7×106、8×106、9×106、1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107、1×108、2×108、3×108、4×108、5×108、6×108、7×108、8×108、9×108、1×109、2×109、3×109、4×109、5×109、6×109、7×109、8×109、9×109、1×1010、2×1010、3×1010、4×1010、5×1010、6×1010、7×1010、8×1010、9×1010、1×1011、2×1011、3×1011、4×1011、5×1011、6×1011、7×1011、8×1011、9×1011、1×1012、2×1012、3×1012、4×1012、5×1012、6×1012、7×1012、8×1012、9×1012、1×1013、2×1013、3×1013、4×1013、5×1013、6×1013、7×1013、8×1013,以及9×1013。在一些实施方式中,TIL的有效剂量的范围为1×106至5×106、5×106至1×107、1×107至5×107、5×107至1×108、1×108至5×108、5×108至1×109、1×109至5×109、5×109至1×1010、1×1010至5×1010、5×1010至1×1011、5×1011至1×1012、1×1012至5×1012,以及5×1012至1×1013
在一些实施方式中,TIL的有效剂量的范围为约0.01mg/kg至约4.3mg/kg、约0.15mg/kg至约3.6mg/kg、约0.3mg/kg至约3.2mg/kg、约0.35mg/kg至约2.85mg/kg、约0.15mg/kg至约2.85mg/kg、约0.3mg至约2.15mg/kg、约0.45mg/kg至约1.7mg/kg、约0.15mg/kg至约1.3mg/kg、约0.3mg/kg至约1.15mg/kg、约0.45mg/kg至约1mg/kg、约0.55mg/kg至约0.85mg/kg、约0.65mg/kg至约0.8mg/kg、约0.7mg/kg至约0.75mg/kg、约0.7mg/kg至约2.15mg/kg、约0.85mg/kg至约2mg/kg、约1mg/kg至约1.85mg/kg、约1.15mg/kg至约1.7mg/kg、约1.3mg/kg至约1.6mg/kg、约1.35mg/kg至约1.5mg/kg、约2.15mg/kg至约3.6mg/kg、约2.3mg/kg至约3.4mg/kg、约2.4mg/kg至约3.3mg/kg、约2.6mg/kg至约3.15mg/kg、约2.7mg/kg至约3mg/kg、约2.8mg/kg至约3mg/kg,或者约2.85mg/kg至约2.95mg/kg。
在一些实施方式中,TIL的有效剂量的范围为约1mg至约500mg、约10mg至约300mg、约20mg至约250mg、约25mg至约200mg、约1mg至约50mg、约5mg至约45mg、约10mg至约40mg、约15mg至约35mg、约20mg至约30mg、约23mg至约28mg、约50mg约150mg、约60mg至约140mg、约70mg至约130mg、约80mg至约120mg、约90mg至约110mg、约95mg至约105mg、约98mg至约102mg、约150mg至约250mg、约160mg至约240mg、约170mg至约230mg、约180mg至约220mg、约190mg至约210mg、约195mg至约205mg,或者约198至约207mg。
有效量的TIL可通过具有类似用途的药剂的任何可接受的施用方式以单剂量或多剂量施用,包括鼻内和透皮途径,通过动脉内注射、静脉内、腹膜内、肠胃外、肌内、皮下、局部,通过移植或通过吸入。
G.可选的细胞培养基成分
1.抗CD3抗体
在一些实施方式中,本文所述扩增方法(包括称为REP的那些,参见例如图A)中使用的培养基也包含抗CD3抗体。抗CD3抗体与IL-2结合可诱导TIL群中的T细胞活化和细胞分裂。全长抗体以及Fab和F(ab′)2片段均可看到这种效果,前者通常是优选的。参见例如Tsoukas等,J.Immunol.1985,135,1719,其全部内容通过引用整体并入本文。
如本领域技术人员将理解的,有许多可用于本发明的合适的抗人CD3抗体,包括来自各种哺乳动物的抗人CD3多克隆和单克隆抗体,包括但不限于鼠科、人类、灵长目动物、大鼠和犬科抗体。在具体实施方式中,使用OKT3抗CD3抗体(可从Ortho-McNeil,Raritan,NJ或Miltenyi Biotech,Aubum,CA商购)。
2.4-1BB(CD137)激动剂
在一个实施方式中,TNFRSF激动剂是4-1BB(CD137)激动剂。4-1BB激动剂可为本领域已知的任何4-1BB结合分子。4-1BB结合分子可为能够结合人或哺乳动物4-1BB的单克隆抗体或融合蛋白。4-1BB激动剂或4-1BB结合分子可包含免疫球蛋白分子的任何同种型(例如IgG、IgE、IgM、IgD、IgA和IgY)、任何类(例如IgG1、IgG2、IgG3、IgG3、IgG4、IgA1和IgA2)或任何亚类的免疫球蛋白重链。4-1BB激动剂或4-1BB结合分子可同时具有重链和轻链。如本文所用,术语“结合分子”还包括与4-1BB结合的抗体(包括全长抗体)、单克隆抗体(包括全长单克隆抗体)、多克隆抗体、多特异性抗体(例如双特异性抗体)、人抗体、人源化抗体或嵌合抗体以及抗体片段(例如,Fab片段、F(ab')片段、由Fab表达文库产生的片段、以上任一项的表位结合片段)以及抗体的工程形式(例如scFv分子)。在一个实施方式中,4-1BB激动剂是抗原结合蛋白,其是全人抗体。在一个实施方式中,4-1BB激动剂是抗原结合蛋白,其是人源化抗体。在一些实施方式中,用于本公开的方法和组合物中的4-1BB激动剂包括:抗4-1BB抗体、人抗4-1BB抗体、小鼠抗4-1BB抗体、哺乳动物抗4-1BB抗体、单克隆抗4-1BB抗体、多克隆抗4-1BB抗体、嵌合抗4-1BB抗体、抗4-1BB纤连蛋白(Adnectin)、抗4-1BB域抗体、单链抗4-1BB片段、重链抗-4-1BB片段、轻链抗4-1BB片段、抗4-1BB融合蛋白,以及它们的片段、衍生物、缀合物、变体或生物类似物。已知激动性抗4-1BB抗体诱导强烈的免疫反应。Lee等,PLOS One 2013,8,e69677。在一个优选实施方式中,4-1BB激动剂是激动性抗4-1BB人源化或全人单克隆抗体(即,源自单个细胞系的抗体)。在一个实施方式中,4-1BB激动剂是EU-101(Eutilex Co.Ltd.)、乌托鲁单抗或乌瑞鲁单抗或其片段、衍生物、缀合物、变体或生物类似物。在一个优选实施方式中,4-1BB激动剂是乌托鲁单抗或乌瑞鲁单抗或其片段、衍生物、缀合物、变体或生物类似物。
在一个优选实施方式中,4-1BB激动剂或4-1BB结合分子也可为融合蛋白。在一个优选实施方式中,与激动性单克隆抗体(其通常具有两个配体结合结构域)相比,多聚体4-1BB激动剂(例如,(具有三个或六个配体结合结构域的)三聚体或六聚体4-1BB激动剂)可诱导优异的受体(4-1BBL)聚集和内部细胞信号复合物形成。包含三个TNFRSF结合结构域和IgG1-Fc和可选地进一步连接两个以上这些融合蛋白的三聚体(三价)或六聚体(或六价)或更大的融合蛋白描述于例如Gieffers等,Mol.Cancer Therapeutics 2013,12,2735-47。
已知激动性4-1BB抗体和融合蛋白诱导强烈的免疫应答。在一个优选实施方式中,4-1BB激动剂是以足以减少毒性的方式特异性结合4-1BB抗原的单克隆抗体或融合蛋白。在一些实施方式中,4-1BB激动剂是消除抗体依赖性细胞毒性(ADCC)(例如NK细胞的细胞毒性)的激动性4-1BB单克隆抗体或融合蛋白。在一些实施方式中,4-1BB激动剂是消除抗体依赖性细胞吞噬作用(ADCP)的激动性4-1BB单克隆抗体或融合蛋白。在一些实施方式中,4-1BB激动剂是消除补体依赖性细胞毒性(CDC)的激动性4-1BB单克隆抗体或融合蛋白。在一些实施方式中,4-1BB激动剂是消除Fc区功能性的激动性4-1BB单克隆抗体或融合蛋白。
在一些实施方式中,4-1BB激动剂的特征在于以高亲和力和激动性活性结合人4-1BB(SEQ ID NO:9)。在一个实施方式中,4-1BB激动剂是与人4-1BB(SEQ ID NO:9)结合的结合分子。在一个实施方式中,4-1BB激动剂是与鼠4-1BB(SEQ ID NO:10)结合的结合分子。表3总结了与4-1BB激动剂或结合分子结合的4-1BB抗原的氨基酸序列。
表3:4-1BB抗原的氨基酸序列
在一些实施方式中,所述的组合物、过程和方法包括KD为约100pM以下的结合人或鼠4-1BB的4-1BB激动剂、KD为约100pM以下的结合人或鼠4-1BB、KD为90pM以下、KD为约80pM以下的结合人或鼠4-1BB的4-1BB激动剂、KD为约70pM以下的结合人或鼠4-1BB的4-1BB激动剂、KD为约60pM以下的结合人或鼠4-1BB的4-1BB激动剂、KD为约50pM以下的结合人或鼠4-1BB的4-1BB激动剂、KD为约40pM以下的结合人或鼠4-1BB的4-1BB激动剂或KD为约30pM以下的结合人或鼠4-1BB的4-1BB激动剂。
在一些实施方式中,所述的组合物、过程和方法包括kassoc为约7.5×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂、kassoc为约7.5×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂、kassoc为约8×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂、kassoc为约8.5×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂、kassoc为约9×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂、kassoc为约9.5×1051/M·s以上的结合人或鼠4-1BB的4-1BB激动剂或kassoc为约1×1061/M·s以上的结合人或鼠4-1BB的4-1BB激动剂。
在一些实施方式中,所述的组合物、过程和方法包括kdissoc为约2×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.1×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.2×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.3×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.4×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.5×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.6×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.7×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.8×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂、kdissoc为约2.9×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂或kdissoc为约3×10-51/s以下的结合人或鼠4-1BB的4-1BB激动剂。
在一些实施方式中,所述的组合物、过程和方法包括IC50为约10nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约9nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约8nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约7nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约6nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约5nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约4nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约3nM以下的结合人或鼠4-1BB的4-1BB激动剂、IC50为约2nM以下的结合人或鼠4-1BB的4-1BB激动剂或IC50为约1nM以下的结合人或鼠4-1BB的4-1BB激动剂。
在一个优选实施方式中,4-1BB激动剂是乌托鲁单抗(也称为PF-05082566或MOR-7480)或其片段、衍生物、变体或生物类似物。乌托鲁单抗可从Pfizer,Inc.商购。乌托鲁单抗是免疫球蛋白G2-λ、抗[智人TNFRSF9(肿瘤坏死因子受体(TNFR)超家族成员9,4-1BB,T细胞抗原ILA,CD137)]、智人(全人)单克隆抗体。乌托鲁单抗的氨基酸序列于表4。乌托鲁单抗包含:在Asn59和Asn292处的糖基化位点;在22-96位(VH-VL)、143-199位(CH1-CL)、256-316位(CH2)和362-420位(CH3)的重链链内二硫键;在22'-87'位(VH-VL)和136'-195'位(CH1-CL)的轻链链内二硫键;在IgG2A同工型218-218位、219-219位、222-222位和225-225位,在IgG2A/B同工型218-130位、219-219位、222-222位和225-225位,以及在IgG2B同工型219-130(2)位、222-222位和225-225位的链间重链-重链二硫键;以及在IgG2A同工型130-213′(2)位、IgG2A/B同工型218-213′位和130-213′以及IgG2B同工型218-213′(2)位的链间重链-轻链二硫键。乌托鲁单抗及其变体和片段的制备和性质描述于美国专利号8,821,867、8,337,850和9,468,678;以及国际专利申请公开号WO2012/032433A1,其各自公开内容通过引用并入本文。乌托鲁单抗的临床前特征描述于Fisher等,Cancer Immunolog.&Immunother.2012,61,1721-33。乌托鲁单抗在各种血液学和实体瘤适应症中的当前临床试验包括U.S.National Institutes of Health clinicaltrials.gov标识符NCT02444793、NCT01307267、NCT02315066和NCT02554812。
在一个实施方式中,4-1BB激动剂包含SEQ ID NO:11给出的重链和SEQ ID NO:12给出的轻链。在一个实施方式中,4-1BB激动剂包括分别具有SEQ ID NO:11和SEQ ID NO:12所示序列或其抗原结合片段、Fab片段、单链可变片段(scFv)、其变体或缀合物的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:11和SEQ ID NO:12所示序列具有至少99%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:11和SEQ ID NO:12所示序列具有至少98%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:11和SEQ ID NO:12所示序列具有至少97%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:11和SEQ ID NO:12所示序列具有至少96%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ IDNO:11和SEQ ID NO:12所示序列具有至少95%同一性的重链和轻链。
在一个实施方式中,4-1BB激动剂包括乌托鲁单抗的重链CDR和轻链CDR或可变区(VR)。在一个实施方式中,4-1BB激动剂重链可变区(VH)包含SEQ ID NO:13所示的序列,4-1BB激动剂轻链可变区(VL)包含SEQ ID NO:14所示的序列,及它们的保守性氨基酸取代。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:13和SEQ ID NO:14所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:13和SEQID NO:14所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:13和SEQ ID NO:14所示序列具有至少97%同一性的VH和VL区。在一个实施方式中4-1BB激动剂包含分别与SEQ ID NO:13和SEQ ID NO:14所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:13和SEQ ID NO:14所示序列具有至少95%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含scFv抗体,该scFv抗体包含分别与SEQ ID NO:13和SEQ ID NO:14所示序列具有至少99%同一性的VH和VL区。
在一个实施方式中,4-1BB激动剂包含分别具有SEQ ID NO:15、SEQ ID NO:16和SEQ ID NO:17所示序列及它们的保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:18、SEQ ID NO:19和SEQ ID NO:20所示序列及它们的保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,4-1BB激动剂是由药物监管机构参考乌托鲁单抗批准的4-1BB激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包括4-1BB抗体,该4-1BB抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品是乌托鲁单抗。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的4-1BB激动剂抗体,其中,4-1BB激动剂抗体以不同于参考药物产品或参考生物产品制剂的制剂提供,其中,参考药物产品或参考生物产品是乌托鲁单抗。4-1BB激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是乌托鲁单抗。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是乌托鲁单抗。
表4:与乌托鲁单抗有关的4-1BB激动剂抗体的氨基酸序列
在一个优选实施方式中,4-1BB激动剂是单克隆抗体乌瑞鲁单抗(也称为BMS-663513和20H4.9.h4a)或其片段、衍生物、变体或生物类似物。乌瑞鲁单抗可从Bristol-Myers Squibb,Inc.和Creative Biolabs,Inc.商购。乌瑞鲁单抗是免疫球蛋白G4-κ、抗[智人TNFRSF9(肿瘤坏死因子受体超家族成员9,4-1BB,T细胞抗原ILA,CD137)]、智人(全人)单克隆抗体。乌瑞鲁单抗的氨基酸序列列于表5。乌瑞鲁单抗包含:在298(和298')位的N-糖基化位点;在22-95位(VH-VL)、148-204位(CH1-CL)、262-322位(CH2)和368-426位(CH3)(以及22”-95”位、148”-204”位、262”-322”位和368”-426”位)的重链链内二硫键;在23'-88'位(VH-VL)和136'-196'位(CH1-CL)(以及23”'-88”'位和136”'-196”'位的轻链链内二硫桥;在227-227'位和230-230”位的链间重链-重链二硫键;以及在135-216'和135'-216”位的链间重链-轻链二硫键。乌瑞鲁单抗及其变体和片段的制备和性质描述于美国专利号7,288,638和8,962,804中,其公开内容通过引用并入本文。乌瑞鲁单抗的临床前和临床特征描述于Segal等,Clin.Cancer Res.2016,可获自http://dx.doi.org/10.1158/1078-0432.CCR-16-1272。乌瑞鲁单抗在多种血液学和实体瘤适应症中的当前临床试验包括U.S.NationalInstitutes of Health clinicaltrials.gov标识符NCT01775631、NCT02110082、NCT02253992和NCT01471210。
在一个实施方式中,4-1BB激动剂包含SEQ ID NO:21给出的重链和SEQ ID NO:22给出的轻链。在一个实施方式中,4-1BB激动剂包含分别具有SEQ ID NO:21和SEQ ID NO:22所示序列或其抗原结合片段、Fab片段、单链可变片段(scFv)、变体或缀合物的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:21和SEQ ID NO:22所示序列具有至少99%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:21和SEQ ID NO:22所示序列具有至少98%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:21和SEQ ID NO:22所示序列具有至少97%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:21和SEQ ID NO:22所示序列具有至少96%同一性的重链和轻链。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:21和SEQ ID NO:22所示序列具有至少95%同一性的重链和轻链。
在一个实施方式中,4-1BB激动剂包含乌瑞鲁单抗的重链和轻链CDR或可变区(VR)。在一个实施方式中,4-1BB激动剂重链可变区(VH)包含SEQ ID NO:23所示的序列,4-1BB激动剂轻链可变区(VL)包含SEQ ID NO:24所示的序列,及其保守的氨基酸取代。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:23和SEQ ID NO:24所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:23和SEQID NO:24所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:23和SEQ ID NO:24所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:23和SEQ ID NO:24所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包含分别与SEQ ID NO:23和SEQ IDNO:24所示序列具有至少95%同一性的VH和VL区。在一个实施方式中,4-1BB激动剂包括scFv抗体,该scFv抗体分别与SEQ ID NO:23和SEQ ID NO:24所示序列具有至少99%同一性的VH和VL区。
在一个实施方式中,4-1BB激动剂包含分别具有SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:27所示序列且和其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:28,SEQ ID NO:29和SEQ ID NO:30所示序列和其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,4-1BB激动剂是药物监管机构参考乌瑞鲁单抗批准的4-1BB激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包括4-1BB抗体,该4-1BB抗体包含与参考药物产品或参考生物产品具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品是乌瑞鲁单抗。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的4-1BB激动剂抗体,其中,4-1BB激动剂抗体制剂不同于参考药物产品或参考生物产品制剂,其中,参考药物产品或参考生物产品为乌瑞鲁单抗。4-1BB激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是乌瑞鲁单抗。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是乌瑞鲁单抗。
表5:与乌瑞鲁单抗有关的4-1BB激动剂抗体的氨基酸序列
在一个实施方式中,4-1BB激动剂选自:1D8、3Elor、4B4(BioLegend 309809)、H4-1BB-M127(BD Pharmingen 552532)、BBK2(Thermo Fisher MS621PABX)、145501(LeincoTechnologies B591)、保藏于ATCC号HB-11248的细胞系产生并公开于美国专利号6,974,863的抗体、5F4(BioLegend 31 1503)、C65-485(BD Pharmingen 559446)、美国专利申请公开号US2005/0095244中公开的抗体、美国专利号7,288,638中公开的抗体(例如20H4.9-IgG1(BMS-663031))、美国专利号6,887,673中公开的抗体(例如4E9或BMS-554271)、美国专利号7,214,493中公开的抗体、美国专利号6,303,121中公开的抗体、美国专利号6,569,997中公开的抗体、美国专利号6,905,685中公开的抗体(例如4E9或BMS-554271)、美国专利号6,362,325中公开的抗体(例如1D8或BMS-469492;3H3或BMS-469497;或3E1)、美国专利号6,974,863中公开的抗体(例如53A2);美国专利6,210,669中公开的抗体(例如1D8、3B8或3E1)、美国专利5,928,893中描述的抗体、美国专利6,303,121中公开的抗体、美国专利6,569,997中公开的抗体、国际专利申请公开号WO2012/177788、WO2015/119923和WO2010/042433中公开的抗体,及它们的片段、衍生物、缀合物、变体或生物类似物,其中,前述专利或专利申请出版物中的各自公开内容通过引用整体并入本文。
在一个实施方式中,4-1BB激动剂是描述于国际专利申请公开号WO2008/025516A1、WO2009/007120A1、WO2010/003766A1、WO2010/010051A1和WO2010/078966A1;美国专利申请公开号US2011/0027218A1、US2015/0126709A1、US2011/0111494A1、US2015/0110734A1和US2015/0126710A1;以及美国专利号9,359,420、9,340,599、8,921,519和8,450,460的4-1BB激动性融合蛋白,其公开内容通过引用并入本文。
在一个实施方式中,4-1BB激动剂是如结构I-A(C末端Fc抗体片段融合蛋白)或结构I-B(N末端Fc抗体片段融合蛋白)所描述的4-1BB激动性融合蛋白,或其片段、衍生物、缀合物、变体或生物类似物:
在结构I-A和I-B中,圆柱体指单个多肽结合结构域。结构I-A和I-B包含三个线性连接的TNFRSF结合结构域,该结合结构域源自例如4-1BBL或与4-1BB结合的抗体,它们折叠形成三价蛋白,然后通过IgG1-Fc(包括CH3和CH2结构域)与第二个三价蛋白连接,然后用于通过二硫键(小的细长椭圆)将两个三价蛋白连接在一起,从而稳定结构并提供能够将六个受体的细胞内信号传导域和信号蛋白结合在一起形成信号复合体的激动剂。TNFRSF结合结构域(表示为圆柱体)可为scFv结构域,该scFv结构域包括例如通过接头连接的VH和VL链,该接头可包含亲水性残基和用于柔韧性的Gly和Ser序列以及用于溶解性的Glu和Lys。可使用任何scFv结构域设计,例如描述于de Marco,Microbial Cell Factories,2011,10,44;Ahmad等,Clin.&Dev.Immunol.2012,980250;Monnier等,Antibodies,2013,2,193-208;以及通过引用并入本文其他地方的那些。此种形式的融合蛋白结构描述于美国专利号9,359,420、9,340,599、8,921,519和8,450,460,其公开内容通过引用并入本文。
表6给出了结构I-A的其他多肽结构域的氨基酸序列。Fc结构域优选包含完整的恒定结构域(SEQ ID NO:31的氨基酸17-230)、完整的铰链结构域(SEQ ID NO:31的氨基酸1-16)或铰链结构域的一部分(例如SEQ ID NO:31的氨基酸4-16)。用于连接C末端Fc抗体的优选的接头可选自SEQ ID NO:32至SEQ ID NO:41给出的实施方式,包括适合于融合其他多肽的接头。
表6:具有C末端Fc-抗体片段融合蛋白设计(结构I-A)的TNFRSF融合蛋白(包括4-1BB融合蛋白)的氨基酸序列
表7中给出了结构I-B的其他多肽结构域的氨基酸序列。如果Fc抗体片段融合至TNRFSF融合蛋白的N-末端(如结构I-B),则Fc模块的序列优选为SED ID NO:42所示序列,接头序列优选选自SED ID NO:43至SEQ ID NO:45所示的那些实施方式。
表7:具有N末端Fc抗体片段融合蛋白设计(结构I-B)的TNFRSF融合蛋白(包括4-1BB融合蛋白)的氨基酸序列
在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上选自下组的4-1BB结合结构域:乌托鲁单抗的可变重链和可变轻链、乌瑞鲁单抗的可变重链和可变轻链、乌托鲁单抗的可变重链和可变轻链、选自表8中所述可变重链和可变轻链的可变重链和可变轻链,前述可变重链和可变链的任一组合,以及它们的片段、衍生物、缀合物、变体和生物类似物。
在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上包含4-1BBL序列的4-1BB结合结构域。在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上包含根据SEQ ID NO:46的序列的4-1BB结合结构域。在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上包含可溶性4-1BBL序列的4-1BB结合结构域。在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上包含根据SEQ ID NO:47的序列的4-1BB结合结构域。
在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上4-1BB结合结构域,该4-1BB结合结构域是包含FH和VL区的scFv结构域,该VH和VL区分别与SEQID NO:13和SEQ ID NO:14所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上4-1BB结合结构域,该4-1BB结合结构域是包含VH和VL区的scFv结构域,该VH和VL区分别与SEQ IDNO:23和SEQ ID NO:24所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的4-1BB激动剂融合蛋白包含一个以上4-1BB结合结构域,该4-1BB结合结构域是包含VH和VL区的scFv结构域,该VH和VL区分别与表8中给出的VH和VL序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。
表8:用作融合蛋白中4-1BB结合结构域或用作scFv 4-1BB激动剂抗体的其他多肽结构域
在一个实施方式中,4-1BB激动剂是4-1BB激动性单链融合多肽,其包含(i)第一可溶性4-1BB结合结构域、(ii)第一肽接头、(iii)第二可溶性4-1BB结合结构域、(iv)第二肽接头和(v)第三可溶性4-1BB结合结构域,其还包含位于N末端和/或C末端的其他结构域,其中,该其他结构域是Fab或Fc片段结构域。在一个实施方式中,4-1BB激动剂是4-1BB激动性单链融合多肽,其包含(i)第一可溶性4-1BB结合结构域、(ii)第一肽接头、(iii)第二可溶性4-1BB结合结构域、(iv)第二肽接头和(v)第三可溶性4-1BB结合结构域,其在N末端和/或C末端还包含一个其他结构域,其中,该其他结构域是Fab或Fc片段结构域;其中,每个可溶性4-1BB结构域均缺少茎(stalk)区(这有助于三聚作用并提供与细胞膜的一定距离,但不是4-1BB结合结构域的一部分),第一肽接头和第二个接头独立地具有3至8个氨基酸的长度。
在一个实施方式中,4-1BB激动剂是4-1BB激动性单链融合多肽,其包含(i)第一可溶性肿瘤坏死因子(TNF)超家族细胞因子结构域、(ii)第一肽接头,(iii)第二可溶性TNF超家族细胞因子结构域、(iv)第二肽接头和(v)第三可溶性TNF超家族细胞因子结构域,其中,每个可溶性TNF超家族细胞因子结构域均缺少茎区,第一肽接头和第二肽接头独立地具有3至8个氨基酸的长度,其中每个TNF超家族细胞因子结构域是4-1BB结合结构域。
在一个实施方式中,4-1BB激动剂是4-1BB激动性scFv抗体,其包含与任何前述VL结构域连接的任何前述VH结构域。
在一个实施方式中,4-1BB激动剂是BPS Bioscience目录号79097-2的4-1BB激动剂抗体,可从BPS Bioscience(San Diego,CA,美国)商购。在一个实施方式中,4-1BB激动剂是Creative Biolabs目录号MOM-18179的4-1BB激动剂抗体,可从的Creative Biolabs(Shirley,NY,美国)商购。
3.OX40(CD134)激动剂
在一个实施方式中,TNFRSF激动剂是OX40(CD134)激动剂。OX40激动剂可为本领域已知的任何OX40结合分子。OX40结合分子可为能够结合人或哺乳动物OX40的单克隆抗体或融合蛋白。OX40激动剂或OX40结合分子可包含免疫球蛋白分子的任何同种型(例如IgG1、IgE、IgM、IgD、IgA和IgY)、任何类(例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)或任何亚类的免疫球蛋白重链。OX40激动剂或OX40结合分子可同时具有重链和轻链。如本文所用,术语“结合分子”还包括与OX40结合的抗体(包括全长抗体)、单克隆抗体(包括全长单克隆抗体)、多克隆抗体、多特异性抗体(例如双特异性抗体)、人抗体、人源化抗体或嵌合抗体以及抗体片段(例如,Fab片段、F(ab')片段、由Fab表达文库产生的片段,以上任一项的表位结合片段)以及抗体的工程形式(例如scFv分子)。在一个实施方式中,OX40激动剂是抗原结合蛋白,其是全人抗体。在一个实施方式中,OX40激动剂是抗原结合蛋白,其是人源化抗体。在一些实施方式中,用于本公开的方法和组合物中的OX40激动剂包括:抗OX40抗体、人抗OX40抗体、小鼠抗OX40抗体、哺乳动物抗OX40抗体、单克隆抗OX40抗体、多克隆抗OX40抗体、嵌合抗OX40抗体、抗OX40纤连蛋白、抗OX40域抗体、单链抗OX40片段、重链抗OX40片段、轻链抗OX40片段、抗OX40融合蛋白,以及它们的片段、衍生物、缀合物、变体或生物类似物。在一个优选实施方式中,OX40激动剂是激动性抗OX40人源化或全人单克隆抗体(即,源自单个细胞系的抗体)。
在一个优选实施方式中,OX40激动剂或OX40结合分子也可为融合蛋白。包含与OX40L融合的Fc结构域的OX40融合蛋白描述于例如Sadun等,J.Immunother.J.Immunol.2009,182,1481-89。在一个优选实施方式中,与激动性单克隆抗体(其通常具有两个配体结合结构域)相比,多聚体OX40激动剂(例如,(具有三个或六个配体结合结构域的)三聚体或六聚体OX40激动剂)可诱导优异的受体(OX40L)聚类和内部细胞信号复合物形成。包含三个TNFRSF结合结构域和IgG1-Fc并且可选地进一步连接两个以上这些融合蛋白的三聚体(三价)或六聚体(或六价)或更大的融合蛋白描述于例如Gieffers等,Mol.Cancer Therapeutics 2013,12,2735-47。
已知激动性OX40抗体和融合蛋白诱导强烈的免疫应答。Curti等,CancerRes.2013,73,7189-98。在一个优选实施方式中,OX40激动剂是以足以减少毒性的方式特异性结合OX40抗原的单克隆抗体或融合蛋白。在一些实施方式中,OX40激动剂是激动性OX40单克隆抗体或融合蛋白,其消除了抗体依赖性细胞毒性(ADCC)(例如NK细胞的细胞毒性)。在一些实施方式中,OX40激动剂是消除抗体依赖性细胞吞噬作用(ADCP)的激动性OX40单克隆抗体或融合蛋白。在一些实施方式中,OX40激动剂是消除补体依赖性细胞毒性(CDC)的激动性OX40单克隆抗体或融合蛋白。在一些实施方式中,OX40激动剂是消除Fc区功能性的激动性OX40单克隆抗体或融合蛋白。
在一些实施方式中,OX40激动剂的特征在于以高亲和力和激动性活性结合人OX40(SEQ ID NO:54)。在一个实施方式中,OX40激动剂是与人OX40(SEQ ID NO:54)结合的结合分子。在一个实施方式中,OX40激动剂是与鼠OX40(SEQIDNO:55)结合的结合分子。表9总结了与OX40激动剂或结合分子结合的OX40抗原的氨基酸序列。
表9:OX40抗原的氨基酸序列
在一些实施方式中,所述的组合物、过程和方法包括KD为约100pM以下的结合人或鼠OX40的OX40激动剂、KD为约90pM以下的结合人或鼠OX40的OX40激动剂、KD为约80pM以下的结合人或鼠OX40的OX40激动剂、KD为约70pM以下的结合人或鼠OX40的OX40激动剂、KD为约60pM以下的结合人或鼠OX40的OX40激动剂、KD为约50pM以下的结合人或鼠OX40的OX40激动剂、KD为约40pM以下的结合人或鼠OX40的OX40激动剂或KD为约30pM以下的结合人或鼠OX40的OX40激动剂.
在一些实施方式中,所述的组合物、过程和方法包括kassoc为约7.5×1051/M·s以上的结合人或鼠OX40的OX40激动剂、kassoc为约8×1051/M·s以上的结合人或鼠OX40的OX40激动剂、kassoc为约8.5×1051/M·s以上的结合人或鼠OX40的OX40激动剂、kassoc为约9×1051/M·s以上的结合人或鼠OX40的OX40激动剂、kassoc为约9.5×1051/M·s以上的结合人或鼠OX40的OX40激动剂或kassoc为约1×1061/M·s以上的结合人或鼠OX40的OX40激动剂。
在一些实施方式中,所述的组合物、过程和方法包括kdissoc为约2×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.1×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.2×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.3×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.4×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.5×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.6×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.7×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.8×10-51/s以下的结合人或鼠OX40的OX40激动剂、kdissoc为约2.9×10-51/s以下的结合人或鼠OX40的OX40激动剂或kdissoc为约3×10-51/s以下的结合人或鼠OX40的OX40激动剂。
在一些实施方式中,所述的组合物、过程和方法包括IC50为约10nM以下的结合人或鼠OX40的OX40激动剂、IC50为约9nM以下的结合人或鼠OX40的OX40激动剂、IC50为约8nM以下的结合人或鼠OX40的OX40激动剂、IC50为约7nM以下的结合人或鼠OX40的OX40激动剂、IC50为约6nM以下的结合人或鼠OX40的OX40激动剂、IC50为约5nM以下的结合人或鼠OX40的OX40激动剂、IC50为约4nM以下的结合人或鼠OX40的OX40激动剂、IC50为约3nM以下的结合人或鼠OX40的OX40激动剂、IC50为约2nM以下的结合人或鼠OX40的OX40激动剂或IC50为约1nM以下的结合人或鼠OX40的OX40激动剂。
在一些实施方式中,OX40激动剂是他利昔珠单抗(也被称为MEDI0562或MEDI-0562)。他利昔珠单抗可从AstraZeneca,Inc.的MedImmune子公司商购。他利昔珠单抗是免疫球蛋白G1-kappa、抗[智人TNFRSF4(肿瘤坏死因子受体(TNFR)超家族成员4,OX40,CD134)]、人源化和嵌合单克隆抗体。他利昔珠单抗的氨基酸序列列于表10。他利昔珠单抗包含:在301和301”位的N-糖基化位点,具有岩藻糖基化的复合双触角CHO型聚糖;在22-95位(VH-VL)、148-204位(CH1-CL)、265-325位(CH2)和371-429位(CH3)(以及22”-95”位、148”-204”位、265”-325”位和371”-429”位)的重链链内二硫键;在23'-88'位(VH-VL)和134'-194'位(CH1-CL)(以及23”'-88”'位和134”'-194”'位)的轻链内二硫键;在230-230'位和233-233”位的链间重链-重链二硫键;以及在224-214'位和224'-214”'位的链间重链-轻链二硫键。目前他利昔珠单抗在多种实体瘤适应症中的临床试验包括U.S.National Institutesof Health clinicaltrials.gov识别码NCT02318394和NCT02705482。
在一个实施方式中,OX40激动剂包含由SEQ ID NO:56给出的重链和由SEQ ID NO:57给出的轻链。在一个实施方式中,OX40激动剂包括分别具有SEQ ID NO:56和SEQ ID NO:57中所示序列或其抗原结合片段、Fab片段、单链可变片段(scFv)、变体或缀合物的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:56和SEQ ID NO:57所示序列具有至少99%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ IDNO:56和SEQ ID NO:57所示序列具有至少98%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:56和SEQ ID NO:57所示序列具有至少97%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:56和SEQ ID NO:57所示序列具有至少96%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQID NO:56和SEQ ID NO:57所示序列具有至少95%同一性的重链和轻链。
在一个实施方式中,OX40激动剂包含他利昔珠单抗的重链CDR和轻链CDR或可变区(VR)。在一个实施方式中,OX40激动剂重链可变区(VH)包含SEQ ID NO:58所示的序列及其保守氨基酸酸取代,OX40激动剂轻链可变区(VL)包含SEQ ID NO:59所示的序列及其保守氨基酸酸取代。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:58和SEQ ID NO:59所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ IDNO:58和SEQ ID NO:59所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:58和SEQ ID NO:59所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:58和SEQ ID NO:59所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:58和SEQ ID NO:59所示序列具有至少95%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含scFv抗体,该scFv抗体包含分别与SEQ ID NO:58和SEQ ID NO:59所示序列具有至少99%同一性的VH和VL区。
在一个实施方式中,OX40激动剂包含:分别具有SEQ ID NO:60、SEQ ID NO:61和SEQ ID NO:62所示序列及其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:63、SEQ ID NO:64和SEQ ID NO:65所示序列及其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,OX40激动剂是由药物监管机构参考他利昔珠单抗批准的OXA40激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包含OX40抗体,该OX40抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品是他利昔珠单抗。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的OX40激动剂抗体,其中,以不同于参考药物产品或参考生物产品的制剂的制剂提供OX40激动剂抗体,其中,参考药物产品或参考生物制剂产品是他利昔珠单抗。OX40激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是他利昔珠单抗。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是他利昔珠单抗。
表10:与他利昔珠单抗相关的OX40激动剂抗体的氨基酸序列
/>
在一些实施方式中,OX40激动剂是11D4,其是可从Pfizer,Inc.商购的全人抗体。11D4的制备和性质描述于美国专利号7,960,515、8,236,930和9,028,824,其公开内容通过引用并入本文。表11列出了11D4的氨基酸序列。
在一个实施方式中,OX40激动剂包含由SEQ ID NO:66给出的重链和由SEQ ID NO:67给出的轻链。在一个实施方式中,OX40激动剂包含分别具有SEQ ID NO:66和SEQ ID NO:67中所示的序列或其抗原结合片段、Fab片段、单链可变片段(scFv)、变体或缀合物的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:66和SEQ ID NO:67所示的序列具有至少99%序列同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:66和SEQ ID NO:67所示的序列具有至少98%序列同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:66和SEQ ID NO:67所示的序列具有至少97%序列同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:66和SEQ ID NO:67所示的序列具有至少96%序列同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:66和SEQ ID NO:67所示的序列具有至少95%序列同一性的重链和轻链。
在一个实施方式中,OX40激动剂包含11D4的重链和轻链CDR或可变区(VR)。在一个实施方式中,OX40激动剂重链可变区(VH)包含SEQ ID NO:68所示的序列,OX40激动剂轻链可变区(VL)包含SEQ ID NO:69所示的序列,及其保守性氨基酸取代。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:68和SEQ ID NO:69所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:68和SEQ ID NO:69所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:68和SEQ ID NO:69所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:68和SEQ ID NO:69所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:68和SEQ ID NO:69所示序列具有至少95%同一性的VH和VL区。
在一个实施方式中,OX40激动剂包含分别具有SEQ ID NO:70,SEQ ID NO:71和SEQID NO:72所示序列及其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:73,SEQ ID NO:74和SEQ ID NO:75所示序列及其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,OX40激动剂是药物监管机构参考11D4批准的OX40激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包含OX40抗体,该OX40抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品为11D4。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的OX40激动剂抗体,其中,以不同于参考药物产品或参考生物产品的制剂的制剂提供OX40激动剂抗体,其中,参考药物产品或参考生物制剂产品是11D4。OX40激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是11D4。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是11D4。
表11:与11D4有关的OX40激动剂抗体的氨基酸序列
在一些实施方式中,OX40激动剂是18D8,其是可从Pfizer,Inc.商购的全人抗体。18D8的制备和性质描述于美国专利号7,960,515、8,236,930和9,028,824,其公开内容通过引用并入本文。表12列出了18D8的氨基酸序列。
在一个实施方式中,OX40激动剂包含由SEQ ID NO:76给出的重链和由SEQ ID NO:77给出的轻链。在一个实施方式中,OX40激动剂包括分别具有SEQ ID NO:76和SEQ ID NO:77中所示的序列或其抗原结合片段、Fab片段、单链可变片段(scFv)、变体或缀合物的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:76和SEQ ID NO:77所示的序列具有至少99%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQID NO:76和SEQ ID NO:77所示的序列具有至少98%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:76和SEQ ID NO:77所示的序列具有至少97%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:76和SEQ ID NO:77所示的序列具有至少96%同一性的重链和轻链。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:76和SEQ ID NO:77所示的序列具有至少95%同一性的重链和轻链。
在一个实施方式中,OX40激动剂包含18D8的重链和轻链CDR或可变区(VR)。在一个实施方式中,OX40激动剂重链可变区(VH)包含SEQ ID NO:78所示的序列,OX40激动剂轻链可变区(VL)包含SEQ ID NO:79所示的序列,及其保守性氨基酸取代。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少95%同一性的VH和VL区。
在一个实施方式中,OX40激动剂包含分别具有SEQ ID NO:80、SEQ ID NO:81和SEQID NO:82所示序列及其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:83、SEQ ID NO:84和SEQ ID NO:85所示序列及其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,OX40激动剂是药物监管机构参考18D8批准的OX40激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包含OX40抗体,该OX40抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品是18D8。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的OX40激动剂抗体,其中,以不同于参考药物产品或参考生物产品的制剂的制剂提供OX40激动剂抗体,其中,参考药物产品或参考生物制剂产品是18D8。OX40激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是18D8。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是18D8。
表12:与18D8有关的OX40激动剂抗体的氨基酸序列
在一些实施方式中,OX40激动剂是Hu119-122,其是可从GlaxoSmithKline plc.商购的人源化抗体。Hu119-122的制备和性质描述于美国专利号9,006,399和9,163,085以及国际专利公开号WO2012/027328中,其公开内容通过引用并入本文。表13列出了Hu119-122的氨基酸序列。
在一个实施方式中,OX40激动剂包含Hu119-122的重链CDR和轻链CDR或可变区(VR)。在一个实施方式中,OX40激动剂重链可变区(VH)包含SEQ ID NO:86所示的序列,OX40激动剂轻链可变区(VL)包含SEQ ID NO:87所示的序列及其保守性氨基酸取代。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:86和SEQ ID NO:87所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:86和SEQ ID NO:87所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ IDNO:86和SEQ ID NO:87所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:86和SEQ ID NO:87所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:86和SEQ ID NO:87所示序列具有至少95%同一性的VH和VL区。
在一个实施方式中,OX40激动剂包含分别具有SEQ ID NO:88、SEQ ID NO:89和SEQID NO:90所示序列及其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:91、SEQ ID NO:92和SEQ ID NO:93所示序列及其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,OX40激动剂是药物监管机构参考Hu119-122批准的OX40激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包含OX40抗体,该OX40抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品为Hu119-122。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的OX40激动剂抗体,其中,以不同于参考药物产品或参考生物产品的制剂的制剂提供OX40激动剂抗体,其中,参考药物产品或参考生物制剂产品是Hu119-122。OX40激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是Hu119-122。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是Hu119-122。
表13:与Hu119-122有关的OX40激动剂抗体的氨基酸序列
在一些实施方式中,OX40激动剂是Hu106-222,其是可从GlaxoSmithKline plc.商购的人源化抗体。Hu106-222的制备和性质描述于美国专利号9,006,399和9,163,085以及国际专利公开号WO2012/027328中,其公开内容通过引用并入本文。Hu106-222的氨基酸序列在表14中列出。
在一个实施方式中,OX40激动剂包含Hu106-222的重链CDR和轻链CDR或可变区(VR)。在一个实施方式中,OX40激动剂重链可变区(VH)包含SEQ ID NO:94所示的序列,OX40激动剂轻链可变区(VL)包含SEQ ID NO:95所示的序列,及其保守性氨基酸取代。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:94和SEQ ID NO:95所示序列具有至少99%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:94和SEQ ID NO:95所示序列具有至少98%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQID NO:94和SEQ ID NO:95所示序列具有至少97%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:94和SEQ ID NO:95所示序列具有至少96%同一性的VH和VL区。在一个实施方式中,OX40激动剂包含分别与SEQ ID NO:94和SEQ ID NO:95所示序列具有至少95%同一性的VH和VL区。
在一个实施方式中,OX40激动剂包含分别具有SEQ ID NO:96,SEQ ID NO:97和SEQID NO:98所示序列及其保守性氨基酸取代的重链CDR1、CDR2和CDR3结构域,以及分别具有SEQ ID NO:99,SEQ ID NO:100和SEQ ID NO:101所示序列及其保守性氨基酸取代的轻链CDR1、CDR2和CDR3结构域。
在一个实施方式中,OX40激动剂是药物监管机构参考Hu106-222批准的OX40激动剂生物类似物单克隆抗体。在一个实施方式中,生物类似物单克隆抗体包含OX40抗体,该OX40抗体包含与参考药物产品或参考生物产品的氨基酸序列具有至少97%序列同一性(例如97%、98%、99%或100%序列同一性)且与参考药物产品或参考生物产品相比包含一种以上翻译后修饰的氨基酸序列,其中,参考药物产品或参考生物产品是Hu106-222。在一些实施方式中,一种以上翻译后修饰选自糖基化、氧化、脱酰胺和截短中的一种以上。在一些实施方式中,生物类似物是已授权或已提交授权的OX40激动剂抗体,其中,OX40激动剂抗体以不同于参考药物产品或参考生物产品的制剂的形式提供,其中,参考药物产品或参考生物产品是Hu106-222。OX40激动剂抗体可得到药品监管机构(例如美国FDA和/或欧盟EMA)的授权。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是Hu106-222。在一些实施方式中,生物类似物以还包含一种以上赋形剂的组合物的形式提供,其中,一种以上赋形剂与参考药物产品或参考生物产品中包含的赋形剂相同或不同,其中,参考药物产品或参考生物产品是Hu106-222。
表14:与Hu106-222有关的OX40激动剂抗体的氨基酸序列
在一些实施方式中,OX40激动剂抗体是MEDI6469(也称为9B12)。MEDI6469是鼠单克隆抗体。Weinberg等,J.Immunother.2006,29,575-585。在一些实施方式中,OX40激动剂是由Biovest Inc.(Malvern,MA,美国)保藏的9B12杂交瘤产生的抗体,如在Weinberg等,J.Immunother.2006,29,575-585中所述,其公开内容通过引用整体并入本文。在一些实施方式中,抗体包含MEDI6469的CDR序列。在一些实施方式中,抗体包含MEDI6469的重链可变区序列和/或轻链可变区序列。
在一个实施方式中,OX40激动剂是L106 BD(Pharmingen产品#340420)。在一些实施方式中,OX40激动剂包含抗体L106(BD Pharmingen产品#340420)的CDR。在一些实施方式中,OX40激动剂包含抗体L106(BD Pharmingen产品#340420)的重链可变区序列和/或轻链可变区序列。在一个实施方式中,OX40激动剂是ACT35(Santa Cruz Biotechnology,目录号20073)。在一些实施方式中,OX40激动剂包含抗体ACT35(Santa Cruz Biotechnology,目录号20073)的CDR。在一些实施方式中,OX40激动剂包含抗体ACT35(Santa CruzBiotechnology,目录号20073)的重链可变区序列和/或轻链可变区序列。在一个实施方式中,OX40激动剂是鼠单克隆抗体抗mCD134/mOX40(克隆OX86),可从InVivoMAb,BioXcellInc,West Lebanon,NH商购。
在一个实施方式中,OX40激动剂选自国际专利申请公开号WO95/12673、WO95/21925、WO2006/121810、WO2012/027328、WO2013/028231、WO2013/038191和WO2014/148895;欧洲专利申请EP0672141;美国专利申请公开号US2010/136030、US2014/377284、US2015/190506和US2015/132288(包括克隆20E5和12H3);以及美国专利号7,504,101、7,550,140、7,622,444、7,696,175、7,960,515、7,961,515、8,133,983、9,006,399和9,163,085中描述的OX40激动剂,其各自公开内容均通过引用整体并入本文。
在一个实施方式中,OX40激动剂是如结构I-A(C末端Fc抗体片段融合蛋白)或结构I-B(N末端Fc抗体片段融合蛋白)中所述的OX40激动性融合蛋白,或其片段、衍生物、缀合物、变体或生物类似物。结构I-A和I-B的性质如上所述和描述于美国专利号9,359,420、9,340,599、8,921,519和8,450,460,其公开内容通过引用并入本文。表6给出了结构I-A的多肽结构域的氨基酸序列。Fc结构域优选包含完整的恒定结构域(SEQ ID NO:31的氨基酸17-230)、完整的铰链结构域(SEQ ID NO:31的氨基酸1-16)或铰链结构域的一部分(例如SEQID NO:31的氨基酸4-16)。用于连接C末端Fc抗体的优选的接头可以选自SEQ ID NO:32至SEQ ID NO:41给出的实施方式,包括适合于融合其他多肽的接头。同样,表7中给出了结构I-B的多肽结构域的氨基酸序列。如果Fc抗体片段融合至TNRFSF融合蛋白的N-末端(如结构I-B),则Fc模块的序列优选为SED ID NO:42所示的序列,接头序列优选选自SED ID NO:43至SEQ ID NO:45所示的那些实施方式。
在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上选自下组的OX40结合结构域:他利昔珠单抗的可变重链和可变轻链、11D4的可变重链和可变轻链、18D8的可变重链和可变轻链、Hu119-122的可变重链和可变轻链、Hu106-222的可变重链和可变轻链、选自表15中所述可变重链和可变轻链的可变重链和可变轻链,前述可变重链和可变轻链的任何组合,及它们的片段、衍生物、缀合物、变体和生物类似物。
在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上包含OX40L序列的OX40结合结构域。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上包含序列SEQ ID NO:102的OX40结合结构域。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上包含可溶性OX40L序列的OX40结合结构域。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上包含序列SEQID NO:103的OX40结合结构域。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上包含序列SEQ ID NO:104的OX40结合结构域。
在一个实施方式中,根据结构1A或1B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域为包含VH和VL区的scFv结构域,VH和VL区分别与SEQ ID NO:NO:58和SEQ ID NO:59中所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域是包含FH和VL区的scFv结构域,VH和VL区分别与SEQ ID NO:68和SEQID NO:69所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域是包含VH和VL区的scFv结构域,该VH和VL区分别与SEQ ID NO:78和SEQ ID NO:79所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域是包含FH和VL区的scFv结构域,VH和VL区分别与SEQ ID NO:86和SEQ ID NO:87所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域是包含VH和VL区的scFv结构域,VH和VL区分别与SEQ ID NO:94和SEQ ID NO:95所示序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。在一个实施方式中,根据结构I-A或I-B的OX40激动剂融合蛋白包含一个以上OX40结合结构域,该OX40结合结构域是包含FH和VL区的scFv结构域,VH和VL区与表15中所示VH和VL序列具有至少95%同一性,其中,VH和VL结构域通过接头连接。
表15:用作融合蛋白中OX40结合结构域(例如结构I-A和I-B)或用作scFv OX40激动剂抗体的其他多肽结构域
/>
在一个实施方式中,OX40激动剂是OX40激动性单链融合多肽,其包含(i)第一可溶性OX40结合结构域、(ii)第一肽接头、(iii)第二可溶性OX40结合结构域、(iv)第二肽接头和(v)第三可溶性OX40结合结构域,其在N-末端和/或C-末端还包含其他结构域,其中所述其他结构域是Fab或Fc片段结构域。在一个实施方式中,OX40激动剂是OX40激动性单链融合多肽,其包含(i)第一可溶性OX40结合结构域、(ii)第一肽接头、(iii)第二可溶性OX40结合结构域、(iv)第二肽接头和(v)第三可溶性OX40结合结构域,还包含在N末端和/或C末端的其他结构域,其中,该其他结构域是Fab或Fc片段结构域,其中,每个可溶性OX40结合结构域缺少茎区域(有助于三聚作用并提供到细胞膜的一定距离,但不是OX40结合结构域的一部分),并且第一肽接头和第二肽接头独立地具有3至8个氨基酸的长度。
在一个实施方式中,OX40激动剂是OX40激动性单链融合多肽,其包含(i)第一可溶性肿瘤坏死因子(TNF)超家族细胞因子结构域、(ii)第一肽接头、(iii)第二可溶性TNF超家族细胞因子结构域、(iv)第二肽接头和(v)第三可溶性TNF超家族细胞因子结构域,其中,每个可溶性TNF超家族细胞因子结构域缺少茎区域,并且第一肽接头和第二肽接头独立地具有3至8个氨基酸的长度,其中TNF超家族细胞因子结构域是OX40结合结构域。
在一些实施方式中,OX40激动剂是MEDI6383。MEDI6383是OX40激动性融合蛋白,可如美国专利号6,312,700中所述制备,其公开内容通过引用并入本文。
在一个实施方式中,OX40激动剂是OX40激动性scFv抗体,其包含与任何前述VL结构域连接的任何前述VH结构域。
在一个实施方式中,OX40激动剂是Creative Biolabs OX40激动剂单克隆抗体MOM-18455,可从Shirley,NY,美国的Creative Biolabs,Inc.商购。
在一个实施方式中,OX40激动剂是OX40激动性抗体克隆Ber-ACT35,可从BioLegend,Inc.(San Diego,CA,美国)商购。
H.可选的细胞活力分析
可选地,可使用本领域已知的标准测定法,在步骤B第一次扩增后进行细胞活力测定。可选地,可使用本领域已知的标准测定法,在第一次扩增(有时称为初始大量扩增)后进行细胞活力测定。例如,可对大量TIL样品进行台盼蓝排除试验,该试验选择性标记死细胞并允许活力评估。用于检测活力的其他测定法可包括但不限于Alamar blue测定法;以及MTT分析。
1.细胞计数、活力、流式细胞术
在一些实施方式中,测量细胞计数和/或活力。可用抗体通过流式细胞术来测量标志物(例如但不限于CD3、CD4、CD8和CD56)以及本文公开或描述的任何其他标志物的表达,例如但不限于使用FACSCantoTM流式细胞仪(BD Biosciences)从BD Bio-Sciences(BDBiosciences,San Jose,CA)商购的那些。可使用一次性c-芯片血细胞计数器(VWR,Batavia,IL)手动对细胞进行计数,可使用本领域已知的任何方法评估活力,包括但不限于台盼蓝染色。
在某些情况下,可使用下文所述方案立即冷冻保存大量TIL群。或者,可如下对大量TIL群进行REP,然后冷冻保存。类似地,在将基因修饰的TIL用于治疗的情况下,可对大量或REP TIL群进行基因修饰以进行适当的治疗。
2.细胞培养
在一个实施方式中,用于扩增TIL的方法可包括使用约5,000mL至约25,000mL的细胞培养基、约5,000mL至约10,000mL的细胞培养基或约5,800mL至约8,700mL的细胞培养基。在一个实施方式中,使用不超过一种类型的细胞培养基扩增TIL的数量。可使用任何合适的细胞培养基,例如AIM-V细胞培养基(L-谷氨酰胺、50μM硫酸链霉素和10μM硫酸庆大霉素)细胞培养基(Invitrogen,Carlsbad CA)。在此方面,本发明的方法有利地减少了扩增TIL数量所需的培养基量和培养基类型的数量。在一个实施方式中,扩增TIL的数量可包括以不超过每三一次或每四天一次的频率向细胞添加新鲜细胞培养基(也称为饲养细胞)。用透气容器扩增细胞数量通过降低扩增细胞所需的饲养频率,简化了扩增细胞数量所需的步骤。
在一个实施方式中,第一透气容器和/或第二透气容器中的细胞培养基未经过滤。使用未经过滤的细胞培养基可以简化扩增细胞数量所需步骤。在一个实施方式中,第一透气容器和/或第二透气容器中的细胞培养基没有β-巯基乙醇(BME)。
在一个实施方式中,该方法的持续时间为约14天至约42天(例如约28天),该方法包括:由哺乳动物获得肿瘤组织样品;在其中装有细胞培养基的第一透气容器中培养肿瘤组织样品;由肿瘤组织样品获得TIL;使用aAPC在其中装有细胞培养基的第二透气容器中扩增TIL的数量。
在一个实施方式中,在透气容器中扩增TIL。使用本领域已知的方法、组成和装置,包括在美国专利申请公开号US2005/0106717A1中描述的那些(其公开内容通过引用并入本文),使用透气容器,用PBMC来扩增TIL。在一个实施方式中,TIL在透气袋中扩增。在一个实施方式中,使用细胞扩增系统扩增TIL,所述细胞扩增系统在透气袋中扩增TIL,例如Xuri细胞扩增系统W25(Xuri Cell Expansion System W25)(GE Healthcare)。在一个实施方式中,使用细胞扩增系统扩增TIL,所述细胞扩增系统在透气袋中扩增TIL,例如WAVE生物反应器系统,也称为Xuri细胞扩增系统W5(GE Healthcare)。在一个实施方式中,细胞扩增系统包括选自下组体积的透气性细胞袋:约100mL、约200mL、约300mL、约400mL、约500mL、约600mL、约700mL、约800mL、约900mL、约1L、约2L、约3L、约4L、约5L、约6L、约7L、约8L、约9L和约10L。
在一个实施方式中,可在G-REX烧瓶(可从Wilson Wolf Manufacturing商购)中扩增TIL。此类实施方式允许细胞群从约5×105个细胞/cm2扩增到10×106至30×106个细胞/cm2。在一个实施方式中,进行该扩增而无需向细胞添加新鲜细胞培养基(也称为饲养细胞)。在一个实施方式中,只要培养基停留在G-REX烧瓶中位于约10cm的高度,就无需进料。在一个实施方式中,不进行进料但是添加一种以上细胞因子。在一个实施方式中,细胞因子可作为推注添加,无需将细胞因子与培养基混合。此种容器、装置和方法在本领域中是已知的并且已经用于扩增TIL,并且包括在美国专利申请公开号US2014/0377739A1、国际专利申请公开号WO2014/210036A1、美国专利申请公开号US2013/0115617Al、国际公开号WO2013/188427A1、美国专利申请公开号US2011/0136228A1、美国专利号8,809,050、国际专利申请公开号WO2011/072088A2、美国专利申请公开号US2016/0208216A1、美国专利申请公开号US2012/0244133A1、国际专利申请公开号WO2012/129201A1、美国专利申请公开号US2013/0102075A1、美国专利号8,956,860、国际专利申请公开号WO2013/173835A1和美国专利申请公开号US2015/0175966Al所述的那些,其公开内容通过引用并入本文。此类方法也描述于Jin等,J.I mmunotherapy 2012,35,283-292,其公开内容通过引用并入本文。
I.可选的TIL的基因工程
在一些实施方式中,可选地对TIL进行基因工程以包括其他功能,包括但不限于:高亲和力T细胞受体(TCR),例如靶向肿瘤相关抗原(例如MAGE、HER2或NY-ESO-1)的TCR;或与肿瘤相关细胞表面分子(例如间皮素)或谱系受限细胞表面分子(例如CD19)结合的嵌合抗原受体(CAR)。
J.可选的TIL的冷冻保存
如上所述且在图8中提供的步骤A至E中举例说明,冷冻保存可发生在整个TIL群扩增过程中的许多点。在一些实施方式中,可在第二次扩增(例如根据图8的步骤D)之后冷冻保存扩增的TIL群。通常,可通过将TIL群置于冷冻溶液(例如85%补体失活的AB血清和15%二甲基亚砜(DMSO))中来冷冻保存。将溶液中的细胞放入冻存管中在-80℃下保存24小时,可选地转移至气态氮气冷冻机中进行冷冻保存。参见Sadeghi等,Acta Oncologica 2013,52,978-986。在一些实施方式中,将TIL冷冻保存在5%DMSO中。在一些实施方式中,将TIL冷冻保存在加有5%DMSO的细胞培养基中。在一些实施方式中,根据实施例8和9中提供的方法冷冻保存TIL。
适当时,将细胞从冰箱中取出,在37℃水浴中解冻,直至解冻约4/5的溶液。通常将细胞重悬于完全培养基中,可选洗涤一次或多次。在一些实施方式中,如本领域中已知的,可对解冻的TIL进行计数和活力评估。
K.扩增的TIL的表型表征方法
颗粒酶B的产生:颗粒酶B是TIL杀死靶细胞的能力的另一种量度。根据制造商的指示,使用人颗粒酶B DuoSet ELISA试剂盒(R&D Systems,Minneapolis,MN),使用CD3、CD28和CD137/4-1BB的抗体评估如上所述再刺激的培养基上清液的颗粒酶B的水平。在一些实施方式中,第二次扩增TIL或第二次另外的扩增TIL(例如图8步骤D中描述的那些,包括称为reREP TIL的TIL)具有增加的颗粒酶B产生。
在一些实施方式中,端粒长度可以用作细胞活力和/或细胞功能的量度。在一些实施方式中,与使用除本文所述方法之外的其他方法(包括例如除图8中所述那些之外的方法)制备的TIL相比,本发明生产的TIL的端粒长度出乎意料地相同。端粒长度测量:已经使用多种方法来测量基因组DNA和细胞制剂中端粒的长度。端粒限制性片段(TRF)分析是测量端粒长度的黄金标准(de Lange等,1990)。但是,TRF的主要局限性是需要大量的DNA(1.5μg)。本发明可使用两种广泛使用的测量端粒长度的技术,即荧光原位杂交(FISH;AgilentTechnologies,Santa Clara,CA)和定量PCR。
在一些实施方式中,通过IFN-γ分泌来测量TIL健康。在一些实施方式中,IFN-γ分泌指示活性TIL。在一些实施方式中,采用产生IFN-γ的效价测定法。IFN-γ的产生可通过测定用CD3、CD28和CD137/4-1BB抗体刺激的TIL培养基中细胞因子IFN-γ的水平来测量。可通过测量IFN-γ释放来确定这些刺激的TIL培养基中的IFN-γ水平。
在一些实施方式中,根据TIL测定的生物发光重定向裂解测定(效价测定)(其以高度灵敏的剂量依赖性方式测量TIL的细胞毒性),使用TIL与生物发光细胞系P815(克隆G6)的共培养测定,评估TIL裂解靶细胞的细胞毒性潜力。
在一些实施方式中,本方法提供了使用上述方法评估TIL活力的测定法。在一些实施方式中,如上文(包括例如图8中所述)所述地扩增TIL。在一些实施方式中,在评估活力之前冷冻保存TIL。在一些实施方式中,活力评估包括在进行第一次扩增、第二次扩增和另外的第二次扩增之前解冻TIL。在一些实施方式中,本方法提供了评估细胞增殖、细胞毒性、细胞死亡和/或与TIL群的活力有关的其他术语的测定。可通过上述任何TIL代谢测定以及本领域已知的任何已知的评估细胞活力的方法来测量活力。在一些实施方式中,本方法提供了评估细胞增殖、细胞毒性、细胞死亡和/或与使用本文所述方法扩增的TIL的活力相关的其他术语的分析方法,包括图8所示的方法。
本发明还提供了测定TIL活力的测定方法。在一些实施方式中,与新鲜收获的TIL和/或使用除本文提供的方法之外的其他方法(包括例如除图8中所述那些之外的其他方法)制备的TIL相比,该TIL具有相同的活力。在一些实施方式中,与新鲜收获的TIL和/或使用除本文提供的方法之外的其他方法(包括例如除图8中所述那些之外的其他方法)制备的TIL相比,该TIL具有增加的活力。本发明提供了通过将肿瘤浸润淋巴细胞(TIL)扩增为更大的TIL群来测定TIL活力的方法,该方法包括:
(i)获得先前已扩增的第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;以及
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,进一步分析了第三TIL群活力。
在一些实施方式中,该方法还包括:
(iv)通过向第三TIL群的细胞培养基中补充另外的IL-2、另外的OKT-3和另外的APC进行另外的第二次扩增;其中,另外的第二次扩增进行至少14天,获得比步骤(iii)中所获得的TIL群更大的TIL群;其中,进一步测定第三TIL群的活力。
在一些实施方式中,在步骤(i)之前冷冻保存细胞。
在一些实施方式中,在进行步骤(i)之前解冻细胞。
在一些实施方式中,重复步骤(iv)1至4次以获得足够的TIL用于分析。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约40天至约50天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约42天至约48天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约42天至约45天的时间。
在一些实施方式中,步骤(i)至步骤(iii)或(iv)进行约44天的时间。
在一些实施方式中,来自步骤(iii)或步骤(iv)的细胞与新鲜收获的细胞表达相似水平的CD4、CD8和TCRαβ。
在一些实施方式中,抗原呈递细胞是外周血单核细胞(PBMC)。
在一些实施方式中,在步骤(iii)的第9天至17天中的任一天将PBMC添加至细胞培养物中。
在一些实施方式中,APC是人工APC(aAPC)。
在一些实施方式中,该方法还包括用表达载体转导第一TIL群的步骤,该表达载体包含编码高亲和力T细胞受体的核酸。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,该方法还包括用表达载体转导第一TIL群的步骤,该表达载体包含编码嵌合抗原受体(CAR)的核酸,该嵌合抗原受体包含与T细胞信号分子的至少一个胞内结构域融合的单链可变片段抗体。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,测定TIL的活力。
在一些实施方式中,在冷冻保存之后测定TIL的活力。
在一些实施方式中,在冷冻保存之后和步骤(iv)之后测定TIL的活力。
T和B淋巴细胞的多种抗原受体通过有限但大量的基因片段的体细胞重组来产生。这些基因片段:V(可变段)、D(多样段)、J(连接段)和C(恒定段)确定免疫球蛋白和T细胞受体(TCR)的结合特异性和下游应用。本发明提供了产生TIL的方法,其显示并增加T细胞库的多样性(有时称为多克隆性)。在一些实施方式中,T细胞库多样性的增加是与新鲜收获的TIL和/或使用除本文提供的方法之外的其他方法(包括例如除了图8中所示那些之外的方法)制备的TIL相比而言。在一些实施方式中,通过本发明方法获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,第一次扩增获得的TIL显示出T细胞库多样性的增加。在一些实施方式中,多样性的增加是免疫球蛋白多样性和/或T细胞受体多样性的增加。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白重链多样性。在一些实施方式中,免疫球蛋白多样性是免疫球蛋白轻链多样性。在一些实施方式中,多样性是T细胞受体多样性。在一些实施方式中,多样性是选自α、β、γ和δ受体之一的T细胞受体的多样性。在一些实施方式中,T细胞受体(TCR)α和/或β的表达增加。在一些实施方式中,T细胞受体(TCR)α的表达增加。在一些实施方式中,T细胞受体(TCR)β的表达增加。在一些实施方式中,TCRab(即TCRα/β)的表达增加。
根据本公开,测定TIL活力的方法和/或进一步用于施用于受试者。在一些实施方式中,测定肿瘤浸润淋巴细胞(TIL)的方法包括:
(i)获得第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;以及
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量至少是第二TIL群的50倍;
(iv)收获、洗涤和冷冻保存第三TIL群;
(v)在冷冻温度下保存冷冻保存的TIL;
(vi)解冻第三TIL群,提供解冻的第三TIL群;
(vii)通过向第三群的细胞培养基中补充IL-2、OKT-3和APC,对解冻的第三TIL群的一部分进行另外的第二次扩增,持续至少3天的另外的扩增阶段(有时称为reREP阶段);其中,进行第三次扩增,获得第四TIL群;其中,将第四TIL群中的TIL数量与第三TIL群中的TIL数量进行比较,获得比率;
(viii)基于步骤(vii)中的比率,确定解冻的TIL群是否适合施用于患者;
(ix)当在步骤(viii)中确定第四TIL群中的TIL数量与第三TIL群中的TIL数量的比率大于5:1时,将治疗有效剂量的解冻的第三TIL群施用于患者。
在一些实施方式中,进行另外的扩增阶段(有时称为reREP阶段),直至第四TIL群中的TIL数量与第三TIL群中的TIL数量的比率大于50:1。
在一些实施方式中,对于治疗有效剂量来说足够的TIL的数量为约2.3×1010至约13.7×1010
在一些实施方式中,步骤(i)至步骤(vii)进行约40天至约50天的时间。在一些实施方式中,步骤(i)至步骤(vii)进行约42天至约48天的时间。在一些实施方式中,步骤(i)至步骤(vii)进行约42天至约45天的时间。在一些实施方式中,步骤(i)至步骤(vii)进行约44天的时间。
在一些实施方式中,来自步骤(iii)或(vii)的细胞与新鲜收获的细胞表达相似水平的CD4、CD8和TCRαβ。在一些实施方式中,细胞是TIL。
在一些实施方式中,抗原呈递细胞是外周血单核细胞(PBMC)。在一些实施方式中,将PBMC在步骤(iii)的第9天至17天中的任一天添加至细胞培养物中。
在一些实施方式中,APC是人工APC(aAPC)。
在一些实施方式中,用表达载体转导第一TIL群的步骤,该表达载体包含编码高亲和力T细胞受体的核酸。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,用表达载体转导第一TIL群的步骤,该表达载体包含编码嵌合抗原受体(CAR)的核酸,该嵌合抗原受体包含与T细胞信号分子的至少一个胞内结构域融合的单链可变片段抗体。
在一些实施方式中,转导步骤发生在步骤(i)之前。
在一些实施方式中,在步骤(vii)之后测定TIL的活力。
本公开还提供了测定TIL的其他方法。在一些实施方式中,本公开提供了测定TIL的方法,该方法包括:
(i)获得冷冻保存的第一TIL群的一部分;
(ii)解冻冷冻保存的第一TIL群的该部分;
(iii)通过在包含IL-2、OKT-3和抗原呈递细胞(APC)的细胞培养基中培养第一TIL群的该部分来进行第一次扩增,持续至少3天的另外的扩增阶段(有时称为reREP阶段),产生第二TIL群;其中,将第一TIL群的该部分与第二TIL群进行比较,获得TIL数量的比率;其中,第二TIL群的TIL数量与第一TIL群的该部分的TIL数量的比率大于5:1;
(iv)基于步骤(iii)中的比率,确定第一TIL群是否适合用于对患者的治疗性施用;
(v)当在步骤(iv)中确定第二TIL群中的TIL数量与第一TIL群中的TIL数量的比率大于5:1时,确定第一TIL群适合用于治疗性施用。
在一些实施方式中,第二TIL群中的TIL数量与第一TIL群的该部分的TIL数量的比率大于50:1。
在一些实施方式中,该方法还包括根据如本文提供的任何实施方式中所述的方法,对步骤(i)的冷冻保存的整个第一TIL群进行扩增。
在一些实施方式中,该方法还包括将来自步骤(i)的冷冻保存的整个第一TIL群施用给患者。
L.用于TIL生产的封闭系统
本发明提供在TIL培养过程中封闭系统的应用。此类封闭系统可以防止和/或减少微生物污染、允许使用更少的烧瓶,并且可以降低成本。在一些实施方式中,封闭系统使用两个容器。
此类封闭系统在本领域中是众所周知的,且可见于例如http://www.fda.gov/cber/guidelines.htm和https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/ucm076779.htm。
在一些实施方式中,封闭系统包括如实施例16中所述的鲁尔锁和热密封系统。在一些实施方式中,在无菌条件下通过注射器进入封闭系统以保持系统的无菌性和封闭性。在一些实施方式中,采用如实施例16中所述的封闭系统。在一些实施方式中,根据实施例16第8.14节“最终制剂和填充”中所述的方法,将TIL配制到最终产品制剂容器中。
如FDA网站上所述,使用无菌方法的封闭系统是已知并充分描述的。如上文所述并在以下相关部分中提供,参见https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/ucm076779.htm。
引言
无菌连接装置(STCD)在两根兼容管之间产生无菌焊接。该程序允许无菌连接各种容器和管径。本指南描述了使用这些设备的推荐做法和步骤。本指南未涉及无菌连接设备制造商必须提交给FDA以获得批准或许可进行市场营销的数据或信息。同样重要的是应注意,根据Federal Food,Drug and Cosmetic Act.(联邦食品、药品和化妆品法),将批准或授权的无菌连接设备用于标签中未授权的目的,可能会导致该设备被视为掺假和贴假商标。
在一些实施方式中,从获得肿瘤碎片的时间直至TIL准备好施用于患者或冷冻保存,封闭系统使用一个容器。在一些实施方式中,当使用两个容器时,第一容器是封闭G容器,在不打开第一封闭G容器的情况下TIL群被离心并转移至输液袋。在一些实施方式中,当使用两个容器时,输液袋是含有HypoThermosol的输液袋。封闭系统或封闭TIL细胞培养系统的特征在于,一旦添加了肿瘤样品和/或肿瘤碎片,该系统就与外界紧密密封,形成了一个不受细菌、真菌和/或任何其他微生物污染物入侵的封闭环境。
在一些实施方式中,微生物污染减少约5%至约100%。在一些实施方式中,微生物污染减少约5%至约95%。在一些实施方式中,微生物污染减少约5%至约90%。在一些实施方式中,微生物污染减少约10%至约90%。在一些实施方式中,微生物污染减少约15%至约85%。在一些实施方式中,微生物污染减少约5%、约10%、约15%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%、约95%、约97%、约98%、约99%或约100%。
封闭系统使得可以在不存在微生物污染和/或微生物污染显著减少的情况下生长TIL。
此外,TIL细胞培养环境的pH、二氧化碳分压和氧分压均随着细胞的培养而变化。因此,即使循环了适合于细胞培养的培养基,仍需要使封闭环境不断保持为TIL增殖的最佳环境。为此,期望通过传感器来监测封闭环境的培养液中的物理因素pH、二氧化碳分压和氧气分压,该传感器的信号用于控制安装在培养环境入口处的气体交换器,根据培养液的变化实时调节封闭环境的气体分压,以优化细胞培养环境。在一些实施方式中,本发明提供了封闭细胞培养系统,该系统在封闭环境的入口处结合有配备有监测装置的气体交换器,该监测装置测量封闭环境的pH、二氧化碳分压和氧气分压,并通过根据来自监测设备的信号自动调节气体浓度来优化细胞培养环境。
在一些实施方式中,封闭环境中的压力被连续地或间歇地控制。即,例如可通过压力维持装置来改变封闭环境中的压力,从而确保该空间在正压状态下适合于TIL的生长,或者在负压状态下促进流体的渗出,从而促进细胞增殖。此外,通过间歇地施加负压,可通过封闭环境的体积的暂时收缩来均匀且有效地替换封闭环境中的循环液体。
在一些实施方式中,可以替代或添加用于TIL增殖的最佳培养组分,可添加因子(例如IL-2和/或OKT3以及它们的组合)。
C.细胞培养
在一个·实施方式中,扩增TIL的方法(包括上文所述以及在图8中举例说明的那些)可以包括使用约5,000mL至约25,000mL的细胞培养基、约5,000mL至约10,000mL的细胞培养基或约5,800mL至约8,700mL的细胞培养基。在一些实施方式中,例如如实施例21中所述,培养基是无血清培养基。在一些实施方式中,第一次扩增中的培养基是无血清的。在一些实施方式中,第二次扩增中的培养基是无血清的。在一些实施方式中,第一次扩增和第二次扩增中的培养基均为无血清的。在一个实施方式中,扩增TIL的数量使用不超过一种类型的细胞培养基。可使用任何合适的细胞培养基,例如AIM-V细胞培养基(L-谷氨酰胺、50μM硫酸链霉素和10μM硫酸庆大霉素)细胞培养基(Invitrogen,Carlsbad CA)。在此方面,本发明的方法有利地减少了培养基的数量和扩大TIL的数量所需的培养基的类型的数量。在一个实施方式中,扩增TIL的数量可以包括以不超过每三天一次或每四天一次的频率饲养细胞。通过减少扩增细胞所需的饲养频率,在透气容器中扩增细胞数量可简化扩增细胞数量所需的程序。
在一个实施方式中,第一透气容器和/或第二透气容器中的细胞培养基是未经过滤的。使用未经过滤的细胞培养基可简化扩增细胞数量所需的程序。在一个实施方式中,第一透气容器和/或第二透气容器中的细胞培养基缺乏β-巯基乙醇(BME)。
在一个实施方式中,方法的持续时间为约7天至14天(例如约11天),该方法包括:由哺乳动物获得肿瘤组织样品;在其中装有细胞培养基的第一透气容器中培养肿瘤组织样品;由肿瘤组织样品获得TIL;在含有细胞培养基的第二透气容器中扩增TIL的数量。在一些实施方式中,pre-REP为约7天至14天,例如约11天。在一些实施方式中,REP为约7天至14天,例如约11天。
在一个实施方式中,TIL在透气容器中扩增。透气容器已经用于使用本领域已知的方法、组合物和装置使用PBMC来扩增TIL,包括在美国专利申请公开号2005/0106717A1中描述的那些,其公开内容通过引用并入本文。在一个实施方式中,TIL在透气袋中扩增。在一个实施方式中,在透气袋中使用扩增TIL的细胞扩增系统,例如Xuri细胞扩增系统W25(GEHealthcare),来扩增TIL。在一个实施方式中,在透气袋中使用扩增TIL的细胞扩增系统,例如WAVE生物反应器系统(也称为Xuri细胞扩增系统W5)(GE Healthcare),来扩增TIL。在一个实施方式中,细胞扩增系统包括透气细胞袋,该透气细胞袋的体积选自:约100mL、约200mL、约300mL、约400mL、约500mL、约600mL、约700mL、约800mL、约900mL、约1L、约2L、约3L、约4L、约5L、约6L、约7L、约8L、约9L和约10L。
在一个实施方式中,可在G-Rex烧瓶(可从Wilson Wolf Manufacturing商购)中扩增TIL。此类实施方式允许细胞群从约5×105个细胞/cm2扩增为10×106个细胞/cm2至30×106个细胞/cm2。在一个实施方式中,无需进料。在一个实施方式中,只要培养基停留在G-Rex烧瓶中约10cm的高度,就无需进料。在一个实施方式中,无需进料,而是添加一种以上细胞因子。在一个实施方式中,可将细胞因子作为推注添加,而无需混合细胞因子与培养基。此类容器、装置和方法在本领域中是已知的且已用于扩增TIL,并包括美国专利申请公开号US2014/0377739A1、国际公开号WO2014/210036A1、美国专利申请公开号US2013/0115617A1、国际公开号WO2013/188427A1、美国专利申请公开号US2011/0136228A1、美国专利号US8,809,050B2、国际公开号WO2011/072088A2、美国专利申请公开号US2016/0208216A1、美国专利申请公开号US2012/0244133A1、国际公开号WO2012/129201A1、美国专利申请公开号2013 2013/0102075A1、美国专利号8,956,860B2、国际公开号WO2013/173835A1、美国专利申请公开号US2015/0175966A1中描述的那些,其公开内容通过引用并入本文。Jin等,J.Immunotherapy,2012,35:283-292中也描述了此类过程。
D.可选的TIL的基因工程
在一些实施方式中,可选地对TIL进行基因工程以包括其他功能,包括但不限于:高亲和力T细胞受体(TCR),例如靶向肿瘤相关抗原(例如MAGE、HER2或NY-ESO-1)的TCR;或与肿瘤相关细胞表面分子(例如间皮素)或谱系受限细胞表面分子(例如CD19)结合的嵌合抗原受体(CAR)。
E.可选的TIL的冷冻保存
可以可选地冷冻保存大量TIL群或扩增的TIL群。在一些实施方式中,对治疗性TIL群进行冷冻保存。在一些实施方式中,对第二次扩增后收获的TIL进行冷冻保存。在一些实施方式中,在图8的示例性步骤F中,对TIL进行冷冻保存。在一些实施方式中,将TIL冷冻保存于输液袋。在一些实施方式中,将TIL在放入输液袋中之前冷冻保存。在一些实施方式中,冷冻保存TIL并且不置于输液袋。在一些实施方式中,使用冷冻保存培养基进行冷冻保存。在一些实施方式中,冷冻保存培养基包含二甲基亚砜(DMSO)。这通常通过将TIL群放入冷冻溶液(例如85%补体失活的AB血清和15%的二甲基亚砜(DMSO))来完成。将溶液中的细胞放入冻存管中,并在-80℃下保存24小时,并可以选择转移至气态氮气冷冻机中进行冷冻保存。参见Sadeghi等,Acta Oncologica 2013,52,978-986。
适当时,将细胞从冰箱中取出并在37℃水浴中解冻,直至解冻约4/5的溶液。通常将细胞重悬于完全培养基中,并可选地洗涤一次或多次。在一些实施方式中,如本领域中已知的,可对解冻的TIL进行计数和评估活力。
在一个优选实施方式中,使用CS10冷冻保存培养基(CryoStor 10,BioLifeSolutions)将TIL群冷冻保存。在一个优选实施方式中,使用包含二甲基亚砜(DMSO)的冷冻保存培养基将TIL群冷冻保存。在一个优选实施方式中,使用CS10和细胞培养基的1:1(体积:体积)比率将TIL群冷冻保存。在一个优选实施方式中,使用CS10和细胞培养基的约10:1(体积:体积)比率将TIL群冷冻保存,所述细胞培养基还包含另外的IL-2。
如上述在步骤A至E中所讨论的,冷冻保存可发生在在整个TIL群扩增过程的许多点。
如上所述,并且如在图8中提供的步骤A至E中举例说明,冷冻保存可在整个TIL群扩增过程中的许多时间点发生。在一些实施方式中,可以冷冻保存第二次扩增后的扩增的TIL群(例如,根据图A的步骤D提供)。冷冻保存通常可通过将TIL群放入冷冻溶液(例如85%补体失活的AB血清和15%的二甲基亚砜(DMSO))来完成。将溶液中的细胞放入冻存管中,并在-80℃下保存24小时,并可以选择转移至气态氮气冷冻机中进行冷冻保存。参见Sadeghi等,Acta Oncologica 2013,52,978-986。在一些实施方式中,冷冻保存TIL在5%DMSO中。在一些实施方式中,冷冻保存TIL在加5%DMSO的细胞培养基中。在一些实施方式中,根据实施例16中提供的方法冷冻保存TIL。
在一些实施方式中,可冷冻保存根据步骤B的第一次扩增之后的大量TIL群或根据步骤D的一个以上第二次扩增之后的扩增的TIL群。通常,可通过将TIL群置于冷冻溶液中(例如85%补体失活的AB血清和15%二甲基亚砜(DMSO))来冷冻保存。将溶液中的细胞放入冻存管,在-80℃下保存24小时,可选地转移至气态氮气冷冻机中进行冷冻保存。参见Sadeghi等,Acta Oncologica 2013,52,978-986。
适当时,将细胞从冰箱中取出并在37℃水浴中解冻,直至解冻约4/5的溶液。通常将细胞重悬于完全培养基中,并可选洗涤一次或多次。在一些实施方式中,如本领域中已知的,可对解冻的TIL进行计数和评估活力。
在某些情况下,可使用如下所述方案立即将步骤B的TIL群冷冻保存。或者,可对大TIL群群进行步骤C和步骤D,然后在步骤D之后进行冷冻保存。类似地,在将基因修饰的TIL用于治疗的情况下,可对步骤B或D步骤的TIL群进行基因修饰以进行适当治疗。
V.治疗患者的方法
治疗方法从初始TIL的收集和TIL的培养开始。这些方法在本领域中已经由例如Jin等(J.Immunotherapy,2012,35(3):283-292)描述,其全部内容通过引用整体并入本文。下文整个部分(包括实施例)描述了治疗方法的实施方式。
根据本文所述的方法(包括例如上文步骤A至步骤F所述或根据以上步骤A至步骤F所述(例如也如图8所示))生产的扩增的TIL在治疗癌症患者中有特定用途(例如描述于Goff等,J.Clinical Oncology 2016,34(20):2389-239以及补充内容;其内容通过引用并入本文)。在一些实施方式中,如先前描述的,从切除的转移性黑色素瘤沉积物生长TIL(参见Dudley等,J Immunother.,2003,26:332-342;其全部内容通过引用整体并入本文)。可在无菌条件下解剖新鲜肿瘤。可以收集代表性样品用于正式病理分析。可以使用2mm3至3mm3的单个碎片。在一些实施方式中,每位患者获得5、10、15、20、25或30个样品。在一些实施方式中,每位患者获得20、25或30个样品。在一些实施方式中,每位患者获得20、22、24、26或28个样品。在一些实施方式中,每位患者获得24个样品。可将样品置于24孔板的各个孔中,维持在具有高剂量IL-2(6,000IU/mL)的生长培养基中,并监测肿瘤的破坏和/或TIL的增殖。可将处理后具有剩余活细胞的任何肿瘤酶促消化成单细胞悬液并如本文所述地冷冻保存。
在一些实施方式中,可对成功生长的TIL进行取样以进行表型分析(CD3、CD4、CD8和CD56),并在适当时针对自体肿瘤进行检测。如果过夜共培养产生的干扰素-γ(IFN-γ)水平>200pg/mL和两倍背景,则可认为TIL是反应性的。(Goff等,J Immunother.,2010,33:840-847;其全部内容通过引用整体并入本文)。在一些实施方式中,可以选择具有自体反应性迹象或充分的生长模式的培养物,用于第二次扩增(例如根据图8的步骤D提供的第二次扩增),包括有时称为快速扩增(REP)的第二次扩增。在一些实施方式中,选择具有高自体反应性(例如在第二次扩增期间的高增殖)的扩增的TIL,用于另外的第二次扩增。在一些实施方式中,选择具有高自体反应性(例如如图8的步骤D中提供的第二次扩增期间的高增殖)的TIL,用于根据图8的步骤D的另外的第二次扩增。
在一些实施方式中,患者不直接进行ACT(过继细胞转移),例如在一些实施方式中,在肿瘤收获和/或第一次扩增后,不立即使用细胞。在此类实施方式中,可冷冻保存TIL并在给患者施用前2天解冻。在此类实施方式中,可冷冻保存TIL并在给患者施用前1天解冻。在一些实施方式中,可冷冻保存TIL并在给患者施用之前即刻解冻。
可通过流式细胞术(例如,FlowJo)以及通过本文所述的任何方法,分析输液袋TIL的冷冻保存样品的细胞表型的表面标志物CD3、CD4、CD8、CCR7和CD45RA(BD BioSciences)。通过使用标准酶联免疫吸附检测技术,测量血清细胞因子。血清IFN-g的升高定义为≥100pg/mL且大于4 3基线水平。
在一些实施方式中,通过本文提供的方法(例如图8中举例说明的那些)产生的TIL提供了TIL的临床功效的令人惊讶的改善。在一些实施方式中,与通过本文所述之外的方法(例如除图8中所示方法之外的方法)产生的TIL相比,通过本文提供的方法产生的TIL(例如图8所示的那些)显示出增加的临床功效。在一些实施方式中,不同于本文所述那些方法的方法包括被称为过程1C和/或第一代(第一代)的方法。在一些实施方式中,增加的功效通过DCR、ORR和/或其他临床反应来测量。在一些实施方式中,与通过本文所述之外的方法(包括例如除图8中所示那些之外的方法,例如Gen 1过程)产生的TIL相比,通过本文提供的方法产生的TIL(例如图8所示的TIL)表现出相似的响应时间和安全性。
在一些实施方式中,IFN-伽马(IFN-γ)指示治疗功效和/或增加的临床功效。在一些实施方式中,用TIL治疗的受试者的血液中的IFN-γ指示活性TIL。在一些实施方式中,采用IFN-γ产生的效价测定法。IFN-γ的产生是细胞毒性潜力的另一种度量。IFN-γ产生可通过确定用本发明方法制备的TIL治疗的受试者的血液、血清或TIL中的细胞因子IFN-γ的水平来测量,所述TIL通过本发明的方法制备,包括例如图8所示的那些。在一些实施方式中,IFN-γ的增加指示在用通过本发明的方法产生的TIL治疗的患者中的治疗功效。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了1倍、2倍、3倍、4倍或5倍或更多。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了1倍。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了2倍。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了3倍。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了4倍。在一些实施方式中,与未治疗的患者和/或与使用除本文提供的方法之外的其他方法(包括例如除图8所述那些之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了5倍。在一些实施方式中,使用QuantikineELISA试剂盒测量IFN-γ。在一些实施方式中,测量经TIL治疗的受试者的离体TIL的IFN-γ,该TIL通过本发明的方法(包括例如图8中所述的那些)制备。在一些实施方式中,测量经TIL治疗的受试者的血液中的IFN-γ,该TIL通过本发明的方法(包括例如图8中所述的那些)制备。在一些实施方式中,测量经TIL治疗的受试者的血清中的IFN-γ,该TIL通过本发明的方法(包括例如图8中所述的那些)制备。
在一些实施方式中,与通过其他方法(包括非图8中所示的那些方法,例如被称为过程1C过程的方法)产生的TIL相比,通过本发明的方法(包括例如图8中所述的那些)制备的TIL表现出增加的多克隆性。在一些实施方式中,明显改善的多克隆性和/或增加的多克隆性指示治疗功效和/或临床功效的增加。在一些实施方式中,多克隆性指T细胞库多样性。在一些实施方式中,多克隆性的增加可以指示就施用本发明的方法产生的TIL而言的治疗功效。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了1倍、2倍、10倍、100倍、500倍或1000倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了1倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了2倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了10倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了100倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了500倍。在一些实施方式中,使用除本文提供的方法之外的方法(包括例如除图8所述那些之外的方法)制备的TIL相比,多克隆性增加了1000倍。
如本领域已知的以及如本文所述,功效的量度可包括疾病控制率(DCR)以及总反应率(ORR)。
1.治疗癌症和其他疾病的方法
本文所述的组合物和方法可用于治疗疾病的方法。在一个实施方式中,它们用于治疗过度增殖性疾病。它们还可用于治疗本文和以下段落中描述的其他疾病。
在一些实施方式中,过度增殖性疾病是癌症。在一些实施方式中,过度增殖性疾病是实体瘤癌症。在一些实施方式中,实体瘤癌选自:黑色素瘤、卵巢癌、宫颈癌、非小细胞肺癌(NSCLC)、肺癌、膀胱癌、乳腺癌、由人乳头状瘤病毒引起的癌症、头颈癌(包括头颈鳞状细胞癌(HNSCC))、肾癌和肾脏上皮肾脏上皮肾细胞癌。在一些实施方式中,过度增殖性疾病是血液系统恶性肿瘤。在一些实施方式中,实体瘤癌症选自慢性淋巴细胞性白血病、急性淋巴细胞性白血病、弥漫性大B细胞淋巴瘤、非霍奇金淋巴瘤、霍奇金淋巴瘤、滤泡性淋巴瘤和套细胞淋巴瘤。
在一个实施方式中,本发明包括用TIL群治疗癌症的方法,其中,根据本公开内容,在输注TIL之前用非清髓性化疗对患者进行预治疗。在一个实施方式中,非清髓性化治疗为以60mg/kg/天施用环磷酰胺持续2天(TIL输注前第27和26天)以及以25mg/m2/天施用氟达拉滨持续5天(TIL输注前第27至23天)。在一个实施方式中,在根据本公开内容的非清髓性化治疗和TIL输注(在第0天)后,患者以720,000IU/kg每8小时接受一次IL-2的静脉输注,直至生理耐受。
可使用本领域已知的各种模型来检测本文所述的化合物和化合物的组合在治疗、预防和/或控制所示疾病或病症中的功效,所述模型为治疗人类疾病提供指导。例如,确定卵巢癌治疗功效的模型描述于例如Mullany等,Endocrinology 2012,153,1585-92;和Fong等,J.Ovarian Res.2009,2,12。确定胰腺癌的治疗功效的模型描述于Herreros-Villanueva等,World J.Gastroenterol 2012,18,1286-1294。确定乳腺癌治疗功效的模型描述于例如Fantozzi,Breast Cancer Res.2006,8,212。确定黑色素瘤治疗功效的模型描述于例如Damsky等,Pigment Cell&Melanoma Res.2010,23,853–859。确定肺癌治疗功效的模型描述于例如Meuwissen等,Genes&Development,2005,19,643-664。确定肺癌治疗功效的模型描述于例如Kim,Clin.Exp.Otorhinolaryngol.2009,2,55-60;以及Sano,Head NeckOncol.2009,1,32。
在一些实施方式中,IFN-gamma(IFN-γ)指示过度增殖性疾病治疗的治疗功效。在一些实施方式中,用TIL治疗的受试者的血液中的IFN-γ指示活性TIL。在一些实施方式中,采用了IFN-γ产生的效价测定法。IFN-γ产生是细胞毒性潜力的另一种度量。可通过测定用通过本发明的方法制备的TIL治疗的受试者的血液中细胞因子IFN-γ的水平来测量IFN-γ的产生,本发明的方法包括例如图8中所描述的那些。在一些实施方式中,与用使用称为过程1C的方法制备的TIL治疗的受试者相比,本发明方法获得的TIL提供了用本发明方法的TIL治疗的受试者的血液中的IFN-γ增加,如图13所示。在一些实施方式中,IFN-γ的增加指示在用本发明的方法产生的TIL治疗的患者中的治疗功效。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了1倍、2倍、3倍、4倍或5倍或更多。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了1倍。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了2倍。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了3倍。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了4倍。在一些实施方式中,与未治疗的患者和/或与用除本文所述方法之外的其他方法(包括例如除图8所示方法之外的方法)制备的TIL治疗的患者相比,IFN-γ增加了5倍。在一些实施方式中,使用Quantikine ELISA试剂盒测量IFN-γ。在一些实施方式中,使用Quantikine ELISA试剂盒测量IFN-γ。在一些实施方式中,在用通过本发明的方法产生的TIL治疗的患者离体的TIL中测量IFN-γ。在一些实施方式中,在用通过本发明的方法产生的TIL治疗的患者的血液中测量IFN-γ。在一些实施方式中,在用通过本发明的方法产生的TIL治疗的患者的血清中测量IFN-γ。
在一些实施方式中,与通过其他方法(非图8中所示的那些方法,例如称为过程1C过程的方法)生产的TIL相比,通过本发明的方法制备的TIL(包括例如图8所述的那些)显示出增加的多克隆性。在一些实施方式中,明显改善的多克隆性和/或增加的多克隆性指示癌症治疗的治疗功效和/或临床功效增加。在一些实施方式中,多克隆性指T细胞库多样性。在一些实施方式中,多克隆性的增加可以指示就施用本发明的方法产生的TIL而言的治疗功效。在一些实施方式中,与使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL相比,多克隆性增加了1倍、2倍、10倍、100倍、500倍或1000倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了1倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了2倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了10倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了100倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了500倍。在一些实施方式中,与未经治疗的患者和/或通过使用除本文所述那些之外的方法(包括例如除图8中所示那些之外的方法)制备的TIL治疗的患者相比,多克隆性增加了1000倍。
2.共同施用的方法
在一些实施方式中,如本文所述产生的TIL,包括例如源自图8的步骤A至步骤F中所述方法的TIL,可与一种以上免疫检查点调节剂组合施用,例如下文描述的抗体。例如,靶向PD-1并且可与本发明的TIL共同施用的抗体包括例如但不限于nivolumab(BMS-936558,Bristol-Myers Squibb;),pembrolizumab(lambrolizumab,MK03475或MK-3475,Merck;/>),人源化抗PD-1抗体JS001(ShangHai JunShi),单克隆抗PD-1抗体TSR-042(Tesaro,Inc.),Pidilizumab(抗PD-1mAb CT-011,Medivation),抗PD-1单克隆抗体BGB-A317(BeiGene)和/或抗PD-1抗体SHR-1210(ShangHai HengRui),人单克隆抗体REGN2810(Regeneron),人单克隆抗体MDX-1106(Bristol-Myers Squibb),和/或人源化抗PD-1IgG4抗体PDR001(Novartis)。在一些实施方式中,PD-1抗体来自克隆:RMP1-14(大鼠IgG)-BioXcell目录号BP0146。适用于根据本文所述步骤A至步骤F产生的TIL的共同施用方法的其它合适的抗体是美国专利号8,008,449中公开的抗PD-1抗体,其通过引用并入本文。在一些实施方式中,抗体或其抗原结合部分特异性结合PD-L1并抑制其与PD-1的相互作用,从而增加免疫活性。任何本领域已知的与PD-L1结合并破坏PD-1和PD-L1之间相互作用并刺激抗肿瘤免疫应答的抗体,均适合用于根据本文所述步骤A至步骤F产生的TIL的共同施用方法。例如,靶向PD-L1并且处于临床试验中的抗体包括BMS-936559(Bristol-MyersSquibb)和MPDL3280A(Genentech)。靶向PD-L1的其他合适的抗体公开于美国专利号7,943,743中,其通过引用并入本文。本领域普通技术人员将理解,任何与PD-1或PD-L1结合、破坏PD-1/PD-L1相互作用并刺激抗肿瘤免疫反应的抗体,均适合用于根据本文所述步骤A至步骤F产生的TIL的共同施用方法。在一些实施方式中,当患者患有仅接受抗PD-1抗体难以治疗的癌症类型时,施用根据步骤A至步骤F产生的TIL组合的受试者被共同施用抗PD-1抗体。在一些实施方式中,当患者患有重构黑色素瘤(refactory melanoma)时,给患者施用TIL与抗PD-1组合。在一些实施方式中,当患者患有非小细胞肺癌(NSCLC)时,给患者施用TIL与抗PD-1组合。
3.可选的患者淋巴细胞耗竭预治疗
在一个实施方式中,本发明包括用TIL群治疗癌症的方法,其中,根据本公开,在输注TIL之前用非清髓性化学疗法对患者进行预治疗。在一个实施方式中,本发明包括用TIL群患者的癌症,该患者已用非清髓性化学疗法预先治疗。在一个实施方式中,TIL群通过输注施用。在一个实施方式中,非清髓性化疗是环磷酰胺60mg/kg/天,持续2天(在TIL输注前的第27天和第26天)和氟达拉滨25mg/m2/天,持续5天(在TIL输注前的第27至23天)。在一个实施方式中,在根据本公开内容的非清髓性化疗和TIL输注之后(第0天),患者每8小时以720,000IU/kg静脉内接受静脉内输注IL-2(阿地白介素,可作为PROLEUKIN商购)至生理耐受性。在某些实施方式中,TIL群与IL-2组合用于治疗癌症,其中,IL-2在TIL群之后施用。
实验结果表明,过继转移肿瘤特异性T淋巴细胞之前的淋巴细胞耗竭通过消除调节性T细胞和免疫系统的竞争元件(“细胞因子沉降”)而在提高治疗功效中起关键作用。因此,本发明的一些实施方式在引入本发明的TIL之前对患者使用淋巴细胞耗竭步骤(有时也称为“免疫抑制调节”)。
通常,采用施用氟达拉滨或环磷酰胺(活性形式称为马磷酰胺)及它们的组合来实现淋巴细胞耗竭。此种方法描述于Gassner等,Cancer I mmunol I mmunother.2011,60,75–85;Muranski等,Nat.Clin.Pract.Oncol.,2006,3,668–681、Dudley等;J.Clin.Oncol.2008,26,5233-5239和Dudley等,J.Clin.Oncol.2005,23,2346–2357,所有这些文献都通过引用整体并入本文。
在一些实施方式中,氟达拉滨以0.5μg/mL至10μg/mL氟达拉滨的浓度施用。在一些实施方式中,氟达拉滨以1μg/mL氟达拉滨的浓度施用。在一些实施方式中,氟达拉滨治疗施用1天、2天、3天、4天、5天、6天或7天或更长时间。在一些实施方式中,氟达拉滨以10mg/kg/天、15mg/kg/天、20mg/kg/天、25mg/kg/天、30mg/kg/天、35mg/kg/天、40mg/kg/天或45mg/kg/天的剂量施用。在一些实施方式中,氟达拉滨治疗以35mg/kg/天施用2至7天。在一些实施方式中,氟达拉滨治疗以35mg/kg/天施用4至5天。在一些实施方式中,氟达拉滨治疗以25mg/kg/天施用4至5天。
在一些实施方式中,通过施用环磷酰胺获得0.5μg/mL至10μg/mL浓度的马磷酰胺(环磷酰胺的活性形式)。在一些实施方式中,通过施用环磷酰胺获得1μg/mL浓度的马磷酰胺(活性形式的环磷酰胺)。在一些实施方式中,环磷酰胺治疗施用1天、2天、3天、4天、5天、6天或7天或更长时间。在一些实施方式中,环磷酰胺以100mg/m2/天、150mg/m2/天、175mg/m2/天、200mg/m2/天、225mg/m2/天、250mg/m2/天、275mg/m2/天或300mg/m2/天的剂量施用。在一些实施方式中,静脉(即i.v.)施用环磷酰胺。在一些实施方式中,环磷酰胺治疗以35mg/kg/天施用2至7天。在一些实施方式中,环磷酰胺治疗以250mg/m2/天静脉施用4至5天。在一些实施方式中,环磷酰胺治疗以250mg/m2/天静脉施用4天。
在一些实施方式中,通过将氟达拉滨和环磷酰胺一起施用于患者来进行淋巴细胞耗竭。在一些实施方式中,氟达拉滨以25mg/m2/天静脉施用且环磷酰胺以250mg/m2/天静脉施用4天。
在一个实施方式中,通过以60mg/m2/天的剂量施用环磷酰胺持续2天,然后以25mg/m2/天的剂量施用氟达拉滨持续5天,来进行淋巴细胞耗竭。
4.IL-2方案
在一个实施方式中,IL-2方案包括高剂量IL-2方案,其中,高剂量IL-2方案包括阿地白素或其生物类似物或变体,其从施用治疗性TIL群的治疗有效份后的第二天开始静脉内施用,其中,每8小时以15分钟静脉推注方式施用0.037mg/kg或0.044mg/kg(患者体重)剂量的阿地白介素或其生物类似物或变体,直至耐受,最多14剂。休息9天后,可以重复这一时间表再使用14剂,总共最多28剂。
在一个实施方式中,IL-2方案包括递减型IL-2方案。递减型IL-2方案描述于O’Day等,J.Clin.Oncol.1999,17,2752-61和Eton等,Cancer 2000,88,1703-9,其公开内容通过引用并入本文。在一个实施方式中,递减型IL-2方案包括在6小时内静脉内施用18×106IU/m2,随后在12小时内静脉内施用18×106IU/m2,然后在24小时内静脉内施用18×106IU/m2,然后在72小时内静脉注射4.5×106IU/m2。该治疗周期可以每28天重复一次,最多4个周期。在一个实施方式中,递减IL-2方案在第1天包含18,000,000IU/m2、在第2天包含9,000,000IU/m2、在第3和第4天包含4,500,000IU/m2
在一个实施方式中,IL-2方案包括每1、2、4、6、7、14或21天以0.10mg/天至50mg/天的剂量施用聚乙二醇化IL-2。
5.过继细胞转移
过继细胞转移(ACT)是一种非常有效的免疫治疗形式,涉及将具有抗肿瘤活性的免疫细胞转移至癌症患者体内。ACT是一种治疗方法,涉及体外识别具有抗肿瘤活性的淋巴细胞,将这些细胞大量体外扩增,以及将其注入患癌宿主中。用于过继转移的淋巴细胞可以来自切除肿瘤的基质(肿瘤浸润淋巴细胞或TIL)。可如本文所述制备用于ACT的TIL。在一些实施方式中,例如根据图8中所述的方法来制备TIL。如果它们经基因工程改造以表达抗肿瘤T细胞受体(TCR)或嵌合抗原受体(CAR),富含混合淋巴细胞肿瘤细胞培养物(MLTC),或使用自体抗原呈递细胞和肿瘤衍生肽克隆,则它们也可来源或来自血液。其中淋巴细胞来源于待输注的患癌宿主的ACT称为自体ACT。美国公开号2011/0052530涉及用于实施过继性细胞疗法以促进癌症消退的方法,主要用于治疗患有转移性黑色素瘤的患者,其通过引用整体并入这些方法。在一些实施方式中,可如本文所述施用TIL。在一些实施方式中,TIL可以单剂量施用。这样的施用可通过注射,例如静脉内注射。在一些实施方式中,可以以多剂量施用TIL和/或细胞毒性淋巴细胞。施用可每年一次、两次、三次、四次、五次、六次或六次以上。施用可为每月一次、每两周一次、每周一次或隔天一次。视需要,可继续施用TIL和/或细胞毒性淋巴细胞。
6.示例性治疗实施方式
在一些实施方式中,本公开提供了用肿瘤浸润淋巴细胞(TIL)群治疗癌症的方法,其包括以下步骤:(a)由患者的切除肿瘤获得第一TIL群;(b)在第一细胞培养基中进行第一TIL群的初始扩增,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少5倍;其中,第一细胞培养基包含IL-2;(c)在第二细胞培养基中使用髓样人工抗原呈递细胞(髓样aAPC)群对第二TIL群进行快速扩增,获得第三TIL群;其中,从快速扩增开始7天后,第三TIL群的数量比第二TIL群的数量大至少50倍;其中,第二细胞培养基包含IL-2和OKT-3;(d)给癌症患者施用第三TIL群的治疗有效部分。在一些实施方式中,本发明公开了用于治疗癌症的肿瘤浸润淋巴细胞(TIL)群,其中,该TIL群可通过包括以下步骤的方法获得:(b)在第一细胞培养基中对获自患者切除肿瘤的第一TIL群进行初始扩增,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少5倍;其中,第一细胞培养基包含IL-2;(c)在第二细胞培养基中使用髓样人工抗原呈递细胞(髓样aAPC)群对第二TIL群进行快速扩增,获得第三TIL群;其中,从开始快速扩增起7天后,第三TIL群的数量比第二TIL群的数量大至少50倍;其中,该第二细胞培养基包含IL-2和OKT-3;(d)将第三TIL群的治疗有效部分施用于癌症患者。在一些实施方式中,该方法包括第一步:(a)由患者的切除肿瘤获得第一TIL群。在一些实施方式中,在第二细胞培养基中,IL-2以约3000IU/mL的初始浓度存在,OKT-3抗体以约30ng/mL的初始浓度存在。在一些实施方式中,第一次扩增进行不超过14天的时间。在一些实施方式中,使用透气容器进行第一次扩增。在一些实施方式中,使用透气容器进行第二次扩增。在一些实施方式中,在快速扩增中,第二TIL群与aAPC群的比率为1:80至1:400。在一些实施方式中,在快速扩增中,第二TIL群与aAPC群的比率为约1:300。在一些实施方式中,治疗的癌症选自黑色素瘤、卵巢癌、宫颈癌、非小细胞肺癌(NSCLC)、肺癌、膀胱癌、乳腺癌、由人乳头状瘤病毒引起的癌症、头颈癌(包括头颈部鳞状细胞癌(HNSCC))、肾癌和肾脏上皮肾脏上皮肾细胞癌。在一些实施方式中,治疗的癌症选自黑色素瘤、卵巢癌和宫颈癌。在一些实施方式中,治疗的癌症是黑色素瘤。在一些实施方式中,治疗的癌症是卵巢癌。在一些实施方式中,治疗的癌症是宫颈癌。在一些实施方式中,治疗癌症的方法还包括在给患者施用第三TIL群之前用非清髓性淋巴细胞耗竭方案治疗患者的步骤。在一些实施方式中,非清髓性淋巴细胞耗竭方案包括以下步骤:以60mg/m2/天的剂量施用环磷酰胺持续两天,然后以25mg/m2/天的剂量施用氟达拉滨持续五天。在一些实施方式中,高剂量IL-2方案包括每8小时以15分钟静脉推注方式施用600,000或720,000IU/kg阿地白介素或其生物类似物或变体,直至耐受。在一些实施方式中,用于治疗的TIL已与一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA接触,可在第一次扩增和/或第二次扩增期间(例如根据图8的步骤B、步骤C和/或步骤D)将该用于治疗的TIL添加至细胞培养基中;其中,可以选自下组的量添加TIL和其他试剂:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μMsd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基。在一些实施方式中,用于治疗的TIL已与一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA接触;在第一次扩增和/或第二次扩增期间(例如根据图8的步骤B、C和/或D),可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA添加至TIL培养物中。在一个实施方式中,用于治疗的TIL已与一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA接触;其中,在第一次扩增和/或第二次扩增期间(例如根据图8的步骤B、步骤C和/或步骤D),可以选自下组的量添加TIL和其他试剂:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL。在一个实施方式中,用于治疗的TIL已与一种以上靶向本文所述基因(包括PD-1、LAG-3、TIM-3、CISH和CBLB)的sd-RNA接触;其中,在第一次扩增和/或第二次扩增期间(例如根据图8的步骤B、C和/或D),可以每天两次、每天一次、每两天一次、每三天一次、每四天一次、每五天一次、每六天一次或每七天一次地将TIL和其他试剂添加至TIL培养物中。
实施例
现在参考以下实施例描述本文包括的实施方式。提供这些实施例仅用于说明的目的,本文包括的公开内容决不应被解释为限于这些实施例,而是应该被解释为包括根据本文提供的教导而变得显而易见的任何和所有变化。
实施例1:封闭系统测定
如本文所述,开发了在封闭系统中由患者肿瘤产生TIL的方案和测定。
本实施例描述了一种新型简化程序,该程序用于在G-REX装置中由患者的切除肿瘤组织产生临床上相关数量的TIL并冷冻保存最终细胞产物。实施例2至8描述了此过程的其他方面。
程序
提前制备:第0天(至多提前36小时进行),通过向500mL汉克平衡盐溶液(Hank’sBalanced Salt Solution)中补充50μg/mL庆大霉素来制备TIL分离洗涤缓冲液(TIWB)。将2.5mL的10mg/mL庆大霉素储备溶液转移至HBSS。将0.5mL的50mg/mL储备溶液转移至HBSS。
根据LAB-005针对CM2操作的“PreREP和REP的培养基制备”,使用GlutaMaxTM制备CM1培养基。于4℃储存至多24小时。使用前,在37℃温度下温热至少1小时。
从-20℃冰箱取出IL-2等分试样,将等分试样置于2℃至8℃冰箱中。取出肿瘤标本,于4℃保存直至准备处理。
将未使用的肿瘤以在HypoThermasol中或作为在CryoStor CS10中的冷冻碎片的形式运送(HypoThermasol和CryoStor CS10均可从BioLife Solutions,Inc.商购)。
TIL的肿瘤处理
视需要,将以下材料无菌转移至BSC,根据下表16贴上标签。
表16:用于肿瘤分离的材料
将5mL庆大霉素转移至HBSS瓶中。标记为TIWB。旋流混合。吸取50mL TIWB到每个培养皿中。使用长镊子,从标本瓶中取出肿瘤,转移至洗涤1皿中。在室温下在洗涤皿中孵育肿瘤3分钟。将肿瘤转移至洗涤皿中,在室温下于培养皿中孵育肿瘤3分钟。在新的洗涤皿中重复洗涤。
测量并记录肿瘤的长度。将肿瘤块初步解剖为10个中间块,保留每个中间块的肿瘤结构。一次处理1个中间肿瘤块,小心地将肿瘤切成3mm×3mm×3mm碎片。对剩余中间肿瘤块重复(相同的步骤)。
如果可用的肿瘤碎片少于4个,使用可获得的其他碎片来达到40个碎片的目标。当碎片少于40个时,将10至40个碎片放入单个G-Rex 100M烧瓶中。
接种G-Rex 100M烧瓶
视需要,将以下材料无菌转移至BSC,根据下表4贴上标签。
表17:用于接种烧瓶的其他材料
项目 最小数量 过程中标签
G-Rex 100M烧瓶 视需要 批号
温热的CM1 视需要 批号
IL-2等分试样 视需要 批号
向每升CM1补充1mL的IL-2储备溶液(6×106IU/mL)。
如下表5所示,向每个所需的G-REX 100M生物反应器中放入1000mL含有6,000IU/mL IL-2的预热CM1。用移液管将适当数量的肿瘤碎片转移至每个G-Rex 100M烧瓶中,按照表5分配碎片。当一个以上转移至G-Rex 100M烧瓶的肿瘤碎片漂浮时,获得一个另外的可用的肿瘤碎片并将其转移至G-Rex 100M烧瓶中。记录添加至每个烧瓶中的碎片总数。将每个G–REX 100M生物反应器置于37℃、5%CO2培养箱中。
当获得>41个碎片时,将1000mL预热的完全CM1置于第二个G-REX 100M生物反应器中。
表18:所需的G-REX生物反应器的数量
提前制备:第11天(至多提前24小时制备)
用GlutaMax制备6L CM2。使用针对CM2操作的用于“PreREP和REP的培养基制备”的参考实验室程序。使用前1小时,在37℃的温度下加热。解冻IL-2等分试样:从冰箱中取出IL-2等分试样,置于4℃下。
收获TIL(第11天)
从培养箱中取出G-REX-100M烧瓶,置于BSC2中。不要扰动烧瓶底部的细胞。使用GatherRex或蠕动泵从烧瓶中吸取约900mL细胞培养上清液。通过缓慢旋转烧瓶重悬TIL。观察到所有细胞均已从膜中释放出来。将残留的细胞悬液转移至适当大小的血液转移包(300-1000mL)中。注意不要将碎片转移至血液转移包中。用4英寸血浆转移套件刺入转移包。混合细胞悬液,使用3mL注射器取出1mL TIL悬液进行细胞计数。将转移包放入培养箱中直至可使用。
培养基制备
使培养基在37℃加热>1小时。向6L CM2中添加3mL 6×106IU/mL rhIL-2储备液,得到3,000IU/mL rhIL-2的终浓度(“完全CM2”)。将带有母鲁尔接口的4英寸血浆转移套件无菌焊接到1L转移包上。将500mL完全CM2转移至1L转移包中。使用1.0mL带针注射器,吸取150μL 1mg/mL抗CD3(克隆OKT3)并转移至500mL“完全CM2”中。于37℃储存直至使用。
烧瓶准备
将4.5L“完全CM2”转移至G-REX-500M烧瓶中,将烧瓶放入37℃培养箱中直至准备就绪。
解冻经辐照的饲养细胞
使用来自两个以上供体的5.0×109个同种异体辐照的饲养细胞供使用。从LN2冰箱中取出饲养细胞。在37℃培养箱或珠浴中解冻饲养细胞。几乎完全解冻但仍很冷时,从热浴中取出饲养细胞。将每个饲养细胞袋直接添加至开放的G-Rex 500M中,确保有足够数量的经辐照细胞(5.0×109个细胞,+/-20%)。取出装有500mL“完全CM2”+OKT3的1L转移包,转移至BSC。将饲养细胞袋的全部内容物抽入注射器,记录体积,将5.0×109个同种异体辐照饲养细胞分配到转移包中。
当达到目标细胞数的+/-10%(5.0×109)且活力>70%时,继续进行。当达到小于90%目标细胞数(5.0×109)且活力>70%时,解冻另一个袋并重复上述操作。当达到大于110%目标细胞数时,计算所需细胞剂量所需的适当体积,继续进行。
在G-REX 500M烧瓶中共培养TIL和饲养细胞
从培养箱中取出装有制备好的培养基的G-REX 500M烧瓶。将饲养细胞转移包连接至G-REX-500M,使袋中内容物排入500M。计算达到200×106个活细胞总数要添加的TIL悬液的体积。
(TVC/mL)/200×106=mL
当TIL为5×106至200×106活细胞总数时,将所有TIL(总体积)添加至G-REX-500M。当TIL计数大于200×106活细胞总数时,添加将200×106个TIL加到单个G-REX-500M所需的计算体积。旋转剩余TIL,用至少两个冻存管以至多108/mL的浓度将剩余TIL冷冻在CS10中,贴上TIL识别和冷冻日期的标签。
将G-REX-500M置于37℃、5%CO2的培养箱中5天。
提前制备:第16-18天
于37℃加热1个AIM V的10L袋(用于开始少于50×106TIL的培养)、加热2个袋(用于开始大于50×106TIL的培养)至少1个小时,直至准备使用。
进行TIL细胞计数:第16-18天
从培养箱中取出G-REX-500M烧瓶,注意不要扰动烧瓶底部的细胞培养物。从G-REX-500M烧瓶中取出4L细胞培养基,放入无菌容器中。旋动G-REX-500M,直至所有TIL从膜上重悬。将细胞悬液转移至2L转移包中。保留500M烧瓶,以备后用。根据下式计算传代培养所需的烧瓶总数。向上舍入(Rounded fractions up)。
活细胞总数/1.0x109=烧瓶数
制备CM4
为每2个所需的500M烧瓶准备1个AIM-V的10L袋。视需要,加热另外的培养基。向所需的每个10L AIM-V添加100mL GlutaMAX,制备CM4。用rhIL-2补充CM4培养基,使最终浓度为3,000IU/mL rhIL-2。分装细胞培养物。将每个G-REX-500M补充至5L。在计算数量的G-REX-500M之间平均分配TIL体积。将烧瓶置于37℃、5%CO2的培养箱中,直至在REP的第22天收获。
提前制备:第22-24天
通过向2个1L的PlasmaLyte A 7.4袋中的每一个添加40mL的25%HSA,制备2L的1%HSA洗涤缓冲液。合并至1个LOVO辅助袋中。用600IU/mL的IL-2补充200mL CS10。在4℃下预冷4个750mL铝制冷冻罐。
收获TIL:第22-24天
从37℃培养箱中取出G-REX-500M烧瓶,注意不要扰动烧瓶底部的细胞培养物。从每个烧瓶中吸出并丢弃4.5L细胞培养上清液。旋转G-REX-500M烧瓶以完全重悬TIL。将TIL收获到生物处理袋中。充分混合袋子,使用3mL注射器采集2×2mL样品进行细胞计数。称重袋子,计算初始重量和最终重量之差。使用下式确定细胞悬液体积。
细胞悬液的净重(mL)/1.03=体积(mL)
过滤TIL,准备LOVO来源袋。将所有细胞转移至LOVO来源袋后,合上所有夹子并密封LOVO来源袋的管,除去过滤器并称重。计算体积。
在具有600IU/mL rhIL-2的冷CS10中配制TIL 1:1。
计算所需冻存袋的所需数量。
(细胞产品的体积×2)/100=所需袋数(向下舍入(round down))
计算分配至每个袋子的体积。
(细胞产品的体积×2)/所需袋数=每个袋中要添加的体积
将表6中的以下材料无菌转移至BSC。
表19:用于TIL冷冻保存的材料
项目 最小数量 过程中标签
细胞产品 1 批号
铝制冷藏柜(750ml) 1 n/a
冷CS10+600IU/mL IL-2 视需要 批号
Cell Connect CC1设备 1 n/a
750mL冻存袋 计算的 贴上标签:等分试样1-最大数量
100mL注射器 冻存袋数量+1 n/a
三通旋塞阀 1 n/a
冻存管 5 TIL冷冻产品附属小瓶
TIL制剂
连接LOVO最终产品、CS10袋鲁尔锁和适当数量的冻存袋。所需的CS10体积等于LOVO最终产品袋的体积。通过倒置混合LOVO最终产品袋。
将100mL配制的产品转移至每个冻存袋中。除去冻存袋中的所有气泡并密封。将密封袋转移至4℃,放入预冷的铝制冷冻罐中。
使用控速冷冻机(CRF)冷冻保存TIL。
遵循控速冷冻机的标准程序。使用CRF后,将冻存袋保存在液氮(LN2)中。
实施例2:淋巴细胞耗竭
细胞计数可在第7天和淋巴细胞耗竭之前进行。最终细胞产物包括多达约150×109个活细胞,该活细胞配制于最少50%的在Plasma-Lyte ATM中的HypoThermosolTM(体积/体积)和高达0.5%的HSA(兼容人类输注)中,该HAS包含300IU/mL IL2。最终产品可按以下两种输注体积之一进行施用:
1)当收获的TIL总数≤75×109时,250mL(在300mL容量的输液袋中)
或者
2)当收获的TIL总数<150×109时,500mL(在600mL容量的输液袋中)
由于在REP步骤期间患者之间的T细胞扩增速率的差异,无法预测每个患者最终TIL输液产品可能产生的细胞总数。基于以便决定使用环磷酰胺+氟达拉滨化疗方案使患者淋巴细胞耗竭所需的最小细胞数量,设置3至14天的REP的第3、4、5、6、7天的细胞下限。一旦我们基于该获得的最小细胞数量开始淋巴细胞耗竭,我们致力于用我们在REP的第3天至14天(在许多情况下,第7天)产生的可用TIL数量治疗患者。输注范围的上限(150×109个活细胞)基于已知公开的安全输注上限(该上限已获得临床反应)。Radvanyi等,Clin CancerRes 2012,18,6758-6770。
实施例3:过程2A–第0天
本实施例描述了实施例3至6中所述2A过程的第0天详细方案。
制备。
确认肿瘤洗涤培养基、CM1和IL-2在有效期内。将CM1(细胞培养基1)放入培养箱中。
方法。
制备TIL培养基CM1,CM1含有6000IU/mL IL-2:1L CM1和1mL IL-2(6,000,000IU/mL)。在加入G-REX中并置于37℃恒温箱中预热时,将25ml CM1+IL2放入50mL锥形瓶中以用于碎片。
向每个G-REX 100MCS生物反应器中泵送975mL预热CM1(包含6,000IU/mL的IL-2)。将G-REX 100MCS置于培养箱中,直至需要。
组织解剖
记录肿瘤处理的开始时间。吸取3mL至5mL肿瘤洗涤培养基到一个六孔板的每个孔中,用于过量的肿瘤块。吸取50mL肿瘤洗涤培养基洗涤皿1至3和存放皿。将2个150mm解剖皿放入生物安全柜中。将3个无菌50mL锥形管放入BSC中。向每个锥形管中添加5mL至20mL肿瘤洗涤培养基。在肿瘤洗涤和解剖过程中,视需要将镊子和手术刀浸入肿瘤洗涤培养基中。
从标本瓶中取出肿瘤,转移至洗涤1皿中。在洗涤1皿中于环境中孵育肿瘤≥3分钟。将肿瘤转移至洗涤2培养皿。在洗涤2皿中于环境中孵育肿瘤≥3分钟。将肿瘤转移至洗涤3皿。在洗涤3皿中于环境中孵育肿瘤≥3分钟。将肿瘤转移至解剖皿,测量并记录肿瘤的长度。
将解剖皿中的肿瘤块初始解剖为中间块,注意保持每个中间块的肿瘤结构。将未主动解剖的任何中间肿瘤块转移至组织存放皿中,确保整个解剖期间组织保持水分。
一次处理一个中间肿瘤块,在解剖皿中小心地将肿瘤切成约3mm×3mm×3mm的碎片。继续由中间肿瘤块解剖碎片,直至中间块的所有组织均被评估。选择良好碎片,使用移液管将至多4个良好碎片转移至“肿瘤碎片”培养皿中一圈洗涤培养基滴中。使用移液器、手术刀或镊子,将尽可能多的不良组织和废弃物转移至“不良组织”培养皿。将所有剩余的组织放入六孔板的一个孔中。(黄色脂肪组织或坏死组织表示不良组织。)继续处理剩余的中间肿瘤块,一次处理一个中间块,直至整个肿瘤都被处理。
将至多50个最佳肿瘤碎片转移至50mL锥形管(贴有标签:含CM1的肿瘤碎片)。从50mL锥形瓶中取出漂浮物。记录碎片和漂浮物数量。旋转装有肿瘤碎片的锥形瓶,将50mL锥形瓶中的内容物倒入G-Rex 100MCS烧瓶中。如果转移至G-Rex 100M烧瓶的一个或多个肿瘤碎片漂浮,则从良好组织皿中获取一个另外的肿瘤碎片并将其转移至G-Rex 100M烧瓶。
记录培养箱号和添加至每个烧瓶中的碎片总数。将G-REX 100M生物反应器置于37℃、5%CO2培养箱中。
实施例4:过程2A-第11天
本实施例描述了实施例3至6中所述2A过程的第11天详细方案。
事先制备。
处理前一天:
可在处理发生的前一天制备CM2。置于4℃。
处理日。
准备饲养细胞线束(feeder cell harness)。根据CTF-FORM-318制备5mL冷冻保存培养基,置于4℃直至需要。
准备G-Rex 500MCS烧瓶。使用10mL注射器通过未使用的无菌母鲁尔接口连接器将0.5mL IL-2(储备液为6×106IU/mL)(对于每升CM2(细胞培养基2))无菌转移至生物处理袋中。确保所有IL-2已与培养基混合。将4.5L CM2培养基泵入G-Rex500MCS。将G-Rex 500MCS放在培养箱中。
制备经辐照的饲养细胞
记录1L转移包(TP)的干重。按重量将500mL CM2泵入TP。在37℃(+/-1℃)水浴中解冻饲养细胞。充分混合最终饲养细胞制剂。使用5mL注射器和无针端口,用一些细胞溶液冲洗端口以确保准确采样,取出1mL细胞,将其放入贴有标签的试管中用于计数。对饲养细胞样品进行单细胞计数,记录数据,将计数原始数据附加到批次记录中。如果细胞计数<5×109,解冻更多的细胞,计数,添加至饲养细胞中。重新称重饲养细胞袋,计算体积。计算要取出的细胞体积。
向G-REX添加饲养细胞
充分混合细胞,取出上面所计算体积,达到5.0×109细胞。丢弃不需要的细胞。使用1mL注射器和18G针头吸取0.150mL OKT3,取下针头,通过母鲁尔接口将其转移至饲养细胞TP。将饲养细胞袋无菌焊接至G-Rex 500MCS的红色管线。松开管线,使饲养细胞在重力作用下流入烧瓶。将G-Rex 500MCS放回培养箱,记录时间。
制备TIL:记录TIL收获开始的时间
小心地从培养箱中取出G-Rex 100MCS。使用GatheRex将约900mL培养上清液转移至1L转移包中。旋转烧瓶,直至所有细胞均从膜上脱离。检查膜以确保所有细胞均已分离。远离收集管倾斜烧瓶,使肿瘤碎片沿边缘沉降。朝向收集管缓慢倾斜烧瓶,使碎片留在烧瓶的相对侧。使用GatheRex将残留的细胞悬液转移至300mL转移包中,避免肿瘤碎片。重新检查所有细胞均已从膜上去除。视需要,通过松开GatheRex上的夹子进行反洗,允许一些培养基在重力作用下流入G-Rex 100MCS烧瓶。用力敲击烧瓶以释放细胞,泵入300mL TP中。收集完成后,关闭红色管线,热封。
记录含有细胞悬液的300mL TP的质量(包括干质量),计算细胞悬液的体积。充分混合细胞。无菌连接5mL注射器,吸取1mL,置于冻存管中。用第二个注射器重复。这些用于细胞计数、活力检测。放置在培养箱中,记录放置在培养箱中的时间。对每个样品进行单细胞计数,记录。视需要,将活TIL总密度调整为≤2×108个活细胞。计算要取出的体积或记录不必要的调整。
将过量的细胞转移至适当大小的锥形管中,在盖松开的情况下放置在培养箱中,用于之后的冷冻保存。
从培养箱中取出G-Rex 500MCS,将细胞泵入烧瓶中。将G-Rex 500MCS放回培养箱,记录放置在G-Rex培养箱中的时间。
过量(细胞)的冷冻保存
计算添加至细胞中的冷冻培养基的量:
表20:目标细胞浓度为1×108/mL
A.(从步骤15)取出的总细胞 mL
B.目标细胞浓度 1×108个细胞/mL
要添加的冷冻培养基的体积(A/B) mL
在20℃下以全制动和全加速度将TIL以400×g的转速旋转5分钟。无菌吸出上清液。将细胞重悬于剩余液体中,在重悬时缓慢加入制备好的冷冻培养基。等分试样,置于-80℃。
实施例5:过程2A-第16天
本实施例描述了实施例3至6中所述2A过程的第16天详细方案。
收获并计数TIL。
在37℃培养箱中加热1个10L CM4袋(用于开始少于50×106个TIL的培养)至少30分钟或直至准备使用。从培养箱中取出G-Rex 500MCS烧瓶,使用GatheRex将约4L培养上清液转移至10L Labtainer。根据适当的GatheRex收获说明进行收获。
除去上清液后,旋转烧瓶,直至所有细胞均从膜上脱离。倾斜烧瓶,确保软管在烧瓶的边缘。使用GatheRex,将残留的细胞悬液转移至2L TP中,保持边缘倾斜,直至收集所有细胞。检查膜上的贴壁细胞。用力敲击烧瓶以释放细胞。将细胞添加至2L TP。加热密封2L转移包。记录装有细胞悬液的转移包的质量,计算细胞悬液的体积。确定细胞悬液体积,包括干重。
轻轻地混合细胞,吸取11mL,如表21所示等分试样。
表21:检测参数
基于细胞悬液体积和QC取出体积(11mL),计算新体积,记录2L转移包中的体积。
接种,进行无菌性检测。将支原体样品保存在4℃的用于支原体检测的待检测架中。放置直至TIL接种。
细胞计数:
进行单细胞计数,记录数据,将计数原始数据附加到批次记录。记录稀释度。记录Cellometer计数程序。将验证正确的稀释度输入到Cellometer中。计算传代培养所需的烧瓶总数。
添加IL-2至CM
放置装有Glutamax的10L Aim V袋。将5mL IL-2注入注射器(终浓度为3000IU/mL),将IL-2加到袋中。对剩余Aim V袋重复同样操作。
准备G-REX500MCS烧瓶
确定要添加至烧瓶中的CM4量。记录每个烧瓶添加的细胞体积和CM4 5000mL-A的体积。将烧瓶置于37℃、5%CO2中。
用TIL接种烧瓶
将细胞产物袋置于分析天平上,记录TIL添加至G-REX烧瓶的时间。充分混合细胞。对所有烧瓶重复细胞转移。将烧瓶置于37℃、5%CO2中,记录TIL添加至G-REX烧瓶的时间。向微生物实验室订购沉降板测试以及有氧无菌性测试和厌氧无菌性测试。
流式细胞术或过量细胞的冷冻保存:
计算所需的冷冻培养基的量:目标细胞浓度为1×108/mL;记录取出的细胞总数。目标细胞浓度为1×108细胞/mL。计算要添加的冷冻培养基的总体积。
制备冷冻保存培养基,置于40℃直至需要。在20℃下以全制动和全加速度将TIL以400×g的转速旋转5分钟。吸出上清液。轻轻拍打试管底部以将细胞重悬在剩余液体中,在轻轻敲打试管的同时缓慢添加制备好的冷冻培养基。分装到适当大小的贴好标签的冻存管中。放在-80℃冰箱中。在72小时内转移至永久储存地点,记录放入在-80℃中的日期和时间。
实施例6:过程2A-第22天
本实施例描述了实施例3至6中所述2A过程的第22天详细方案。
提前制备
将3个1L PlasmaLyte A袋放入BSC中。准备合并,标签写上含1%HSA的PlasmaLyteA袋。装载120mL的25%HAS用于转移。将HSA转移至3L PlasmaLyte袋。充分混合。从3L袋的无针端口取出5mL含1%HSA的PlasmaLyte。标签写上LOVO清洗缓冲液和日期。
IL-2制备
将PlasmaLyte/1%HSA从5mL注射器加到带标签的50mL无菌锥形管中。向装有PlasmaLyte的试管中添加0.05mL IL-2储备液,贴上标签:IL-2 6×104。储存于2℃至8℃。
细胞制备
从37℃取出G-REX 500M烧瓶。使用GatheRex泵,减少第一个烧瓶的体积。旋转G-REX 500M烧瓶,直至TIL完全重悬,同时避免飞溅或起泡。确保所有细胞均已从膜上脱落。倾斜G-Rex烧瓶,使细胞悬液合并在烧瓶中收集吸管所在的一侧。启动GatherRex收集细胞悬液,确保已从烧瓶中取出所有细胞。如果细胞保留在烧瓶中,将100mL上清液加回到烧瓶中、涡旋、收集到细胞悬液袋中。重复其他烧瓶。加热密封,贴上标签:LOVO来源袋。记录干重。
使TIL通过过滤器从细胞悬液袋中排出并进入LOVO来源袋。将所有细胞转移至LOVO来源袋后,关闭所有夹子,在标记上方加热密封,取下。充分混合袋子,使用两个3mL注射器从注射器样品端口中取出2个独立的2mL样品,进行细胞计数和活力检测。称重袋子,确定初始重量和最终重量之差。记录数据和在培养箱中的位置,包括干重。
细胞计数。
对每个样品进行单细胞计数,记录数据,将计数原始数据附加到批次记录中。记录Cellometer计数程序。将验证正确的稀释度输入到Cellometer中。确定有核细胞总数。确定保留=1.5×1011个细胞用于LOVO处理要取出的TNC数量。将取出的细胞放入适当大小的容器中进行废弃处理。
LOVO收获
“事先制备”中带有Baxter扩增件的10L Labtainer是焊接到LOVO试剂盒的替换滤液袋。追踪LOVO显示。要开始此程序,从下拉菜单中选择“TIL G-Rex收获”方案,按照说明进行操作。
当显示最终产品体积(保留物体积)屏幕时,使用表15的有核细胞总数(TNC)值确定下表的最终产品目标体积(表16)。在LOVO程序设置过程中输入与该细胞范围相关的最终产品体积(mL)。
表22:最终产品目标体积的确定
细胞范围 最终产品(保留物)的目标体积(mL)
0<(活+死)细胞总数≤7.1E10 150
7.1E10<(活+死)细胞总数≤1.1E11 200
1.1E11<(活+死)细胞总数≤1.5E11 250
表23:产品目标体积
为了从表16确定目标体积,触摸最终产品体积(mL)输入字段。显示数字键盘。输入所需的最终产品体积(以mL为单位)。
记下所显示的滤液和溶液1(读为PlasmaLyte)的体积。记下显示的滤液和溶液1(读为PlasmaLyte)的体积。
预涂IP袋。混合来源袋。在LOVO程序期间,系统会自动暂停以允许操作员操作其他袋。在不同的暂停期间显示不同的屏幕。遵循每个屏幕的相应说明。
来源(袋)冲洗暂停
排空来源袋后,LOVO将洗涤缓冲液添加至来源袋中以冲洗袋。将配置好的体积的洗涤缓冲液添加至来源袋中后,LOVO自动暂停并显示“来源(袋)冲洗”暂停屏幕。
LOVO处理来自来源袋的冲洗液,然后继续自动化程序。
混合IP袋暂停
为了使细胞再次通过旋转器,用洗涤缓冲液稀释IP袋。将清洗缓冲液添加至IP袋后,LOVO自动暂停并显示“混合IP袋”暂停屏幕。
当显示“混合IP袋”暂停屏幕时,操作员将IP袋倒转几次以彻底混合细胞悬液。按照说明从IP袋中添加LOVO处理液。
“揉按IP角落(Massage IP Corners)”暂停
在LOVO程序的最后清洗周期中,将细胞从IP袋中泵出,通过旋转器,然后送到保留物(最终产品)袋中。当IP袋为空时,将10mL洗涤缓冲液添加至IP袋的底部以冲洗袋。添加冲洗液后,LOVO自动暂停并显示“揉按IP角落”暂停屏幕。
当显示“揉按IP角落”暂停屏幕时,操作员揉按袋子的角落以使任何残留细胞悬浮。恢复LOVO以从IP袋中泵出冲洗液。
在LOVO程序结束时,显示“取出产品”屏幕。
记录结果数据,格式如表17所示。
表24:LOVO结果汇总表
关闭LOVO关闭程序
记录最终配制的产品体积。计算最终产品表中所需的IL-2的量。
确定冻存袋数量和保留体积
标记目标体积,保留下表冷冻保存袋的数量和产品的保留样品体积。
目标体积/袋子计算:(最终配制体积–由于未达到100%回收率而调整的体积=10mL)/#袋子。
用1:1(体积:体积)的CS10(CryoStor 10,BioLife Solutions)和IL-2制备细胞。
用IL-2和连接的装置制备细胞。将细胞和装置放在运输袋中,在2℃至8℃下放置≤15分钟。
添加CS10
吸出“最终配制产品体积”表中确定的冷CS10的量。缓慢且轻轻地混合,将CS10(1:1,体积:体积)添加至细胞中。
将配制的细胞产物添加至冻存袋
用适当尺寸的注射器更换注射器以细胞体积放入每个冻存袋中。混合细胞产品。打开通向细胞产品袋的夹子,吸出适当的体积。
记录最终产品体积
使用无针端口和适当大小的注射器,吸出先前确定的保留量。将保留物放入标有“保留”的50mL锥形管中。使用连接至线束的注射器,抽出袋中所有空气,将细胞吸到袋子上方约1英寸处,进入管道。置于2℃至8℃。混合细胞产品袋中的细胞,使用旋塞阀上的新注射器和新注射器,对剩余的CS750袋重复步骤3至8,获得细胞保留物。产品进入CRF后,应将保留的产品留出以进行处理。
控速冷冻机(CRF)程序(另请参见实施例16)
将冰箱保持在4℃直至准备添加样品。将样品添加至CRF。
等待,直至CRF恢复为4℃。达到温度后,按照CRF程序进行冷冻操作。对冻存袋进行以下目视检查(注意:不检查是否超过或不满):容器完整性、端口完整性、密封完整性、细胞团块的存在和颗粒的存在。
将冻存袋放入预处理的盒子中并转移至CRF。将盒子均匀地放在CRF的机架。将带状热电偶(ribbon thermocouple)用于中央盒,或将隔袋(dummy bag)放在中央位置。
关闭CRF的门。一旦腔室温度达到4℃+/-1.5℃。记录产品转移至CRF的时间和腔室温度。
质量控制样品的处理
视需要无菌转移以下材料,根据QC和保留表25进行标记。质控的1-细胞计数管、1-内毒素管、1-支原体管、1-革兰染色管、1管再刺激管和1-流式细胞术管用于即时检测。将其余的重复试管放置在控速冷冻机中。
表25:检测和储存说明
/>
细胞计数
对每个样品进行单细胞计数,记录数据,将计数的原始数据附加到批次记录中。记录Cellometer计数程序。将验证正确的稀释度输入到Cellometer中。
配制后保留细胞的冷冻保存:将小瓶置于CRF中。冷冻完成后移至储存位置,记录放置在CFR中的日期和时间。记录移至LN2的日期和时间。
微生物学检测:进行有氧无菌性和厌氧无菌性检测。
细胞产品袋的冷冻保存后
运行完成后,停止冷冻机。从盒子中取出冻存袋。将盒子转移至气相LN2
实施例7:使用IL-2、IL-15和IL-21细胞因子混合物
本实施例描述了与实施例1至10的TIL方法结合使用作为另外的T细胞生长因子的IL-2、IL-15和IL-21细胞因子。
使用实施例1至10的方法,在一只实验臂中,在IL-2存在下,由结直肠癌、黑色素瘤、宫颈癌、三阴性乳腺癌、肺癌和肾癌肿瘤生长TIL;以及,在另一臂中,在培养开始时,用IL-2、IL-15和IL-21的组合代替IL-2。在pre-REP完成时,评估培养物的扩增、表型、功能(CD107a+和IFNγ)和TCR Vβ库。IL-15和IL-21描述于本文其他地方和Gruijl等,IL-21promotes the expansion of CD27+CD28+tumor infiltrating lymphocytes withhigh cytotoxic potential and low collateral expansion of regulatory T cells(IL-21促进CD27+CD28+肿瘤浸润淋巴细胞的扩增,其具有高的细胞毒性潜能和低的调节性T细胞侧支扩增),Santegoets,S.J.,J Transl Med.,2013,11:37(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626797/)。
结果显示,相对于仅有IL-2的条件,在多种组织学中观察到在IL-2、IL-15和IL-21处理的条件下,CD4+和CD8+细胞中TIL扩增增强(>20%)。相对于仅使用IL-2的培养物,从IL-2、IL-15和IL-21处理的培养物中获得的TIL中,存在着偏向于TCR Vβ库偏斜的主要CD8+群。与仅用IL-2处理的TIL相比,在用IL-2、IL-15和IL-21处理的TIL中IFNγ和CD107a升高。
实施例8:黑色素瘤的II期(phase 2)多中心(multicenter)三队列(three-cohort)研究
此II期多中心三队列研究旨在评估根据方法1C(如本文所述)生产的TIL治疗在转移性黑色素瘤患者中的安全性和有效性。队列1和队列2各自招募30名患者;队列3是再治疗队列,对至多10名患者进行第二次TIL输注。前两个队列正在评估两个不同的生产过程:过程1C和过程2A的一个实施例(分别描述于实施例1至实施例10)。队列1中的患者接受新鲜的非冷冻保存的TIL,队列2中的患者接受通过实施例1至10中所述过程(得到冷冻保存的产品)生产的产品。研究设计如图26所示,此研究是II期多中心3队列研究,用于评估转移性黑色素瘤患者的自体TIL亚群治疗的安全性和有效性。关键纳入标准包括:可测量的转移性黑色素瘤和≥1处可切除病灶用于产生TIL;至少一项先前的全身性治疗;年龄≥18岁;以及ECOG表现状态为0-1。治疗队列包括未冷冻保存的TIL产品(使用方法1C制备)、冷冻保存的TIL产品(使用过程2A的实施方式制备)以及用TIL产品重新治疗无反应的患者或在初始反应后有进展的患者。主要终点是安全性,次要终点是功效,定义为客观缓解率(ORR)、完全缓解率(CRR)、无进展生存期(PFS)、缓解持续时间(DOR)和总生存期(OS)。
实施例9:经伽马射线辐照的外周单核细胞的合格单个批次
本实施例描述了一种新型简化程序,用于使经γ辐射的外周单核细胞(PBMC,也称为MNC)的单个批次合格,以用作本文所述的示例性方法中的同种异体饲养细胞。
每个经辐照的MNC饲养细胞批次均由单个供体制备。在纯化的抗CD3(克隆OKT3)抗体和白介素2(IL-2)存在的情况下,针对每个批次或供体在REP中扩增TIL的能力进行单独筛选。此外,在不添加TIL的情况下检测每批饲养细胞,以验证所接收的γ射线剂量足以使它们复制机能不全。
背景
TIL的REP需要经γ辐射的生长停滞的MNC饲养细胞。饲养层MNC上的膜受体与抗CD3(克隆OKT3)抗体结合,并与REP烧瓶中的TIL交联,从而刺激TIL扩增。用取自各个供体的全血的白细胞单采制备饲养细胞批次。在GMP条件下,将白细胞单采产物在Ficoll-Hypaque上进行离心、洗涤、辐照并冷冻保存。
重要的是接受TIL治疗的患者不能注入活的饲养细胞,因为这可能导致移植物抗宿主病(GVHD)。因此,通过对细胞进行伽马射线照射而使饲养细胞生长停滞,导致双链DNA断裂,并在再培养时MNC细胞的细胞活力丧失。
评价标准和实验设置
以两个标准评价饲养批次:1)它们在共培养中使TIL扩增>100倍的能力,以及2)它们的复制机能不全。
使用在直立的T25组织培养瓶中生长的两个原代pre-REP TIL系以mini-REP形式检测饲养细胞批次。针对两个不同的TIL系对饲养细胞批次进行检测,因为每TIL群系在响应REP中的活化后均具有增殖能力。作为对照,与检测批次同时运行大量经辐照的MNC饲养细胞(其在过去已被证明符合上述标准)。
为确保在单个实验中检测的所有批次都接受同等检测,可使用相同的pre-REP-TIL系的充足库存来检测所有条件和所有饲养细胞批次。
对于所检测的每批饲养细胞,总共有六个T25烧瓶:Pre-REP TIL系#1(2个烧瓶);Pre-REP TIL系#2(2个烧瓶);和饲养细胞对照(2个烧瓶)。对装有TIL系#1和#2的烧瓶评估了饲养细胞扩增TIL的能力。对饲养细胞对照组烧瓶评估了饲养细胞批次的复制机能不全。
实验方案
第2/3天,解冻TIL系
制备CM2培养基。在37℃水浴中加热CM2。制备40mL补充有3000IU/mL IL-2的CM2。保持温热,直至使用。将不含IL-2的20mL预热CM2放入标有所用TIL系名称的两个50mL锥形管中。从LN2储存中取出两个指定的pre-REP TIL系,将小瓶转移至组织培养室。将小瓶放入37℃水浴中的密封拉链储藏袋中以解冻小瓶,直至残留少量冰。
使用无菌移液管,立即将小瓶的内容物转移至准备好的标记的50mL锥形管中的20mL CM2中。使用不含IL-2的CM2清洗细胞至40mL。在400xCF下离心5分钟。吸出上清液,重悬于5mL补充有3000IU/mL IL-2的温热CM2中。
一式两份取出小等分试样(20μL),用于使用自动细胞计数器进行细胞计数。记录计数。计数时,将装有TIL细胞的50mL锥形管放入湿润的37℃、5%CO2的培养箱中,松开盖子以进行气体交换。测定细胞浓度并在补充有3000IU/mL IL-2的CM2中将TIL稀释至1×106细胞/mL。
在湿润的37℃培养箱中,视需要在24孔组织培养板中以2mL/孔培养任意数量的孔,直至mini-REP的第0天。在单独的24孔组织培养板中培养不同的TIL系,以避免混淆和潜在的交叉污染。
第0天,开始Mini-REP
为要检测的饲养细胞批次的数量准备足够的CM2培养基(例如,一次检测4个饲养细胞批次,准备800mL CM2培养基)。等分一部分如上制备的CM2,补充3000IU/mL IL-2,用于细胞培养(例如,一次检测4个饲养细胞批次,准备500mL加有3000IU/mL IL-2的CM2培养基)。
单独用每TIL群系进行工作以防止交叉污染,从培养箱中取出带有TIL培养物的24孔板,转移至BSC。
使用无菌移液管或100-1000μL移液器和吸头,从要使用的TIL的每个孔中取出约1mL培养基,将其放入24孔组织培养板的未使用孔中。
使用新鲜的无菌移液管或100-1000μL移液器和吸头,在孔中混合剩余的培养基和TIL以重悬细胞,然后将细胞悬液转移至标有TIL名称的50mL锥形管,记录体积。
用保留的培养基洗涤孔,将该体积转移至相同的50mL锥形管中。以400xCF旋转细胞以收集细胞沉淀。吸出培养基上清液并将细胞沉淀重悬于2-5mL的CM2培养基中,该培养基含有3000IU/mL IL-2,所用体积取决于收获的孔数和沉淀的大小——体积应足以确保浓度>1.3×106细胞/mL。
使用血清移液器充分混合细胞悬液,记录体积。使用自动细胞计数仪取出200μL进行细胞计数。计数时,将装有TIL细胞的50mL锥形管放入37℃ 5%CO2湿润培养箱中,松开盖子以进行气体交换。记录计数。
从培养箱中取出含有TIL细胞的50mL锥形管,以1.3×106细胞/mL的浓度将其重悬于补充有3000IU/mL IL-2的温热CM2中。将50mL锥形管放回培养箱,松开盖子。
对第二TIL系重复以上步骤。
在将TIL接种到用于实验的T25烧瓶中之前,将以1:10稀释TIL,终浓度为1.3×105细胞/mL,如下所述。
制备MACS GMP CD3纯(OKT3)工作溶液
从4℃冰箱中取出OKT3的储备溶液(1mg/mL),置于BSC中。在mini-REP的培养基中使用的最终浓度为30ng/mL OKT3。
在该实验的每个T25烧瓶中,每20mL需要600ng OKT3;这相当于每20mL需要60μL的10μg/mL溶液,或所有6个烧瓶(测试每个饲养细胞批次)需要360μL。
对于每个测试的饲养细胞批次,以10μg/mL的工作浓度制成400μL的1mg/mL OKT3的1:100稀释液(例如,一次测试4个饲养细胞批次,制备1600μL的1:100稀释的1mg/mLOKT3:16μL的1mg/mL OKT3+1.584mL的CM2培养基(具有3000IU/mL的IL-2))。
准备T25烧瓶
在制备饲养细胞之前,标记每个烧瓶并用CM2培养基填充烧瓶。将烧瓶放入37℃湿润的5%CO2培养箱中,以保持培养基温热,同时等待添加其余成分。制备饲养细胞后,将成分添加到每个烧瓶的CM2中。
表26:溶液
制备饲养细胞
此方案测试的每批最少需要78×106个饲养细胞。通过SDBB冷冻的每1mL小瓶在冷冻时具有100×106个活细胞。假设从LN2储存中解冻后复苏率达到50%,建议每批解冻至少两个1mL饲养细胞小瓶,使每个REP估计有100×106个活细胞。或者,如果以1.8mL的小瓶提供,则一个小瓶就可提供足够的饲养细胞。
在解冻饲养细胞之前,对于要检测的每个饲养细胞批次,预热约50mL不含IL-2的CM2。从LN2储存中取出指定的饲养细胞批次小瓶,放入拉链储存袋中,放在冰上。通过浸入37℃水浴中,将已密封的拉链袋中的小瓶解冻。从拉链袋中取出小瓶,用70%的乙醇喷洒或擦拭,然后将小瓶转移至BSC。
使用转移吸管立即将饲养细胞小瓶的内容物转移至50mL锥形管中的30mL温热CM2中。用少量CM2洗涤小瓶,以除去小瓶中的任何残留细胞。在400x CF下离心5分钟。吸出上清液,重悬于4mL温热CM2加3000IU/mL IL-2中。取出200μL,用于使用自动细胞计数器进行细胞计数。记录计数。
以1.3×107细胞/mL在温热CM2加3000IU/mL IL-2中重悬细胞。将TIL细胞从1.3×106细胞/mL稀释至1.3×105细胞/mL。
设置共培养
将TIL细胞从1.3×106细胞/mL稀释至1.3×105细胞/mL。向15mL锥形管中加入4.5mL CM2培养基。从培养箱中取出TIL细胞,使用10mL血清移液器重悬。从1.3×106细胞/mL TIL悬液中取出0.5mL细胞,添加到15mL锥形管中的4.5mL培养基中。将TIL储备小瓶放回培养箱。充分混合。对第二TIL系重复此操作。
将装有预热培养基的培养瓶从培养箱转移至BSC,用于单个饲养细胞批次。通过用1mL移液器吸头上下吸移几次,将混合的饲养细胞混合,然后将1mL(1.3×107细胞)转移至该饲养瓶的每个烧瓶中。向每个烧瓶中加入60μL OKT3工作储备液(10μg/mL)。将两个对照瓶放回培养箱。
将每TIL群批次的1mL(1.3×105)转移至相应标记的T25烧瓶中。将烧瓶放回培养箱,直立培养。直至第五天才扰动。
对所有检测的饲养细胞批次重复操作。
第5天,培养基更换
用3000IU/mL IL-2制备CM2。每个烧瓶需要10mL。用10mL移液器将具有3000IU/mLIL-2的10mL温热CM2转移至每个烧瓶中。将烧瓶放回培养箱,直立培养直至第7天。对所有检测的饲养细胞批次重复操作。
第7天,收获
从培养箱中取出烧瓶并转移至BSC,注意不要扰动烧瓶底部的细胞层。在不扰动烧瓶底部生长的细胞的情况下,从每个检测烧瓶中取出10mL培养基,从每个对照组烧瓶中取出15mL培养基。
使用10mL血清移液管,将细胞重悬于剩余的培养基中并充分混合以破碎任何细胞团。通过移液将细胞悬液充分混合后,取出200μL进行细胞计数。使用适当的标准操作程序以及自动细胞计数设备对TIL进行计数。在第7天记录计数。
对于所有检测的饲养细胞批次重复操作。
根据下表TT,评估饲养细胞对照组烧瓶的复制机能不全,并评估含有TIL的烧瓶从第0天起的倍数扩增。
第7天,饲养细胞对照组烧瓶持续至第14天
在第7天完成饲养细胞对照组烧瓶的计数后,向每个对照组烧瓶中加入15mL含有3000IU/mL IL-2的新鲜CM2培养基。将对照组烧瓶放回培养箱,直立培养直至第14天。
第14天,饲养细胞对照组烧瓶的不增殖延长
从培养箱中取出烧瓶并转移至BSC,注意不要扰动烧瓶底部的细胞层。在不干扰烧瓶底部生长的细胞的情况下,从每个对照烧瓶中取出约17mL培养基。使用5mL血清移液管,将细胞重悬在剩余的培养基中,并充分混合以分解任何细胞团块。记录每个烧瓶的体积。
通过移液充分混合细胞悬液后,取出200μL用于细胞计数。使用适当的标准操作程序以及自动细胞计数设备对TIL进行计数。记录计数。
对所有检测的饲养细胞批次重复操作。
结果和接受标准
结果
γ辐照的剂量足以使饲养细胞复制机能不全。预期所有批次都符合评价标准,并且还证明与第0天相比,REP培养第7天剩余的饲养细胞总存活数减少。
预期所有饲养批次都符合REP培养第7天TIL生长100倍扩增的评价标准。
预期饲养对照烧瓶的第14天计数继续第7天所见的非增殖趋势。
接受标准
对于每批饲养细胞,检测的每个重复的TIL系均满足以下接受标准。
接受标准为2倍,如下所述(见下表27)。
表27:接受标准
检测 接受标准
辐照MNC/复制机能不全 在第7天和第14天没有观察到生长
TIL扩增 每个TIL群至少扩增100倍(最少1.3×107个活细胞)
评估当在30ng/mL OKT3抗体和3000IU/mL IL-2存在下培养时,辐照剂量是否足以使MNC饲养细胞复制机能不全。通过在REP的第7天和第14天通过自动细胞计数确定的活细胞总数(TVC),来评估复制机能不全。
接受标准是“无生长”,意味着从REP的第0天投入培养的初始活细胞数开始,在第7天和第14天的活细胞总数没有增加。
评价饲养细胞支持TIL扩增的能力。根据从REP第0天开始培养至REP第7天活细胞的倍数扩增,来测定TIL生长。在第7天,通过自动细胞计数测得TIL培养物达到最小100倍的扩增(即,大于在REP第0天投入培养的TIL活细胞总数的100倍)。
不符合接受标准的MNC饲养批次的应急测试(Contingency Testing)。
如果MNC饲养细胞批次不满足上述任何一个接受标准,将采取以下步骤来重新测试该批次,以排除其原因为简单的实验者错误。
如果该批次中有两个以上剩余的附属(satellite)测试瓶,则对该批次进行重新测试。如果批次中有一个或没有剩余的附属测试瓶,则根据上面列出的接受标准,该批次不合格。
为了合格,所讨论的批次和对照批次必须达到上述接受标准。符合这些标准后,该批次将被发布以供使用。
实施例10:经伽马射线辐照的外周血单核细胞的合格单个批次
本实施例描述了一种新型简化程序,用于使经γ-辐照的外周血单核细胞(PBMC)的单个批次合格,以用作本文所述的示例性方法中的同种异体饲养细胞。此实施例提供了评价经辐照的PBMC细胞批次用于临床生产TIL批次的方案。每个经辐照的PBMC批次均由单个供体制备。在超过100种鉴定方案的过程中,已经显示,在所有情况下,来自SDBB(圣地亚哥血库)的经辐照的PBMC批次可在REP的第7天使TIL扩增>100倍。该改进的鉴定方案旨在适用于来自SDBB的经辐照的供体PBMC批次,其仍必须进行测试以验证所接收的γ辐照剂量足以使其复制机能不全。一旦证明它们在14天的过程中保持复制机能不全,则认为供体PBMC批次是“合格的”以用于生产TIL临床批次。
背景
对于TIL的当前标准REP,需要经γ-辐照的生长停滞的PBMC。PBMC上的膜受体与抗CD3(克隆OKT3)抗体结合并与培养物中的TIL交联,从而刺激TIL扩增。由取自各个供体的全血白细胞单采来制备PBMC批次。在GMP条件下,将全血白细胞单采产物在Ficoll-Hypaque上离心、洗涤、辐照并冷冻保存。
重要的是接受TIL治疗的患者不能注入活的PBMC,因为这可能导致移植物抗宿主病(GVHD)。因此,通过施用细胞γ-辐照使供体PBMC生长停滞,导致双链DNA断裂,并且再培养时PBMC的细胞活力丧失。
评价标准
经辐照的PBMC批次的评价标准是:它们复制机能不全。
实验设置
使用直立的T25组织培养瓶,饲养批次以mini-REP形式进行测试,就好像它们与TIL共培养一样。对照批次:已被证明符合7.2.1标准的一批经辐照的PBMC作为对照与试验批次一起进行试验。对于每批测试的经辐照的供体PBMC,用烧瓶进行重复试验。
实验方案
第0天
为每批待测试的供体PBMC制备约90mL的CM2培养基。将CM2在37℃水浴中保持温热。解冻6×106IU/mL IL-2的等分试样。将CM2培养基放回BSC,用70%EtOH擦拭,然后放入罩中。对于每批测试的PBMC,将约60mL的CM2移至单独的无菌瓶中。将IL-2从解冻的6×106IU/mL储备溶液加到该培养基,终浓度为3000IU/mL。将该瓶标记为“CM2/IL2”(或类似)以将其与未补充的CM2区分开。
制备OKT3
从4℃冰箱中取出抗CD3(OKT3)的储备溶液并置于BSC中。在mini-REP的培养基中使用终浓度为30ng/mL的OKT3。用1mg/mL储备溶液制备10μg/mL抗CD3(OKT3)工作溶液。放入冰箱直至需要。
对于每个测试的PBMC批次,制备150μL 1:100稀释的抗CD3(OKT3)储备溶液。例如,为了一次测试4个PBMC批次,通过将6μL的1mg/mL储备溶液加入到594μL补充有3000IU/mLIL-2的CM2中,制备600μL的10μg/mL抗CD3(OKT3)。
准备烧瓶
将每瓶19ml CM2/IL-2加入到标记的T25烧瓶中,制备细胞时将烧瓶置于37℃、湿润的、5%CO2培养箱中。
制备经辐照的PBMC
从LN2储存中取出要测试的PBMC批次的小瓶。在解冻前将它们置于-80℃或保持在干冰上。对于待解冻的每个批次,将30mL CM2(未补充IL-2)放入50mL锥形管中。用待解冻的PBMC的不同批号标记每个管。将管盖紧,且使用前将其置于37℃水浴中。视需要,将50mL锥形管放回BSC,用70%EtOH擦拭,然后放入罩中。
从冷藏库中取出样品瓶PBMC,置于37℃水浴中的浮管架中解冻。解冻直至小瓶中残留少量冰。使用无菌转移移液管,将小瓶中的内容物立即转移至50mL锥形管中的30mLCM2中。从管中取出约1mL培养基冲洗小瓶;将冲洗液放回50mL锥形管中。盖紧并轻轻旋转以洗涤细胞。
在室温下以400×g离心5分钟。吸取上清液,用1000μl移液管尖端将细胞沉淀重悬于1mL温热的CM2/IL-2中。或者,在添加培养基之前,通过沿着空试管架拖动加盖的管重悬细胞沉淀。重悬细胞沉淀后,用CM2/IL-2培养基将体积调至4ml。记录体积。
使用自动细胞计数器取出一小份等分试样(例如100μL)进行细胞计数。根据特定的自动细胞计数器SOP,一式两份进行计数。通常需要在进行细胞计数之前对PBMC进行稀释。建议的起始稀释度为1:10,但这可能会根据所用细胞计数器的类型而有所不同。记录计数。
使用CM2/IL-2培养基按步骤7.4.15.2,将PBMC的浓度调节至1.3×107个细胞/mL。通过温和地旋转或使用血清移液管上下轻轻吹吸混合均匀。
设置培养烧瓶
将两个标记的T25烧瓶从组织培养箱放回BSC。将10μg/mL抗CD3/OKT3的小瓶放回BSC。向每个烧瓶中加入1mL 1.3×107PBMC细胞悬液。向每个烧瓶中加入60μl10μg/mL抗CD3/OKT3。将带盖的烧瓶放回组织培养箱培养14天,不要扰动。将抗CD3/OKT3小瓶放回冰箱中,直至下一批需要。对每批待评估的PBMC重复此操作。
第14天,测量PBMC的不增殖
将重复的T25烧瓶放回BSC。对于每个烧瓶,使用新的10mL血清移液管,从每个烧瓶中取出约17ml,然后小心地拉起剩余的培养基以测量烧瓶中剩余的体积。记录体积。
使用相同的血清移液管上下吹吸以混合样品。
从每个烧瓶中取出200μL样品进行计数。使用自动细胞计数器计数细胞。对每批被评估的PBMC重复进行这些步骤7.4.26-7.4.31。
结果和接受标准
结果
γ辐照剂量足以使饲养细胞复制机能不全。预期所有批次均符合评价标准,并证明与第0天相比,REP培养第14天剩余的饲养细胞总存活数减少。
接受标准
每个经辐照的供体PBMC批次均符合以下接受标准:“无生长”——意味着第14天的活细胞总数小于REP第0天培养的初始活细胞数。
不符合接受标准的PBMC批次的应急测试
如果经辐照的供体PBMC批次不符合上述接受标准,则采取以下步骤重新测试该批次,以排除其失败的原因为简单的实验者错误。如果该批次剩余两个以上的附属小瓶,那么该批次将被重新测试。如果该批次中剩余一个或没有剩余附属小瓶,则根据上文第10.2节的接受标准,该批次失败。
为了合格,经过应急测试的PBMC批次的对照批次和相关批次的两个副本均达到接受标准。符合此标准后,该批次将被发布以供使用。
实施例11:IL-2储备溶液的制备
本实施例描述了将纯化的冻干重组人白细胞介素2溶解到适合用于进一步的组织培养方案的储备样品中的过程,包括本申请和实施例中描述的所有那些,包括涉及使用rhIL-2的那些。
步骤
制备0.2%乙酸溶液(HAc)。将29mL无菌水加至50mL锥形管中。将1mL1N乙酸加至50mL锥形管中。通过倒置管2-3次混合。使用Steriflip过滤器过滤灭菌HAc溶液。
制备PBS中的1%HSA。在150mL无菌过滤装置中,向96mL PBS中加入4mL 25%HAS储备溶液。过滤溶液。4℃储存。记录制备的每瓶rhIL-2。
制备的rhIL-2储备溶液(6×106IU/mL终浓度)。每批rh1L-2不同,并且要求在制造商的分析证书(COA)中找到信息,例如:1)每瓶rhIL-2的质量(mg)、2)rhIL-2的比活(IU/mg)和3)推荐的0.2%HAc重溶体积(reconstitution volume)(mL)。
通过使用以下等式计算rhIL-2批次所需的1%HSA的体积:
例如,根据CellGenix的rhIL-2批次10200121COA,1mg小瓶的比活为×106lU/mg。它建议在2mL 0.2%HAc中重溶rhIL-2。
用酒精擦拭IL-2小瓶的橡胶塞。使用连接在3mL注射器上的16G针头,将推荐体积的0.2%HAc注入小瓶中。当撤回针头时,注意不要移动塞子。倒置小瓶3次并旋转直至所有粉末溶解。小心地取下塞子,放在旁边的酒精擦拭物上。向小瓶中添加计算体积的1%HSA。
rhIL-2溶液的储存。对于短期储存(<72小时),将小瓶储存在4℃。对于长期储存(>72小时),将小瓶等分成较小的体积并储存在-20℃的冻存管中直至准备使用。避免反复冻结/解冻。制备日期后6个月过期。Rh-IL-2标签包括供应商和目录号、批号、有效期、操作员姓名、浓度和等分试样的体积。
实施例12:制备用于PREP和REP过程的培养基
本实施例描述了制备组织培养基的程序,该组织培养基用于涉及培养源自多种肿瘤类型的肿瘤浸润淋巴细胞(TIL)的方案,所述肿瘤类型包括但不限于转移性黑色素瘤、头颈部鳞状细胞癌(HNSCC)、卵巢癌、三阴性乳腺癌和肺腺癌。此培养基可用于制备本申请和实施例中描述的任何TIL。
CM1的制备
从冷藏中取出以下试剂,并在37℃水浴中加热它们:(RPMI1640,人AB血清,200mML-谷氨酰胺)。通过将每种成分添加到适合于要过滤的体积的0.2μm过滤器单元的顶部,根据下表28制备CM1培养基。储存于4℃。
表28:CM1的制备
成分 最终浓度 最终体积500mL 最终体积IL
RPMI1640 NA 450mL 900mL
人AB血清,热灭活10% 50mL 100mL
200mM L-谷氨酰胺 2 mM 5mL 10mL
55mM BME 55μM 0.5mL 1mL
50mg/mL硫酸庆大霉素 50μg/mL 0.5mL 1mL
在使用当天,在37℃水浴中预热所需量的CM1,添加6000IU/mL IL-2。
其他补充剂-视需要根据表29。
表29:CM1的其他补充剂(视需要)
CM2的制备
按照上述第7.3节的要求,从冰箱中取出制备好的CM1或制备新鲜CM1。从冰箱中取出通过在无菌培养基瓶中混合制备的CM1和等体积的/>来制备所需量的CM2。使用当天在CM2培养基中添加3000IU/mL IL-2。在使用当天,用3000IU/mL IL-2制成足够量的CM2。在CM2培养基瓶上贴上名称、制备者的姓名缩写、过滤/制备的日期、两周的有效期,在4℃下储存,直至组织培养需要为止。
CM3的制备
在需要使用当天制备CM3。CM3与培养基相同,在使用当天补充3000IU/mLIL-2。通过将IL-2储备溶液直接添加到AIM-V的瓶子或袋子中,制备足以满足实验需要的CM3。轻轻摇匀。加入AIM-V后,立即用“3000IU/mL IL-2”标记瓶子。如果有过量的CM3,请将其储存在4℃的瓶子中,并用培养基名称,制备者的姓名缩写,制备培养基的日期及其有效期(制备后7天)标记。在4℃下储存7天后,丢弃补充有IL-2的培养基。
CM4的制备
CM4与CM3相同,另外补充有2mm GlutaMAXTM(最终浓度)。对于每1L的CM3,添加10mL 200mM的GlutaMAXTM。通过将IL-2储备液和GlutaMAXTM储备液直接添加到AIM-V的瓶子或袋子中,制备足以满足实验需要的CM4。轻轻摇匀。加入AIM-V后,立即用“3000IL/mL IL-2和GlutaMAX”标记瓶子。如果有过量的CM4,将其保存在4℃的瓶子中,用培养基名称“GlutaMAX”及其有效期(制备后7天)标记。在4℃下储存7天后,丢弃补充有IL-2的培养基。
实施例13:评估2A过程中使用的无血清培养基
本实施例提供了数据,该数据显示了替代目前在2A过程中使用的标准CM1、CM2和CM4培养基的无血清培养基的功效的评估。本研究以3个阶段检测了可用无血清培养基(SFM)和无血清替代品作为替代品的功效。
阶段1:比较了使用标准无血清培养基vs CTS Optimizer或Prime T CDM或Xvivo-20无血清培养基(含或不含血清替代品或血小板裂解液)进行TIL扩增的疗效(n=3)。
阶段2:使用G-Rex 5M(n=3)在迷你规模的2A过程中检测了候选无血清培养基条件。
背景信息
尽管已证明Pre REP和Post REP培养中所用的当前培养基组合是有效的,但用AIM-V可能会发生REP失败。如果确定了有效的无血清替代品,则通过将所用培养基类型数量由3种减少为1种,将使CMO中进行的过程更加直接和简单。此外,SFM通过消除对人血清的使用来减少偶发疾病的机会。本实施例提供了数据,该数据表明支持在2A过程中使用无血清培养基。
表30:缩写
μL 微升
CM1,2,4 完全培养基1、2、4
CTS OpTimizer SFM Cell Therapy System OpTimizer无血清培养基
g 克
Hr 小时
IFU 使用说明
IL-2 白细胞介素-2细胞因子
Min 分钟
mL 毫升
℃ 摄氏度
PreREP 预快速扩增方案
REP 快速扩增方案
RT 室温
SR 血清替代品
TIL 肿瘤浸润淋巴细胞
实验设计
如LAB-008中所述,开始Pre-REP和REP。图55显示了这三个实验阶段的概述。
如图55所示,该项目旨在分为两步来检测无血清培养基和补充剂。
步骤1:选择无血清培养基供应商。设置pre-REP和post-REP以在G-Rex 24孔板中模拟2A过程。通过在每个条件下一式三份或一式四份地培养G-Rex 24孔板的每个碎片/孔来启动PreREP。通过培养G-Rex 24孔的4×10e5 TIL/孔,在第11天开始REP;在第16天分装;在第22天收获。将CTS OpTimizer、X-Vivo 20和Prime T-CDM用作在PreREP和REP中使用的潜在的无血清培养基替代物。将CTS免疫SR血清替代品(生命技术公司)或血小板裂解液血清(SDBB)以3%添加至SFM中。每个条件都计划在pre-REP和post-REP中检测至少3个肿瘤以模拟2A进程。
步骤2:根据方案(TP-17-007),在迷你规模2A过程中对经鉴定的候选物进行进一步检测。简而言之,通过在每种条件下一式三份培养2个碎片/G-Rex 5M烧瓶来启动pre-REP。在第11天使用2×10e6/G-Rex 5M烧瓶开始REP,在第16天分装,在第22天收获。
注意:在一个实验中处理并设置了一些肿瘤以测量多个参数。
观察
当比较2A过程中所用的无血清培养基与标准培养基时,观察到的同等或统计学上更好的细胞生长结果。
与在2A过程中所用标准培养基中生长的TIL相比,从无血清培养基中生长的TIL观察到相似的表型、IFN-γ产生和代谢产物分析。
结果
检测无血清培养基对pre-REP和post-REP TIL扩增的功效。
CTS Optimizer+SR(血清替代品)显示了增强的pre-REP TIL扩增和相当的REPTIL扩增。添加或不添加3%CTS Immune CTS SR的CTS OpTimizer、X-Vivo 20和Prime T-CDM针对标准条件进行检测。在M1079和L4026中,与标准条件(CM1、CM2、CM4)相比,CTSOpTimizer+CSR条件显示出pre-REP TIL扩增显著增强(p<0.05)。相反,无CSR的CTSOptimizer不能帮助pre-REP TIL扩增(附录-1,2,3)。在3种检测肿瘤中的2种,CTSOptimizer+CSR显示在PostREP中相当的TIL扩增。在X-Vivo 20和Prime T-CDM条件下,pre-REP和post-REP中均产生大量变异,而CTS Optimizer在四组重复间相对一致。此外,与标准相比,添加SFM的血小板裂解液不能增强pre-REP和post-REP TIL扩增。这些发现表明,当然需要血清替代品以提供与我们标准相当的生长,CTS Optimizer+CSR可为候选物。
在G-Rex 5M mini中测试候选条件。
Post REP TIL的表型分析。参见下表31。
表31:使用CTS OpTimizer的CD8差异(CD8 skewing)
干扰素-γ的可比性
干扰素-γELISA(Quantikine)。使用R&D系统的Quantikine ELISA试剂盒检测FN-γ的产生。与我们的标准条件相比,CTS+SR产生了相当数量的IFN-γ。
实施例14:T细胞生长因子混合物IL-2/IL-15/IL-21增强了肿瘤浸润T细胞的扩增和效应子功能
已证明了采用自体肿瘤浸润淋巴细胞(TIL)的过继性T细胞疗法在转移性黑色素瘤和宫颈癌患者中的临床疗效。在一些研究中,更好的临床结果与输注的细胞总数和/或CD8+T细胞的百分比呈正相关。当前大多数生产方案仅利用IL-2促进TIL生长。已报道了使用含有IL-15和IL-21的方案增强淋巴细胞扩增。本研究描述了在临床上最近实施的第二代IL-2-TIL方案中添加IL-15和IL-21的积极作用。
材料和方法
产生TIL的过程包括预快速扩增方案(pre-REP),其中将1-3mm3大小的肿瘤碎片置于含有IL-2的培养基中。在pre-REP期间,TIL从肿瘤碎片中迁移出并响应于IL-2刺激而扩增。
为了进一步刺激TIL的生长,通过称为快速扩增方案(REP)的二次培养阶段来扩增TIL,该方案包括经辐照的PBMC饲养细胞、IL-2和抗CD3。在此研究中,开发了缩短的pre-REP和REP扩增方案以扩增TIL,同时保持最终TIL产品的表型和功能属性。
该缩短的TIL产生方案用于评估单独的IL-2vs IL2/IL-15/IL-21组合的影响。比较了这两种培养方案中由结直肠癌、黑色素瘤、宫颈癌、三阴性乳腺癌、肺癌和肾癌肿瘤生长而产生的TIL。pre-REP结束时,评估培养的TIL的扩增、表型、功能(CD107a+和IFNγ)和TCR Vβ库。
使用标准IL-2(600IU/mL)方案开始pre-REP培养,或者使用除IL-2外还包括IL-15(180IU/mL)和IL-21(IU/mL)开始pre-REP培养。在pre-REP完成时评估细胞的扩增。如果总体生长至少提高了20%,则将培养物分类为相比于IL-2扩增增强。本文显示了黑色素瘤和肺肿瘤的表型和功能研究。参见下表32。
表32:多种适应症中用IL-2/IL-15/IL-21使pre-REP期间的扩增增强
这些数据证明,与单独的IL-2相比,用IL-2/IL15/IL-21培养TIL时,除肺肿瘤的表型和功能上的差异之外,TIL产物的产量增加。
三重混合物对TIL扩增的作用是适应症特异性的且低产率肿瘤最受益。
通过NSCLC TIL产物的处理,CD8+/CD4+T细胞比率增加。
如通过黑色素瘤和NSCLC中的CD107a表达水平所评估的,通过向IL-2中添加IL-15和IL-21看起来增强了T细胞活性。
此处提供的数据表明,使用更短更稳健的过程(例如本申请和其他实施例中所述的2A过程)进行TIL扩增可调整为包含IL-2/IL-15/IL-21细胞因子混合物,从而提供进一步促进TIL扩增的手段,特别是在特定适应症中。
正在进行实验正在进一步评估IL-2/IL-15/IL-21对TIL功能的影响。
另外的实验将评估REP(第一次扩增)期间三重混合物的作用。
这些观察尤其与大规模生产TIL所需的TIL培养方案的优化和标准化有关,其具有主流抗癌疗法所需的广泛适用性和可用性。
实施例15:评估100:1至25:1的同种异体饲养细胞:TIL比率范围
此研究检测了相对于对照(目前过程1C中使用100:1的同种异体饲养细胞比TIL),在25:1和50:1的同种异体饲养细胞比TIL时的TIL增殖。
美国国家癌症研究所外科分会发表的研究表明,在开始REP(1)时,G-Rex 100烧瓶中TIL的最佳活化阈值为5×106个同种异体饲养细胞/cm2。这已通过数学建模得到验证,并使用相同的模型预测:使用对每单位面积的细胞:细胞接触进行了优化的饲养细胞层,同种异体饲养细胞相对于TIL的比例可降低为25:1,而对TIL激活和扩增的影响最小。
此研究确定了REP开始时每单位面积饲养细胞的最佳密度,并验证了在REP开始时所需的同种异体饲养者比率的有效范围以减少和归一化每个临床批次所用饲养细胞数量。该研究还验证了与固定数量的饲养细胞共培养的少于200×106TIL开始REP。
A.T细胞的体积(直径10μm):V=(4/3)πr3=523.6μm3
B.G-REX 100(M)圆柱,高度为40μm(4个细胞):V=(4/3)πr3=4×1012μm3
C.填充B圆柱所需的细胞数量:4×1012μm3/523.6μm3=7.6x108μm3*0.64=4.86×108
D.可在4D空间中最佳活化的细胞数量:4.86×108/24=20.25×106
E.推出G-REX 500的饲养细胞和TIL的数量:TIL:100×106,饲养细胞:2.5×109
式1:提供二十面体几何形状以在底面为100cm2的圆柱中活化TIL所需的单核细胞数量的近似值。计算得出了T细胞阈值活化的实验结果(~5×108),该结果与NCI实验数据(1)非常相似。(C)乘数(0.64)是Jaeger和Nagel在1992年(2)计算的等效球体的随机堆积密度。(D)除数24是可在4维空间中接触相似物体的等效球体的数量“牛顿数”(3)
参考文献
(1)Jin,Jianjian,et.al.,Simplified Method of the Growth of Human TumorInfiltrating Lymphocytes(TIL)in Gas-Permeable Flasks to Numbers Needed forPatient Treatment.J Immunother.2012 Apr;35(3):283–292.
(2)Jaeger HM,Nagel SR.Physics of the granular state.Science.1992 Mar20;255(5051):1523-31.
(3)O.R.Musin(2003).“The problem of the twenty-five spheres”.Russ.Math.Surv.58(4):794–795.
实施例16:使用封闭系统生产冷冻保存的TIL细胞治疗
本实施例描述了根据现行良好组织操作(Good Tissue Practices)和现行良好生产规范(Good Manufacturing Practices)在G-Rex烧瓶中Iovance Biotherapeutics,Inc.的TIL细胞治疗过程的cGMP生产。该材料将根据美国FDA良好生产规范(21CFR第210、211、1270和1271部分)和适用于I期的ICH Q7标准通过商业材料进行生产。
下表33中提供过程概述。
表33:过程概述
在本实施例中,除非另有说明,否则假定1.0mL/L=1.0g/kg。打开后,将在2℃至8℃下进行以下试验:人类血清,AB型(HI)Gemini,1个月;2-巯基乙醇,1个月。硫酸庆大霉素(50mg/mL储备液)可在室温下保存1个月。装有10L AIM-V培养基的袋子只能在室温下加热一次,使用前最多只能放24小时。在第22天收获期间,可使用两个GatherexTM从G-Rex500MCS烧瓶收获TIL。
第0天,制备CM1培养基
制备RPMI 1640培养基。在BSC中,使用适当大小的移液器,从1000mL RPMI 1640培养基中取出100.0mL,放入适当大小的带有“废弃物”标签的容器中。
在BSC中,将试剂添加至RPMI 1640培养基瓶中。如下表所示,向RPMI 1640培养基瓶中添加以下试剂。记录添加的体积。每瓶添加的量:热灭活的人AB血清(100.0mL);GlutaMax(10.0mL);硫酸庆大霉素50mg/mL(1.0mL);2-巯基乙醇(1.0mL)。
给RPMI 1640培养基瓶加盖,旋转旋瓶子以确保试剂充分混合。通过1L 0.22微米过滤器单元过滤来自步骤8.1.6的RPMI 1640培养基。给经过滤的培养基贴上标签。无菌盖住经过滤的培养基,标签上具有以下信息。
解冻一个1.1mL的IL-2等分试样(6×106IU/mL)(BR71424),直至所有的冰均熔化。记录IL-2:批号和有效期。将IL-2储备溶液转移至培养基。在BSC中,将1.0mL IL-2储备溶液转移至步骤8.1.8中制备的CM1第0天培养基瓶中。加入CM1第0天培养基1瓶和IL-2(6×106IU/mL)1.0mL。盖上盖子,旋转瓶子以混合含有IL-2的培养基。重新标为“完全培养基CM1第0天”。
使用适当大小的移液管取出20.0mL培养基,加到50mL锥形管中。在BSC中,将25.0mL的“完全CM1第0天培养基”(在步骤8.1.13中制备)转移至50mL锥形管中。将试管贴上标签“组织小块”。无菌通过G-Rex100MCS(W3013130)进入BSC。在BSC中,关上G-Rex100MCS上的所有夹子,使排气过滤器夹子保持打开状态。通过鲁尔接口连接将G-Rex100MCS烧瓶的红色管线连接到中继泵流体转移套件(W3009497)的较大直径端。将Baxa泵置于BSC旁边。从BSC卸下了中继泵流体转移套件的泵管部分,将其安装在中继泵中。在BSC内,从泵送液体分配系统(PLDS)(W3012720)卸下注射器并丢弃。
通过鲁尔接口连接将PLDS移液器连接到中继泵流体转移套件的较小直径端,将移液器尖端放置在“完全CM1第0天培养基”中以进行抽吸。打开培养基和G-Rex100MCS之间的所有夹子。将完全CM1培养基泵入G-Rex100MCS烧瓶中。将泵速设置为“高”和“9”,然后将所有完全CM1第0天培养基泵入G-Rex100MCS烧瓶。转移完所有培养基后,清理管线,停止泵送。
从烧瓶上断开泵。确保除通气过滤器外,所有烧瓶上的夹子都已关闭。从红色培养基管线上拆下中继泵流体转移套件,在红色培养基管线上放一个红色盖子(W3012845)。从BSC上取下G-Rex100MCS烧瓶,加热密封住终端鲁尔接口附近红色管线上的红色盖子。给G-Rex100MCS烧瓶贴上QA提供的过程中“第0天”标签。给样品贴上以下标签“第0天”。培养箱参数:37.0±2.0℃;CO2百分比:5.0±1.5%CO2
将50mL锥形管“放在培养箱中加热≥30分钟。
第0天,制备肿瘤洗涤培养基
将庆大霉素添加至HBSS中。在BSC中,将5.0mL庆大霉素(W3009832或W3012735)添加至1x 500mL HBSS培养基(W3013128)瓶中。记录体积。每瓶添加:HBSS(500.0mL);硫酸庆大霉素50mg/mL(5.0mL)。彻底混合试剂。通过1L 0.22微米过滤器单元(W1218810),过滤在步骤8.2.1中制备的含有庆大霉素的HBSS。无菌盖住经过滤的培养基,标记以下信息。
第0天,肿瘤处理
获得肿瘤标本,立即转移至2℃至8℃套件中,处理和记录肿瘤信息。标记3个50mL锥形管:第一个标记为“镊子”,第二个标记为“解剖刀”,第三个标记为“新鲜肿瘤洗涤培养基”。将5×100mm培养皿标记为“洗涤1”、“洗涤2”,“洗涤3”、“保持”和“不良”。将1个6孔板标记为“良好的中间碎片”。
使用适当大小的移液器,将5.0mL的“肿瘤洗涤培养基”转移至一个6孔板的每个孔中,得到良好的中间肿瘤碎片(总计30.0mL)。使用适当大小的移液器,将50.0mL步骤8.2.4中制备的“肿瘤洗涤培养基”转移至“洗涤1”、“洗涤2”,“洗涤3”和“保持”的每个100mm培养皿中(总共200.0mL)。使用适当大小的移液器,将20.0mL步骤8.2.4中制备的“肿瘤洗涤培养基”转移至每个50mL锥形瓶中(总共60.0mL)。从2个6孔板上无菌取下盖子。将盖子用于所选肿瘤块。将肿瘤无菌递送到BSC中。记录处理开始时间。
肿瘤洗涤1:使用镊子,从标本瓶中取出肿瘤,转移至“清洗1”中。用镊子轻轻洗净肿瘤,记录时间。根据样品计划,将20.0mL(或可用体积)溶液从肿瘤标本瓶转移至50mL锥形瓶中。贴好标签,储存在2℃至8℃下收集的生物负荷样品,直至提交进行检测。
肿瘤洗涤2:使用一套新的镊子,将肿瘤从“清洗1”皿中取出,转移至“清洗2”皿中。用镊子轻轻搅动≥3分钟以清洗肿瘤标本,然后静置。记录时间。
使用移液管,将来自锥形瓶的4滴单独的肿瘤洗涤培养基滴入6孔板的上翻盖(2个盖)上的6个圆圈中的每个圆圈中。将一个额外的液滴放置在两个圆圈上,总计50滴。
肿瘤洗涤3:使用镊子,将肿瘤从“洗涤2”皿中取出,转移至“洗涤3”皿中。用镊子轻轻搅动清洗肿瘤标本,静置≥3分钟。记录时间。
将尺子放在150mm培养皿盖下方。使用镊子,将肿瘤标本无菌转移至150mm解剖皿盖上。从头到尾排列所有肿瘤样品,记录大概的总长度和碎片数。评估肿瘤坏死组织/脂肪组织。评估是否发现>30%的整个肿瘤区域是坏死组织和/或脂肪组织;如果是,确保肿瘤大小合适。评估是否发现<30%的整个肿瘤区域是坏死组织或脂肪组织;如果是,继续。
清理解剖。如果肿瘤较大并且观察到>30%的组织外部为坏死/脂肪,则通过手术刀和/或镊子的组合,通过切除坏死/脂肪组织进行“清理解剖”,同时保留肿瘤的内部结构。为了维持肿瘤的内部结构,仅使用垂直切割压力。不用手术刀切锯动作。
使用手术刀和/或镊子的组合,将肿瘤样品切成均匀的适当大小的碎片(最多6个中间碎片)。为了维持肿瘤的内部结构,只能使用垂直切割压力。不用手术刀切锯动作。确保将未解剖的中间碎片完全浸没在“肿瘤洗涤培养基”中。将每个中间碎片转移至“保存”皿中。
一次处理一个中间碎片,将解剖皿中的肿瘤中间碎片切成约3mm×3mm×3mm的小块,以使每块上的出血组织、坏死组织和/或脂肪组织的量最小。为了维持肿瘤的内部结构,仅使用垂直切割压力。不用手术刀切锯动作。
选择多达八(8)个无出血组织、坏死组织和/或脂肪组织的肿瘤块。使用标尺作为参考。继续解剖,直至获得8个良好碎片段,或解剖整个中间碎片。将每个选定的片段转移至“肿瘤洗涤培养基”滴液之一中。
从中间碎片中选择至多八(8)个小块后,将中间碎片的残余物放入“良好中间碎片”6孔板的新的单个孔中。
如果所需组织有剩余,则从“良好中间碎片”6孔板中选择另外的良好肿瘤块,以将液滴填充为最多50个。记录产生的解剖小块总数。
从培养箱中取出“组织小块”50mL锥形管。确保锥形管加热≥30分钟。将50mL圆锥形“组织小块”放到BSC中,确保不损害开放处理表面的无菌性。
使用移液器、手术刀、镊子或组合,将选定的50个最佳肿瘤碎片从合适的培养皿盖转移至“组织小块”50mL锥形管。如果肿瘤块在转移过程中掉落且所需组织保留,则应添加来自良好肿瘤中间块碎片孔的其他小块。记录小块数量。
从培养箱中取出含有培养基的G-Rex100MCS。无菌通过G-Rex100MCS烧瓶进入BSC。转移烧瓶时,不要从容器的盖子或底部握住(容器)。通过握住容器的侧面来转移容器。在BSC中,举起G-Rex100MCS烧瓶盖子,确保内部管路保持无菌状态。旋转装有肿瘤块的锥形管以使肿瘤块悬浮,将内容物快速倒入G-Rex100MCS烧瓶。确保肿瘤块均匀地分布在烧瓶的膜上。视需要,轻轻地前后摇动烧瓶以均匀分布肿瘤块。记录容器的底部膜上的肿瘤碎片的数量和观察漂浮在容器中的肿瘤碎片的数量。注意:如果接种的碎片数量不等于收集的数量,联系区域管理和第10.0节中的文档。
在以下参数孵育G-Rex100MCS:孵育G-Rex烧瓶:温度LED显示屏:37.0℃±2.0℃;CO2百分比:5.0%±1.5%CO2。进行计算以确定在第11天取出G-Rex100MCS培养箱的适当时间。计算:孵育时间;下限=孵育时间+252小时;上限=孵育时间+276小时。
第11天-培养基制备
监控培养箱。培养箱参数:温度LED显示屏:37.0℃±2.0℃;CO2百分比:5.0±1.5%CO2。将3x1000 mL RPMI 1640培养基(W3013112)瓶和3x1000 mL AIM-V(W3009501)瓶在培养箱中加热≥30分钟。记录时间。培养基:RPMI 1640和AIM-V。在室温下再放置1x1000ml的AIM-V培养基(W3009501)瓶,以备将来使用。
当到达时间时,取出RPMI 1640培养基。在步骤8.4.4中记录结束孵育时间。确保将培养基加热≥30分钟。在BSC中,从三个预热的1000mL RPMI 1640培养基瓶中各取100.0mL,放入尺寸合适的标有“废弃物”的容器中。在BSC中,将以下试剂添加至三个RPMI 1640培养基瓶中的每一个中,记录添加至每个瓶中的体积。GemCell人血清,热灭活的AB型(100.0mL),GlutaMax(10.0mL),硫酸庆大霉素,50mg/mL(1.0mL),2-巯基乙醇(1.0mL)。
盖上瓶子,旋转以确保试剂充分混合。通过单独的1L 0.22微米过滤器过滤每瓶培养基。无菌盖上过滤后的培养基,用给每个瓶子贴上标签“CM1第11天培养基”。解冻3×1.1mL IL-2的等分试样(6×106IU/mL)(BR71424),直至所有冰解冻为止。记录IL 2批号和有效期。
从培养箱中取出三瓶AIM-V培养基。记录结束孵育时间。确保培养基已加热≥30分钟。使用微量移液器,将3.0mL解冻的IL-2加入一个1L瓶的预热AIM-V培养基中。加入IL-2后,用培养基冲洗微量移液器吸头。每个等分试样均使用新的无菌微量移液器吸头。记录添加的总体积。给瓶子贴上标签“含AIM-V的IL-2”。无菌转移10L Labtainer袋和中继泵转移套件到BSC中。关闭10L Labtainer袋上的所有管线。通过鲁尔锁连接将中继泵转移套件的较大直径的管端连接到10L Labtainer袋的中间母端口。
将Baxa泵安装在BSC旁边。将转移套件管道通过Baxa泵。将Baxa泵设置为“高”和“9”。从泵送液体分配系统(PLDS)中取出注射器并丢弃。确保不损害PLDS移液器的无菌性。
通过鲁尔接口连接将PLDS移液管连接到中继泵流体转移套件的较小直径端,将移液管尖端放入含有IL-2的AIM-V培养基瓶(在步骤8.4.13中制备)中进行抽吸。打开培养基瓶和10L Labtainer之间的所有夹子。
使用PLDS,将制备好的包含IL-2的预热AIM-V培养基以及另外两个AIM-V瓶转移至10L Labtainer袋中。添加3瓶经过过滤的CM1第11天培养基。添加最后一瓶后,清除袋子连接的管线。注意:在添加每瓶培养基之间停止泵。从转移套件上取下PLDS,在BSC中管线的鲁尔接口上盖上一个红色的盖子。轻轻揉按袋子以使其混合。在培养基袋上贴上以下信息。到期日期为制备日期起的24小时。
将60mL注射器连接到“完全CM2第11天培养基”袋的可用母端口。取出20.0mL培养基,放入50mL锥形管中。在“完全CM2第11天培养基”袋的母端口上放一个红色盖子。加标签,将培养基保留样品储存在2℃至8℃下,直至提交进行检测。靠近红色盖子,加热密封住转移套件管线上的红色盖子。将转移套件保留在袋子上。
在BSC中,向4个15mL锥形管中添加4.5mL标记有“用于细胞计数稀释”和批号的AIM-V培养基。用批号和管编号(1-4)标记管。将4个冻存管标上“饲养细胞”和管编号(1-4)。将所有剩余的2-巯基乙醇、GlutaMax和人血清从BSC转移至2℃至8℃。
在BSC的外部,将1L转移包焊接到已制备好的“完全CM2第11天培养基”袋上的转移套件上。标上“饲养细胞CM2培养基”的转移包和批号。在距离袋子几英寸的1L转移包管路的管路上做一个标记。将空的转移包放在天平上,使管路在天平上达到标记的点。将秤去皮,将空的转移包留在秤上。
将Baxa泵设置为“中”和“4”。将步骤8.4.22中制备的500.0±5.0mL的“完全CM2第11天”培养基泵入“细胞CM2培养基”转移包中。称重,记录添加至转移包中的完全CM2培养基的体积。
一旦填充,加热密封管线。将带有转移套件的CM2第11天培养基袋与饲养细胞培养基转移包分开,保持焊接朝向1L转移包。将制备的“完全CM2第11天培养基”放置在培养箱中,直至使用。
第11天-TIL收获
培养箱参数:温度LED显示:37.0℃±2.0℃;CO2百分比:5.0±1.5%CO2。从培养箱中取出G-Rex100MCS之前,进行检查以确保符合培养参数。下限与上述相同。
记录从培养箱取出的时间。小心地从培养箱中取出G-Rex100MCS,确保除大型过滤器管路外,所有夹子均已关闭。记录处理开始时间。
将300mL转移包标记为“TIL悬液”。无菌焊接重力血液过滤器的TIL悬液转移(单线)。将300mL转移包放在天平上,记录干重。标记1L转移包为“上清液”。
将来自G-Rex100MCS的红色培养基取出管线无菌焊接到“上清液”转移包。将G-Rex100MCS的透明细胞取出管线无菌焊接到与“TIL悬液”转移包相连的血液过滤器顶部的两个加标管线(spike line)之一。将G-Rex100MCS放置在GatheRex的左侧,将“上清液”和“TIL悬液”转移包放置在GatheRex的右侧。
将红色培养基取出管线从G Rex100MCS安装到GatheRex上的顶部夹子(标有红色线)和导管。将透明收获管线从G-Rex100MCS安装到GatheRex上的底部夹子(标有蓝色线)和导管。将来自GatheRex的气体管线连接到G-Rex100MCS烧瓶的无菌过滤器上。从G-Rex100MCS烧瓶中取出上清液之前,确保关闭细胞取出管线上的所有夹子。将约900mL培养上清液从G-Rex100MCS转移至1L转移包中。目视检查G-Rex100MCS烧瓶,以确保烧瓶处于水平状态且培养基已减少至抽吸汲取管的末端。
在取出上清液之后,关闭至红色管线的所有夹子。
用力敲击烧瓶并旋转培养基以释放细胞。检查烧瓶以确保所有细胞均已分离。注意:如果细胞未分离,联系区域管理。将烧瓶向远离收集管倾斜,使肿瘤块沿边缘沉降。向收集管缓慢倾斜烧瓶,使碎片留在烧瓶的另一侧。如果细胞收集吸管不在壁和底部膜的交界处,以450度倾斜的角度敲击烧瓶通常足以正确放置吸管。
释放所有通往TIL悬液转移包的夹子。使用GatheRex,将细胞悬液通过血液过滤器转移至300mL转移包中。保持倾斜的边缘,直至收集所有细胞和培养基。检查膜的贴壁细胞。冲洗G-Rex100MCS的底部。用冲洗培养基覆盖约1/4的气体交换膜。确保所有夹子均已关闭。将TIL悬液转移包加热密封(按照过程注释5.12),使其尽可能靠近焊接,以使总管长度保持大致相同。热封“上清液”转移包。保持足够的焊接线。记录TIL悬液转移包的重量,计算细胞悬液的体积。
将4英寸血浆转移套件焊接到“上清液”转移包上,将鲁尔接口连接保持在4英寸血浆转移套件上,转移至BSC中。将4英寸血浆转移套件焊接到300mL“TIL悬液”转移包上,将鲁尔接口连接保持在4英寸血浆转移套件上,然后转移至BSC中。
从1L“上清液”转移包中吸取约20.0mL上清液,然后加到标有“Bac-T”的无菌50mL锥形管中。使用适当大小的注射器从50mL锥形标记的BacT中取出1.0mL样品,接种厌氧瓶。
用瓶号(1-4)标记4个冻存管。使用单独的3mL注射器,使用鲁尔接口连接从TIL悬液转移包中提取4x1.0 mL细胞计数样品,放置在各自的冻存管中。在行上放一个红色盖子(W3012845)。直至需要时将TIL转移包放在培养箱中。进行细胞计数和计算。进行未稀释的初始细胞计数。如果不需要稀释,则“样品[μL]”=200,“稀释[μL]”=0。
记录细胞计数和TIL数量。如果活TIL细胞总数小于5×106,则进行“第11天G-Rex填充和接种”。如果活TIL细胞总数>5×106,则继续进行“流式细胞术计算”。
流式细胞术计算
如果活TIL细胞总数计数≥4.0×107,则计算流式细胞术样品获得1.0×107细胞的体积。流式细胞术所需的活细胞总数:1.0×107个细胞。流式细胞术所需的细胞体积:活细胞浓度除以1.0×107细胞。
如果适用:重新计算的活细胞总数和体积流量。计算取出下面的细胞计数样品后的剩余活细胞总数和剩余体积。
样品的TIL冷冻保存
如果适用:计算冷冻保存的体积。计算获得1.0×107个冷冻保存细胞所需的细胞体积。
表534:冷冻保存计算
如果适用:取出样品进行冷冻保存。从“TIL悬液”转移包中取出计算的体积。放入适当尺寸的锥形管中,贴上“冷冻保存样品1×107细胞”、日期和批号。在TIL悬液转移包上放一个红色盖子(W3012845)。
根据以下参数将“冷冻保存样品1107细胞”离心:速度:350×g,时间:10:00分钟,温度:环境,制动:满(9);加速:全速(9)。
添加CS-10。在BSC中,无菌吸出上清液。轻轻拍打试管底部,将细胞重悬在剩余液体中。添加CS-10。缓慢加入0.5mL CS10。记录添加的体积。冷冻保存样品瓶装满约0.5mL。
第11天-饲养细胞
从LN2冷冻机中获得3袋具有至少两个不同批号的饲养细胞。将细胞保存在干冰上,直至准备解冻。记录饲养细胞信息。确认获得了至少两个不同批次的饲养细胞。根据批号将饲养细胞袋放入单个拉链顶袋中,37.0℃±2.0℃水浴或细胞热浴约3至5分钟来解冻,或直至冰刚刚消失。
饲养细胞线束准备。将4S-4M60焊接到CC2 Cell Connect(W3012820),用4S-4M60歧管的4个尖嘴端代替Cell Connect装置的单个尖嘴。视需要焊接。
附加培养基转移包。将“饲养细胞CM2培养基”转移包焊接到CC2鲁尔接口上。通过无针注射口将袋子连接到线束的侧面。将包含完全CM2第11天培养基的组件转移至BSC中。
合并解冻的饲养细胞。在BSC内,将10mL的空气吸入100mL注射器中。用它来替换CC2上的60mL注射器。在取下盖子之前,先用酒精垫擦拭饲养细胞袋上的每个端口。使用CC2的三个尖嘴刺入三个饲养细胞袋。保持恒定压力,同时沿一个方向旋转尖嘴。确保不要刺穿端口的侧面。打开旋塞阀,以便打开从饲养细胞袋中取出的管线,关闭通往无针注射口的管线。将饲养细胞袋的内容物吸进注射器。立刻排干全部三个袋子。排干饲养细胞袋后,在保持注射器压力的同时,夹住饲养细胞袋上的管线。不要将下面的注射器从线束拆掉。记录注射器中饲养细胞的总体积。
将饲养细胞添加至转移包。转动旋塞阀,以关闭通往饲养细胞袋的管线,打开通往培养基转移包的管线。确保未松开到培养基转移包的管线。将注射器中的饲养细胞加到“饲养细胞CM2培养基”转移包中。夹住包含饲养细胞的转移包的管线,将注射器留在线束上。揉按袋子以混合转移包中合并的饲养细胞。将袋子标为“饲养细胞悬液”。
计算饲养细胞悬液的总体积。取出细胞计数样品。对每个样品使用单独的3mL注射器,使用无针注射口从饲养细胞悬液转移包中提取4×1.0mL细胞计数样品。将每个样品等分到标记的冻存管中。
利用NC-200和过程注释5.14进行单元计数和计算。通过将0.5mL细胞悬液添加至标有批号和“用于细胞计数稀释”的4.5mL AIM-V培养基中,稀释细胞计数样品。这将产生1:10的稀释度。
记录细胞计数和样品体积。如果活细胞总数小于5×109,继续。如果活细胞总数≥5×109,则按上述步骤进行操作以获取更高的细胞数。视需要获得其他饲养细胞,如上所述将饲养细胞添加至转移包中。计算获得5×109个可行饲养细胞所需的饲养细胞悬液的体积。计算要取出的多余饲养细胞的体积。向下舍入到最接近的整数。
取出过量的饲养细胞。在新的100mL注射器中,吸出10mL空气,将注射器连接到线束上。打开“饲养细胞悬液”转移包的管线。使用注射器吸取计算出的饲养细胞体积,再从转移包中将另外的10.0mL放入100mL注射器中。取出饲养细胞体积后,关闭通往饲养细胞悬液转移包的管线。不要卸下最终注射器。注射器装满后,换上新的注射器。可使用多个注射器取出总体积。每个新注射器都吸入10mL空气。记录取出的饲养细胞的总体积(包括另外的10mL)。
添加OKT3。在BSC中,使用1.0mL注射器和16G针头吸取0.15mL OKT3。从注射器上无菌地取下针头,将注射器连接到无针注射口上。注入OKT3。打开旋塞阀进入“饲养细胞悬液”转移包,添加10mL先前已取出的饲养细胞以冲洗OKT3。将注射器上下颠倒并推动空气通过,以清除通往饲养细胞悬液转移包的管线。将剩余的饲养细胞悬液留在注射器中。关闭所有夹子,然后从BSC上拆下线束。热密封饲养细胞悬液转移包,留下足够的管道进行焊接。
第11天G-Rex填充和接种
设置G-Rex500MCS。从包装中取出G-Rex500MCS,检查烧瓶中是否有任何裂纹或扭结。确保所有鲁尔接口连接和密封件都拧紧。关闭除排气过滤器管线之外的所有G-Rex500MCS管线上的夹子。使用记号笔在4.5L刻度处画一条线。从培养箱中取出“完全CM2第11天培养基”。
准备泵送培养基。将G-Rex500MCS的红色管线焊接到与完全CM2第11天培养基相连的中继泵转移套件上。将“完全CM2第11天培养基”袋挂在输液架上。通过Baxa泵进料泵管。将培养基泵入G-Rex500MCS。将Baxa泵设置为“高”和“9”。将4.5L培养基泵入G-Rex500MCS,填充至用线标记的烧瓶4.5L刻度处。将焊接附近的G-Rex500MCS红色管线加热密封。在烧瓶上贴上“第11天”标签。将饲养细胞:悬液转移包焊接到烧瓶上。将G-Rex500MCS的红色管线无菌焊接到“饲养细胞悬液”转移包上。
向G-Rex500MCS添加饲养细胞。打开饲养细胞悬液和G-Rex500MCS之间的所有夹子,通过重力进料将饲养细胞悬液添加至烧瓶中。热封焊接附近的红色管线。将TIL悬液转移包焊接到烧瓶上。将G-Rex500MCS的红色管线无菌焊接到“TIL悬液”转移包。
向G-Rex500MCS添加TIL。打开TIL悬液和G-Rex500MCS之间的所有夹子,通过重力进料将TIL悬液添加至烧瓶。将焊接附近的红色管线热封以移除TIL悬挂袋。
孵育G-Rex500MCS。检查是否已关闭G-Rex500MCS上除大型过滤器管线之外的的所有夹子,放置在培养箱中。培养箱参数:温度LED显示:37.0℃±2.0℃,CO2百分比:5.0±1.5%CO2
计算孵育窗口。进行计算以确定在第16天从培养箱中取出G-Rex500MCS的正确时间。下限:培养时间+108小时。上限:孵育时间+132小时。
第11天,冷冻保存过量的TIL
冻结过量的TIL瓶。记录并验证放入“控速冷冻机”(CRF)中的瓶的总数。冷冻完成后,将小瓶从CRF转移至适当的储存容器中。
第16天,制备培养基
预热AIM-V培养基。至少在使用前12小时从2℃至8℃取出3个CTS AIM V 10L培养基袋,在室温下避光放置。在每个袋子上贴上标签。记录预热开始时间和日期。确保将所有袋子加热12到24小时。
使用鲁尔接口连接器将流体泵转移套件的较大直径的一端连接到10L Labtainer袋的母端口之一。设置10L Labtainer用于上清液,标为“上清液”。设置10L Labtainer用于上清液。从BSC上卸下之前,确保已关闭所有夹子。
每个CTS AIM V培养基袋解冻5x1.1 mL的IL-2等分试样(6×106IU/mL)(BR71424),直至所有冰熔化。将100.0mL的Glutamax分装到适当大小的接收容器中。记录添加至每个接收容器的体积,将每个接收容器标记为“GlutaMax”。
将IL-2添加至GlutaMax。用微量移液器向每个GlutaMax接收器中加入5.0mL IL-2。确保按照操作说明5.18冲洗吸头,针对添加的每毫升使用新的移液器吸头。记录添加至每个Glutamax接收容器的体积,将每个接收器标记为“GlutaMax+IL-2”和接收容器编号。
制备用于制剂的CTS AIM V培养基袋。确保在使用前在室温下加热CTS AIM V 10L培养基袋(W3012717)并避光放置12至24小时。记录结束孵育时间。在BSC中,将封闭夹子固定在4英寸血浆转移套件上,使用尖嘴端口(spike port)将其连接到袋子。保持恒定压力,同时沿一个方向旋转尖嘴。确保不要刺穿端口的侧面。通过鲁尔接口将中继泵流体转移套件的较大直径端连接到4英寸血浆转移套件。
将Baxa泵安装在BSC旁。从BSC取出中继泵流体转移套件的泵管部分,将其安装在中继泵中。
准备配制培养基。在BSC中,将注射器从泵送液体分配系统(PLDS)中取出并丢弃。确保不损害PLDS移液器的无菌性。通过鲁尔接口连接将PLDS移液器连接到中继泵流体转移套件的较小直径端,将移液器吸头放在上面准备用于抽吸的“GlutaMax+IL-2”中。打开接收器和10L袋之间的所有夹子。
将GlutaMax+IL-2泵入袋中。将泵速设为“中”和“3”,将所有“GlutaMax+IL-2”泵入10L CTS AIM V培养基袋中。一旦无溶液残留,清理管路并停止泵。记录添加至下面每个AimV袋中的含IL-2的GlutaMax的体积。
移除PLDS。确保关闭所有夹子,从中继泵流体转移套件上卸下PLDS移液器。卸下中继泵流体转移套件,盖上4英寸血浆转移套件的红色盖子。
标记每个制备好的“完全CM4第16天培养基”袋。
根据样品计划,取出培养基保留。使用30mL注射器,通过将注射器连接到4英寸血浆转移套件上,取出20.0mL的“完全CM4第16天培养基”,然后将样品加到50mL锥形管中。取出注射器后,确保将4英寸血浆转移套件夹紧或盖上红色盖子。
连接新的中继泵流体转移套件。将新的流体泵转移套件的较大直径的一端连接到连接到“完全CM4第16天培养基”袋的4英寸血浆转移套件上。用样品计划库存标签进行标记,将培养基保留样品储存在2℃至8℃下,直至提交进行检测。
监控培养箱。如果适用,请监视准备的其他袋子。培养箱参数:温度LED显示:37.0±2.0℃,CO2百分比:5.0±1.5%CO2
加热完全CM4第16天培养基。在培养箱中将第一袋完全CM4第16天培养基加热≥30分钟,直至可使用。如果适用,加热其他袋子。
制备稀释液。在BSC中,向每个4x15 mL锥形管中加入4.5mL标记有“用于细胞计数稀释”的AIM-V培养基。标记锥形管。标记4个冻存管。
第16天,REP分装
监控培养箱。恒温箱参数:温度LED显示屏:37.0±2.0℃,CO2百分比:5.0±1.5%CO2
从培养箱中取出G-Rex500MCS。在从培养箱中取出G-Rex500MCS之前,进行以下检查以确保符合培养参数:上限、下限、取出时间。从培养箱中取出G-Rex500MCS。
热密封1L转移包(W3006645),留下约12英寸管线。将1L转移包标为“TIL悬液”。将包括整个管线在内的1L转移包放在秤上,记录干重。
GatheRex设置。将G-Rex500MCS的红色培养基取出管线无菌焊接到上面准备的10LLabtainer袋“上清液”上的中继泵转移套件上。将G-Rex500MCS的透明细胞取出管线无菌焊接到上面准备的TIL悬液转移包上。将G-Rex500MCS烧瓶放在GatheRex的左侧。将上清液实验室容器袋和TIL悬液转移包放在右侧。从G-Rex500MCS到顶部夹子(标有红色线)安装了红色培养基取出管线,GatheRex上安装了导管。从G-Rex500MCS到底部夹子(标有蓝色线)安装了透明收获管线,在GatheRex上安装了导管。将GatheRex的气体管线连接到G-Rex500 MCS的无菌过滤器上。注意:从G-Rex500MCS取出上清液之前,确保已关闭细胞取出管线上的所有夹子。
G-Rex500MCS的体积减小。根据SOP-01777,将约4.5L培养上清液从G-Rex500MCS转移至10L Labtainer。目视检查G-Rex500MCS,确保将烧瓶的液位和培养基减小至吸管的末端。
准备烧瓶用于TIL收获。除去上清液后,关闭至红色管线的所有夹子。
开始TIL收获。记录了=TIL收获的开始时间。用力敲击烧瓶并旋转培养基以释放细胞。检查烧瓶以确保所有细胞均已分离。倾斜烧瓶以确保软管在烧瓶的边缘。如果细胞收集吸管不在壁和底部膜的交界处,则以450度倾斜的角度敲击烧瓶通常足以正确放置吸管。
TIL收获。松开通往TIL悬液转移包的所有夹子。使用GatheRex将细胞悬液转移至TIL悬液转移包中。注意:确保保持倾斜的边缘,直至收集完所有细胞和培养基。检查膜的贴壁细胞。
冲洗的烧瓶膜。冲洗G-Rex500MCS的底部。用冲洗培养基覆盖约1/4的气体交换膜。关闭G-Rex500MCS上的夹子。确保关闭G-Rex500MCS上的所有夹子。
热密封。将包含TIL的转移包热封到尽可能靠近焊接的位置,以使总管长度保持大致相同。热封含有上清液的10L Labtainer,送入BSC进行样品收集。
记录具有细胞悬液的转移包的重量,计算体积悬液。准备好的转移包用于样品取出。从上方将4英寸等离子转移套件焊接到TIL悬液转移包装上,使母鲁尔接口端尽可能靠近袋子。
从细胞上清液中取出检测样品。在BSC中,使用母鲁尔端口和适当尺寸的注射器从10L实验室容器中取出10.0mL上清液。放入15mL锥形管中,标记为“BacT”,保留该管用于BacT样品。使用另一个注射器,取出10.0mL上清液,放入15mL锥形管中。保留用于支原体样品的试管。试管标记为“支原体稀释剂”。封闭上清液袋。在鲁尔端口上放一个红色盖子,以关闭袋子,从BSC中送出。
取出细胞计数样品。在BSC中,对每个样品使用单独的3mL注射器,使用鲁尔接口连接从“TIL悬液”转移包中取出4x1.0 mL细胞计数样品。将样品置于上述制备的冻存管中。
取出支原体样品。使用3mL注射器,从TIL悬液转移包中取出1.0mL,放入上面制备的15mL锥形标签“支原体稀释剂”中。在2℃至8℃下标记并储存支原体样品,直至提交进行检测。
准备用于接种的转移包。在BSC中,将中继泵流体转移套件的大直径管道末端连接到包含TIL的转移包上的鲁尔接口适配器。使用止血钳将管线夹在转移包附近。在转移套件的末端放一个红色盖子。
将TIL放在培养箱中。从BSC中取出细胞悬液,放入培养箱中直至需要。记录时间。
进行细胞计数。利用NC-200进行细胞计数和计算。最初通过将0.5mL细胞悬液加入上述制备的4.5mL AIM-V培养基中来稀释细胞计数样品。得到1:10的稀释度。
计算用于传代培养的烧瓶。计算要接种的烧瓶总数。注意:将G-Rex500MCS烧瓶的数量向上舍入,得到接近的整数。
表35:烧瓶计算
要接种的G-Rex500MCS烧瓶的最大数量为5个。如果计算得出的培养瓶数量超过5个,则使用可用的细胞悬液整个体积仅接种5个。
确定所需的另外的培养基袋的数量。计算除了上述准备的袋子外还需要的培养基袋的数量。将所需的培养基袋数量向上舍入为接近的整数。
表36:培养基袋计算
视需要准备另外的培养基。对于上面计算出的需要的每两个G-Rex-500M烧瓶,准备一个10L袋子的“CM4第16天培养基”。在准备和加热另外的培养基的同时,对第一个G-REX-500M烧瓶进行接种。
视需要准备另外的培养基袋。准备并加热上面确定的另外的培养基袋的计算数量。
填充G-Rex500MCS。在台式机上打开G-Rex500MCS,检查了容器中是否有裂纹或管子是否扭结。确保所有鲁尔接口连接和密封件都拧紧。用记号笔在烧瓶外部的4500mL线上标记。关闭G-Rex500MCS上所有大型过滤器线夹之外的所有线夹。将G-Rex500MCS的红色培养基管线无菌焊接到上面准备的培养基袋上的流体转移套件上。
准备泵送培养基。将“CM4第16天培养基”挂在输液杆上。通过Baxa泵喂入泵管。
将培养基泵送到G-Rex500MCS中。将Baxa泵设置为“高”和“9”,然后将4500mL的培养基泵入烧瓶。将4.5L的“CM4第16天培养基”泵入G-Rex500MCS,填充至上述烧瓶的线标记处。一旦转移了4.5L的培养基,停止泵。
热封。将G-Rex500MCS的红色培养基管线热密封在产生的焊接附近,取下培养基袋。
重复填充。加热培养基并准备使用时,对以上计算的每个烧瓶重复填充和密封步骤。使用重力填充以上泵可以同时填充多个烧瓶。每袋培养基只能装满两个烧瓶。
已记录并标记的烧瓶已装满。用字母和“第16天”标签对每个烧瓶进行标记。
视需要孵育烧瓶。在等待用TIL接种的同时将烧瓶放在培养箱中。记录已装瓶的总数。
计算要添加的细胞悬液的体积。计算添加至新的G-Rex500MCS烧瓶中的TIL悬液的目标体积。
表637:细胞悬液体积
如果烧瓶的数量超过5个,则使用细胞悬液的整个体积仅接种5个。
准备用于接种的烧瓶。从培养箱的步骤8.10.70中取出G-Rex500MCS。
准备泵送。关闭G-Rex500MCS上的所有夹子,除了大型过滤器管路。通过Baxa泵喂入泵管。
从培养箱中取出TIL。从培养箱中取出“TIL悬液”转移包,记录培养结束时间。
制备用于接种的细胞悬液。从上方无菌焊接“TIL悬液”转移包至泵入口管线。
将TIL悬挂袋放在秤上。使用设置为“低”和“2”的Baxa泵,填装从TIL悬液袋至焊接处的管线。放磅秤。
用TIL悬液接种烧瓶。将Baxa泵设为“中”和“5”。将上面计算出的TIL悬液的体积泵入烧瓶中。记录添加至每个烧瓶中的TIL悬液的体积。
热封。热封“TIL悬液”转移包,留下足够的管子以焊接在下一个烧瓶上。
填充剩余的烧瓶。在接种的每个烧瓶之间,确保混合“TIL悬液”转移包,重复填充和密封步骤以接种所有剩余烧瓶。
监控培养箱。如果必须在两个培养箱之间分装培养瓶,确保同时监控两个培养箱。培养箱参数:温度LED显示:37.0℃±2.0℃,CO2百分比:5.0±1.5%CO2。记录每个烧瓶放在培养箱中的时间。
计算孵育窗口。进行以下计算,以确定在第22天从培养箱中取出G-Rex500MCS的时间范围。下限:时间+132小时;上限:时间+156小时。
第22天,制备洗涤缓冲液
准备10L Labtainer袋。在BSC中,通过鲁尔接口连接将4英寸血浆转移套件连接到10L Labtainer袋中。准备10L Labtainer袋,标上“上清液”、批号和初始/日期。转移出BSC之前,关闭所有夹子。注意:对于每两个要收获的G-Rex500MCS烧瓶,准备一个10LLabtainer袋。
焊接流体转移套件。在BSC外部,关闭4S-4M60上的所有夹子。将中继流体转移套件焊接至4S-4M60的公鲁尔接口端之一。
使Plasmalyte-A和人白蛋白25%进入BSC。使4S-4M60和中继流体转移套件装配进BSC。
表38:组分
/>
表39:Plasmalyte-A
**可从http://ecatalog.baxter.com/ecatalog/loadproduct.html?cid=20016&lid=10001&hid=20001&pid=821874商购。
将Plasmalyte泵入3000mL袋中。将三袋Plasmalyte-A刺入4S-4M60连接器套件。注:在卸下之前,用酒精棉签(W3009488)擦拭端口盖。注意:沿一个方向旋转尖嘴时,保持恒定压力。确保不要刺穿端口的侧面。通过鲁尔接口连接将Origen 3000mL收集袋连接到中继站泵转移套件的较大直径端。封闭3000mL Origen袋未使用的管线上的夹子。将Baxa泵安装在BSC旁边。通过位于BSC外部的Baxa泵喂入转移套件管。将泵设置为“高”和“9”。打开从Plasmalyte-A到3000mL Origen袋的所有夹子。将所有Plasmalyte-A泵入3000mL Origen袋中。转移完所有Plasmalyte-A后,停止泵。视需要,通过倒转泵并操纵袋子的位置,从3000mLOrigen袋子中除去空气。关闭所有夹子。
通过鲁尔接口连接从中继泵流体转移套件中取出3000mL袋子,在通往袋子的管线上放一个红色盖子(W3012845)。
向25mL袋中添加了25%人白蛋白。打开排气迷你尖嘴。在不影响尖嘴无菌性的情况下,确保牢固地固定蓝色盖子。用排气的迷你尖嘴刺入25%人白蛋白瓶的隔垫。注意:确保不损害尖嘴的无菌性。共三(3)个加标25%的人白蛋白瓶,重复两次。从一个排气的迷你尖嘴上取下蓝色盖子,将60mL注射器连接到25%人血清白蛋白瓶上。吸取60mL 25%的人血清白蛋白。可能需要使用一瓶以上25%的人血清白蛋白。视需要,将注射器从排气迷你尖嘴断开,将其连接到25%人血清白蛋白瓶中的下一个排气迷你尖嘴上。一旦获得60mL,从排气的迷你尖嘴中取出注射器。将注射器连接到装有Plasmalyte-A的3000mL Origen袋的无针进样口上。加入所有人白蛋白25%。重复以获得最终体积为120.0mL的人白蛋白25%。加入所有25%的人白蛋白后,轻轻混合袋子。标记为“LOVO洗涤缓冲液”,标明24小时到期。
制备IL-2稀释液。使用10mL注射器,通过LOVO洗涤缓冲液袋上的无针进样取出5.0mL LOVO洗涤缓冲液。将LOVO洗涤缓冲液加到50mL锥形管中,标记为“IL-2稀释液”。
CRF空白袋LOVO洗涤缓冲液等分。使用100mL注射器,从无针进样口中吸出70.0mLLOVO洗涤缓冲液。注意:每次使用前,请用酒精垫擦拭无针注射口。在注射器上盖上红色盖子,贴上“空白冻存袋”和批号的标签。注意:保持注射器在室温下,直至在步骤8.14.3中需要。
完成洗涤缓冲液的制备。关闭LOVO洗涤缓冲液袋上的所有夹子。
解冻IL-2。解冻1个1.1mL IL-2(6×106IU/mL),直至所有冰解冻为止。记录IL-2批号和有效期。注意:确保贴有IL-2标签。
IL-2制备。向标有“IL-2稀释液”的50mL锥形管中加入50μL IL-2储备液(6×106IU/mL)。
IL-2制备。将锥形管重新标记为“IL-2 6x104”、日期、批号和有效期24小时。盖上盖子,保存在2℃至8℃下。
冷冻保存Pre。将5个冻存盒放在2℃至8℃进行预处理,以进行最终产品的冷冻保存。
制备细胞计数稀释液。在BSC中,向4个单独的15mL锥形管中添加4.5mL的AIM-V培养基(已标记批号和“用于细胞计数稀释”),标记该试管。
准备细胞计数。用管号(1-4)标记4个冻存管。
第22天,TIL收获
监测培养箱。培养箱参数温度LED显示屏:37℃±2.0℃,CO2百分比:5%±1.5%。
从培养箱中取出G-Rex500MCS烧瓶。从培养箱中取出G-Rex500MCS之前,应检查烧瓶并确认培养参数(培养时间)。
准备TIL收集袋。将3000mL收集袋标记为“TIL悬液”、批号和初始/日期。
密封额外的连接。在每个连接末端附近,将收集袋上的两个鲁尔接口连接热密封。
GatheRex设置。将红色培养基取出管线从G-Rex500MCS无菌焊接(按照过程注释5.11)至上述准备的10L Labtainer袋。注意:有关使用多个GatheRex设备,参考过程注释5.16。将G-Rex500MCS的透明细胞取出管线无菌焊接至上面准备的TIL悬液收集袋行(按照过程注释5.11)。将G-Rex500MCS烧瓶放在GatheRex的左侧。将上清液Labtainer袋和合并的TIL悬液收集袋放在右侧。将G-Rex500MCS的红色培养基取出管线安装到GatheRex的顶部夹子(标有红色线)和导管。将G-Rex500MCS的透明收获线安装到GatheRex的底部夹子(标有蓝色线)和导管。将GatheRex的气体管线连接到G-Rex500MCS的无菌过滤器。从G-Rex500MCS去除上清液之前,确保关闭细胞取出管线上的所有夹子。
减小体积。将约4.5L的上清液从G-Rex500MCS转移至上清液袋中。目视检查G-Rex500MCS以确保烧瓶处于水平状态,培养基已减少至抽吸汲取管的末端。视需要,重复步骤。
准备烧瓶用于TIL收获。取出上清液后,关闭至红色管线的所有夹子。
开始收集TIL。记录TIL收获的开始时间。用力敲击烧瓶并旋转培养基以释放细胞。检查烧瓶以确保所有细胞均已分离。将“TIL悬液”3000mL收集袋放在平坦表面的干抹布上。倾斜烧瓶以确保软管在烧瓶的边缘。注意:如果细胞收集软管不在壁膜和底部膜的连接处,则将烧瓶以45°角倾斜时敲击烧瓶通常足以正确放置软管。
TIL收获。松开通往TIL悬液收集袋的所有夹子。使用GatheRex,将TIL悬液转移至3000mL收集袋中。注意:保持边缘倾斜直至收集所有细胞和培养基。检查膜上是否有贴壁细胞。
冲洗烧瓶膜。冲洗G-Rex500MCS的底部。用冲洗培养基覆盖约1/4的气体交换膜。
关闭G-Rex500MCS上的夹子。确保所有夹子都已关闭。
热封。将装有TIL的收集袋热封到尽可能靠近焊接的位置,以使总管长度保持大致相同。热封上清液袋。
完成剩余G-Rex 500MCS烧瓶的收获。重复上述步骤,将所有TIL合并到同一收集袋中。每第二个烧瓶后必须更换10L上清液袋。
准备LOVO来源袋。获得一个新的3000mL收集袋。标记为“LOVO来源袋”、批号和初始/日期。热封“LOVO来源袋”的管线,取下母鲁尔接口,留下足够的线进行焊接。
称重LOVO来源袋。在秤和皮重上放置适当大小的塑料箱。将LOVO来源袋(包括端口和管线)放入垃圾箱,记录干重。
将细胞悬液转移至LOVO来源袋中。关闭170μm重力血液过滤器的所有夹子。
将细胞悬液转移至LOVO来源袋中。将重力血液过滤器的长末端无菌焊接到LOVO来源袋上。将过滤器的两根来源管线之一无菌焊接到“合并的TIL悬液”收集袋中。焊接完成后,将过滤器上未使用的管线加热密封以将其移除。打开所有必要的夹子,将收集袋悬挂在IV杆上,以提升TIL悬液,以启动TIL的重力流转移,使其通过血液过滤器进入LOVO来源袋。排水时轻轻旋转或揉捏TIL悬吊袋,以保持TIL均匀悬吊。
关闭所有夹子。将所有TIL转移至LOVO来源袋后,关闭所有夹子。
热封。尽可能靠近焊接加热密封(根据过程注释5.12)以去除重力血液过滤器。
取出细胞计数样品。在BSC中,对每个样品使用单独的3mL注射器,使用无针注射口从LOVO来源袋中取出4x1.0 mL细胞计数样品。将样品放在步骤8.11.36中准备的冻存管中。
进行细胞计数。利用NC-200进行细胞计数和计算。最初通过将0.5mL细胞悬液加入上述制备的4.5mL AIM-V培养基中来稀释细胞计数样品。得到1:10的稀释度。
记录细胞计数和样品体积。计算的活TIL细胞总数。如果活细胞总数≥1.5x109,则继续。计算有核细胞总数。
制备支原体稀释液。在BSC中,通过鲁尔样品端口从一个上清液袋中取出10.0mL,放入15mL锥形瓶中。标记15mL锥形“支原体稀释液”。
LOVO
打开LOVO,启动“TIL G-Rex收获”方案,遵循屏幕提示。缓冲液类型为PlasmaLyte。遵循LOVO触摸屏提示。
确定最终产品目标体积。使用有核细胞总数(TNC)值和下表,确定最终产物目标体积并记录(mL)。
表40:计算最终产物体积
遵循LOVO触摸屏提示。
装入一次性试剂盒。在装入一次性试剂盒之前,先用酒精抹布擦拭再用不起毛的抹布擦拭压力传感器端口。装入一次性试剂盒。按照屏幕上的指示安装一次性试剂盒。
取出滤液袋。装入标准LOVO一次性试剂盒后,触摸“下一步”按钮。显示“集装箱信息和位置”屏幕。从秤上取下滤液袋。
确保滤液容器是新的且超出刻度(Off-Scale)。
输入滤液容量。将LOVO辅助袋无菌焊接到现有过滤袋的公鲁尔接口管线上。确保所有夹子均已打开且流体通道畅通。触摸过滤容器容量输入字段。显示数字小键盘。输入总的新滤液容量(5,000mL)。触摸按钮以接受输入。注意:估计滤液量不应超过5000mL。
将过滤容器放置在台式上。注意:如果在焊接过程中从F夹上拆下了管子,则将其放回夹子中。将新的过滤容器放在工作台上。不要将过滤袋挂在#3秤上。在此过程中,秤#3将为空。
跟随过滤容器更换后的LOVO触摸屏提示。
确保正确装入试剂盒。将显示“一次性试剂盒干燥检查”覆盖图。检查试剂盒是否正确装入,所有夹子均已打开。检查所有管道是否有扭结或其他障碍物,尽可能进行纠正。确保已正确安装试剂盒,检查所有Robert的夹子。按下“是”按钮。所有LOVO机械夹子自动关闭,并显示“检查一次性套件安装”屏幕。LOVO经历了一系列加压步骤以检查套件。
试剂盒检查结果。如果工具包检查通过,则继续下一步。*如果否,则在检查完成后可进行第二次试剂盒检查。*如果否,请检查所有管路是否有扭结或其他障碍物,并进行纠正。*如果否,请确保正确安装了确定的是,检查所有罗伯特夹子。如果第二个是检查失败:请联系区域施用人员,并准备在第10.0节中安装新是。重复步骤8.13.23-所需的步骤8.13.30。
连接PlasmaLyte。显示“连接溶液”屏幕。洗涤值将始终为3000mL。在屏幕上输入此值。
将3000mL的PlasmaLyte袋无菌焊接到穿过夹子1的管道上。将PlasmaLyte袋挂在IV杆上,将两个角袋环都放在钩子上。
验证PlasmaLyte已连接。打开所有塑料夹。验证溶液体积条目为3000mL。触摸“下一步”按钮。显示“灌注一次性试剂盒”覆盖。确认已连接PlasmaLyte且通向PlasmaLyte袋的管路上的所有焊接和塑料夹都已打开,然后触摸“是”按钮。
观察到PlasmaLyte正在移动。一次性试剂盒灌注开始,显示“灌注一次性试剂盒”屏幕。肉眼观察到PlasmaLyte通过连接到PlasmaLyte袋的管子移动。如果没有流体在移动,按下屏幕上的“暂停”按钮,确定是否仍关闭了夹子或焊接。解决问题后,请按屏幕上的“继续”按钮以继续使用一次性试剂盒。遵循LOVO触摸屏提示。
将来源容器附接到管道上。按照过程注释5.11将步骤8.12.31中准备的LOVO来源袋无菌焊接到穿过S夹的管道上。可能有必要从夹子上拆下管道。注意:如果已拆下,确保将来源管线更换到S夹中。
悬挂来源容器。将来源容器挂在IV杆上,将两个角袋环都放在钩子上。不要将来源悬挂在#1秤上。打开所有到来源袋的夹子。
连接已验证的来源容器。触摸下一步按钮。显示灌注来源覆盖。确认来源已连接到一次性试剂盒且通往来源的管道上的所有焊接和塑料夹都已打开。触摸“是”按钮。
确认PlasmaLyte正在移动。开始灌注来源,显示灌注来源屏幕。肉眼观察到PlasmaLyte正在通过与来源袋相连的管道移动。如果没有流体在移动,按下屏幕上的“暂停”按钮,确定夹子或焊接是否仍关闭。解决问题后,按屏幕上的“继续”按钮以恢复来源灌注。
启动程序屏幕。当来源灌注成功完成后,将显示“启动过程”屏幕。按下开始键,按下开始键后,将立即出现“预洗涤循环1”暂停屏幕。
倒置处理袋。从#2磅秤上卸下过程中包装袋(也可以从过程中顶部端口管路导板中移除管路),将其手动翻转,以允许在一次性试剂盒灌注步骤中添加的清洗缓冲液覆盖包装袋的所有内表面。重新将处理中的袋子挂在#2的秤上(袋子上的标签朝左)。如果顶管已卸下,则将其更换。
倒置来源袋。在按下“开始”按钮之前,混合来源袋,但不从IV电极上移开,方法是揉按袋角并轻轻搅动细胞,以形成均匀的细胞悬液。按下恢复按钮。LOVO开始处理来源袋中的液体,显示洗涤循环1屏幕。
来源冲洗暂停。一旦排放来源容器排空并且LOVO已向洗涤来源袋中添加了洗涤缓冲液,就会显示“冲洗源暂停”屏幕。在不从静脉输液架上取下来源袋的情况下,揉按角落并充分混合。按下恢复。
混合过程中袋子暂停。为使细胞再次准备通过旋转器,用洗涤缓冲液稀释处理袋。在将清洗缓冲液添加至处理袋中后,LOVO会自动暂停并显示“混合处理袋”暂停屏幕。在不从秤上移开袋子的情况下,通过轻轻挤压袋子将产品充分混合。按下继续。
揉按过程中角落暂停。当处理袋为空时,将清洗缓冲液添加至处理袋的底部以冲洗袋子。添加冲洗液后,LOVO自动暂停并显示“揉按IP角落”暂停屏幕。当显示“揉按IP角落”暂停屏幕时,请勿从秤#2取出袋子。待处理袋仍悬在秤#2上时,揉按袋子角落,使残留的细胞悬浮。确保袋子没有在秤上摆动,按下“继续”按钮。
等待“取出产品”屏幕。LOVO过程结束时,将显示“取出产品”屏幕。当显示此屏幕时,可以操纵LOVO套件上的所有行李袋。注意:直至显示“取出产品”时,才可以触摸任何袋子。
取出保留物袋。在保留物袋的端口附近非常靠近管道的位置放置止血剂,以防止细胞悬液沉淀到管道中。在止血钳下方加热密封(按照过程注释5.12),确保保持足够的线数以在步骤8.13.48中进行焊接。取出保留物袋。
制备用于制剂的保留物袋。将4英寸血浆转移套件的母鲁尔锁定端焊接到保留物袋上。转移保留物袋。
取出产品。按照“取出产品”屏幕上的说明进行操作。关闭LOVO套件上的所有夹子,以防止流体移动。
取出产品。触摸下一步按钮。打开所有LOVO机械夹子,显示“拆卸套件”屏幕。
记录数据。按照“拆卸工具包”屏幕上的说明进行操作。触摸“下一步”按钮。关闭所有LOVO机械夹子,显示结果概述屏幕。从结果概述屏幕记录数据。关闭所有泵和过滤器支撑。当LOVO提示时,卸下套件。所有记录时间都是直接从LOVO记录。
最终制剂和填充
目标体积/袋子计算。从下表DDD中,选择要填充的CS750袋数量、每袋目标填充体积、每袋取出用于保留的体积以及对应于上方LOVO保留物体积的每袋最终目标体积。
表41:目标体积/袋子计算
准备CRF空白。计算CS-10和LOVO洗涤缓冲液的体积以配制空白袋。
表42:计算体积
准备CRF空白。在BSC外部,使用上面准备的LOVO洗涤缓冲液注射器,通过鲁尔接口连接将计算出的体积添加至空CS750袋中。注意:空白的CS750袋子配方无需无菌操作。使用适当大小的注射器,将计算得出的CS-10体积添加至与上述相同的CS750袋中。在CS750包上放一个红色盖子。尽可能从CS-750袋中赶出空气。将CS750袋尽可能热密封,使其尽可能靠近袋,拆下管道。在CS750袋上贴上“CRF空白”、批号和首字母/日期标签。将CRF空白放置在冷袋上,直至将其放入CRF中为止。
计算所需IL-2体积。计算添加至最终产品中的IL-2的体积
表43:计算IL-2体积
组装连接设备。将4S-4M60无菌焊接到CC2 Cell Connect上,用4S-4M60歧管的4个尖嘴端代替Cell Connect装置的单个尖嘴。
组装连接的设备。将CS750冻存袋无菌焊接到上述准备的线束上,用每个袋替换4个鲁尔接口公端(E)之一。将CS-10袋(按过程注释5.11)焊接到4S-4M60的尖嘴上。将袋子放在2℃至8℃的两个冰袋之间来保存CS-10。
用IL-2制备TIL。使用适当大小的注射器,从“IL-2 6x104”等分试样中取出上述确定的IL-2量。通过鲁尔接口连接将注射器连接到上面准备的保留袋上,注入IL-2。通过将注射器中的空气推入管线来清理管线。
标为配制的TIL袋。关闭转移套件上的夹子,将袋子标为“配制的TIL”,然后将其从BSC取出。
将配制的TIL袋添加至设备中。添加IL-2后,将“配制的TIL”袋焊接到设备上剩余的尖嘴上。
添加CS10。将已安装配制的TIL、CS-750袋和CS-10的组装好的设备送入BSC。注意:CS-10袋和所有CS-750袋都放在两个预先设置为2℃-8℃的冷袋之间。未将配制的TIL袋放在冷袋上。确保设备上的所有夹子均已关闭。转动旋塞阀,以关闭注射器。
切换注射器。将约10mL的空气吸入100mL的注射器中,更换设备上的60mL的注射器。
添加CS10。旋开旋塞阀,以使通往CS750袋的管线关闭。打开CS-10袋子的夹子,将上述计算的体积拉进注射器。注意:将使用多个注射器来添加适当体积的CS-10。关闭CS-10的夹子,打开配制的TIL袋的夹子,添加CS-10。以约10.0mL/分钟的速度添加第一个10.0mL的CS10。以约1.0mL/秒的速度添加剩余的CS-10。注意:使用多个注射器添加适量的CS-10。记录时间。注意:从第一次添加CS-10到开始冻结的目标时间是30分钟。记录每次CS10添加的体积和添加的总体积。关闭CS10袋子的所有夹子。
准备CS-750袋。转动旋塞阀,以便打开注射器。打开配制的TIL袋的夹子,在悬液到达旋塞阀之前,将悬液停下来。关闭配制的TIL袋的夹子。旋动旋塞阀,时期对CS750最终产品袋开放。使用新的注射器,通过抽出空气,从CS750最终产品袋中除去尽可能多的空气。在保持注射器柱塞压力的同时,将袋子夹紧。将约20mL的空气吸入新的100mL注射器中,连接至设备。注意:每个CS-750最终产品袋应位于两个冷袋之间,以使配制的TIL悬液保持低温。
分配细胞。转动旋塞阀,以关闭通往最终产品袋的管线。从配制的TIL袋中将上述计算出的体积拉入注射器。注意:可使用多个注射器获得正确的体积。转动旋塞阀,以使通往配制的TIL袋的管线关闭。一次使用一个最终产品袋,将细胞加到最终产品袋中。记录到上述每个CS750袋中的细胞体积。用注射器中的空气清除管线,使细胞与尖嘴端口的顶部均匀。关闭装满袋子的夹子。对每个最终产品袋子重复步骤,在每个袋子之间轻轻混合配制的TIL袋子。记录在下面每个最终产品包装袋中的TIL的体积。
从最终产品袋中赶走空气,取出保留液。装满最后一个最终产品袋后,关闭所有夹子。将10mL的空气吸入新的100mL注射器中,更换设备上的注射器。一次操作一个袋子,从每个产品袋中抽出所有空气,再加上上面确定的要保留的产品体积。注意:取下样品量后,将注射器倒转,用空气清理通向产品袋顶部端口的管线。除去保留体积和空气后,将管线夹在袋子上。
记录从每个袋子中取出的保留体积。
添加保留物。将保留物加入50mL锥形管中,标记为“保留”和批号。对每个袋子重复一次。
制备用于冷冻保存的最终产品。使用止血钳,靠近袋子夹住管线。拆下注射器和注射器所在设备上的红色盖子鲁尔接口。将设备移出BSC。在F处加热密封(根据过程注释5.12),取出空的保留物袋和CS-10袋。注意:保留设备上的用于注射器的鲁尔接口。丢弃空的保留物和CS-10袋。
给最终产品袋贴上标签。下面附有样品最终产品标签。
制备用于冷冻保存的最终产品。将冻存袋放在冰袋上或2℃至8℃下直至冷冻保存。
取出细胞计数样品。使用适当大小的移液器,取出上面除去的2.0mL保留物,放入15mL锥形管中以进行细胞计数。
进行细胞计数。利用NC-200进行细胞计数和计算。注意:仅将一个样品稀释至适当的稀释度以验证稀释是否足够。将其他样品稀释至适当的稀释倍数,然后进行计数。记录细胞计数样品体积。注意:如果不需要稀释,则“样品[μL]”=200,“稀释[μL]”=0。确定活细胞浓度的平均值和所进行细胞计数的活力。
计算流式细胞术样品。进行计算以确保有足够的细胞浓度用于流式细胞术采样。
表44:计算流式细胞术细胞浓度
计算IFN-γ。样品进行计算以确保有足够细胞浓度用于IFN-γ样品。
热封。确定样品体积后,将最终产品包装袋加热密封,使其尽可能靠近包装袋,以从设备中取出。
表745:样品的标记和采集
对于支原体样品,将上方配制的细胞悬液体积添加至标记为“支原体稀释液”的15mL锥形管中。无菌和BacT。测试采样。在BSC中,使用适当大小的注射器从上面收集的保留的细胞悬液中取出1.0mL样品,接种厌氧瓶。对有氧瓶重复上述步骤。
标记并储存样品。给所有样品贴上样品计划库存标签,妥善保存直至转移。进行下一步以冷冻保存最终产品和样品。
最终产品冷冻保存
准备受控速率冷冻机。确认已在冻结之前设置CRF。记录CRF设备。进行冷冻保存。
设置CRF探针。在CRF空白袋上刺破隔膜。插入6mL样品瓶温度探针。
将最终产品和样品置于CRF中。将空白袋放入预处理的盒中,转移至CRF机架的约中间位置。将最终产品盒转移至CRF样品架中,将样品瓶转移至CRF样品瓶架中。将产品架和样品瓶架转移至CRF中。记录产品转移至CRF中的时间和反应室温度。
确定达到4℃±1.5℃并进行CRF运行所需的时间。箱内温度达到4℃±1.5℃后,开始运行。记录时间。
完成,储存。运行完成后停止CRF。从CRF取出盒子和小瓶。将盒子和小瓶转移至气相LN2进行储存。
实施例17:产生具有增强的治疗活性的富含肿瘤肿瘤特异性T细胞的TIL产品
目标:产生具有增强的治疗活性的富含肿瘤抗原特异性T细胞的TIL产品。
背景:
与恶性病变相关的T细胞通常是功能障碍且不能控制/预防肿瘤的生长(Schietinger等,Immunity 2016)。本实施例中的所有参考文献通过引用整体并入,以用于所有目的。
肿瘤浸润淋巴细胞(TIL)可离体提取、活化和繁殖,并在体内重新输注后诱导有效的抗肿瘤应答(Rosenberg等,Clin Cancer Res 2011)。过继细胞转移方法,首次在转移性黑色素瘤患者中得到证实,正在其他实体瘤组织学中进行检测。已报道了TIL疗法对黑色素瘤、头颈癌和宫颈癌的临床活性(SITC,2017)。因此,可从抑制性肿瘤微环境中拯救出肿瘤特异性TIL,并重新调节和/或扩增至足够数量以有效靶向肿瘤。
对TIL临床试验的回顾性分析表明,相对于效应子和效应记忆T细胞,具有强大的增殖和存活能力的分化程度较低的肿瘤反应性T细胞赋予优异的抗肿瘤功效,且下一代TIL产物应始终包含升高水平的分化程度较低的T细胞(Klebanoff等,J Immunother2012)。
T记忆干细胞(TSCM)是经历过抗原的中枢记忆T细胞的早期祖细胞;TSCM显示出定义干细胞的长期存活、自我更新和多潜能性;因此,认为TSCM是产生有效TIL产品的最理想方法。与过继细胞转移的小鼠模型中的其他T细胞亚群相比,TSCM已显示出增强的抗肿瘤活性(Gattinoni等,Nat Med 2009,2011;Gattinoni,Nature Rev.Cancer,2012;Cieri等,Blood 2013)。
需要将TIL组合物偏向高比例TSCM的策略,以确保最佳抗肿瘤活性。
使用通过诱导多能干细胞(iPSC)技术开发的重编程工具使得经历过抗原的T细胞恢复活力(Nishimura等,Cell Stem Cell 2012;Vizcardo等,Cell Stem Cell 2012)。此方法需要将iPSC进一步体外分化为最适合对抗肿瘤的T细胞群,使得其为一个漫长的2步过程,易于限制原始T细胞受体(TCR)组成。参见alos,Stewart等,538:183-192(2016)Regarding in vitro and in vivo delivery strategies for intracellular deliveryof materials。
已显示,包括Wnt、NOTCH和Myb的信号通路支持直接从幼稚T细胞和/或经历过抗原的T细胞产生TSCM样细胞(Gattinoni等,Nat Med 2009;Kondo等,Nat Comm.2017;Gautam等,SITC 2017)。
细胞命运重编程需要瞬时暴露于适当的转录因子(TF)。就TIL而言,此种暴露需要靶向大部分T细胞,以保留肿瘤来源的TCR库。
无SQZ载体的微流体平台代表了先进的细胞内递送策略;它已显示出将蛋白质(包括转录因子)递送至多种原代人类细胞(包括T细胞)的能力(Sharei等,PNAS 2013;以及Sharei等,PLOS ONE 2015和Greisbeck等,The J of Immunology,第195卷,2015)。还参见国际专利公开号WO2013/059343A1、WO2017/008063A1和WO2017/123663A1,其全部通过引用整体并入本文。如国际专利公开号WO2013/059343A1、WO2017/008063A1和WO2017/123663A1中所述的方法可与本发明一起使用,以使TIL群暴露于转录因子(TF)和/或其他能够诱导瞬时蛋白质表达的方法;其中,TF和/或能够诱导瞬时蛋白质表达的其他分子提供了TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加,从而使得与未重编程的TIL群相比,重编程的TIL群具有更高的免疫力且重编程的TIL群的治疗功效提高。
策略:
提议使用SQZ胞内TF蛋白递送技术来比较各种重编程策略产生具有增强的治疗活性的富含肿瘤抗原特异性T细胞的TIL产物的能力。
工作计划包括以下要点/问题:
1.肿瘤类型
■黑色素瘤
2.最佳递送条件
■SQZ人T细胞优化方案+其他条件
■监控递送效率
3.TF的选择
■TCF-1
■NOTCH1/2ICD
■MYB
■+/-之前的iPSC混合物用于“完整”重编程?
4.以TIL为目标的活化/扩增阶段
■REP第0天
■其他?
5.重编程的动力学
■第7、11、14、18天…
6.TIL亚群目标
■最初为大量
■分选各个亚群(TCM,TEM,TEFF,TEMRA)以之后进行比较。
7.对培养基中其他因素的需求
■IL7
■RSPO3/WNT3A
■其他?
8.读数
■用(改进的?)面板1、2和3分析Pre-REP和Post-REP TIL扩增表型
■Post-REP TIL效应子功能评估(细胞因子和/或活化标志物产生检测)
■Post-REP TIL肿瘤反应性评估(自体肿瘤细胞共培养测定)
■TCR库分析(流式细胞术和/或RNA-seq)
■活细胞代谢检测,例如Seahorse
·其他考虑
1.蛋白质TF的产生
2.肿瘤获得
3.物流(细胞运输)
表46:过程
/>
实施例18:冷冻保存方法
本实施例描述了制备的TIL的冷冻保存方法,其使用CryoMed Controlled RateFreezer,型号7454(Thermo Scientific)采用实施例16中所述的简略、封闭的程序。
所用设备如下:铝制盒支架(与CS750冻存袋兼容)、用于750mL袋的冻存盒、低压(22psi)液氮罐、冰箱、热电偶传感器(带型袋子)和CryoStore CS750冻存袋(OriGenScientific)。
冷冻过程提供从成核到-20℃的0.5℃速率和冷却到-80℃最终温度的1℃/分钟冷却速率。程序参数如下:步骤1:在4℃下等待;步骤2:1.0℃/min(样品温度)至-4℃;步骤3:20.0℃/min(室内温度)至-45℃;步骤4:10.0℃/min(室内温度)至-10.0℃;步骤5:0.5℃/min(室内温度)至-20℃;步骤6:1.0℃/min(样品温度)至-80℃。
结合实施例16的方法,提供本实施例的程序描述。
实施例19:产生具有增强治疗活性的富含肿瘤抗原特异性T细胞的TIL产物的方法
阶段1a:获得一种经验证的sd-RNAfm,以实现高效和特异性沉默
初始阶段将涉及获得一种经验证的sd-RNAfm,以有效且特异性地沉默以下3种基因:PD-1(也称为PDCD1)、TIM3和CBLB。
阶段1b:鉴定有效沉默LAG3和CISH的序列
将针对新靶标设计多达20个sd-RNA。将评估HeLa细胞中外源性靶标的基因沉默以及活化的原代T细胞中内源性靶标的基因沉默。每个使表达水平降低超过80%的目的基因(包括PD-1和LAG-3)将筛选一至两个先导化合物(leads)。将产生所选sd-RNA的完全改进版本。
预期将产生一至两个LAG3和CISH特异性sd-RNAfm。优选每个靶基因两个靶RNA。
阶段2:验证pre-REP TIL中sd-RNA介导的基因沉默。
将使用多达6个冷冻的黑色素瘤/其他pre-REP系来验证sd-RNA靶标(包括PD-1、TIM3、CBLB、LAG3和CISH)。条件将检测sd-RNA浓度、解冻后的时间、重复/顺序递送和培养条件。读数将为基因沉默的百分比,如通过流式细胞术和/或qPCR来评估。将通过扩增TIL来评估RNA递送对TIL生长和沉默随时间的持续性的影响。
预期在REP收获后24小时,使用先导化合物可获得80%的沉默。总细胞数将在未处理对照的10%以内。
阶段3:对过程2A实施sd-RNA介导的基因沉默。
将对3至6个研究规模的新鲜TIL制剂优化基因沉默。条件将检测sd-RNA浓度、时间、重复/顺序递送和培养条件。如通过流式细胞术和/或qPCR评估,读数将为post-REP TIL中基因沉默的百分比。将使用流式细胞术来评估基因沉默对TIL表型和功能的影响。将进行可选的恢复实验(rescue experiment)和/或基因表达分析,以验证影响的特异性(例如,潜在的基因沉默“脱靶”(off target silencing)的程度和影响)。至少选择2对靶标/sd-RNA进行进一步的工作。然后表征TIL表型。将评估与对照TIL相当或更高的非特异性和特异性TIL活性,以确定最佳靶标/sd-RNA。
阶段4:将优化的沉默方案实施为工业规模(full scale)TIL制备。
每个靶基因将进行一次工业规模TIL制备。除了发布所需的那些产品外,还将开发具有阶段3所定义的新特性的TIL产品。
实施例20:示例性sd-RNA制备和使用
sd-RNA设计
将产生针对给定靶标的约2至20个sd-RNA序列。在一些情况下,将基于筛选算法(可从Advirna LLC,伍斯特,马萨诸塞州,美国商购)来筛选sd-RNA序列,该算法基于对500多个sd-RNA序列进行功能筛选而设计。回归分析将用于建立sd-RNA双链体中特定核苷酸的出现频率与任何特定位置的修饰及其在基因抑制测定中的功能之间的相关性。所选序列将以0.2μmol的规模商业合成(例如,通过TriLink Biotechnologies),并溶解在无菌的无RNA酶、无DNA酶的注射用水(可从CalBiochem,4.86505商购)中。可通过在95℃加热5分钟并逐渐冷却至室温来使双链体退火。
sd-RNA直接递送(被动摄入)
寡核苷酸(包括本文所述的sd-RNA靶向基因)可在无血清培养基中稀释并一式三份加到96孔培养板中。可将细胞接种在含有还原FBS的合适培养基(在含有以指定倍数预稀释的化合物的孔板中)中。可以10,000细胞/孔将HeLa细胞在含3%FBS的EMEM培养基中转染。可在含有500IU/mL IL2(ProSpec)的完全AIM-V(Gibco)培养基中培养原代人T细胞(AllCells,CA)。转染前,可根据制造商说明,用抗CD3/CD28Dynabeads(Gibco,11131)活化细胞至少4天。除非另有说明,否则可在不除去Dynabeads的情况下在5%FBS中以100,000个细胞/孔转染T细胞。为了确定转染效率,可使用Olympus BX-60显微镜,由用Cy3偶联的sd-RNA转染的活细胞获得荧光图像。可通过使用Hoechst33342(分子探针,H1398)添加至转染的细胞中30分钟来获得核染色,处理图像。
先导sd-RNA化合物的鉴定
可使用此方案鉴定实施例18中所述的先导化合物。可通过将PDCD1靶向区域插入psiCheck2质粒(Promega,C8021)下游海肾荧光素酶(Renilla luciferase)序列中,来构建荧光素酶报告质粒。为了比较,可插入先前验证的MAP4K4 sd-RNA序列作为阳性对照。
为进行筛选,可根据制造商说明使用Fugene HD(Promega,E2311)用克隆的质粒转染HeLa细胞。简而言之,可将细胞以2.5×106细胞/10cm2 390皿接种在不含抗生素的EMEM(ATCC,30-2003)培养基中,然后以2.5:1的FugenE:DNA比例用质粒转染6小时。可将细胞孵育16-18小时,用PBS洗涤3次,胰蛋白酶消化,接种到含有预稀释的sd-RNA化合物的96孔板中,最终浓度为1μM sd-RNA/10,000细胞/100μl含3%FBS的EMEM。可用sd-RNA处理细胞48小时,以促进化合物的被动细胞摄取,用Glo裂解液(Promega,E266A)裂解,可以检测海肾荧光素酶和萤火虫荧光素酶的表达。为此,将每种裂解物的20μl等分试样加入不透明的96孔板中,并与Matthews(海肾)分析缓冲液59 397或萤火虫荧光素酶398分析缓冲液(25mM甘氨酰甘氨酸、15mM MgSO4、4mM EGTA、1mM DTT、2mM ATP、15mM 399K2PO4、pH 7.8和1mM D-荧光素)混合。在使用前即刻添加底物D-荧光素(Promega,E1605)和h-腔肠素(NanoLight,301)。可在SpectraMax i3(Molecular Devices)上测量发光,进行归一化(海肾/萤火虫),表示为未处理对照的百分比。
通过qPCR定量mRNA
根据制造商的建议,可使用PureLinkTM Pro96纯化试剂盒(Invitrogen,12173-011A)从转染的细胞中分离总RNA。可制备1:5和1:25的未转染(NT)细胞稀释液以生成标准曲线。通过在同一反应中将20-40ng纯化的RNA与Quanta qScript RT-qPCR ToughMix(VWR,89236672)和Taqman探针–PDCD1-FAM(Taqman,Hs01550088_m1)和GAPDH-VIC(AppliedBiosystems,4326317E)混合,在一步多重qPCR 407中分析基因表达。可使用Quanta建议的设置在StepOnePlus qPCR仪(Applied Biosystems)中扩增样品。可将PDCD1表达相对GAPDH进行归一化,调整为标准曲线,并表示为非靶向对照(NTC)转染的细胞的百分比。
细胞活力测定
可用各种剂量的sd-RNA寡核苷酸转染本发明的扩增的TIL 72小时。洗涤细胞,用1:10稀释的CellTiter-Blue试剂(Promega,G808A)在37℃孵育1小时。将孔板置于室温,记录530nm激发/590nm发射处的荧光。线性范围可通过在相同条件下铺板4系列2倍细胞稀释液并绘制荧光读数来确认。
肿瘤浸润淋巴细胞分离
肿瘤浸润淋巴细胞可如本文所述制备,例如如图8以及图14所示。
TIL扩增
TIL可如本文所述接种在烧瓶中,进行第一次扩增和/或第二次扩增步骤。可在第一次扩增期间(例如步骤b)、第一次扩增之后(例如步骤C期间)、第二次扩增之前或期间(例如步骤D之前或期间、步骤D之后且步骤E的收获之前、步骤F的收获期间或之后、步骤F的最终配制和/或转移至输液袋之前或期间,以及步骤F中的任何可选的冷冻保存步骤之前),添加sd-RNA。此外,可以从步骤F中的任何冷冻保存步骤解冻后添加sd-RNA。
胸苷掺入测定
可在任何扩增步骤中收获TIL样品,一式三份接种在96孔板上补充有2%人AB血清的CellGro培养基中(104 443个细胞/孔)。1小时后,可将1μCi/孔的[甲基-3444H]胸苷(PerkinElmer,Waltham,MA)添加至每个孔中,孵育4小时。然后可以收获细胞,可在Trilux1450microBeta液体闪烁计数仪(Wallac)中测量3H-胸苷的掺入量,以检查TIL的生长。
sd-RNA处理的细胞的IFN-γ分泌
可按照制造商的说明,使用人IFN-γELISA开发试剂盒(Mabtech),在上清液中测量经刺激的T细胞产生的IFN-γ。可如本文所述地制备TIL,用例如2μM sd-RNA处理数天,在某些情况下为四天。在这段时间之后,可收集上清液进行ELISA分析以确定IFN-γ的产生水平。
TIL处理
已用sd-RNA处理的TIL可如本文所述用于治疗癌症患者的方法中。
实施例21:示例性的电穿孔方法
根据本文所述的任何方法制备TIL。将测试以下转染方法:lipofectin和Lipofectamin Lipofection、使用方波BTX ECM 830仪器或Bio-Rad Gene Pulser II的电穿孔、使用Eppendorf Multiporator的指数递减波电穿孔以及Amaxa核转染器。所有方法最初都将基于制造商的建议,并视需要进行潜在的修改。Amaxa核转染方案可提供最高的转染效率。将使用三种溶液(V、R和T)之一和8种电穿孔程序的不同组合来优化Amaxa程序。还参见在美国专利申请号2016/0230188和美国专利号8,859,229中描述的方法,其全部内容通过引用整体并入本文。也可根据Menger等,Cancer Res,2016年4月15日,76(8):2087-93描述的方法进行电穿孔。参见J.Biol.Chem.,其公开内容通过使用Agile Pulse BTX系统(哈佛仪器)以引用方式并入本文。可通过本文其他各处所述的pre-REP和REP方法扩增电穿孔细胞。也可使用本领域已知的电穿孔方法,例如在美国专利号6,010,613和6,078,490中描述的那些,其公开内容通过引用并入本文。可使用以下程序或其修改形式描述的方法进行脉冲电穿孔优化:
可使用不同的电穿孔程序或方法,在含有约20μg的编码GFP的质粒和对照质粒pUC的0.4cm间隙的比色杯中对TIL进行电穿孔(约106个细胞/mL的量级)。电穿孔后约24小时,通过流式细胞术分析电穿孔细胞中的GFP表达,确定转染的效率。TIL中质粒电穿孔所需的最小电压先前已报道于国际专利申请公开号WO2014/184744和美国专利申请公开号US2013/0315884A1,其公开内容通过引用并入本文。
实施例22:用于制备具有增强的治疗活性的富含肿瘤抗原特异性T细胞的TIL产品的瞬时转染方案
本实施例中的实验将研究两种不同的TIL改进策略的效果。策略1:IL-2的瞬时表达或IL-15的膜结合形式(mb-IL15)。策略2:NOTCH介导的TIL重编程。在一些实施方式中,NOTCH介导的重编程包括NOTCH1或NOTCH2的细胞内结构域(ICD)的mRNA表达。在一些实施方式中,NOTCH介导的重编程包括NOTCH配体DLL1的mRNA表达。
所研究的肿瘤类型将是黑色素瘤、肺肿瘤、肉瘤以及其他。
将使用本文上文所述过程(包括例如实施例16中所述过程)产生TIL。
RNA分子将使用例如实施例21中所述的方法递送(也参见美国专利申请号2016/0230188和美国专利号8,859,229中所述的方法,其全部内容均通过引用并入本文)。
将确定递送条件,包括例如mRNA试剂验证、瞬时转染和重编程的时间、电穿孔时间与所用的TIL过程的相容性、效率(包括转染效率)和可扩展性(scalability)。
实验的读数将包括TIL表型(流式细胞术)、TIL效应子功能(细胞因子产生测定)、TIL肿瘤反应性(自体肿瘤细胞共培养测定)、TCR库分析(流式细胞术和/或RNA-seq)、TIL代谢状态(活细胞代谢测定,例如Seahorse)或上文所述的任何其他参数。
预期的结果:
将视需要设计递送条件,以在post-REP TIL中得到目的蛋白的高表达。冷冻的黑色素瘤pre-REP样品将用于筛选条件。用于优化实验而递送的试剂将为GFP mRNA。条件将检测几种TIL活化方法和电穿孔方案。通过流式细胞术评估,读数将为细胞活力和相对于非电穿孔对照的GFP阳性细胞百分比。筛选条件将在2至3种新鲜的可用组织的TIL制剂中确认。在一些实施方式中,可在转染后约3、6、9、12、15和/或18小时通过荧光激活细胞分选(FACS)确定转染效率(ET)。在一些实验中,可每12小时至24小时对转染子进行进一步分析,直至无法检测到GFP。在一些实施方式中,可通过台盼蓝染料排除来确定细胞活力。预计该方案将导致>80%的活力和>70的转染效率。
将产生人IL-2和mb结合的IL-15mRNA并进行功能检测。将使用经验证的条件来转染多达6种来自不同组织的TIL培养物。读数将为转染效率、TIL表型和TIL效应子功能。预期该方案将导致>80%的活力,>70%的转染效率,与对照相当或改善的TIL表型,以及显著提高的TIL效应子功能。
将视需要设计递送条件以使得T细胞重编程。储存在艾欧凡斯(Iovance)的冷冻黑色素瘤pre-REP样品将用于筛选条件。递送的试剂将为NOTCH1或2ICD mRNA。条件将检测几种TIL活化方法和电穿孔的时间。通过流式细胞术评估,读数将为细胞活力、转染效率和相对于非电穿孔对照的T记忆干细胞(TSCM)的百分比。所选条件用2至3种可用组织的新鲜TIL制剂确认。预计该方案将导致>80%的活力,>70%的转染效率以及TSCM频率的显著增加。
使用上述确定的转染条件,对来自各种组织的多达6种TIL制剂进行重编程实验。读数是转染效率、TIL表型、TCR库和TIL效应子功能。预期此方案将导致TSCM频率的显著增加,将允许保持TSCM亚群相对于整个TIL群的TCR库,将允许保持相对于对照的效应子功能。
实施例23:sd-RXRNA的获得和验证
本实施例中的实验提供了关于5个目标靶标(PDCD1、TIM3、CBLB、LAG3和CISH)的sd-rxRNA构建体的数据。
阶段1:获得5个目标靶标的sd-rxRNA。
阶段2:验证pre-REP TIL中sd-rxRNA介导的基因沉默(8周)。
多达6个冷冻黑色素瘤/其他pre-REP细胞系。确定实验条件。
读数:
·沉默%:预期≥80%
·沉默的持久性
·TIL生长:预期在对照的10%之内
·TIL功能:预期细胞因子产生增加
阶段3:对Gen 2和/或Gen 3过程实施sd-rxRNA介导的基因沉默(3个月)
·3至6个研究规模的新鲜TIL制剂
·与上述相同的读数
·TIL表型
·TIL肿瘤反应性
·将选择至少2对靶标/sd-rxRNA进行进一步的工作
阶段4:对工业规模TIL制剂实施优化的沉默方案(8周)。
·每个靶基因一个工业规模制剂。
基本原理:
在TME中,TIL表达负调节其效应子功能的几种抑制分子。
在离体培养TIL时可恢复功能,但在重新输注后将再次遇到免疫抑制。
确保T细胞抑制通路在重新输注后保持沉默至少几天可改善TIL对ACT的效力。
自递送的siRNA(sd-rxRNA)提供了敲除T细胞基因的有效方法。参见例如Ligtenberg等,Mol.Therapy,26(6):1482-1493(2018)。
目标:
通过使抑制通路沉默来重新建立TIL效应子功能。
策略:
在快速扩增方案期间,使用sd-rxRNA瞬时敲除1)PDCD1、2)TIM3、3)CBLB、4)LAG3和5)CISH。特别关注于在快速扩增方案期间使用sd-rxRNA瞬时敲除PD1。
程序:
验证REP TIL中sd-rxRNA介导的基因沉默(KD效率和持久性;T细胞活力)。
基因沉默对TIL表型和功能(肿瘤反应性)的影响。
结果概述
在REP期间添加靶向的sd-rxRNA使得5个靶标中的3个基因被成功敲除(KD),包括大于80%(>80%)的PD1敲除。
·PD1:>80%
·TIM3:约70%
·LAG3:约70%
·CISH:约40%
·CBLB:不可检测
PD1 KD(敲除)与活力降低有关。PD1 KD与TIL扩增减少有关。
显著的表型改变与PD1和TIM3 KD相关,表明更高水平的活化(CD25、CCR7、CD56、4-1BB和OX40表达增强)。特别地,显著的表型改变与PD1 KD有关,表明高水平的活化(相对于NTC对照,CD25、CCR7、4-1BB和OX40表达增强)。
在这些实验中,没有一个sd-rxRNA导致响应于再刺激(INF g/IL-2/TNF-α)的细胞因子分泌增加。特别地,将TIL暴露于PDCD1 sd-rxRNA没有增加响应于再刺激的CD107a动员或细胞因子分泌(INFγ/IL-2/TNF-α)。参见例如图54。
PD1 KD(敲除)增加了TIL的体外杀伤能力(参见例如图49)。
方法:
·第0天:Pre-REP开始。加入培养基+IL-2。
·第11天:REP开始,用包含IL-2+PBMC的培养基、解冻/新鲜pre-REP+sd-rxRNA(即第二次扩增开始)。
·第14天:培养基更换+sd-rxRNA,含有IL-2(可选OKT3和饲养细胞(PBMC));但是,仅使用IL-2(例如,含有IL-2培养基的sd-rxRNA)进行。
·第17天:培养基更换+sd-rxRNA(添加其他sd-rxRNA)(例如,含有IL-2培养基的sd-rxRNA)。
·第21天:培养基更换+sd-rxRNA(添加其他sd-rxRNA)(例如,含有IL-2培养基的sd-rxRNA)。
·第22天:如上所述收获TIL。
ο细胞计数,测定活力。
ο测定KD(敲除)效率(Q-PCR,流式细胞术)
ο如上所述,进行表型测定以表征TIL。
ο检查活化标志物(CD107a、IFNγ)(例如参见图45,抑制/耗竭标志物;和图46,IFNγ)。
如图40所示,该实验在五种肿瘤类型中进行:黑色素瘤、乳腺肿瘤、肺肿瘤、肉瘤和卵巢肿瘤。
实施例24:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法可包括:
(i)由患者切除的肿瘤获得第一TIL群;
(ii)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;
(iii)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第三TIL群的数量比第二TIL群的数量大至少100倍;其中,第二次扩增进行至少14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;以及
(iv)在第11天至第21天之间,将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变;以及
(v)在第22天或之后,收获从步骤(iv)获得的治疗性TIL群;以及
(vi)可选地,将从步骤(v)收获的TIL群转移至输液袋。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例25:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法可包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)在第11天至第21天之间,将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的改变和/或肿瘤抗原特异性T细胞数量的改变;
(f)在第22天或之后,收获从步骤(d)获得的治疗性TIL群;其中,步骤(d)向步骤(e)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例26:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种治疗患有癌症的受试者的方法,该方法包括施用扩增的肿瘤浸润淋巴细胞(TIL),该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由受试者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天即可获得第三TIL群,其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)在第11天至第21天之间,将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加;
(f)收获从步骤(d)获得的治疗性TIL群;其中,步骤(d)向步骤(e)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(e)向步骤(f)的转变在不打开系统的情况下发生;
(h)可选地,使用冷冻保存方法冷冻保存包含从步骤(f)收获的TIL群的输液袋;以及
(i)向患者施用步骤(g)的输液袋中的治疗有效剂量的第三TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例27:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,可提供用于治疗患有癌症的受试者的扩增的TIL群,其中,所述扩增的TIL群是可通过包括以下步骤的方法获得的第三TIL群:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由受试者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2和可选的OKT-3的细胞培养基中培养第一TIL群来进行第一次扩增,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约3天至14天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(b)向步骤(c)的过渡在不打开系统的情况下发生;
(d)通过向第二TIL群的细胞培养基中补充另外的IL-2、OKT-3和抗原呈递细胞(APC)来进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至14天,获得第三TIL群;其中,第三TIL群是治疗性TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)在第11天至第21天之间,将第二TIL群和/或第三TIL群暴露于转录因子(TF)和/或其他能够瞬时改变蛋白质表达的分子;其中,TF和/或其他能够瞬时改变蛋白质表达的分子提供了治疗性TIL群中肿瘤抗原表达的增加和/或肿瘤抗原特异性T细胞数量的增加;
(f)收获从步骤(d)获得的治疗性TIL群;其中,步骤(e)向步骤(f)的过渡在不打开系统的情况下发生;以及
(g)将从步骤(e)收获的TIL群转移至输液袋;其中,步骤(f)向步骤(g)的转移在不打开系统的情况下发生;以及
(h)可选地,使用冷冻保存方法冷冻保存包含从步骤(f)收获的TIL群的输液袋。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例28:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA、0.5μM sd-RNA、0.75μM sd-RNA、1μM sd-RNA、1.25μM sd-RNA、1.5μM sd-RNA、2μM sd-RNA、5μM sd-RNA或10μM sd-RNA;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;以及
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例29:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,以2μM sd-RNA的浓度添加sd-RNA;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;以及
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.75μM至约2.25μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA,其中,在至少一天的时间内,以约2μM的量添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例30:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA、0.5μM sd-RNA、0.75μM sd-RNA、1μM sd-RNA、1.25μM sd-RNA、1.5μM sd-RNA、2μM sd-RNA、5μM sd-RNA或10μM sd-RNA;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例31:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)在第11天至第21天之间,使第一TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μMsd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(e)可选地,对第一TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(f)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)静置第二TIL群约1天;
(h)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(h)的过渡在不打开系统的情况下发生;
(i)收获从步骤(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(h)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例32:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)在第11天至第21天之间,使第一TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(e)可选地,对第一TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(f)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)静置第二TIL群约1天;
(h)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(g)向步骤(h)的过渡在不打开系统的情况下发生;
(i)收获从步骤(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(h)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例33:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例34:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(c)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL/100μL培养基、0.5μM sd-RNA/10,000TIL/100μL培养基、0.75μM sd-RNA/10,000TIL/100μL培养基、1μM sd-RNA/10,000TIL/100μL培养基、1.25μM sd-RNA/10,000TIL/100μL培养基、1.5μM sd-RNA/10,000TIL/100μL培养基、2μM sd-RNA/10,000TIL/100μL培养基、5μM sd-RNA/10,000TIL/100μL培养基或10μM sd-RNA/10,000TIL/100μL培养基;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(g)向步骤(i)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(i)向步骤(j)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
实施例35:实施例23的变型实施方式
根据实施例23中讨论的方法,描述了与瞬时改变蛋白质表达相结合的TIL扩增方法。本实施例提供了根据实施例23中描述的方法进一步变化的实施方式。
在上述方法的一些实施方式中,提供了一种将肿瘤浸润淋巴细胞(TIL)扩增为治疗性TIL群的方法,该方法包括:
(a)通过将从患者获得的肿瘤样品处理成多个肿瘤碎片,由患者切除的肿瘤获得第一TIL群;
(b)将肿瘤碎片添加至封闭系统中;
(c)通过在包含IL-2且可选地包含4-1BB激动剂抗体的细胞培养基中培养第一TIL群约2天至5天,来进行第一次扩增;
(d)添加OKT-3,产生第二TIL群;其中,第一次扩增在提供第一透气表面区域的封闭容器中进行;其中,第一次扩增进行约1天至3天,获得第二TIL群;其中,第二TIL群的数量比第一TIL群的数量大至少50倍;其中,步骤(c)向步骤(d)的过渡在不打开系统的情况下发生;
(e)静置第二TIL群约1天;
(f)通过向第二TIL群的细胞培养基中补充另外的IL-2、可选的OKT-3抗体、可选的OX40抗体和抗原呈递细胞(APC)进行第二次扩增,产生第三TIL群;其中,第二次扩增进行约7天至11天,获得第三TIL群;其中,第二次扩增在提供第二透气表面区域的封闭容器中进行;其中,步骤(e)向步骤(f)的过渡在不打开系统的情况下发生;
(g)在步骤(d)、步骤(e)和/或步骤(f)中的任一步骤期间(包括第11天至第21天期间),使第二TIL群与至少一种sd-RNA接触;其中,sd-RNA以如下浓度添加:0.1μM sd-RNA/10,000TIL、0.5μM sd-RNA/10,000TIL、0.75μM sd-RNA/10,000TIL、1μM sd-RNA/10,000TIL、1.25μM sd-RNA/10,000TIL、1.5μM sd-RNA/10,000TIL、2μM sd-RNA/10,000TIL、5μM sd-RNA/10,000TIL或10μM sd-RNA/10,000TIL;其中,sd-RNA用于抑制分子的表达,该分子选自PD-1、LAG-3、TIM-3、CISH和CBLB及它们的组合;
(h)可选地,对第二TIL群进行无菌电穿孔步骤;其中,无菌电穿孔步骤介导至少一种sd-RNA的转移;
(i)收获从步骤(g)或(h)获得的治疗性TIL群,提供收获的TIL群;其中,步骤(e)向步骤(h)的过渡在不打开系统的情况下发生;其中,收获的TIL群是治疗性TIL群;
(j)将从步骤(i)收获的TIL群转移至输液袋;其中,步骤(h)向步骤(i)的转移在不打开系统的情况下发生;以及
(k)使用基于二甲基亚砜的冷冻保存培养基冷冻保存收获的TIL群。
在一些变型实施方式中,其他能够瞬时改变蛋白质表达的分子包含sd-RNA,包括例如但不限于sd-rxRNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL暴露于sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL暴露于sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低75%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列显示靶基因表达降低99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列显示靶基因表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低70%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达减少75%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低80%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低了85%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低90%。在一些实施方式中,本发明中使用的sd-RNA序列表现出PD-1表达降低95%。在一些实施方式中,本发明中使用的sd-RNA序列表现出表达PD-1减少99%。在一些实施方式中,当以约0.25μM至约10μM(在一些实施方式中为约0.25μM至约4μM)的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约0.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约1.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约2.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.25μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.5μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约3.75μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约4.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约5.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约6.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约7.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约8.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约9.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在一些实施方式中,当以约10.0μM的浓度递送时,本发明中使用的sd-RNA序列表现出PD-1表达降低。在任何前述实施方式中,可在更换培养基之前或之后,测定相对于TIL培养基的指定浓度。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约0.75μM至约3μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约0.75μM至约3μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.0μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.0μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约1.5μM至约2.5μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约1.5μM至约2.5μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少两天,将TIL以2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和/或第21天中的至少三天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在第11天、第14天、第17天和第21天中的所有天,将TIL以约2μM的sd-RNA浓度暴露于sd-RNA。在一些变型实施方式中,在更换培养基时,以约2μM的sd-RNA浓度添加sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
在一些实施方式中,在第11天添加的sd-RNA被添加至包含sd-RNA、IL-2、OKT3和APC(包括例如PBMC)的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA且可选地包含IL-2、OKT3和APC(包括例如PBMC)中的一种以上的培养基中。在一些实施方式中,在第14天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第17天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第21天添加的sd-RNA被添加至包含sd-RNA和IL-2的培养基中。在一些实施方式中,在第14天,添加更多的sd-RNA。在一些实施方式中,在第17天,添加更多的sd-RNA。在一些实施方式中,在第21天,添加更多的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和第21天,添加相同浓度的sd-RNA。在一些实施方式中,在第11天、第14天、第17天和/或第21天,添加不同浓度的sd-RNA。在一些实施方式中,sd-RNA靶向PD-1。
提供以上提出的实施例是为了向本领域普通技术人员提供关于如何制备和使用本发明的组合物、系统和方法的实施方式的完整公开和描述,并不意图限制发明人认为是其发明。对于本领域技术人员显而易见的用于实施本发明的上述模式的修改旨在落入所附权利要求的范围内。本说明书中提及的所有专利和出版物表示本发明所属领域的技术人员的技术水平。
所有标题和小节名称仅用于清楚和参照目的,并不以任何方式视为限制。例如,本领域技术人员将理解,根据本文所述本发明的精神和范围,适当地组合来自不同标题和小节的各个方面的有效性。
本文引用的所有参考文献通过引用整体并入本文,并且出于所有目的,其程度如同每个单独的出版物或专利申请被明确地和单独地指出通过引用整体并入用于所有目的。
在不脱离本发明的精神和范围的情况下,可对本申请进行许多修改和变化,这对本领域技术人员来说是显而易见的。这里描述的特定的实施方式和实施例仅作为示例提供,并且本申请仅受所附权利要求以及权利要求所赋予的等同物的全部范围的限制。

Claims (26)

1.一种将肿瘤浸润淋巴细胞TIL扩增为治疗性TIL群的方法,所述方法包括:
(a)由从患者切除的肿瘤获得第一TIL群;
(b)通过在包含IL-2的细胞培养基中培养第一TIL群约3-14天的时间来进行第一次扩增,产生第二TIL群;
(c)通过向第二TIL群的细胞培养基补充另外的IL-2、OKT-3和抗原呈递细胞APC来进行第二次扩增,产生第三TIL群,第二次扩增进行约7-14天以获得第三TIL群,第三TIL群是治疗性TIL群;以及
(d)收获治疗性TIL群;
其中,第一TIL群被修饰以在步骤(b)中的第一次扩增之前或期间实现一种以上蛋白质的表达的瞬时改变,第二TIL群被修饰以在步骤(c)中的第二次扩增之前或期间实现一种以上蛋白质的表达的瞬时改变,或者,第三TIL群被修饰以在步骤(c)中的第二次扩增之后并在步骤(d)之前实现一种以上蛋白质的表达的瞬时改变。
2.根据权利要求1所述的方法,其中,所述表达的瞬时改变使一种以上蛋白质的表达增加。
3.根据权利要求1所述的方法,其中,所述表达的瞬时改变包括将一种以上核酸分子插入到第一TIL群、第二TIL群或第三TIL群中以改变一种以上蛋白质的表达。
4.根据权利要求3所述的方法,其中,核酸插入通过电穿孔实现。
5.根据权利要求3所述的方法,其中,所述一种以上核酸分子包括一种以上RNA分子。
6.根据权利要求5所述的方法,其中,所述一种以上RNA分子包括一种以上mRNA分子和/或一种以上siRNA分子。
7.根据权利要求6所述的方法,其中,核酸插入通过微流体膜破坏实现。
8.根据权利要求6所述的方法,其中,核酸插入通过无载体微流体膜破坏实现,所述无载体微流体膜破坏介导一种以上mRNA分子和/或一种以上siRNA分子转移至TIL中。
9.根据权利要求8所述的方法,其中,所述无载体微流体膜破坏使TIL变形。
10.根据权利要求8所述的方法,其中,所述一种以上mRNA分子编码膜结合形式的IL-2和膜结合形式的IL-12。
11.根据权利要求1所述的方法,其中,所述一种以上蛋白质包括IL-2、IL-7、IL-10、IL-12、IL-15和IL-21中的一种以上。
12.根据权利要求11所述的方法,其中,所述一种以上蛋白质包括IL-2、IL-15和IL-21中的一种以上。
13.根据权利要求12所述的方法,其中,所述一种以上蛋白质包括IL-15和IL-21中的一种以上。
14.根据权利要求12所述的方法,其中,所述一种以上蛋白质包括膜结合形式的IL-2、膜结合形式的IL-15和膜结合形式的IL-21中的一种以上。
15.根据权利要求14所述的方法,其中,所述一种以上蛋白质包括膜结合形式的IL-15。
16.根据权利要求11所述的方法,其中,所述一种以上蛋白质包括IL-2和IL-12中的一种以上。
17.根据权利要求16所述的方法,其中,所述一种以上蛋白质包括IL-2。
18.根据权利要求16所述的方法,其中,所述一种以上蛋白质包括IL-12。
19.根据权利要求16所述的方法,其中,所述一种以上蛋白质包括膜结合形式的IL-2和膜结合形式的IL-12中的一种以上。
20.根据权利要求1所述的方法,其中,所述第一次扩增进行约3至11天。
21.根据权利要求20所述的方法,所述方法还包括如下步骤:
(e)将从步骤(d)收获的TIL群转移至输液袋。
22.根据权利要求1所述的方法,其中,所述第二次扩增在约11天的时间内进行。
23.根据权利要求1所述的方法,其中,所述第一次扩增和所述第二次扩增各自单独地在约11天的时间内进行。
24.根据权利要求1所述的方法,其中,步骤(b)至(d)在约22天内进行。
25.根据权利要求21所述的方法,所述方法还包括如下步骤:
(f)冷冻保存来自步骤(e)的输液袋。
26.根据权利要求1所述的方法,其中,步骤(b)、(c)和(d)在封闭系统中进行。
CN202311292767.1A 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法 Pending CN117866899A (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201862614887P 2018-01-08 2018-01-08
US62/614,887 2018-01-08
US201862664034P 2018-04-27 2018-04-27
US62/664,034 2018-04-27
US201862669319P 2018-05-09 2018-05-09
US62/669,319 2018-05-09
US201862697921P 2018-07-13 2018-07-13
US62/697,921 2018-07-13
US201862734868P 2018-09-21 2018-09-21
US62/734,868 2018-09-21
US201862773715P 2018-11-30 2018-11-30
US62/773,715 2018-11-30
CN201980017442.8A CN111836887A (zh) 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法
PCT/US2019/012729 WO2019136456A1 (en) 2018-01-08 2019-01-08 Processes for generating til products enriched for tumor antigen-specific t-cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980017442.8A Division CN111836887A (zh) 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法

Publications (1)

Publication Number Publication Date
CN117866899A true CN117866899A (zh) 2024-04-12

Family

ID=65324542

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202311292767.1A Pending CN117866899A (zh) 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法
CN201980017442.8A Pending CN111836887A (zh) 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980017442.8A Pending CN111836887A (zh) 2018-01-08 2019-01-08 产生富含肿瘤抗原特异性t细胞的til产品的方法

Country Status (14)

Country Link
US (1) US20220204932A1 (zh)
EP (1) EP3737743A1 (zh)
JP (2) JP2021509586A (zh)
KR (1) KR20200119242A (zh)
CN (2) CN117866899A (zh)
AU (1) AU2019205823A1 (zh)
BR (1) BR112020013848A2 (zh)
CA (1) CA3087771A1 (zh)
IL (1) IL275724A (zh)
MA (1) MA51636A (zh)
MX (1) MX2020007046A (zh)
SG (1) SG11202006541UA (zh)
TW (1) TW201938177A (zh)
WO (1) WO2019136456A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201522097D0 (en) 2015-12-15 2016-01-27 Cellular Therapeutics Ltd Cells
GB201700621D0 (en) 2017-01-13 2017-03-01 Guest Ryan Dominic Method,device and kit for the aseptic isolation,enrichment and stabilsation of cells from mammalian solid tissue
AU2018234810B2 (en) 2017-03-15 2023-05-11 Pandion Operations, Inc. Targeted immunotolerance
SG11201909949XA (en) 2017-05-24 2019-11-28 Pandion Therapeutics Inc Targeted immunotolerance
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
US10174092B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
BR112020018658A2 (pt) 2018-03-15 2020-12-29 KSQ Therapeutics, Inc. Composições de regulação gênica e métodos para imu-noterapia aprimorada
TW202110885A (zh) 2019-05-20 2021-03-16 美商潘迪恩治療公司 靶向MAdCAM之免疫耐受性
JP2022546486A (ja) * 2019-08-29 2022-11-04 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 細胞凍結保存培地
EP4048295A1 (en) * 2019-10-25 2022-08-31 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
MX2022007598A (es) 2019-12-20 2022-09-23 Instil Bio Uk Ltd Dispositivos y métodos para el aislamiento de linfocitos infiltrantes de tumores y usos de los mismos.
EP4107187A1 (en) 2020-02-21 2022-12-28 Pandion Operations, Inc. Tissue targeted immunotolerance with a cd39 effector
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
EP4146793A1 (en) 2020-05-04 2023-03-15 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2022166947A1 (zh) * 2021-02-08 2022-08-11 苏州沙砾生物科技有限公司 肿瘤浸润淋巴细胞的制备方法及其用途
TW202305360A (zh) 2021-03-25 2023-02-01 美商艾歐凡斯生物治療公司 用於t細胞共培養效力測定及配合細胞療法產品使用的方法及組合物
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
CA3226111A1 (en) 2021-07-22 2023-01-26 Iovance Biotherapeutics, Inc. Method for cryopreservation of solid tumor fragments
KR20230072420A (ko) * 2021-11-17 2023-05-24 의료법인 성광의료재단 종양 침윤 림프구의 개선된 제조방법
WO2023143515A1 (zh) * 2022-01-29 2023-08-03 苏州沙砾生物科技有限公司 一种修饰的肿瘤浸润淋巴细胞及其用途
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
EP4289939A1 (en) * 2022-06-10 2023-12-13 Apeiron Biologics AG Population of transfected immune cells and method for their production
WO2024025878A2 (en) * 2022-07-25 2024-02-01 Memorial Sloan-Kettering Cancer Center Manufacturing processes for adoptive cell therapies
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
CN117025530B (zh) * 2023-10-10 2023-12-12 再少年(北京)生物科技有限公司 用肿瘤坏死因子受体超家族激动剂扩增肿瘤浸润淋巴细胞(til)的方法

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4766106A (en) 1985-06-26 1988-08-23 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
US5206344A (en) 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
US6362325B1 (en) 1988-11-07 2002-03-26 Advanced Research And Technology Institute, Inc. Murine 4-1BB gene
US6303121B1 (en) 1992-07-30 2001-10-16 Advanced Research And Technology Method of using human receptor protein 4-1BB
US4902502A (en) 1989-01-23 1990-02-20 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
US5089261A (en) 1989-01-23 1992-02-18 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
ZA902710B (en) 1989-05-22 1991-12-24 Univ Georgia Res Found Enzyme luminescence assay
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
AU7979491A (en) 1990-05-03 1991-11-27 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
DE69123979T2 (de) 1990-10-12 1997-04-30 Max Planck Gesellschaft Abgeänderte ribozyme
CA2146559A1 (en) 1992-10-23 1994-05-11 Melanie K. Spriggs Methods of preparing soluble, oligomeric proteins
GB9317380D0 (en) 1993-08-20 1993-10-06 Therexsys Ltd Transfection process
US5821332A (en) 1993-11-03 1998-10-13 The Board Of Trustees Of The Leland Stanford Junior University Receptor on the surface of activated CD4+ T-cells: ACT-4
US6989434B1 (en) 1994-02-11 2006-01-24 Invitrogen Corporation Reagents for intracellular delivery of macromolecules
US5691188A (en) 1994-02-14 1997-11-25 American Cyanamid Company Transformed yeast cells expressing heterologous G-protein coupled receptor
WO1996000295A1 (en) 1994-06-27 1996-01-04 The Johns Hopkins University Targeted gene delivery system
US5908635A (en) 1994-08-05 1999-06-01 The United States Of America As Represented By The Department Of Health And Human Services Method for the liposomal delivery of nucleic acids
US5484720A (en) 1994-09-08 1996-01-16 Genentech, Inc. Methods for calcium phosphate transfection
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
DK0766745T3 (da) 1995-04-08 2002-11-25 Lg Chemical Ltd Monoklonalt antistof, som er specifikt for humant 4-1BB samt cellelinje, som producerer dette
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
BR9712278A (pt) 1996-10-11 1999-08-31 Bristol Myers Squibb Co Processos e composições para imunomodulação
US6248878B1 (en) 1996-12-24 2001-06-19 Ribozyme Pharmaceuticals, Inc. Nucleoside analogs
US6489458B2 (en) 1997-03-11 2002-12-03 Regents Of The University Of Minnesota DNA-based transposon system for the introduction of nucleic acid into DNA of a cell
US6475994B2 (en) 1998-01-07 2002-11-05 Donald A. Tomalia Method and articles for transfection of genetic material
US6312700B1 (en) 1998-02-24 2001-11-06 Andrew D. Weinberg Method for enhancing an antigen specific immune response with OX-40L
EP1206532A2 (en) 1999-08-03 2002-05-22 Sequitur, Inc. Improvements in antisense oligomers, delivery of antisense oligomers, and identification of antisense oligomer targets
US7189705B2 (en) 2000-04-20 2007-03-13 The University Of British Columbia Methods of enhancing SPLP-mediated transfection using endosomal membrane destabilizers
US6627442B1 (en) 2000-08-31 2003-09-30 Virxsys Corporation Methods for stable transduction of cells with hiv-derived viral vectors
ATE537845T1 (de) 2000-10-31 2012-01-15 Pr Pharmaceuticals Inc Verfahren zur herstellung von formulierungen zur verbesserten abgabe von bioaktiven molekülen
CA2489004C (en) 2002-06-13 2013-01-08 Crucell Holland B.V. Agonistic binding molecules to the human ox40 receptor
AU2003259294A1 (en) 2002-07-30 2004-02-16 Bristol-Myers Squibb Company Humanized antibodies against human 4-1bb
US7923547B2 (en) 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9879266B2 (en) 2002-11-14 2018-01-30 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9839649B2 (en) 2002-11-14 2017-12-12 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US10011836B2 (en) 2002-11-14 2018-07-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
AU2003295600A1 (en) 2002-11-14 2004-06-15 Dharmacon, Inc. Functional and hyperfunctional sirna
US20040224405A1 (en) 2003-05-06 2004-11-11 Dharmacon Inc. siRNA induced systemic gene silencing in mammalian systems
CN103173354B (zh) 2003-10-08 2017-07-14 威尔森沃尔夫制造公司 利用透气性材料进行细胞培养的方法及装置
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
WO2006050172A2 (en) 2004-10-29 2006-05-11 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
DK1877090T3 (da) 2005-05-06 2014-04-14 Providence Health System Trimert ox40-immunoglobulin-fusionsprotein og fremgangsmåder til anvendelse heraf
SI2161336T1 (sl) 2005-05-09 2013-11-29 Ono Pharmaceutical Co., Ltd. Humana monoklonska protitelesa za programirano smrt 1 (PD-1) in postopki za zdravljenje raka ob uporabi anti-PD-1 protiteles samih ali v kombinaciji z drugimi imunoterapevtiki
BRPI0613361A2 (pt) 2005-07-01 2011-01-04 Medarex Inc anticorpo monoclonal humano isolado, composição, imunoconjugado, molécula biespecìfica, molécula de ácido nucleico isolada, vetor de expressão, célula hospedeira, camundongo transgênico, método para modular uma resposta imune num indivìduo, método para inibir crescimento de células tumorais num indivìduo, método para tratar uma doença infecciosa num indivìduo, método para aumentar uma resposta imune a um antìgeno num indivìduo, método para tratar ou prevenir uma doença inflamatória num indivìduo e método para preparar o anticorpo anti-pd-l1
KR100650384B1 (ko) * 2005-09-12 2006-11-30 전남대학교산학협력단 성숙자연살해세포의 분화용 조성물 및 그 제조 방법
TWI466269B (zh) 2006-07-14 2014-12-21 Semiconductor Energy Lab 非揮發性記憶體
EP1894940A1 (en) 2006-08-28 2008-03-05 Apogenix GmbH TNF superfamily fusion proteins
CA2663601C (en) 2006-09-22 2014-11-25 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
WO2008097926A2 (en) 2007-02-02 2008-08-14 Yale University Transient transfection with rna
US9249423B2 (en) 2007-02-02 2016-02-02 Yale University Method of de-differentiating and re-differentiating somatic cells using RNA
AU2008219666A1 (en) 2007-02-27 2008-09-04 Genentech, Inc. Antagonist OX40 antibodies and their use in the treatment of inflammatory and autoimmune diseases
EP2484691B1 (en) 2007-07-10 2016-01-13 Apogenix GmbH TNF superfamily collectin fusion proteins
US20090131360A1 (en) 2007-10-02 2009-05-21 Rxi Pharmaceuticals, Corp. Tripartite RNAi constructs
EP3239178A1 (en) 2007-12-14 2017-11-01 Bristol-Myers Squibb Company Binding molecules to the human ox40 receptor
EP2247729B1 (en) 2008-02-11 2019-05-01 Phio Pharmaceuticals Corp. Modified rnai polynucleotides and uses thereof
EP2310409A2 (en) 2008-06-17 2011-04-20 Apogenix GmbH Multimeric tnf receptors
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
EP3103875A1 (en) 2008-07-21 2016-12-14 Apogenix AG Tnfsf single chain molecules
US8796443B2 (en) 2008-09-22 2014-08-05 Rxi Pharmaceuticals Corporation Reduced size self-delivering RNAi compounds
US8475790B2 (en) 2008-10-06 2013-07-02 Bristol-Myers Squibb Company Combination of CD137 antibody and CTLA-4 antibody for the treatment of proliferative diseases
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
ES2593049T3 (es) 2009-01-09 2016-12-05 Apogenix Ag Proteínas de fusión que forman trímeros
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US8383099B2 (en) 2009-08-28 2013-02-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Adoptive cell therapy with young T cells
US20130115617A1 (en) 2009-12-08 2013-05-09 John R. Wilson Methods of cell culture for adoptive cell therapy
US8956860B2 (en) 2009-12-08 2015-02-17 Juan F. Vera Methods of cell culture for adoptive cell therapy
CN102762719A (zh) 2009-12-08 2012-10-31 威尔森沃尔夫制造公司 用于过继细胞疗法的细胞培养的改进方法
WO2011109698A1 (en) 2010-03-04 2011-09-09 Rxi Pharmaceuticals Corporation Formulations and methods for targeted delivery to phagocyte cells
KR102453078B1 (ko) 2010-03-24 2022-10-11 피오 파마슈티칼스 코프. 진피 및 섬유증성 적응증에서의 rna 간섭
EP2550000A4 (en) 2010-03-24 2014-03-26 Advirna Inc RNAI COMPOUNDS OF REDUCED SIZE ADMINISTERING
WO2011119871A1 (en) 2010-03-24 2011-09-29 Rxi Phrmaceuticals Corporation Rna interference in ocular indications
CN103221427B (zh) 2010-08-23 2016-08-24 德克萨斯州立大学董事会 抗ox40抗体和使用其的方法
RU2551963C2 (ru) 2010-09-09 2015-06-10 Пфайзер Инк. Молекулы, связывающиеся с 4-1вв
US8962804B2 (en) 2010-10-08 2015-02-24 City Of Hope Meditopes and meditope-binding antibodies and uses thereof
KR102472497B1 (ko) 2010-11-12 2022-11-29 넥타르 테라퓨틱스 Il-2 부분 및 중합체의 접합체
KR20230084328A (ko) * 2010-12-30 2023-06-12 셀룰래리티 인코포레이티드 세포의 동결보존 및 캡슐화 방법
WO2012129201A1 (en) 2011-03-22 2012-09-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
US20140234320A1 (en) 2011-06-20 2014-08-21 La Jolla Institute For Allergy And Immunology Modulators of 4-1bb and immune responses
KR101685262B1 (ko) 2011-08-23 2016-12-21 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 항-ox40 항체 및 이의 사용 방법
GB201116092D0 (en) 2011-09-16 2011-11-02 Bioceros B V Antibodies and uses thereof
KR20140060541A (ko) 2011-09-16 2014-05-20 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 암을 치료하기 위한 rna 조작된 t 세포
WO2013059343A1 (en) 2011-10-17 2013-04-25 Massachusetts Institute Of Technology Intracellular delivery
AU2013262485B2 (en) 2012-05-18 2017-12-14 Wilson Wolf Manufacturing, LLC Improved methods of cell culture for adoptive cell therapy
ES2962571T3 (es) 2012-05-25 2024-03-19 Cellectis Métodos para modificar células T alogénicas y resistentes a la inmunosupresión para inmunoterapia
CN110241086A (zh) 2012-06-11 2019-09-17 威尔逊沃夫制造公司 用于过继细胞疗法的改进的细胞培养方法
US8959044B2 (en) 2012-11-28 2015-02-17 Linkedin Corporation Recommender evaluation based on tokenized messages
CN105163744A (zh) 2013-03-01 2015-12-16 美国卫生和人力服务部 从肿瘤中产生肿瘤反应性t细胞的富集群的方法
SG10201708048XA (en) 2013-03-18 2017-10-30 Biocerox Prod Bv Humanized anti-cd134 (ox40) antibodies and uses thereof
EP2997133B1 (en) 2013-05-13 2023-08-23 Cellectis Methods for engineering highly active t cell for immunotherapy
CN110564612A (zh) 2013-06-24 2019-12-13 威尔逊沃夫制造公司 用于透气性细胞培养过程的封闭系统装置和方法
RU2744194C2 (ru) 2013-12-02 2021-03-03 Фио Фармасьютикалс Корп Иммунотерапия рака
BR112016013963A2 (pt) 2013-12-17 2017-10-10 Genentech Inc terapia de combinação compreendendo agonistas de ligação de ox40 e antagonistas de ligação do eixo de pd-1
TW201613635A (en) 2014-02-04 2016-04-16 Pfizer Combination of a PD-1 antagonist and a 4-1BB agonist for treating cancer
US20170044496A1 (en) * 2014-04-10 2017-02-16 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced Expansion of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy
UA123821C2 (uk) 2014-06-11 2021-06-09 Полібіосепт Гмбх Композиція для експансії лімфоцитів in vitro
US20170362556A1 (en) * 2014-12-09 2017-12-21 Ge Healthcare Bio-Sciences Corp. Systems and Methods for Aseptic Sampling
EP3230445B1 (en) 2014-12-12 2024-01-24 Tod M. Woolf Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides
US9944894B2 (en) * 2015-01-16 2018-04-17 General Electric Company Pluripotent stem cell expansion and passage using a rocking platform bioreactor
JP6892433B2 (ja) 2015-04-03 2021-06-23 ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts 十分に安定化された非対称sirna
EP4257675A3 (en) 2015-07-09 2024-01-03 Massachusetts Institute of Technology Delivery of materials to anucleate cells
CA2995110A1 (en) 2015-08-14 2017-02-23 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
WO2017041051A1 (en) 2015-09-04 2017-03-09 Sqz Biotechnologies Company Intracellular delivery of biomolecules to cells comprising a cell wall
CA3002744A1 (en) 2015-10-19 2017-04-27 Rxi Pharmaceuticals Corporation Reduced size self-delivering nucleic acid compounds targeting long non-coding rna
EP3397263B1 (en) * 2015-12-30 2023-09-20 Celgene Corporation T lymphocyte production methods and t lymphocytes produced thereby
JP7033535B2 (ja) 2016-01-12 2022-03-10 スクイーズ バイオテクノロジーズ カンパニー 複合体の細胞内送達
WO2017132669A1 (en) 2016-01-31 2017-08-03 University Of Massachusetts Branched oligonucleotides
CA3022319A1 (en) 2016-05-06 2017-11-09 Tod M. Woolf Improved methods for genome editing with and without programmable nucleases
EP3248627B1 (en) * 2016-05-27 2020-02-26 Fenwal, Inc. Systems and methods for priming a fluid circuit
CA3028813A1 (en) * 2016-06-24 2017-12-28 Mcmaster University Adoptive cell transfer and oncolytic virus combination therapy
TW201837168A (zh) * 2017-01-06 2018-10-16 美商艾歐凡斯生物治療公司 以腫瘤壞死因子受體超家族(tnfrsf)促效劑使腫瘤浸潤淋巴球(til)擴增及til與tnfrsf促效劑的治療組合

Also Published As

Publication number Publication date
MX2020007046A (es) 2020-09-07
TW201938177A (zh) 2019-10-01
JP2021509586A (ja) 2021-04-01
WO2019136456A1 (en) 2019-07-11
JP2024015137A (ja) 2024-02-01
IL275724A (en) 2020-08-31
MA51636A (fr) 2020-11-18
CA3087771A1 (en) 2019-07-11
AU2019205823A1 (en) 2020-07-30
KR20200119242A (ko) 2020-10-19
BR112020013848A2 (pt) 2020-12-01
CN111836887A (zh) 2020-10-27
US20220204932A1 (en) 2022-06-30
SG11202006541UA (en) 2020-08-28
EP3737743A1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
CN117866899A (zh) 产生富含肿瘤抗原特异性t细胞的til产品的方法
WO2019136459A1 (en) Processes for generating til products enriched for tumor antigen-specific t-cells
CN113272421A (zh) 用于产生肿瘤浸润性淋巴细胞的方法及其在免疫疗法中的用途
CN111601883A (zh) 由细针抽吸物和小活检物扩增til
CN112368003A (zh) 肿瘤浸润淋巴细胞的基因编辑及其在免疫治疗中的用途
CN113272420A (zh) 经改进的肿瘤反应性t细胞的选择
WO2021081378A1 (en) Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
CN112513254A (zh) 肿瘤浸润淋巴细胞的制备方法及其在免疫治疗中的用途
JP2024506557A (ja) 修飾された腫瘍浸潤リンパ球を作製する方法及び養子細胞療法におけるそれらの使用
CN112969469A (zh) 抗pd-1抗体难治性nsclc患者的治疗
US11713446B2 (en) Processes for generating TIL products enriched for tumor antigen-specific T-cells
JP2023554395A (ja) Ctla-4及びpd-1阻害剤と併用した腫瘍浸潤リンパ球療法による治療
JP2024519029A (ja) Pd-1遺伝子編集された腫瘍浸潤リンパ球及び免疫療法におけるその使用
JP2024510505A (ja) Cd39/cd69選択に関連した腫瘍浸潤リンパ球(til)拡張及びtilにおける遺伝子ノックアウトのための方法
JP2024501845A (ja) 腫瘍浸潤リンパ球の自動化された産生のためのデバイス及びプロセス
CN117279506A (zh) 肿瘤储存及细胞培养组合物
CN117940557A (zh) 制备经修饰的肿瘤浸润性淋巴细胞的方法及其在过继性细胞治疗中的应用
CN116829156A (zh) 使用肿瘤浸润性淋巴细胞疗法与ctla-4及pd-1抑制剂组合的治疗
CN117480246A (zh) 用于t细胞共培养物效力测定和配合细胞疗法产品使用的方法和组合物
WO2024098027A1 (en) Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd103 selection
WO2023147488A1 (en) Cytokine associated tumor infiltrating lymphocytes compositions and methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination