CN1163973C - 沟槽式双扩散金属氧化物半导体器件及其制造方法 - Google Patents

沟槽式双扩散金属氧化物半导体器件及其制造方法 Download PDF

Info

Publication number
CN1163973C
CN1163973C CNB008044759A CN00804475A CN1163973C CN 1163973 C CN1163973 C CN 1163973C CN B008044759 A CNB008044759 A CN B008044759A CN 00804475 A CN00804475 A CN 00804475A CN 1163973 C CN1163973 C CN 1163973C
Authority
CN
China
Prior art keywords
area
drain path
gate trench
path groove
conduction type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008044759A
Other languages
English (en)
Other versions
CN1342332A (zh
Inventor
理查德A・布兰查德
理查德A·布兰查德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1342332A publication Critical patent/CN1342332A/zh
Application granted granted Critical
Publication of CN1163973C publication Critical patent/CN1163973C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种半导体器件包括:一半导体材料的第一区,该区域被掺杂为第一导电类型。在第一区内形成的栅极沟槽具有侧面和底部。一漏极通道沟槽也形成在此第一区域之内,它也具有侧面和底部。一半导体材料的第二区域位于第一区域之内栅极沟槽底部和漏极通道沟槽底部之下并且延伸至所述沟槽底部上方。第二区域具有第一导电类型,并且比第一区域具有更高的掺杂浓度。在栅极沟槽内形成有栅电极。一栅极介电材料层将栅电极同第一和第二区域绝缘。第一导电类型的半导体材料的漏区位于漏极通道沟槽内,并且其掺杂浓度也高于第一区域。源区形成在第一半导体区域的表面上,第二导电类型的主体区域则形成在源区下方的第一区域内。

Description

沟槽式双扩散金属氧化物半导体器件及其制造方法
相关申请的声明
本申请要求于1999年3月1日提交的美国临时专利申请60/122,762的权益。
技术领域
本发明一般涉及MOSFET晶体管,尤其涉及具有沟槽结构的DMOS晶体管。
背景技术
DMOS(双扩散MOS)晶体管是MOSFET(金属半导体场效应晶体管)的一种类型,它利用与同一边缘对准的两个顺序扩散步骤来形成半导体区域。DMOS晶体管一般被用作功率晶体管,为功率集成电路应用提供高压大电流的器件。当需要降低正向电压降时,DMOS晶体管每单位面积可提供更大的电流。
一个典型的分立DMOS电路含有两个或更多的单个DMOS晶体管单元,这些单元被并行制造。单个DMOS晶体管单元共享一个公共漏极接触(衬底),它们的源极被金属全部短接在一起,其栅极则被多晶硅短接在一起。因此,即使分立DMOS电路是由较小晶体管的阵列组成,它也会表现得象一个单个的大晶体管。对一个分立的DMOS电路来说,当晶体管阵列被栅极导通时,希望使其单位面积的导电率达到最大。
一种特殊类型的DMOS晶体管被称为沟槽式DMOS晶体管,在这种晶体管中,沟道是竖直形成的,并且栅极被形成于在源极与漏极之间延伸的一个沟槽中。该沟槽的衬里是一薄氧化层,其中注入了多晶硅,它允许少量的收缩电流通过,因而可以提供较低的特定导通电阻值。在美国专利NO.5,072,266、5,541,425以及5,866,931中揭示出了多个沟槽式DMOS晶体管的例子。
图1的剖视图显示了现有技术的低电压沟槽式DMOS晶体管的一个例子。如图1所示,沟槽式DMOS晶体管10包含重掺杂衬底11,其上形成有一个外延层12,外延层12的掺杂比衬底11轻。金属层13形成于衬底11的底部,它与衬底11形成一个电接触14。正如本领域的普通技术人员所知道的那样,DMOS晶体管还含有源区16a,16b,16c和16d以及主体区15a和15b。外延区12作为漏极使用。在图1所示的例子中,衬底11被掺以浓度较高的N型杂质,外延层12则被浓度低的以N型杂质,源区16a,16b,16c和16d被掺杂以浓度的较高N型杂质,而主体区15a和15b则被掺杂以浓度的较高的P型杂质。经掺杂的多晶硅栅极18被形成于沟槽之内,形成于含有栅极18的沟槽的底部和侧面上的栅极介电层17将栅极18同其它区域电绝缘。该沟槽延伸入重掺杂衬底11以减少因载流子流至轻掺杂外延层12而产生的任何电阻,但这种结构也限制了晶体管的源极—漏极击穿电压。漏极14被连接至衬底11的背面,源极22与源区16和主体区15相连,而且栅极19则与填充沟槽的多晶硅18相连。
图2的剖视图显示了美国专利No.4,893,160所述的沟槽式DMOS器件的另一个例子。如图2所示,这种沟槽式DMOS器件30包括:金属衬底电极13,衬底11,外延区12,主体区15a和15b以及源区16a,16b,16c和16d。但是,作为与图1所示器件的比较,在图2所示的器件中,沿沟槽36的较低侧面和底部或者只沿沟槽36的底部增加了N+区39。由于这种结构允许载流子流经位于沟槽底部的重掺杂区域,从而减小了局部电阻,提高了器件的性能。
需要对沟槽式DMOS器件的进一步改进。例如,一种需要是使沟槽式DMOS器件既能提供较低的电阻又能被相对简单和低成本地制造出来。
发明内容
根据本发明,一种半导体器件包括:一半导体材料的第一区,该区域被第一导电类型的杂质掺杂到第一浓度。在第一区内形成的栅极沟槽具有侧面和底部。一漏极通道沟槽也形成在此第一区域之内,它也具有侧面和底部。一半导体材料的第二区域位于第一区域之内并邻近栅极沟槽的底部。第二区域延伸至一个邻近漏极通道沟槽底部的位置。第二区域具有第一导电类型,并且比第一区域具有更高的掺杂浓度。在栅极沟槽内形成有栅电极。一栅极介电材料层将栅电极同第一和第二区域绝缘。半导体材料的漏区位于漏极通道沟槽内。漏区也具有第一导电类型,其掺杂浓度也高于第一区域。源区形成在第一半导体区域的表面上,主体区域则形成在源区下方的第一区域内。主体区域具有与第一导电类型相反的第二种导电类型。其中,第二区域形成于栅极沟槽和漏极通道沟槽之下,并延伸到沟槽底部上方。
根据本发明,一种用于形成半导体器件的方法,包括以下步骤:提供一种包含半导体材料的第一区域的成品,用具有第一导电类型的杂质掺杂到第一种浓度,并使其作为漏区;在所述第一区域内蚀刻出栅极沟槽,所述栅极沟槽具有侧面和底部;在所述第一区域内蚀刻出漏极通道沟槽,所述漏极通道沟槽具有侧面和底部;在所述第一半导体区域的表面上形成源区;在所述源区下方的所述第一区域内形成主体区域,所述主体区域具有与所述第一导电类型相反的第二导电类型;淀积一层介电材料以衬在所述栅极沟槽内;在所述第一区域内形成半导体材料的第二区域,所述第二区域与所述栅极沟槽底部附近的所述栅极沟槽相邻,并延伸至与所述漏极通道沟槽底部附近的所述漏极通道沟槽相邻,所述第二区域具有所述第一导电类型,并且比所述第一区域具有更高的掺杂浓度;在所述栅极沟槽内淀积栅电极;以及在所述漏极通道沟槽内淀积半导体材料,所述半导体材料填充了具有所述第一导电类型的所述漏极通道沟槽,并且比所述第一区域具有更高的掺杂浓度;其中,所述形成半导体材料的第二区域的步骤包括将具有第一导电类型的掺杂材料扩散至栅极沟槽和漏极通道沟槽的步骤;所述扩散步骤必须足以保证扩散至栅极沟槽和漏极通道沟槽的材料的重叠,从而形成一具有第一导电类型的连续路径;所述第二区域形成于所述栅极沟槽和所述漏极通道沟槽之下,并延伸到所述沟槽底部上方。
附图说明
图1和图2是传统DMOS晶体管的剖视图。
图3是根据本发明所构成的DMOS晶体管的一个实施例的剖视图。
图4是根据本发明所构成的DMOS晶体管的另一个实施例。
图5a-5d显示了形成图4所示DMOS晶体管的一系列工艺步骤。
图6-图8显示出了根据本发明所构成的多个DMOS晶体管可以排列出的各种几何结构俯视图。
具体实施方式
图3显示了根据本发明所构成的一个沟槽式DMOS晶体管100的实施例。该结构一个显著的优点在于,因为它是自绝缘的,所以它不仅可用于分立的元件,还可用于集成电路之中。如图3所示,沟槽式DMOS晶体管100包括:衬底25,重掺杂埋入层11以及外延层12,外延层12的掺杂比埋入层11轻。尽管衬底25可以是N型或P型,但当将此结构引入到集成电路中时,最好选用P型衬底。DMOS晶体管还包括源区16a和16b以及主体区域15a和15b。正如本领域的普通技术人员所熟知的那样,主体区域一般含有一个较深的重掺杂区域以及一个较浅的轻掺杂区域。在图3所示的例子中,埋入层11被掺杂较高浓度的N型杂质,外延层12被掺杂较少的N型杂质,源区16a和16b被掺杂较高浓度的N型杂质,主体区域15a和15b则分别含有掺杂以较高浓度和较低浓度的P型杂质的部分。在沟槽内形成多晶硅栅极18,并且在含有栅极18的沟槽的底部和侧面上形成有一个栅极介电层17,将栅极18同其它区域电绝缘。上述沟槽延伸入重掺杂的埋入层11。与图1和图2所示的传统结构相比,在本器件中,漏极位于结构的上表面而不是背面。更具体地说,漏极通道区域26从器件的上表面延伸到重掺杂埋入层11。漏极通道区域26被重掺杂并且导电类型与埋入层11相同。漏极通道区域提供了一条从重掺杂埋入层11到漏极电极14的低电阻路径。最后,与图1和图2所示的器件相类似,源极电极22与源区16和主体区域15相连,而且栅极19则与填充沟槽的多晶硅18相连。栅电极由导电材料形成,导电材料从以下一组材料中选择:铝、铝合金、多晶硅、难熔金属、以及多晶硅和难熔金属的组合物。
图3所示器件结构的一个问题在于它的制造成本相对较高,因为它需要淀积一个外延层(即,外延埋入层11),而该层必然导致生产成本高。在本发明的另一个实施例中,如图4中的一个具有多个DMOS晶体管的集成电路所示,外延埋入层11被去掉,从而使该器件的制造得到大大的简化。如图4所示,沟槽式DMOS晶体管100含有一个其中形成有器件的衬底25。与前面所述的结构相类似,图4中所示的DMOS晶体管含有源区16a,16b,16c和16d以及主体区域15a和15b。在图4所示的例子中,衬底25被掺杂以N型杂质(当然也可使用P型杂质),源区16a,16b,16c和16d被掺杂以较高浓度的N型杂质,主体区域15a和15b则被掺杂以较高浓度的P型杂质。多晶硅栅电极18a,18b和18c分别形成于各栅极沟槽内。栅电极18a,18b和18c由形成在各栅极沟槽底部和侧面上的栅极介电层17a,17b和17c同其它区域电绝缘。限定了漏极通道区域26a,26b和26c的附加沟槽也从器件的上表面延伸。
通过沿栅极沟槽和漏极通道沟槽的低侧面和底部或者只沿栅极沟槽和漏极通道沟槽的底部增设重掺杂区域,就可以为漏极提供一条低电阻的路径。重掺杂区横向融合以形成一个从各个栅极沟槽的底部延伸至其相应的漏极通道沟槽的连续重掺杂区39。漏极通道沟槽26被重掺杂以与重掺杂区39具有相同导电类型的杂质。漏极通道沟槽26提供了一条从重掺杂区39至位于器件上表面的漏极电极14的低电阻路径。
正如将要参考图5进行详细说明的那样,重掺杂区39是通过在填充多晶硅之前将诸如磷之类的物质扩散入栅极沟槽和漏极通道沟槽而形成的。栅极沟槽和漏极通道沟槽应该相互足够近,以保证其中扩散的杂质交融在一起,从而在沟槽与漏极电极之间形成了连续的低电阻路径。
如前所述,图4所示结构的优点在于,它不需要诸如图3所示层11的重掺杂外延埋入层。
利用传统的工艺技术并对淀积和蚀刻步骤进行适当的修改,就可制造出如图3和图4所示的具有创造性的DMOS器件。例如,图4所示器件开始于在扩散步骤中形成主体15a和15b及源极区16a-16d以及在蚀刻步骤中形成栅极和漏极通道沟槽。例如,在前述的美国专利No.4,893,160中就可以找到与这些步骤相关的另外的细节。接下来,在沟槽中生长介电层17(如二氧化硅层),随后再利用诸如离子注入技术将扩散物质(如,磷)引入到沟槽的底部。然后,将扩散物质扩散,以形成连续的重掺杂区39。图5a显示出了在此制造阶段完成后的结构。
接下来,如图5b所示,栅极沟槽和漏极通道沟槽被填充多晶硅。正如本领域的普通技术人员所知道的那样,多晶硅会比相同深度的较宽沟槽更快速地填入一个给定深度的窄沟槽。因此,在如附图所示的本发明的一些实施例中,就可如愿地使漏极通道沟槽的宽度大于栅极沟槽的宽度。按照这种方式,如图5b所示,当栅极沟槽被填充多晶硅时,漏极通道沟槽将只有部分被填满。在任意一种情况下,当栅极沟槽被填充多晶硅后,漏极通道沟槽中的多晶硅将被各向同性蚀刻工艺去除。随后的蚀刻工艺将清除内衬于漏极通道沟槽的氧化硅层。接下来,如图5d所示,漏极通道沟槽被填充N型掺杂多晶硅以形成漏极通道区域26。
图6-图8的俯视图显示出了本发明的多种DMOS晶体管可以排列出的各种表面几何结构。排列的组件包括多个漏极通道单元40和晶体管单元50。漏极通道单元40代表了由漏极通道沟槽及由低电阻路径互连的相邻栅极沟槽限定的结构。晶体管单元50则代表了由传统DMOS晶体管结构(它包括:栅极沟槽,源区以及主体区域)所限定的结构。虽然可以使用这些或其它几何结构,但图6所示的八角形结构尤其具有优点,因为它允许由晶体管单元和漏极通道单元所占据的相对面积能够彼此独立地得到调整,这样就可使器件的导通电阻实现最小化。

Claims (15)

1.一种半导体器件,其特征在于包括:
一半导体材料的第一区域,该区域被第一导电类型的杂质掺杂到第一浓度;
形成于所述第一区域内的栅极沟槽,所述栅极沟槽具有侧面和底部;
形成于所述第一区域内的漏极通道沟槽,所述漏极通道沟槽具有侧面和底部;
位于所述第一区域内的半导体材料的第二区域,所述第二区域与所述栅极沟槽底部附近的栅极沟槽相邻,并延伸至与所述漏极通道沟槽底部附近的漏极通道沟槽相邻,所述第二区域具有所述第一导电类型,并且比所述第一区域具有更高的掺杂浓度;
形成在所述栅极沟槽之内的栅电极;
由栅极介电材料形成的层,它将所述栅电极同所述第一和第二区域绝缘;
位于所述漏极通道沟槽内的半导体材料构成的漏区,所述漏区具有所述第一导电类型,其掺杂浓度高于所述第一区域;
形成在所述第一半导体区域表面上的源区;以及
形成在所述源区下方的所述第一区域内的主体区域,所述主体区域具有与所述第一导电类型相反的第二导电类型;
其中,所述第二区域形成于所述栅极沟槽和所述漏极通道沟槽之下,并延伸到所述沟槽底部上方。
2.如权利要求1所述的半导体器件,其中所述栅电极由导电材料形成。
3.如权利要求2所述的半导体器件,其中所述导电材料从以下一组材料中选择:铝、铝合金、多晶硅、难熔金属、以及多晶硅和难熔金属的组合物。
4.如权利要求3所述的半导体器件,其中所述栅极介电层沿所述沟槽的侧面和底部设置。
5.如权利要求1所述的半导体器件,其中包括一半导体衬底,其上设置有所述区域。
6.如权利要求5所述的半导体器件,其中所述半导体衬底被掺杂成所述第一导电类型。
7.如权利要求1所述的半导体器件,其中所述第一区域是一半导体衬底。
8.如权利要求1所述的半导体器件,其中所述漏极通道沟槽的宽度大于所述栅极沟槽。
9.一种用于形成半导体器件的方法,包括以下步骤:
提供一种包含半导体材料的第一区域的成品,用具有第一导电类型的杂质掺杂到第一种浓度,并使其作为漏区;
在所述第一区域内蚀刻出栅极沟槽,所述栅极沟槽具有侧面和底部;
在所述第一区域内蚀刻出漏极通道沟槽,所述漏极通道沟槽具有侧面和底部;
在所述第一半导体区域的表面上形成源区;
在所述源区下方的所述第一区域内形成主体区域,所述主体区域具有与所述第一导电类型相反的第二导电类型;
淀积一层介电材料以衬在所述栅极沟槽内;
在所述第一区域内形成半导体材料的第二区域,所述第二区域与所述栅极沟槽底部附近的所述栅极沟槽相邻,并延伸至与所述漏极通道沟槽底部附近的所述漏极通道沟槽相邻,所述第二区域具有所述第一导电类型,并且比所述第一区域具有更高的掺杂浓度;
在所述栅极沟槽内淀积栅电极;以及
在所述漏极通道沟槽内淀积半导体材料,所述半导体材料填充了具有所述第一导电类型的所述漏极通道沟槽,并且比所述第一区域具有更高的掺杂浓度;
其中,所述形成半导体材料的第二区域的步骤包括将具有第一导电类型的掺杂材料扩散至栅极沟槽和漏极通道沟槽的步骤;所述扩散步骤必须足以保证扩散至栅极沟槽和漏极通道沟槽的材料的重叠,从而形成一具有第一导电类型的连续路径;所述第二区域形成于所述栅极沟槽和所述漏极通道沟槽之下,并延伸到所述沟槽底部上方。
10.如权利要求9所述的方法,其中所述栅电极由半导体材料形成。
11.如权利要求10所述的方法,其中所述导电材料从以下一组材料中选择:铝、铝合金、多晶硅、难熔金属、以及多晶硅和难熔金属的组合物。
12.如权利要求9所述的方法,其中所述栅极介电层沿所述沟槽的侧面和底部设置。
13.如权利要求9所述的方法,其中所述成品包括一其上置有所述第一区域的半导体衬底。
14.如权利要求13所述的方法,其中所述半导体衬底被掺杂成所述第一导电类型。
15.如权利要求9所述的方法,其中所述漏极通道沟槽的宽度大于所述栅极沟槽的宽度。
CNB008044759A 1999-03-01 2000-03-01 沟槽式双扩散金属氧化物半导体器件及其制造方法 Expired - Fee Related CN1163973C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12276299P 1999-03-01 1999-03-01
US60/122,762 1999-03-01
US09/516,285 US6472709B1 (en) 1999-03-01 2000-03-01 Trench DMOS transistor structure having a low resistance path to a drain contact located on an upper surface
US09/516,285 2000-03-01

Publications (2)

Publication Number Publication Date
CN1342332A CN1342332A (zh) 2002-03-27
CN1163973C true CN1163973C (zh) 2004-08-25

Family

ID=26820865

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008044759A Expired - Fee Related CN1163973C (zh) 1999-03-01 2000-03-01 沟槽式双扩散金属氧化物半导体器件及其制造方法

Country Status (7)

Country Link
US (2) US6472709B1 (zh)
EP (1) EP1166363B1 (zh)
JP (1) JP4860821B2 (zh)
KR (1) KR100750275B1 (zh)
CN (1) CN1163973C (zh)
AU (1) AU3716000A (zh)
WO (1) WO2000052760A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812526B2 (en) * 2000-03-01 2004-11-02 General Semiconductor, Inc. Trench DMOS transistor structure having a low resistance path to a drain contact located on an upper surface
JP2002026311A (ja) * 2000-07-04 2002-01-25 Miyazaki Oki Electric Co Ltd Soi型mos素子およびその製造方法
JP2002110978A (ja) * 2000-10-02 2002-04-12 Toshiba Corp 電力用半導体素子
KR100386674B1 (ko) 2000-11-27 2003-06-02 이진구 파이형 구조의 게이트를 갖는 트랜지스터 및 그의 제조 방법
JP2003007843A (ja) * 2001-06-20 2003-01-10 Toshiba Corp 半導体装置
US6800899B2 (en) * 2001-08-30 2004-10-05 Micron Technology, Inc. Vertical transistors, electrical devices containing a vertical transistor, and computer systems containing a vertical transistor
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
US6858500B2 (en) 2002-01-16 2005-02-22 Fuji Electric Co., Ltd. Semiconductor device and its manufacturing method
US20030151092A1 (en) * 2002-02-11 2003-08-14 Feng-Tso Chien Power mosfet device with reduced snap-back and being capable of increasing avalanche-breakdown current endurance, and method of manafacturing the same
DE10231966A1 (de) 2002-07-15 2004-02-12 Infineon Technologies Ag Feldeffekttransistor, zugehörige Verwendung und zugehöriges Herstellungsverfahren
KR100442881B1 (ko) * 2002-07-24 2004-08-02 삼성전자주식회사 고전압 종형 디모스 트랜지스터 및 그 제조방법
US6855985B2 (en) * 2002-09-29 2005-02-15 Advanced Analogic Technologies, Inc. Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
JP4961658B2 (ja) * 2003-02-17 2012-06-27 富士電機株式会社 双方向素子および半導体装置
US6815714B1 (en) * 2003-02-20 2004-11-09 National Semiconductor Corporation Conductive structure in a semiconductor material
US6812486B1 (en) 2003-02-20 2004-11-02 National Semiconductor Corporation Conductive structure and method of forming the structure
DE10326523A1 (de) * 2003-06-12 2005-01-13 Infineon Technologies Ag Feldeffekttransistor, insbesondere doppelt diffundierter Feldeffekttransistor, sowie Herstellungsverfahren
GB0327791D0 (en) * 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench insulated gate field effect transistor
CN101567373B (zh) 2004-02-16 2011-04-13 富士电机系统株式会社 双方向元件及其制造方法
KR100526891B1 (ko) * 2004-02-25 2005-11-09 삼성전자주식회사 반도체 소자에서의 버티컬 트랜지스터 구조 및 그에 따른형성방법
JP4997694B2 (ja) * 2004-10-07 2012-08-08 富士電機株式会社 半導体装置およびその製造方法
DE102004052610B4 (de) * 2004-10-29 2020-06-18 Infineon Technologies Ag Leistungstransistor mit einem Halbleitervolumen
US7868394B2 (en) * 2005-08-09 2011-01-11 United Microelectronics Corp. Metal-oxide-semiconductor transistor and method of manufacturing the same
JP4817827B2 (ja) * 2005-12-09 2011-11-16 株式会社東芝 半導体装置
WO2008066999A2 (en) * 2006-09-08 2008-06-05 Blanchard Richard A Devices, methods, and systems with mos-gated trench-to-trench lateral current flow
KR100861213B1 (ko) * 2007-04-17 2008-09-30 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
JP5159365B2 (ja) * 2008-02-26 2013-03-06 セイコーインスツル株式会社 半導体装置およびその製造方法
US7781832B2 (en) * 2008-05-28 2010-08-24 Ptek Technology Co., Ltd. Trench-type power MOS transistor and integrated circuit utilizing the same
US20090309155A1 (en) * 2008-06-12 2009-12-17 Mkhitarian Aram H Vertical transistor with integrated isolation
CN102263020A (zh) * 2010-05-25 2011-11-30 科轩微电子股份有限公司 低栅极阻抗的功率半导体结构的制造方法
JP2012069824A (ja) * 2010-09-24 2012-04-05 Seiko Instruments Inc 半導体装置および半導体装置の製造方法
US8823087B2 (en) * 2012-03-15 2014-09-02 Infineon Technologies Austria Ag Semiconductor device including auxiliary structure and methods for manufacturing a semiconductor device
US8878287B1 (en) * 2012-04-12 2014-11-04 Micrel, Inc. Split slot FET with embedded drain
US8896060B2 (en) 2012-06-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Trench power MOSFET
US8969955B2 (en) 2012-06-01 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFET and methods for forming the same
US9136368B2 (en) * 2013-10-03 2015-09-15 Texas Instruments Incorporated Trench gate trench field plate semi-vertical semi-lateral MOSFET
CN105405880B (zh) * 2014-08-08 2019-05-07 瑞昱半导体股份有限公司 半导体元件及多栅极场效应晶体管
US10298184B2 (en) * 2016-03-16 2019-05-21 Cirrus Logic, Inc. Dual device semiconductor structures with shared drain
JP2019057534A (ja) 2017-09-19 2019-04-11 株式会社東芝 半導体装置及び制御システム
CN110400802A (zh) * 2019-08-22 2019-11-01 无锡沃达科半导体技术有限公司 新型共漏双mosfet结构及其形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124764A (en) * 1986-10-21 1992-06-23 Texas Instruments Incorporated Symmetric vertical MOS transistor with improved high voltage operation
US4893160A (en) 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
MY107475A (en) * 1990-05-31 1995-12-30 Canon Kk Semiconductor device and method for producing the same.
JPH04264776A (ja) * 1991-02-19 1992-09-21 Toshiba Corp 半導体装置
IT1254799B (it) * 1992-02-18 1995-10-11 St Microelectronics Srl Transistore vdmos con migliorate caratteristiche di tenuta di tensione.
JPH05275464A (ja) * 1992-03-27 1993-10-22 Hitachi Ltd 化合物半導体集積回路装置の製造方法
US5640034A (en) * 1992-05-18 1997-06-17 Texas Instruments Incorporated Top-drain trench based resurf DMOS transistor structure
JPH06268173A (ja) 1993-03-15 1994-09-22 Toshiba Corp 半導体記憶装置
JPH07326742A (ja) * 1994-05-30 1995-12-12 Toshiba Corp 半導体装置およびその製造方法
JP3395473B2 (ja) * 1994-10-25 2003-04-14 富士電機株式会社 横型トレンチmisfetおよびその製造方法
JP3303601B2 (ja) * 1995-05-19 2002-07-22 日産自動車株式会社 溝型半導体装置
KR0152640B1 (ko) * 1995-09-30 1998-10-01 김광호 반도체장치 및 그의 제조방법
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
US6124612A (en) * 1998-01-15 2000-09-26 Siemens Aktiengesellschaft FET with source-substrate connection and method for producing the FET
JP3641547B2 (ja) * 1998-03-25 2005-04-20 株式会社豊田中央研究所 横型mos素子を含む半導体装置

Also Published As

Publication number Publication date
EP1166363A4 (en) 2005-10-19
US20010028085A1 (en) 2001-10-11
US6472709B1 (en) 2002-10-29
KR20020000775A (ko) 2002-01-05
KR100750275B1 (ko) 2007-08-20
WO2000052760A1 (en) 2000-09-08
JP4860821B2 (ja) 2012-01-25
CN1342332A (zh) 2002-03-27
EP1166363B1 (en) 2011-06-29
EP1166363A1 (en) 2002-01-02
JP2003536241A (ja) 2003-12-02
AU3716000A (en) 2000-09-21
US6432775B2 (en) 2002-08-13

Similar Documents

Publication Publication Date Title
CN1163973C (zh) 沟槽式双扩散金属氧化物半导体器件及其制造方法
CN101800243B (zh) 双栅极结构沟槽型dmos晶体管制造方法
US6228719B1 (en) MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US7084034B2 (en) High voltage MOS-gated power device and related manufacturing process
CN100565932C (zh) 带有均匀掺杂沟道的低压高密度沟槽栅极功率器件及其边缘终止技术
CN100338778C (zh) 场效应晶体管及其制造方法
EP0654173B1 (en) High density power device structure and fabrication process
CN1103206A (zh) 带有含漏扩展区的most的高压半导体器件
CN100342544C (zh) 含有掺杂柱的高压功率mosfet
US7821063B2 (en) Semiconductor device having enhanced performance and method
EP0720235A2 (en) Trench MOSFET with heavily doped delta-layer to provide low on-resistance
CN1653619A (zh) 沟槽dmos晶体管结构
CN1695251A (zh) 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法
US20010012663A1 (en) Single feature size mos technology power device
KR20030064270A (ko) 고속 트렌치 dmos
CN1610964A (zh) 用于制造具有包括用快速扩散形成的掺杂柱体的电压维持区的高压功率mosfet的方法
CN1552101B (zh) 具有轻掺杂源结构的凹槽dmos晶体管
CN101997030B (zh) 具有浅沟槽结构的沟槽mosfet及其制造方法
TW201032278A (en) Trench device structure and fabrication
CN1088914C (zh) 制造金属氧化物半导体场效应晶体管的方法
WO2001086726A1 (en) A semiconductor device
CN1552105A (zh) 具有深植入结的功率mosfet
CN1890815A (zh) Ldmos晶体管
CN101589471B (zh) 半导体器件及形成半导体器件的方法
CN101228636B (zh) 功率半导体器件以及制造功率半导体器件的方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040825

Termination date: 20160301

CF01 Termination of patent right due to non-payment of annual fee