CN116018694A - 全固态电池的负极集流体和包括其的全固态电池的负极 - Google Patents

全固态电池的负极集流体和包括其的全固态电池的负极 Download PDF

Info

Publication number
CN116018694A
CN116018694A CN202180053136.7A CN202180053136A CN116018694A CN 116018694 A CN116018694 A CN 116018694A CN 202180053136 A CN202180053136 A CN 202180053136A CN 116018694 A CN116018694 A CN 116018694A
Authority
CN
China
Prior art keywords
metal
negative electrode
solid
carbon
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180053136.7A
Other languages
English (en)
Inventor
赵成柱
李廷弼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of CN116018694A publication Critical patent/CN116018694A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及金属‑碳复合颗粒。金属‑碳复合颗粒能够将金属颗粒均匀地引入到集流体的表面,并且可在由金属‑碳复合颗粒的涂层和导电金属之间进行锂的均匀的电沉积,从而可以在负极集流体的表面上形成均匀的锂金属镀膜。

Description

全固态电池的负极集流体和包括其的全固态电池的负极
技术领域
本申请要求于2020年9月14日在韩国提交的韩国专利申请No.10-2020-0117954的优先权。本公开涉及表现出高的锂金属电沉积效率的固态电池的负极的集流体以及包括该负极的集流体的固态电池的负极。
背景技术
为了解决使用液态电解液的二次电池的安全问题,迫切需要开发使用固态电解液的固态电池。
由于锂是最轻的金属并具有低还原电位(-3.04V与SHE)和高理论容量(3860mAh/g),因此它已被作为下一代负极材料进行了研究。在使用锂金属作为电极的锂二次电池的情况下,需要厚度小的电极以使电池的效率和能量密度最大化。然而,仅仅通过用于形成锂箔的常规物理按压工艺来形成具有预定水平的厚度或更小厚度的锂箔存在限制。此外,在制造固态电池时,已经通过仅使用集流体而不使用负极活性材料(层)来制造负极。另外,在充电期间锂离子被还原的同时,通过在负极集流体的表面上通过锂电沉积形成锂金属镀膜来操作电池。
通常,将诸如铜这样的导电金属用作负极集流体,并且已尝试通过对金属表面进行改性(涂覆等)来实施用于提高锂电沉积效率的方法。这种方法包括用诸如Ag这样的亲锂金属涂覆或者用诸如炭黑这样的碳质材料涂覆。另外,已尝试包含银和碳的混合物作为涂层材料。然而,就电阻或充电/放电效率而言,这不能提供高性能。因此,需要开发用于具有改进的电化学性质的固态电池的负极集流体或无活性材料的负极。
发明内容
技术问题
本公开被设计用于解决相关技术的问题,因此本公开旨在提供通过用金属-碳复合颗粒涂覆负极集流体的表面表现出高的锂电沉积效率的负极的集流体以及包括该负极的集流体的固态电池的负极。本公开还涉及提供用于制备金属-碳复合颗粒的方法。将容易理解的是,本公开的目的和优点可以通过所附权利要求书中示出的装置及其组合来实现。
技术方案
根据本公开的实施方式,提供了一种固态电池的负极集流体,所述负极集流体包括导电金属箔以及形成在所述金属箔的表面上并包括金属-碳复合颗粒的涂层,其中,所述金属-碳复合颗粒包括金属颗粒和碳颗粒,其中至少一个金属颗粒附着于至少一个碳颗粒,所述复合颗粒的粒径为20μm或更小,并且基于100重量份的碳,所述复合颗粒中金属的含量为50重量份或更少。
根据本公开的第二实施方式,提供了根据第一实施方式中定义的固态电池的负极集流体,其中,所述金属颗粒包括从由Ni、Cu、Ag、Au、Pt、Al、Zn和Bi组成的组中选择的至少一种。
根据本公开的第三实施方式,提供了根据第一或第二实施方式中定义的固态电池的负极集流体,其中,所述碳颗粒包括从天然石墨、人造石墨、硬碳、软碳、炭黑、乙炔黑、科琴黑、槽法炭黑、炉法炭黑、灯黑、热炭黑、碳纳米管、富勒烯、碳纤维和碳氟化合物中选择的至少一种。
根据本公开的第四实施方式,提供了一种固态电池的负极,所述负极包括根据第一实施方式至第三实施方式中任一实施方式定义的负极集流体并且不包括负极活性材料,其中,在电池操作期间,锂被电沉积到所述金属箔的表面和从所述金属箔的表面分离。
根据本公开的第五实施方式,提供了根据第四实施方式中定义的固态电池的负极,其中,锂被电沉积在所述金属箔和所述涂层之间。
根据本公开的第六实施方式,提供了根据第一实施方式至第五实施方式中任一实施方式定义的固态电池的负极集流体或负极,其中,所述金属颗粒和所述碳颗粒以化学方式、物理方式或这两种方式彼此附着。
根据本公开的第七实施方式,提供了一种包括根据第四或第五实施方式中定义的负极的固态电池。
根据本公开的第八实施方式,提供了一种用于制备复合颗粒的方法,该方法包括以下步骤:制备包含金属盐和碳质材料的反应溶液,以及以所述金属颗粒可以在所述反应溶液中的所述碳质材料的表面上生长的方式进行反应。
根据本公开的第九实施方式,提供了根据第八实施方式定义的用于制备复合颗粒的方法,其中,除了溶剂之外,所述反应溶液具有30重量%或更少的包括所述金属盐和所述碳质材料的固体含量。
根据本公开的第十实施方式,提供了根据第八或第九实施方式定义的用于制备复合颗粒的方法,其中,所述金属盐是金属氯化物、金属碘化物、金属氰化物、金属溴化物、金属硫化物、金属氢氧化物、金属亚磷酸盐和金属氯化物水合物中的至少一种。
根据本公开的第十一实施方式,提供了根据第八实施方式至第十实施方式中任一实施方式定义的用于制备复合颗粒的方法,其中,所述金属盐是从Ni、Cu、Ag、Au、Pt、Al、Zn和Bi中选择的至少一种金属的氯化物。
有益效果
根据本公开的金属-碳复合颗粒表现出允许金属颗粒被均匀地引入到集流体的表面。因此,可以在包含金属-碳复合颗粒的涂层和导电金属之间进行均匀的锂电沉积,并且可以在负极集流体的表面上形成均匀的锂金属镀膜。
另外,用于制备金属-碳复合颗粒的方法允许形成金属颗粒与具有细小大小的碳质材料的复合物。结果,当所得复合颗粒被引入到固态电池时,如山所述,锂可以均匀地电沉积在集流体的表面上。
附图说明
附图例示了本公开的优选实施方式,并与以上公开内容一起用于提供对本公开的技术特征的进一步理解,因此,本公开不被解释为限于附图。此外,可以出于更清楚描述的目的,夸大图中的某些构成要素的形状、大小、缩放或比例。
图1是例示了根据本公开的实施方式的锂如何电沉积到负极集流体以形成镀膜的示意图。
图2至图4分别例示了根据示例1-3获得的复合颗粒。
具体实施方式
下文中,将参考附图来详细地描述本公开的优选实施方式。在进行描述之前,应该理解,在说明书和所附权利要求中使用的术语不应该被理解为限于通用含义和字典含义,而是以使得发明人能够定义适于最佳说明的术语的原理为基础基于与本公开的技术方面对应的含义和概念来解释。因此,本文中提出的描述仅仅是用于只出于例示目的的优选示例,不旨在限制本公开的范围,所以应该理解,在不脱离本公开的范围的情况下,可以得到其它等同形式和修改形式。
在整个说明书中,表述“一个部件包括一个元件”并没有排除任何附加元件的存在,而是意味着该部件还可以包括其它元件。
如在本文中使用的,术语“大约”、“基本上”等在提出所述含义特有的可接受制备和材料误差时,用作与所述数值邻近的含义,并且用于以下目的:防止不负责的侵入者不当地使用包括为了帮助理解本公开而提供的准确或绝对数值的所述公开内容。
如在本文中使用的,表述“A和/或B”意指“A、B或它们二者”。
本公开涉及负极集流体和包括负极集流体的电化学装置的负极。电化学装置可以是使用固态电解液作为电解液材料的固态电池。另外,固态电池可以是锂离子二次电池。
根据本公开,负极集流体包括金属箔以及形成在金属箔的至少一个表面上并包括金属-碳复合颗粒的涂层。
根据本公开,负极集流体可以应用于没有涂覆电极活性材料的电池。换句话说,负极集流体在固态电池中用作无活性材料的负极,并且在电池充电期间锂被电沉积在金属箔的表面上,使得可以进行电化学反应。图1是根据本公开的实施方式的负极集流体和金属箔表面上的锂电沉积过程的示意图。参照图1,负极集流体包括金属箔以及形成在金属箔的表面上的涂层。在图1中,附图标记21表示复合颗粒的聚集。如图1中所示,涂层可以是具有孔的多孔层,并且锂离子在充电期间穿过涂层,到达金属箔的表面处并被电沉积以形成锂金属层22。本文中,术语“电沉积”可以是指沉积。
金属箔可以具有3μm至500μm的厚度。金属箔不受特别限制,只要它具有导电性同时在应用了根据本公开的集流体的电池中没有引起任何化学变化即可。负极集流体的特定示例包括铜、不锈钢、铝、镍、钛、铝-镉合金等。根据本公开的实施方式,可以在金属箔的表面上形成细微的表面不平整,以增加与电沉积到金属箔的涂层或锂金属镀膜的结合力。此外,根据本公开的实施方式,金属箔可以具有诸如膜、片材、箔、网、多孔体、泡沫或无纺布网体这样的各种形状。
根据本公开,涂层可以具有5μm至50μm的厚度,但不限于此。根据本公开的实施方式,基于涂层的100重量%,金属-碳复合颗粒的量可以是90重量%或更大。例如,基于涂层的100重量%,复合颗粒的量可以是以95重量%或更大,或97重量%或更大。
根据本公开的实施方式,在金属-碳复合颗粒中,碳颗粒和金属颗粒彼此附着,或者一种类型的颗粒被另一种类型的颗粒覆盖。根据本公开,术语“附着/涂覆”可以是指物理上和/或化学上彼此结合的碳颗粒和金属颗粒。
图2至图4是分别例示了根据示例1-3获得的复合颗粒的扫描电子显微镜(SEM)图像。参照图2至图4,金属-碳复合颗粒包括彼此附着的碳颗粒和金属颗粒。
根据本公开的实施方式,基于颗粒的最长直径,金属-碳复合颗粒可以具有20μm或更小的大小(直径)。在以上定义的范围内,复合颗粒的粒径可以为10μm或更小、5μm或更小、或1μm或更小。此外,复合颗粒可以包括多个碳颗粒。此外,复合颗粒可以包括多个金属颗粒。根据本公开的实施方式,可以通过使用激光衍射方法来确定粒径。
根据本公开的实施方式,碳颗粒可以包括天然石墨、人造石墨、硬碳、软碳、炭黑、乙炔黑、科琴黑、槽法炭黑、炉法炭黑、灯黑、热炭黑、碳纳米管、富勒烯、碳纤维和碳氟化合物。
根据本公开,金属颗粒可以是亲锂金属,并且其特定示例包括Ni、Cu、Ag、Au、Pt、Al、Zn、Bi等中的任一种或它们中的两种或更多种的组合。引入这种亲锂金属有助于在集流体表面上形成稳定且均匀的锂层。
此外,根据本公开的实施方式,基于100重量份的碳质材料,金属-碳复合颗粒中金属的含量可以为1至50重量份。
图1例示了根据本公开的实施方式的负极集流体和通过在负极集流体上的锂电沉积形成锂金属镀膜的机制。参照图1,在金属箔的表面上形成具有预定厚度的涂层,并且涂层包括具有以上提到的构成特征的金属-碳复合颗粒。根据本公开的实施方式,涂层可以具有通过复合颗粒的堆积形成的集成层结构,并具有多孔结构,该多孔结构具有源自复合颗粒之间的间隙体积的孔。孔可以在电池的充电/放电期间作为锂离子通道提供。因此,提供负极集流体来制造无电极活性材料状态下的电池,并且在电池激活步骤中的初始充电时从正极供应的锂离子穿过涂层并电沉积在金属箔的表面上,由此形成镀膜。因此,经历激活步骤的负极可以包括电沉积在其上的锂(Li)镀膜。电沉积在负极上的锂镀膜允许在锂二次电池的后续充电/放电循环期间锂离子的连续电沉积/释放,因此有助于负极的可逆容量。
根据本公开的实施方式,金属-碳复合颗粒可以如下地制备。
首先,金属盐和碳质材料被引入并分散在溶剂中,以制备反应溶液。溶剂可以包括诸如N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、丙酮或二甲基乙酰胺、或C3或低级醇这样的有机溶剂、水等。这种溶剂可以被单独使用或组合使用。然而,溶剂不限于以上提到的示例,并不受特别限制,只要其不影响诸如金属盐或碳质材料这样的成分的物理和/或化学性质即可。根据本公开的实施方式,金属盐可以被制备为溶解在水或醇中的溶液(第一溶液)。另外,碳质材料可以被制备为在有机溶剂中的分散体(第二溶液)。制备的第一溶液与第二溶液混合,以制备反应溶液。根据本公开的实施方式,除了溶剂之外,反应溶液可以具有控制为30重量%或更小、20重量%或更小、10重量%或更小、5重量%或更小、或3重量%或更小的固体含量。此外,考虑到复合颗粒的大小或复合颗粒中金属颗粒的含量,可以将反应溶液中金属的固体含量控制在合适的范围内。
金属盐作为要引入到复合颗粒的金属的盐提供,并且其特定示例包括金属氯化物、金属碘化物、金属氰化物、金属溴化物、金属硫化物、金属氢氧化物、金属亚磷酸盐和金属氯化物水合物中的至少一种。如以上提到的,金属是亲锂金属。根据本公开的实施方式,金属可以是银(Ag)。特别地,金属盐可以是银的氰化物,即,AgCN。
分散不限于任何特定的方法,并可以通过使用诸如调浆机这样的已知混合装置来实施。
接下来,将反应溶液保持在约25℃下或加热至更高温度,以诱导金属颗粒在碳质材料的表面上生长。通过利用金属离子的还原将金属引入到碳质材料的表面,然后以引入的金属作为种子反复还原金属离子来在碳质材料的表面上使金属颗粒生长。根据本公开的实施方式,当将银(Ag)引入到碳颗粒的表面时,可以使用用乙醇稀释的AgCN。根据本公开的用于制备金属-碳复合颗粒的方法的优点在于,可以精细地控制金属颗粒的大小。用于控制金属颗粒大小的方法可以包括用于控制金属盐的量的方法或在将碳质材料与金属盐混合时控制溶剂的量以控制反应速率的方法。然后,当金属颗粒生长到预定大小时,反应淬灭(quench),并且过滤产物,以去除溶液并获得金属-碳复合颗粒。如有必要,可以用水冲洗颗粒,以去除剩余的碳质材料。另外,在过滤并且用水冲洗产物之后,可以将其干燥,以最终获得金属-碳复合颗粒。
一旦如上所述获得了金属-碳复合颗粒,就可以将颗粒涂覆在诸如镍、铜或铝这样的金属箔上以用作集流体,从而获得负极集流体。用于制造负极集流体的方法不受特别限制,只要它可以在金属箔的表面上形成包含金属-碳复合颗粒的涂层达预定厚度即可。根据本公开的实施方式,可以如下地示例用于制造电流集流体的方法。首先,将结合剂树脂引入到诸如丙酮或NMP这样的合适的有机溶剂中,以制备结合剂溶液,并将复合颗粒引入到该溶液中并与其混合,以制备用于形成涂层的浆料。接下来,将浆料涂覆在金属箔上,之后进行干燥,以获得负极集流体。结合剂树脂可以包括诸如PVDF、PVDF-HFP、PVDF-TFE或PVDF-TrFE、丙烯酸结合剂等这样的氟化结合剂,但不限于此。除了有机溶剂之外,结合剂溶液可以被控制为3-10重量%的固体含量。此外,用于形成涂层的浆料中的复合颗粒的含量和结合剂树脂的含量可以被控制为90:10-99:1的重量比。可以通过使用从诸如刮刀涂覆、浸涂、凹面涂覆和狭缝涂覆这样的已知方法中适当地选择的至少一种方法来进行涂覆。
此外,本公开还提供了一种包括含所述负极集流体的负极、固态电解液膜和正极的二次电池。根据本公开的实施方式,当提供负极来制造二次电池时,负极可以仅包括根据本公开的负极集流体,而没有任何单独的负极活性材料层。此外,在初始充电/放电之后,通过锂离子的电沉积在负极上形成锂镀膜,并且该镀膜可以用作负极活性材料层。
根据本公开,固态电解液膜被插置在固态电池中的正极和负极之间,并用作离子传导通道,同时用于使正极与负极彼此电绝缘。固态电解液膜可以以包括固态电解液材料的片材的形式制备。如有必要,固态电解液膜出于其膜形状保持稳定性的目的还可以包括结合剂树脂。
固态电解液材料可以包括从硫化物类固态电解液材料、氧化物类固态电解液材料和聚合物固态电解液材料中选择的至少一种。
根据本公开,用于制造固态电解液膜的方法不受特别限制,只要它可以提供包括固态电解液材料的片材形式的固态电解液膜即可。例如,可以通过将固态电解液材料引入到溶剂中以制备用于形成电解液隔膜的浆料并将浆料涂覆到离型膜之后进行干燥来获得固态电解液膜。在后续步骤中,在将正极与固态电解液膜层压之前,从固态电解液膜去除离型膜。
正极可以包括集流体和形成在集流体表面上的正极活性材料层。活性材料层可以包括多种电极活性材料颗粒和固态电解液材料。根据本公开的实施方式,如有必要,正极还可以包括导电材料和结合剂树脂中的至少一种。另外,为了补充或改善电化学性质,正极还可以包括各种添加剂。根据本公开,用于制造正极的方法不受特别限制,只要它可以提供包括正极活性材料和固态电解液的片材形式的正极即可。例如,通过将正极活性材料和固态电解液材料引入到溶剂以制备用于形成正极的浆料并将浆料涂覆到集流体之后进行干燥来获得正极。
正极活性材料不受特别限制,只要它可以用作锂离子二次电池的正极活性材料即可。正极活性材料的非限制示例可以包括从以下中选择的任一种:诸如锂锰复合氧化物(LiMn2O4、LiMnO2等)、锂钴氧化物(LiCoO2)和锂镍氧化物(LiNiO2)、或被一种或更多种过渡金属取代的这些化合物的分层化合物;诸如由化学式Li1+xMn2-xO4(其中,x为0-0.33)、LiMnO3、LiMn2O3和LiMnO2表示的锂锰氧化物;锂铜氧化物(Li2CuO2);诸如LiV3O8、LiV3O4、V2O5或Cu2V2O7的钒氧化物;由化学式LiNi1-xMxO2(其中,M为Co、Mn、Al、Cu、Fe、Mg、B或Ga,并且x为0.01-0.3)表示的Ni位型锂镍氧化物;由化学式LiMn2-xMxO2(其中,M为Co、Ni、Fe、Cr、Zn或Ta,并且x为0.01-0.1)或Li2Mn3MO8(其中,M为Fe、Co、Ni、Cu或Zn)表示的锂锰复合氧化物;LiMn2O4,其中,Li被碱土金属离子部分取代;二硫化物;Fe2(MoO4)3;等等、或它们中的两种或更两种的混合物。根据本公开,正极可以包括聚合物固态电解液、氧化物类固态电解液和硫化物类固态电解液中的至少一种作为固态电解液材料。
根据本公开的实施方式,可以通过依次堆叠正极、固态电解液膜和负极并且进行压制使得电极和固态电解液膜可以实现紧密的层间结合来获得固态电池。
根据本公开,可以通过使用任何方法进行压制,只要该方法确保每个电极与固态电解液膜之间的结合以及合适的孔隙率即可。根据本公开的实施方式,压制可以通过使用从诸如辊压、压缩压制、冷等静压制(CIP)等这样的已知压制方法中适当地选择的方法来进行,并不限于任何特定方法。
根据本公开,基于包括电极活性材料层中的电极活性材料的混合物的总重量,导电材料的添加量通常为1-30重量%。这种导电材料不受特别限制,只要它不引起对应电池中的化学变化并具有导电性即可。导电材料的具体示例包括从以下中选择的任一种:诸如天然石墨或人造石墨这样的石墨;诸如炭黑、乙炔黑、科琴黑、槽法炭黑、炉法炭黑、灯黑或热炭黑这样的炭黑;诸如碳纤维或金属纤维这样的导电纤维;诸如氟化碳、铝或镍粉末这样的金属粉末;诸如锌氧化物或钛酸钾这样的导电晶须;诸如钛氧化物这样的导电金属氧化物;以及诸如聚亚苯基衍生物这样的导电材料、或它们中的两种或更多种的混合物。
根据本公开,结合剂树脂不受特别限制,只要它是有助于活性材料与导电材料之间的结合并结合到集流体的成分即可。结合剂树脂的具体示例包括聚偏二氟乙烯(PVDF)、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯烃单体(EPDM)、磺化EPDM、丁苯橡胶、氟橡胶、它们的各种共聚物等。通常,基于电极层的总重量,结合剂树脂的添加量可以为1-30重量%或1-10重量%。
此外,根据本公开,每个电极活性材料层还可以包括诸如氧化稳定添加剂、还原稳定添加剂、阻燃剂、热稳定剂、防雾剂等的至少一种添加剂。
根据本公开,硫化物类固态电解液包括硫(S),具有属于元素周期表中的I族或II族的金属离子的导电率,并可以包括Li-P-S玻璃或Li-P-S玻璃陶瓷。硫化物类固态电解液的非限制示例包括Li2S-P2S5、Li2S-LiI-P2S5、Li2S-LiI-Li2O-P2S5、Li2S-LiBr-P2S5、Li2S-Li2O-P2S5、Li2S-Li3PO4-P2S5、Li2S-P2S5-P2O5、Li2S-P2S5-SiS2、Li2S-P2S5-SnS、Li2S-P2S5-Al2S3、Li2S-GeS2、Li2S-GeS2-ZnS等中的至少一种。然而,本公开的范围不限于此。
另外,氧化物类固态电解液包含氧(O),并具有属于元素周期表中的I族或II族的金属离子的导电率。氧化物类固态电解液的非限制示例包括从LLTO化合物、Li6La2CaTa2O12、Li6La2ANb2O12(其中,A为Ca或Sr)、Li2Nd3TeSbO12、Li3BO2.5N0.5、Li9SiAlO8、LAGP化合物、LATP化合物、Li1+xTi2-xAlxSiy(PO4)3-y(其中,0≤x≤1,0≤y≤1)、LiAlxZr2-x(PO4)3(其中,0≤x≤1,0≤y≤1)、LiTixZr2-x(PO4)3(其中,0≤x≤1,0≤y≤1)、LISICON化合物、LIPON化合物、钙钛矿化合物、NASICON化合物和LLZO化合物中选择的至少一种。然而,本公开的范围不限于此。
参考固态电解液材料,在正极的情况下,可以使用具有高氧化稳定性的电解液材料作为固态电解液。另外,在负极的情况下,可以使用具有高还原稳定性的电解液材料作为固态电解液。然而,本公开的范围不限于此。由于固态电解液材料主要用于在每个电极中传输锂离子,因此可以使用具有诸如10-7s/cm或更高、或10-5s/cm或更高的高离子导电率的任何材料而没有特别限制。
另外,本公开提供了具有上述构成特性的二次电池。另外,本公开提供了包括该二次电池作为单元电芯的电池模块、包括该电池模块的电池组以及包括该电池组作为电源的装置。该装置的具体示例包括但不限于:由电动马达的电力驱动的电动工具;电动汽车(包括电动车辆(EV)、混合动力车辆(HEV)、插电式混合电动车辆(PHEV)等;电动二轮车(包括电动自行车(E-bike)和电动滑板车(E-scooter);电动高尔夫球车);电力存储系统;等等。
下文中,将参考示例来详细地说明本公开。然而,以下示例仅仅是出于例示性目的,并且本公开的范围不限于此。
1.示例
(1)金属-碳复合颗粒的制备
示例1
首先,将溶解在乙醇中的AgCN与分散在NMP中的碳质材料(超级C65)混合,以制备反应溶液。基于100重量份的碳质材料,反应溶液具有21重量%的固体含量,并且Ag的含量为33重量份,让反应溶液在室温下放置达预定时间,使得银颗粒可以在碳质材料颗粒的表面上生长。在反应完成之后,过滤反应溶液,以获得复合颗粒的粉末。当引入到反应的AgCN完全参与反应并且颗粒不再生长时,反应猝灭。图2是例示了从示例1获得的复合颗粒的扫描电子显微镜(SEM)图像。参照图2,示出了从附着于碳颗粒的棒状银颗粒形成复合颗粒。
示例2
首先,将溶解在乙醇中的AgCN与分散在NMP中的碳质材料(超级C65)混合,以制备反应溶液。基于100重量份的碳质材料,反应溶液具有1.1重量%的固体含量,并且Ag的含量为33重量%。让反应溶液在室温下放置达预定时间,使得银颗粒可以在碳质材料颗粒的表面上生长。在反应完成之后,过滤反应溶液,以获得复合颗粒的粉末。当引入到反应的AgCN完全参与反应并且颗粒不再生长时,反应猝灭。图3是例示了从示例2获得的复合颗粒的扫描电子显微镜(SEM)图像。参照图3,示出了从附着于碳颗粒的银颗粒形成复合颗粒。
示例3
首先,将溶解在乙醇中的AgCN与分散在NMP中的碳质材料(超级C65)混合,以制备反应溶液。基于100重量份的碳质材料,反应溶液具有1.0重量%的固体含量,并且Ag的含量为11重量%。让反应溶液在室温下放置达预定时间,使得银颗粒可以在碳质材料颗粒的表面上生长。在反应完成之后,过滤反应溶液,以获得复合颗粒的粉末。当引入到反应的AgCN完全参与反应并且颗粒不再生长时,反应猝灭。图4是例示了从示例3获得的复合颗粒的扫描电子显微镜(SEM)图像。参照图4,示出了从附着于碳颗粒的银颗粒形成复合颗粒。
在下表1中示出用于制备根据各示例的复合颗粒的成分的含量比。
[表1]
Figure BDA0004097241140000111
(2)集流体的制造
1)示例1-3
将聚偏二氟乙烯(PVDF)作为结合剂树脂引入到N-甲基吡咯烷酮(NMP)中,以制备结合剂溶液。将结合剂溶液控制为结合剂树脂的浓度为约6重量%。此外,将根据示例1-3中的每一个的复合颗粒引入到NMP,以获得分散体。通过使用调浆机将结合剂溶液与分散体混合,以制备用于形成涂层的浆料。然后,通过使用刮片以100μm的间隙将用于形成涂层的所得浆料涂覆到镍箔上,之后进行干燥,以获得具有厚度为10μm的涂层的负极集流体。在下表2中示出用于形成根据各示例的涂层的成分的含量比。
[表2]
Figure BDA0004097241140000112
2.比较例1和2
将聚偏二氟乙烯(PVDF)作为结合剂树脂引入到N-甲基吡咯烷酮(NMP)中,以制备结合剂溶液。将结合剂溶液控制为结合剂树脂的浓度为约6重量%。此外,将超级C65和Ag粉末(粒径:约50nm)引入到NMP,以获得分散体。通过使用调浆机将结合剂溶液与分散体混合,以制备用于形成涂层的浆料。然后,通过使用刮片以100μm的间隙将用于形成涂层的所得浆料涂覆到镍箔上,之后进行干燥,以获得具有厚度为10μm的涂层的负极集流体。在下表3中示出用于形成根据各比较例的涂层的成分的含量比。
[表3]
Figure BDA0004097241140000121
3.比较例3
将科琴黑(Lion Specialty Chemicals,D50=34nm)与Li2S-P2S5(D50=0.5μm)以2:1的重量比混合,将庚烷引入到其中,并且通过使用均质机(SMT,UH-50)将所得混合物混合3分钟,以获得用于形成涂层的浆料。然后,通过使用刮片以100μm的间隙将用于形成涂层的所得浆料涂覆到镍箔上,之后进行干燥,以获得具有厚度为10μm的涂层的负极集流体。
4.电池的制造
首先,将作为正极活性材料的LiNi0.8Co0.1Mn0.1O2、作为固态电解液的Li2S-P2S5、作为结合剂的丁腈橡胶(NBR)和作为导电材料的气相生长的碳纤维(VGCF)以75.5:22.1:1.5:1的重量比引入到苯甲醚,以制备用于形成正极活性材料层的浆料(固体含量70重量%)。将浆料涂覆到铝箔的一个表面(厚度:约10μm),并在60℃下干燥6小时,以制备正极。
此外,将作为固态电解液的Li2S-P2S5和作为结合剂的丁腈橡胶(NBR)以95:5的重量比引入到苯甲醚,以制备用于形成固态电解液膜的浆料(固体含量60重量%)。通过在Thinkky混合器中以2000rpm的速率混合1分钟来制备浆料。将浆料涂覆到由聚对苯二甲酸乙二醇酯制成的离型片(release sheet)的一个表面,并在室温下在环境压力下干燥一夜,然后去除离型片,以制备固态电解液膜。固态电解液膜的厚度为50μm。
然后,依次堆叠正极、固态电解液膜和每一个负极集流体(示例1-3和比较例1-3),并且在500MPa的压力下压制5分钟,以获得二次电池。
5.电化学性质的比较
使用从示例1-3和比较例1-3获得的电芯堆叠件中的每一个来获得固态电池,并且首先对固态电池进行充电/放电,并根据充电容量、放电容量和初始效率在充电容量、放电容量和初始效率方面确定固态电池。在恒流(CC)-恒压(CV)模式下将每个电池以0.05C充电至4.25V(0.01C截止),并将其以0.05C放电至3V。在65℃下进行充电/放电。此外,通过使用电化学阻抗谱(EIS)分析仪(VMP3,Biologic science instrument)在10mV的幅度和500kHz至20MHz的扫描范围的条件下测量AC阻抗。在下表4中示出结果。当将使用相同银含量的示例1与比较例1进行比较时,可以看出,包括根据本公开的负极集流体的电池表现出更高的电化学性质。另外,当将使用相同银含量的示例3与比较例2进行比较时,可以看出,根据示例3的电池表现出更高的电化学性质,包括更高的充电/放电效率。此外,比较例3表现出显著低的初始效率。
[表4]
Figure BDA0004097241140000131
[对主要元件的描述]
1:锂离子、4:电池内部部分(填充有电解液等)、21:聚集的复合颗粒、3:金属箔、22:锂金属层

Claims (11)

1.一种固态电池的负极集流体,所述负极集流体包括导电金属箔以及形成在所述金属箔的表面上并包括金属-碳复合颗粒的涂层,
其中,所述金属-碳复合颗粒包括金属颗粒和碳颗粒,且至少一个金属颗粒附着于至少一个碳颗粒,所述复合颗粒的粒径为20μm或更小,并且基于100重量份的碳,所述复合颗粒中金属的含量为50重量份或更少。
2.根据权利要求1所述的固态电池的负极集流体,其中,所述金属颗粒包括从由Ni、Cu、Ag、Au、Pt、Al、Zn和Bi组成的组中选择的至少一种。
3.根据权利要求1所述的固态电池的负极集流体,其中,所述碳颗粒包括从天然石墨、人造石墨、硬碳、软碳、炭黑、乙炔黑、科琴黑、槽法炭黑、炉法炭黑、灯黑、热炭黑、碳纳米管、富勒烯、碳纤维和碳氟化合物中选择的至少一种。
4.一种固态电池的负极,所述负极包括根据权利要求1所述的负极集流体并且不包括负极活性材料,其中,在电池操作期间,锂被电沉积到所述金属箔的表面和从所述金属箔的表面分离。
5.根据权利要求4所述的固态电池的负极,其中,锂被电沉积在所述金属箔和所述涂层之间。
6.根据权利要求1所述的固态电池的负极,其中,所述金属颗粒和所述碳颗粒以化学方式、物理方式或这两种方式彼此附着。
7.一种包括根据权利要求5所述的负极的固态电池。
8.一种用于制备复合颗粒的方法,该方法包括以下步骤:
制备包含金属盐和碳质材料的反应溶液;以及
以金属颗粒能在所述反应溶液中的所述碳质材料的表面上生长的方式进行反应。
9.根据权利要求8所述的用于制备复合颗粒的方法,其中,除了溶剂之外,所述反应溶液具有30重量%或更少的包括所述金属盐和所述碳质材料的固体含量。
10.根据权利要求8所述的用于制备复合颗粒的方法,其中,所述金属盐是金属氯化物、金属碘化物、金属氰化物、金属溴化物、金属硫化物、金属氢氧化物、金属亚磷酸盐和金属氯化物水合物中的至少一种。
11.根据权利要求8所述的用于制备复合颗粒的方法,其中,所述金属盐是从Ni、Cu、Ag、Au、Pt、Al、Zn和Bi中选择的至少一种金属的氯化物。
CN202180053136.7A 2020-09-14 2021-09-14 全固态电池的负极集流体和包括其的全固态电池的负极 Pending CN116018694A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20200117954 2020-09-14
KR10-2020-0117954 2020-09-14
PCT/KR2021/012534 WO2022055335A1 (ko) 2020-09-14 2021-09-14 전고체 전지용 음극 집전체 및 이를 포함하는 전고체 전지용 음극

Publications (1)

Publication Number Publication Date
CN116018694A true CN116018694A (zh) 2023-04-25

Family

ID=80632276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180053136.7A Pending CN116018694A (zh) 2020-09-14 2021-09-14 全固态电池的负极集流体和包括其的全固态电池的负极

Country Status (6)

Country Link
US (1) US20230268517A1 (zh)
EP (1) EP4199158A4 (zh)
JP (1) JP2023537635A (zh)
KR (1) KR20220035863A (zh)
CN (1) CN116018694A (zh)
WO (1) WO2022055335A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196996B (zh) * 2021-11-30 2023-09-15 淄博火炬能源有限责任公司 LiCu/石墨复合极片及离子液体电沉积制备LiCu/石墨复合极片的方法
WO2024205178A1 (ko) * 2023-03-26 2024-10-03 삼성에스디아이주식회사 바인더, 이를 포함하는 음극 및 리튬전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985326B2 (en) * 2011-02-11 2018-05-29 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
JP5782616B2 (ja) * 2011-02-23 2015-09-24 エス・イー・アイ株式会社 リチウム二次電池
JP2014038798A (ja) * 2012-08-20 2014-02-27 Ulvac Japan Ltd リチウムイオン二次電池の負極構造体及び負極構造体の製造方法
CN109390556A (zh) * 2017-08-11 2019-02-26 中能中科(天津)新能源科技有限公司 全固态锂电池负极、其制备方法和全固态锂电池
WO2020197296A1 (ko) 2019-03-28 2020-10-01 가톨릭대학교 산학협력단 플라젤린으로부터 유도된 tlr5 작용제를 유효성분으로 포함하는 이식편대숙주질환의 예방 또는 치료용 조성물
CN110492107A (zh) * 2019-08-26 2019-11-22 英诺激光科技股份有限公司 一种制备锂电池多孔铜箔集电体的方法

Also Published As

Publication number Publication date
EP4199158A1 (en) 2023-06-21
US20230268517A1 (en) 2023-08-24
WO2022055335A1 (ko) 2022-03-17
EP4199158A4 (en) 2024-07-17
KR20220035863A (ko) 2022-03-22
JP2023537635A (ja) 2023-09-04

Similar Documents

Publication Publication Date Title
KR101563775B1 (ko) 활물질 입자 및 그 이용
KR101440884B1 (ko) 표면 처리된 음극 활물질을 포함하는 음극 및 이를 채용한리튬 전지
JP5757148B2 (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
JP7439541B2 (ja) リチウムイオン二次電池用正極活物質、正極、及びリチウムイオン二次電池
US11462731B2 (en) Lithium metal oxide, negative electrode active material for lithium secondary battery comprising the same, and method of preparing the same
KR101334609B1 (ko) 음극 활물질 및 이를 이용한 이차전지
CN113994512B (zh) 锂二次电池及其制备方法
CN111867979A (zh) 制备锂二次电池用正极活性材料的方法、锂二次电池用正极活性材料以及包含其的锂二次电池用正极和锂二次电池
KR101498797B1 (ko) 나트륨 이차전지용 음극 재료 및 이를 포함하는 나트륨 이차전지
KR101334615B1 (ko) 음극 활물질 및 이를 이용한 이차전지
JP2013182712A (ja) 非水電解質二次電池とその製造方法
CN111684627B (zh) 锂二次电池用负极活性材料和包含其的锂二次电池用负极
CN114402464A (zh) 包含涂覆有底涂料的集流体的锂二次电池用负极及其制造方法
US10135061B2 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
EP4199158A1 (en) Negative current collector for all-solid-state battery and negative electrode for all-solid-state battery comprising same
JP2023514346A (ja) リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
CN113113610A (zh) 正极极片及其制备方法、锂离子电池
CN111512478B (zh) 非水电解质二次电池用正极活性物质的制造方法
KR101501804B1 (ko) 규소계 음극 활물질 및 이를 포함하는 이차전지
CN109964344B (zh) 电极和包含所述电极的锂二次电池
KR20230125000A (ko) 단층 카본 나노튜브와 ptfe를 복합한 결착제, 그리고그것을 사용한 전극 제작용 조성물 및 이차 전지
EP4071861A1 (en) Aqueous slurry for positive electrode, positive electrode composition, lithium-ion secondary battery including said positive electrode composition, and methods for manufacturing same
JP6135931B2 (ja) 蓄電装置の製造方法および蓄電装置
CN110945692A (zh) 非水系二次电池用电极活性物质及其制造方法
KR102624191B1 (ko) 리튬 이차 전지용 캐소드 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination