CN1153748C - 陶瓷及其制造方法 - Google Patents

陶瓷及其制造方法 Download PDF

Info

Publication number
CN1153748C
CN1153748C CNB951006258A CN95100625A CN1153748C CN 1153748 C CN1153748 C CN 1153748C CN B951006258 A CNB951006258 A CN B951006258A CN 95100625 A CN95100625 A CN 95100625A CN 1153748 C CN1153748 C CN 1153748C
Authority
CN
China
Prior art keywords
sample
particle
pottery
mixture
mineral compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB951006258A
Other languages
English (en)
Other versions
CN1109036A (zh
Inventor
犬硕
犬敦
原田真二
御堂勇治
东条正
富冈聪志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1109036A publication Critical patent/CN1109036A/zh
Application granted granted Critical
Publication of CN1153748C publication Critical patent/CN1153748C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种陶瓷及其制造方法。本发明提供了一种烧成后的尺寸变化率小、具有高精度的形状和尺寸、且可充分发挥无机功能性材料颗粒特性的陶瓷。所述陶瓷由无机功能性材料颗粒1和复合氧化物颗粒2组成。所述复合氧化物堵塞在无机功能性材料颗粒之间,焙烧时,和与其外周接触的所述无机功能性材料颗粒1起烧结反应,由氧化的金属颗粒和无机化合物形成。

Description

陶瓷及其制造方法
本发明涉及用于各种电子部件中的陶瓷及其制造方法。
以往,陶瓷按下述方法制造。首先,将陶瓷的原料粉未用有机粘结剂粘结成型,接着焙烧该模制品得到陶瓷。
然而,如上制得的陶瓷,在其上述的焙烧过程中模制品多少总会产生收缩,而很难得到具高精度的形状和尺寸的陶瓷。
因此,在上述焙烧之后,为使上述陶瓷具有所需形状和尺寸,就有必要对该陶瓷进行切削或研磨等加工,处理。
但是,因经焙烧的陶瓷非常坚硬,作上述切削或研磨加工就会使成本增加。
于是,有人公开了一种具高精度的形状和尺寸的陶瓷,该陶瓷基本上消除了焙烧中产生的收缩,而无须进行如上所述的切削加工处理(参照特开平1-317157号公报)。
上述陶瓷用反应烧结法制造。例如,混合绝缘性和热传导性材料的氧化铝粉末和金属钛粉末,接着,将该混合物置于金属模中成型,然后,从金属模中取出该模制品,在氮气氛中焙烧制得。该陶瓷的结构特征为,所述陶瓷系在焙烧过程中,将生成自上述金属钛粉末的氮化钛粘结上述氧化铝粉末而成的反应烧结体。
该现有的陶瓷因上述金属Ti粉末和氮气反应而产生膨胀,所以可将焙烧中产生的模制品的收缩抑止在极小程度;又因该陶瓷系用低电介质材料的氮化钛粘结的,故可获得介电系数较低的氧化铝质陶瓷。
然而,该根据已有技术得到的陶瓷,须使与金属微粒反应的反应性气体通过模制品中的气孔由外部供给至模制品内部,结果,为使在陶瓷中生成约15-20%的大量气孔,损坏了机械强度及无机功能性材料的颗粒所具有的特性,这是反应烧结法所特有的问题。
另外,还有这样的问题:由于是在氮气氛中进行焙烧,对氮浓度进行控制及焙烧温度升高,则从降低制造成本的观点来说,都是不利的。
通常人们知道,在陶瓷中,焙烧后的气孔率越低,则越能发挥陶瓷本来的功能。即,当陶瓷为由氧化铝构成的场合,其导热系数变好;当陶瓷为磁性材料时,其磁饱和性能改善;当陶瓷为电介质材料时,其介电常数增大。
不过,气孔率在15-20%尚不能说充分。现有技术中,正是利用这一点,使金属粉末在氮气氛中反应烧结,作成氮化金属,以制取导热系数大的导热体。但是,此时,从成本上来说,这种方法是不利的。
本发明解决了上述课题。本发明的目的在于提供一种高尺寸精度的陶瓷及其制造方法,该陶瓷可最大限度地发挥无机功能性材料的颗粒的特性,赋予反应生成物的功能;同时,可将烧成中的成型体(坯件)的收缩抑止在极小的范围,并将气孔率抑止在更小的程度。
为达到上述目的,本发明涉及一种陶瓷,该陶瓷由无机功能性材料的颗粒和复合氧化物颗粒构成。该复合氧化物颗粒系由至少二种以上的金属微粒组成的混合物或含有至少一种以上的金属微粒的无机化合物微粒的混合物在焙烧时产生膨胀的同时,发生化学反应而形成的。
又,本发明的陶瓷的制造方法由;
将无机功能性材料粉末与由至少二种以上的金属微粒组成的混合物,或者与含有至少一种以上的金属微粒组成的混合物,或者与含有至少一种以上的金属微粒的无机化合物微粒的混合粉末混合的第一工序;
将在上述第一工序所得的混合物成形的第二工序,及
焙烧在上述第二工序所得的成型体(坯件)的第三工序组成。
根据上述步骤所得到的陶瓷,其由焙烧产生的尺寸变化率小,具有高精度的形状和尺寸,且在具充分的机械强度和作为无机功能性材料颗粒的特性之外,还具有作为复合氧化物的各种特性。究其原因,即因为:在焙烧中,金属微粒与从外部供给的氧作化学反应而形成氧化物,该氧化物在逐渐填埋了成形体(坯件)中的空隙的同时,与无机化合物进行化学反应,边形成一种复合氧化物,边填埋外部氧通过的气孔,从而显著减少气孔率。
图1为显示本发明的一个实施例中的平板状陶瓷的内部结构的放大图,图2所示为本发明的一个实施例中的平板状陶瓷在焙烧前的内部结构放大图。
实施发明的最佳形态
实施例1
以下,参照附图,说明本发明的实施例。图1所示为作为本发明的一个实施例的平板状陶瓷的内部结构的放大图。该陶瓷由无机功能性材料颗粒1和位于该些无数的无机功能性材料颗粒1之间的复合氧化物颗粒2构成。如图2所示,由将含有至少一种以上的金属微粒的无机化合物微粒的混合物2a混合于无机功能性材料粉末1a时,烧成,如图1所示地,在无机功能性材料颗粒1之间形成复合氧化物颗粒2。图中,3表示气孔。
又,本发明的陶瓷的制造方法具有如下的三个工序。
为形成复合氧化物2,如图2所示,将形成复合氧化物所需的至少由二种以上的金属微粒组成的混合物,或含有至少一种以上的金属微粒的无机化合物微粒的混合物2a混合于无机功能性材料粉末1a中的第一工序;
使在该第一工序中所得的混合物成形的第二工序;及
使在该第二工序中所得的成型品在升温过程中发生氧化反应及化学反应,同时进行焙烧的第三工序。
另外,根据成型品的形状,也可在第二工序中,使用挤出成型、压缩成型等已知的一般成型方法,形成粒化粉。
在本实施例中,一个很大的特征在第一工序中,为制造无机功能性材料颗粒2,使至少由二种以上的金属微粒组成的混合物或使含有至少一种金属微粒的无机化合物微粒的混合物2a处于图2所示位置,并焙烧。
即,这样的话,金属微粒因第三工序中的焙烧而与外部雾围中的氧结合并膨胀,无机功能性材料颗粒1之间难以发生收缩。另外由于,该氧化的金属微粒在与无机化合物微粒作化学反应而膨胀的同时,形成复合氧化物,不仅在无机功能性材料颗粒1之间难以发生收缩,且堵塞氧气通过的气孔,使气孔率减至更小。
这里所用的金属微粒是可因氧化反应而导致体积膨胀的材料,特别理想的是Al,Si,Ti,Mn,Fe,Co,Ni,Cn,Mo,W,Cr,Zn。另外,这里所用的无机化合物微粒为与氧化的金属微粒起化学反应后,可形成复合氧化物而作体积膨胀的颗粒,特别理想的是LiO2,B2O3,MgO,MgCO3,Al2O3,SiO2,SiO,CaO,CaCO3,TiO,Ti2O3,TiO2,V2O3,V2O4,V2O5,MnO,MnO2,FeO,Fe2O3,Fe3O4,CoO,Co3O4,NiO,NiO2,CuO,Cu2O,ZnO,SrO,SrCO3,NbO,NbO2,Nb2O5,BaO,BaO2,Ta2O5,GeO2,Ga2O3,Y2O3,Ag2O。
由选择二种以上的上述金属微粒和上述无机化合物微粒,可使无机功能性材料具有复合氧化物的功能特性。例如,选择Al和Si生成复合氧化物,即可赋予无机功能性材料以Si2Al6O13富铝红柱石所具有的低介电常数的特性。
另外,也有在该复合氧化物与无机功能性材料粉末1a烧结的同时,如图1所示,无机功能性材料颗粒1之间发生烧结的情况。然而,如图2所示,因至少由二种以上的金属微粒组成的混合物,或含有至少一种以上的金属微粒的无机化合物微粒的混合物2a处在无机功能性材料颗粒1之间的大空隙中,就整体而言,无机功能性材料颗粒1和复合氧化物2发生烧结,由此而防止了收缩的产生。
另外,既便无机功能性材料粉末与至少由二种以上的金属微粒组成的混合物,或与含有至少一种以上的金属微粒的无机化合物微粒粉末的混合物互相起化学反应后,形成一部分多种的复合氧化物,也不会对本发明的陶瓷特性产生大影响。
下面,就具体的实施例作一说明。
本发明的实施例1中的陶瓷由作为无机功能性材料颗粒1的氧化铝颗粒,和作为复合氧化物的颗粒2、位于这些氧化铝颗粒间的Mg2Al4SiO10系假蓝宝石复合氧化物颗粒构成,该陶瓷系将Al颗粒和Si颗粒、MgO颗粒的混合粉末混合于氧化铝粉末中烧成,由此在氧化铝颗粒间形成Mg2Al4SiO10系假蓝宝石的复合氧化物粒2(试样1)。
又,本发明的实施例1中的陶瓷的制造方法,具有以下工序:
如图2所示,在作为无机功能性材料粉末1a的氧化铝粉末中混合为形成复合氧化物2所需的由至少二种以上的金属微粒组成的混合物或者含有至少一种以上的金属微粒的无机化合物微粒的混合物2a的第一工序,混合比例为在对每100重量份的氧化铝粉末中混合30重量份的作为混合物2a的Al颗粒和Si颗粒、MgO颗粒的混合粉末;
对在上述第一工序中所得的混合物加入丁缩醛树脂、甲乙酮及乙酸正丁酯后混匀,形成料浆,由刮涂法用该料浆制成平板状的生片的第二工序;
使该生片在加热条件下发生氧化反应及化学反应,并同时在电炉中、1600℃下对其进行焙烧的第三工序。
比较在上述实施例中将Si颗粒用SiO2取代所得的陶瓷(试样2),将MgO颗粒用MgCO3颗粒取代所得的陶瓷(试样3)及仅将Al颗粒用作混合于氧化铝粉末的无机化合物微粒而得到的陶瓷(比较样品1)的各特性,比较结果示于表1。
                            表1
尺寸变化率(%) 气  孔  率(%) 导热系数(W/K·m) 机械强度(kgf/cm2)
试样1  0.0  10  16  2600
试样2  0.0  11  16  2580
试样3  0.0  11  16  2540
比较样品1  0.0  16  10  1800
从表1可见,试样1、2、3及比较样品1的尺寸变化率皆极小。然而,在比较样品1中,因其中仅仅Al颗粒被氧化,未形成复合氧化物,所以该样品气孔率大,导热系数小。根据本发明,由形成Al颗粒的氧化物,再形成Mg2Al4SiO10系假蓝宝石复合氧化物,即可由此减小气孔率,得到如试样1、2、3那样的尺寸变化率极小、具足够的机械强度、又具优异的导热系数的陶瓷。
试样4-20号为根据本实施例1将各种无机化合物微粒的混合物加于氧化铝粉末而得到的陶瓷,其各特性示于表2。
                                表2
    无机化合物中掺合的粒子(重量%)     复合氧化物 尺寸变化率(%)   气孔率(%)     机械强度(kgf/cm2)
试样4  Al(77.7)   B2O3(22.3)     B4Al18O33     0.0     9     2520
试样5  Al(69.7)   B2O(32.1)     B4Al12O19     0.1     10     2400
试样6  Al(18.8)   Bi2O3(81.2)     Bi2Al4O9     0.0     10     2390
试样7  Al(65.8)   CaO(34.2)     CaAl4O7     0.0     8     2610
试样8  Al(54.9)   Cu(54.1)     CuAl2O4     0.1     11     2350
试样9  Al(47.8)   Co(52.2)     CoAl2O4     0.1     9     2420
试样10  Al(49.2)   Fe(50.8)     FeAl2O4     0.0     10     2350
试样11  Al(34.1)   GeO2(65.9)     GeAl2O5     0.1     10     2520
试样12  Al(90.0)   LiO2(10.0)     LiAl5O8     0.1     9     2440
试样13  Al(49.6)   Mn(50.4)     MnAl2O4     0.0     9     2300
试样14  Al(11.1)   Mo(88.9)     Al2(MoO4)     0.0     8     2310
试样15  Al(16.9)   Nb2O3(83.1)     NbAlO4     0.1     11     2320
试样16  Al(65.8)   Si(34.2)     Al2SiO5     0.0     9     2540
试样17  Al(34.3)   SrO(12.7)     Sr3Al2O6     0.0     8     2330
试样18  Al(10.9)   Ta2O5(89.1)     TaAlO4     0.0     12     2300
试样19  Al(53.0)   Ti(47.0     TiAl2O5     0.0     9     2450
试样20  Al(8.9)   W(91.1)     Al2(WO4)3     0.1     8     2320
由表2可见,根据本发明,尽管在各种材料系中,与上述实施例同样,其尺寸变化率极小,但仍能得到其气孔率较根据已往的反应烧结法所得的陶瓷(比较样品1)小的、具充分的机械强度的陶瓷。
实施例2
以下,就本发明的第二实施例作一说明。实施例2中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,将Al颗粒和MgO颗粒以57.3∶42.7的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(100重量份)氧化铝粉末以30重量份混合,1600℃下烧成,得陶瓷(试样21)。该试样的包括导热系数的各性能示于表3。
                        表3
尺寸变化率(%) 气孔率(%) 导热系数(W/m·k)
试样21  0.0  9  18
比较样品1  0.0  16  10
这里,比较样品1为仅将Al颗粒用作混合于氧化铝粉末的无机化合物微粒的混合物的陶瓷。
从表3可见,试样21和比较样品1的尺寸变化率虽皆极小,但根据本发明,仍可如试样21,由减小气孔率得到具优异的导热系数的氧化铝质的陶瓷。
实施例3
以下,就本发明的第3实施例作一说明。实施例3中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石(莫来石)复合氧化物,将Al颗粒和Si颗粒以74.2∶25.8的重量比混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样22)。其包括介电系数及热传导率导热系数的各性能示于表4。
                           表4
尺寸变化率(%) 气孔率(%) 介电系数 导热系数(W/m·K)
试样22 -0.1  8  7.5  15
比较样品1  0.0  16  9.8  10
比较样品2  0.0  17  10.2  10
比较样品3 -0.1  18  9.0  9
这里,比较样品2、比较样品3分别为仅将Si颗粒或Ti颗粒用作混合于氧化铝粉末中的无机化合物微粒的混合物的陶瓷。
从表4可见,试样22、比较样品1、比较样品2、比较样品3的尺寸变化率虽然都极小,但根据本发明,仍可如试样22那样,由减小气孔率形成低电介材料的Si2Al6O13系富铝红柱石复合氧化物,得到具优异的热传导率的氧化铝质的陶瓷,该陶瓷比形成了金属微粒单体的氧化物的比较样品来,其介电系数更低。
实施例4
以下,就本发明的第4实施例作一说明。实施例4中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Mg2Si5Al4O18系堇青石复合氧化物,将MgO颗粒和Al颗粒、Si颗粒以24.5∶32.8∶42.7的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(100重量份)氧化铝粉末以30重量份混合,1430℃下烧成得陶瓷(试样23)。该试样的包括热膨胀系数和热传导率的各性能值示于表5。
                             表5
尺寸变化率(%) 气孔率(%) 热膨胀系数(×10-6/K) 导热系数(W/m·K)
试样23  0.1  7  4.2  15
比较样品1  0.0  16  7.0  10
从表5可见,试样23和比较样品1的尺寸变化率虽皆极小,但根据本发明,仍可如试样23由减小气孔率,形成热膨胀系数较小的材料Mg2Si5Al4O18系堇青石复合氧化物,得到热膨胀较小的、具优异的热传导性能的氧化铝质陶瓷。
实施例5
以下就本发明的第5实施例作一说明。实施例5中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,将Al颗粒和MgO颗粒以57.3∶42.7的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(100重量份)Si2Al6O13系富铝红柱石复合氧化物粉末以30重量份混合,1600℃下烧成得陶瓷(试样24)。其包括热传导率的各性能值示于表6。
                  表6
尺寸变化率(%) 气孔率(%) 导热系数(W/m·K)
试样24  0.0  10  4
比较样品4  0.0  18  1
这里,比较样品4为仅将Al颗粒用作混合于Si2Al6O13系富铝红柱石复合氧化物粉末的无机化合物微粒的混合物的陶瓷。
从表6可见,试样24和比较样品4的尺寸变化率虽皆极小,但根据本发明,仍可如试样24,由减少气孔率得到具优异的热传导性能的富铝红柱石的陶瓷。
实施例6
以下,就本发明的第6实施例作一说明。实施例6中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,将Al颗粒和Si颗粒以74.2∶25.8的重量比混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系富铝红柱石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样25)。其包括介电系数及热传导率的各性能示于表7。
                           表7
尺寸变化率(%) 气孔率(%) 介电系数 导热系数(W/m·K)
试样25 -0.0  9  6.4  3
比较样品4  0.0 18  7.5  1
从表7可见,试样25和比较样品4的尺寸变化率虽皆极小,但根据本发明,仍可如试样25,由减小气孔率得到具较优异的热传导性能的、介电系数较小的富铝红柱石质的陶瓷。
实施例7
以下,就本发明的第7实施例作一说明。实施例7中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Mg2Si5Al4O18系尖晶石复合氧化物,将MgO颗粒、Al颗粒和Si颗粒以24.5∶32.8∶42.7的重量比混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系富铝红柱石复合氧化物粉末以40重量份混合,在1430℃下烧成,得到陶瓷(试样26)。其包括热膨胀系数和热传导率在内的各性能示于表8。
                          表8
尺寸变化率(%) 气孔率(%) 热膨胀系数(×10-6/K) 导热系数(W/m·K)
试样26  0.1  7  6.6  3
比较样品4  0.0  18  7.0  1
从表8可见,试样26、比较样品4的尺寸变化率虽皆极小,但根据本发明,仍可如试样26,由减小气孔率形成低热膨胀系数的材料Mg2Si5Al4O13系堇青石复合氧化物,得到热传导率较小的、热膨胀的富铝红柱石质的陶瓷。
实施例8
以下,就本发明的第8实施例作一说明。实施例8中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Mg2Si5Al4O18系堇青石复合氧化物,将MgO颗粒、Al颗粒及Si颗粒以24.5∶32.8∶42.7的质量比混合,混合后的粉状物用作无机化合物微粒的混合物,将该无机化合物微粒的混合物对(每100重量份)Mg2Si5Al4O18系堇青石复合氧化物粉末以30重量份混合,1430℃下烧成得陶瓷(试样27)。其包括介电系数及热膨胀系数的各性能值示于表9。
                                      表9
尺寸变化率(%) 气孔率(%) 介电系数 导热系数(W/m·K)
试样27  0.0  9  5.1  2
比较样品5  0.0  16  7.3  0.7
这里,比较样品5为仅将Al颗粒用作混合于Mg2Si5Al4O18系堇青石复合氧化物粉末的无机化合物微粒的混合物的陶瓷。
从表9可见,试样27和比较样品5的尺寸变化率虽皆极小,但根据本发明,仍不如试样27、由减小气孔率得到具优异的热传导性能的低介电系数的堇青石质的陶瓷。
实施例9
以下,就本发明的第4实施例作一说明。实施例4中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,和获得高精度的尺寸,将Al颗粒、MgO颗粒及Ta2O5颗粒按56.2∶41.9∶1.9的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝颗粒以30重量份混合,在1600℃下烧成,得陶瓷(试样28)。其包括尺寸离散度在内的各种特性示于表10。
                                 表10
尺寸变化率(%) 气孔率(%) 导热系数(W/m·K) 尺寸离散度(%)
试样28  0.0  8  18  0.4
比较样品1  0.0  16  10  0.7
从表10可见,虽然试样28和比较样品1的尺寸变化率皆极小,但根据本发明,仍可如试样26,由减小气孔率而提高传导性能,由添加Ta2O5减少尺寸离散性,获得具有高精度尺寸的氧化铝质的陶瓷。
实施例10
以下,就本发明的第10实施例作一说明。实施例10中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,将Al颗粒、Si颗粒及Ta2O5颗粒以72.6∶25.8∶2.1的重量比混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系富铝红柱石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样29)。其包括尺寸离散度在内的各性能值示于表11。
                             表11
尺寸变化率(%) 气孔率(%) 介电系数(%) 导热系数(W/m·K) 尺寸离散度(%)
试样29 -0.1  8  7.5  15  0.1
比较样品2  0.0  17  10.2  10  0.8
从表11可见,虽然试样29、比较样品2的尺寸变化率皆极小,但根据本发明,但可如试样29,由减小气孔率形成低电介材料的Si2Al6O13系富铝红柱石复合氧化物,将介电系数降至较小;又由添加Ta2O5颗粒,减小尺寸离散性,获得具高精度尺寸的氧化铝质陶瓷。
实施例11
以下,就本发明的第11实施例作一说明。实施例11中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,将Al颗粒、MgO颗粒及Ta2O5颗粒以56.2∶41.9∶1.9的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系富铝红柱石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样30)。其包括尺寸离散度在内的各性能值示于表12。
                           表12
 尺寸变化率(%)  气孔率(%)  导热系数(W/m·K)  尺寸离散度(%)
试样30  0.0  9  4  0.1
比较样品4  0.0  18  1  0.7
从表12可见,试样30和比较样品4的尺寸变化率虽皆极小,但根据本发明,仍可如试样30,由减小气孔率提高导热性能;由添加Ta2O5减低尺寸离散性,获得具有高精度尺寸的莫来石质陶瓷。
实施例12
以下,就本发明的第12实施例作一说明。实施例12中所用的陶瓷及其制造方法的组成因与实施例的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,将Al颗粒、Si颗粒及Ta2O5颗粒以72.6∶25.3∶2.1的重量后混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al16O13系富铝红柱石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样31)。其包括尺寸离散度在内的各性能值于于表13。
                              表13
尺寸变化率(%) 气孔率(%) 介电系数 导热系数(W/m·K) 尺寸离散度(%)
试样31 -0.1  9  6.4  3  0.3
比较样品4  0.0  18  7.2  1  0.8
从表13可见,试样31和比较样品4的尺寸变化率虽皆极小,但,根据本发明,仍可如试样31,由减小气孔率提高导热性,由添加Ta2O5减少尺寸离散性,获得如试样31的具有高精度尺寸的莫来石质陶瓷。
实施例13
以下就本发明的第13实施例作一说明。
实施例13中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为了形成MgAl2O4系尖晶石复化氧化物和获得高精度的尺寸,将Al颗粒、MgO颗粒及GeO2颗粒按56.7∶42.4∶0.9的重量比混合,混合后的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(100重量份)氧化铝颗粒以30重量份混合,1600℃下烧成得陶瓷(试样32)。其包括尺寸离散度及抗折强度在内的各性能值示于表14。又,将GeO2粒取代为Ga2O3、Y2O3、Ag2O(颗粒)后所得的陶瓷(试样33、34、35)的各性能值示于表14中。
                                    表14
  添加的无机化合物 尺寸变化率(%)   气孔率(%)   导热系数(W/m·K) 尺寸离散度(%)   机械强度(kg/cm2)
  试样32   GeO2    0.0     7     18     0.3     2790
  试样33   Ga2O3   -0.1     9     17     0.4     2750
  试样34   Y2O3    0.0     10     16     0.4     2740
  试样35   Ag2O    0.0     9     18     0.4     2780
比较样品1    -    0.0     16     10     0.7     1800
从表14可见,试样32、33、34、35及比较样品1的尺寸变化率虽然皆极小,但根据本发明,仍可如试样32、33、34及35那样,由减小气孔率提高导热性能,由添加GeO2、Ga2O3、Y2O3、Ag2O中的至少一种减小尺寸离散性,得到具有高精度尺寸,又具较大抗折强度的氧化铝质陶瓷。
实施例14
以下,就本发明的第14实施例作一说明。实施例14中所用的陶瓷及其制造方法的组成因与实施例1的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,和获得高精度的尺寸,将Al颗粒、Si颗粒及GeO2颗粒按73.1∶25.8∶1.1的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样36)。其包括尺寸离散度和抗折强度在内的各性能值示于表15。又,将GeO2颗粒取代为Ga2O3、Y2O3、Ag2O(颗粒),所得的陶瓷(试样37、38、39)的各性能值也示于表15。
                                    表15
  添加的无机化合物 尺寸变化率(%) 气孔率(%) 介电系数(%)     导热系数(W/m·k)   尺寸离散度(%)   机械强度(kg/cm2)
 试样36   GeO2   -0.1   7   7.9     15     0.3     2750
 试样37   Ga2O3   -0.1   8   7.4     15     0.4     2730
 试样38   Y2O3   -0.1   9   7.5     14     0.4     2710
 试样39   Ag2O   -0.1   8   7.2     15     0.4     2750
比较样品2    -    0.0   17   10.2     10     0.8     2360
从表15可见,试样36、37、38、39及比较样品2的尺寸变化率虽皆较小,但根据本发明,可由减小气孔率,形成作为低电介材料的Si2Al6O13系富铝红柱石复合氧化物,减小介电系数至相对较低;由添加GeO2、Ga2O3、Y2O3及Ag2O中的至少一种,减少尺寸离散性,得到具有高精度尺寸,又具有较大抗折强度的氧化铝质陶瓷。
实施例15
下面,就本发明的第15实施例作一说明。实施例15中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,和获得高精度的尺寸,将Al颗粒、MgO颗粒及GeO2颗粒按56.7∶42.4∶0.9的重量比混合,混合后得到的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系莫来石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样40)。其包括尺寸离散度和抗折强度在内的各性能值示于表16。又,将GeO2颗粒取代为Ga2O3、Y2O3、Ag2O(颗粒),所得的陶瓷(试样41、42、43)的各性能值也示于表16。
                             表16
  添加的无机化合物  尺寸变化率(%)   气孔率(%) 导热系数(W/m·k) 尺寸离散度(%)   机械强度(kg/cm2)
  试样40   GeO2     0.0     9     5     0.3     2710
  试样41   Ga2O3     0.0     9     5     0.4     2690
  试样42   Y2O3     0.0     10     5     0.4     2680
  试样43   Ag2O     0.0     9     5     0.4     2750
比较样品4    -     0.0     18     1     0.7     1750
从表16可见,试样40、41、42、43及比较样品4的尺寸变化率虽皆极小,但根据本发明,可由减小气孔率提高导热性能,由添加GeO2、Ga2O3、Y2O3及Ag2O中的至少一种,减小尺寸离散性,得到具有高精度尺寸、又具有较大抗折强度的莫来石质陶瓷。
实施例16
下面,就本发明的第16实施例作一说明。实施例16中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Si2Al6O3系富铝红柱石复合氧化物,和获得高精度的尺寸,将Al颗粒、Si颗粒及GeO2颗粒按73.1∶25.8∶1.1的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量Si2Al6O13系莫来石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样44)。其包括尺寸离散度和抗折强度在内的各性能值示于表17。又,将GeO2颗粒取代为Ga2O3、Y2O3、Ag2O(颗粒),所得的陶瓷(试样45、46、47)的各性能值也示于表17。
                                   表17
  添加的无机化合物 尺寸变化率(%) 气孔率(%) 介电系数(%)     导热系数(W/m·k)     尺寸离散度(%)   机械强度(kg/cm2)
  试样44   GeO2   -0.1   8   6.6     3     0.2     2720
  试样45   Ga2O3   -0.1   8   6.2     3     0.4     2640
  试样46   Y2O3   -0.1   9   6.8     3     0.4     2640
  试样47   Ag2O   -0.1   8   6.3     3     0.3     2700
比较样品4   -    0.0   18   7.2     1     0.8     2300
从表17可见,试样44、45、46、47及比较样品4的尺寸变化率虽皆极小,但根据本发明,可如试样44、45、46、47那样的,由减小气孔率提高导热性能;由添加GeO2、Ga2O3、Y2O3及Ag2O中的至少一种,减少尺寸离散性,得到具有高精度尺寸、又具有较大抗折强度的莫来石质陶瓷。
实施例17
下面,就本发明的第17实施例作一说明。实施例17中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,将Al颗粒、MgO颗粒及用于抑止在焙烧中发生的Al向表面勇出的Fe颗粒按56.6∶42.0∶1.5的重量比混合,混合后所得的粉状物用作无机物颗粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样48)。其包括表面光洁度在内的各性能值示于表18。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti(颗粒),所得的陶瓷(试样49-53)的各性能值也示于表18。
                                表18
  添加的金属微粒 尺寸变化率(%)   气孔率(%) 导热系数(W/m·k) 平均表面光洁度(μm)
  试样48     F     0.0     7     17     0.38
  试样49     Cr     -0.1     9     17     0.40
  试样50     Ni     0.0     10     16     0.37
  试样51     Cu     0.0     9     17     0.37
  试样52     Zn     0.1     10     16     0.36
  试样53     Ti     -0.1     9     17     0.36
比较样品1     -     0.0     16     10     0.59
从表18可见,试样48-53、及比较样品的尺寸变化率虽皆极小,但根据本发明,可如试样48-53那样,由减小气孔率获得较优异的导热性能;由添加Fe、Cr、Ni、Cu、Zn、Ti中的至少一种,可得到表面性能良好的、氧化铝质的陶瓷。
实施例18
下面,就本发明的第18实施例作一说明。实施例18中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,将Al颗粒、Si颗粒及用于抑止在焙烧中铝向表面勇出的Fe颗粒按72.8∶25.1∶2.1的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样54)。其包括表面光洁度在内的各性能值示于表19。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti后所得的陶瓷(试样55~59)的各性能也示于表19。
                                         表19
  添加的金属微粒   尺寸变化率(%)   气孔率(%)   介电系数 导热系数{W/m·k) 平均表面光洁度(μm)
  试料54     Fe     -0.1     8     7.5     15     0.39
  试样55     Cr     0.0     10     7.6     16     0.40
  试样56     Ni     0.1     11     7.4     15     0.40
  试样57     Cu     -0.1     8     7.5     15     0.38
  试样58     Zn     0.0     9     7.5     16     0.38
  试样59     Ti     0.0     8     7.5     16     0.37
比较样品1     -     0.0     16     9.8     10     0.59
从表19可见,试样54-59、比较样品2和比较样品3的尺寸变化虽皆极小,但根据本发明,可如试样54-59那样,由减小气孔率,形成作为低电介质材料的Si2Al6O3系富铝红柱石复合氧化物,比较样品来为更小,再由添加Fe、Cr、Cu、Zn、Ti中的至少一种以上,得到表面性能良好的氧化铝的陶瓷。
实施例19
下面,就本发明的第19实施例作一说明。实施例19中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Mg2Si5Al4O18系堇青石复合氧化物,将MgO颗粒、Al颗粒、Si颗粒及用于抑止在焙烧中抑止在焙烧中铝向表面勇出的Fe颗粒按24.3∶32.6∶42.4∶0.7的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)氧化铝粉末以30重量份混合,在1430℃下烧成,得陶瓷(试样60)。其包括表面光洁度在内的各性能值示于表20。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti的陶瓷(试样61~65)的各性能值也示于表20。
                           表20
  添加的金属微粒 尺寸变化率(%)   气孔率(%) 热膨胀系数(×10-6/K)  导热系数(W/m-k)    光洁度(μm)
  试样60     Fe     0.0     8     4.1     15     0.38
  试样61     Cr    -0.1     9     4.2     16     0.38
  试样62     Ni     0.1     9     4.2     15     0.36
  试样63     Cu     0.0     10     4.0     15     0.37
  试样64     Zn     0.0     9     4.2     15     0.39
  试样65     Ti    -0.1     8     4.1     16     0.36
比较样品1     -     0.0     16     7.0     10     0.59
从表20可见,试样60-65、比较样品1的尺寸变化北虽皆极小,但根据本发明,可如试样60-65那样,由减小气孔率形成作为低热膨胀系数材料的Mg2Si5Al4O18系堇青石复合氧化物,使热膨胀系数减小,再由添加Fe、Cr、Ni、Cu、Zn、Ti中的至少一种以上,得到表面性能良好的氧化铝质的陶瓷
实施例20
下面,就本发明的第20实施例作一说明。实施例20中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成MgAl2O4系尖晶石复合氧化物,将Al颗粒、MgO颗粒及用于抑止在焙烧中铝向表面勇出的Fe颗粒按56.5∶42.0∶1.5的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系莫来石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样66)。其包括表面光洁度在内的各性能值示于表21。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti的陶瓷(试样67-71),的各性能值也示于表21。
                          表21
  添加的金属微粒  尺寸变化率(%)   气孔率(%) 导热系数(W/m·k) 平均表面光洁度(μm)
  试样66     Fe     0.0     10     4     0.34
  试样67     Cr     0.1     11     4     0.34
  试样68     Ni     0.1     10     3     0.35
  试样69     Cu     0.0     9     4     0.32
  试样70     Zn     0.1     10     3     0.34
  试样71     Ti     0.0     9     4     0.32
  比较品4     -     0.0     18     1     0.49
从表21可见,试样66-71、比较样品4的尺寸变化率虽皆极小,但根据本发明,可如试样66-71那样,由减小气孔率获得优异的导热性能;再由添加Fe、Cr、Cu、Zn、Ti中的至少一种以上,得到表面性能良好的莫来石质的陶瓷。
实施例21
下面,就本发明的第21实施例作一说明。实施例21中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Si2Al6O13系富铝红柱石复合氧化物,将Al颗粒、Si颗粒及用于抑止在焙烧中铝向表面勇出的Fe颗粒按72.8∶25.1∶2.1的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系莫来石复合氧化物粉末以30重量份混合,在1600℃下烧成,得陶瓷(试样72)。其包括表面光洁度在内的各性能值示于表22。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti的陶瓷(试样73-77)的各性能值也示于表22。
                     表22
  添加的金属微粒 尺寸变化率(%)   气孔率(%)   介电系数   导热系数(W/m·k)   平均表面光洁度(μm)
  试样72     Fe     -0.0     9     6.4     3     0.34
  试样73     Cr     0.0     9     6.5     4     0.34
  试样74     Ni     0.0     10     6.6     3     0.35
  试样75     Cu     -0.1     9     6.5     3     0.33
  试样76     Zn     0.0     11     6.4     4     0.31
  试样77     Ti     0.0     10     6.5     3     0.32
  比较品4     -     0.0     18     7.2     1     0.49
从表22可见,试样72-77、比较样品4的尺寸变化率虽皆极小,但根据本发明,可如试样72-77那样,由减小气孔率获得较优异的导热性能;再由添加Fe、Cr、Ni、Cu、Zn、Ti中的至少一种以上,得到表面性能良好的莫来石质的陶瓷
实施例22
下面,就本发明的第22实施例作一说明。实施例22中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Mg2Si5Al4O18堇青石复合氧化物,将MgO颗粒、Al颗粒、Si颗粒及用于抑止在焙烧中铝向表面勇出的Fe颗粒按24.3∶32.6∶42.4∶0.7的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Si2Al6O13系莫来石复合氧化物粉末以40重量份混合,在1430℃下烧成,得陶瓷(试样78)。其包括表面光洁度在内的各性能值示于表23。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti的陶瓷(试样19-83)的各性能值也示于表23。
                         表23
  添加的金属微粒  尺寸变化率(%)   气孔率(%) 热膨胀系数(×10-6/K) 导热系数(W/m·k) 平均表面光洁度(μm)
  试样78     Fe     0.0     9     6.6     3     0.33
  试样79     Cr     0.1     11     6.7     3     0.34
  试样80     Ni     0.1     10     6.6     3     0.31
  试样81     Cu     0.0     9     6.5     4     0.34
  试样82     Zn     0.1     10     6.5     3     0.33
  试样83     Ti     0.0     8     6.6     3     0.32
  比较品4     -     0.0     18     7.0     1     0.49
从表23可见,试样79-83、比较样品4的尺寸变化率虽皆极小,但根据本发明,可如试样78-83那样,由减小气孔率形成作为低热膨胀系数材料的Mg2Si5Al4O18系堇青石复合氧化物,再由添加Fe、Cr、Ni、Cu、Zn、Ti中的至少一种以上,得到表面性能良好的莫来石质的陶瓷。
实施例23
下面,就本发明的第23实施例作一说明。实施例23中所用的陶瓷及其制造方法的组成因与实施例1中的大致相同而在此省略。
为形成Mg2Si5Al4O18系堇青石复合氧化物,将MgO颗粒、Al颗粒、Si颗粒及用于抑止在焙烧中铝向表面勇出的Fe颗粒按24.3∶32.6∶42.2∶0.7的重量比混合,混合后所得的粉状物用作无机化合物微粒的混合物。将该无机化合物微粒的混合物对(每100重量份)Mg2Si5Al4O18系堇青石复合氧化物粉末以30重量份混合,在1430℃下烧成,得陶瓷(试样84)。其包括表面光洁度在内的各性能值示于表24。又,将Fe颗粒取代为Cr、Ni、Cu、Zn、Ti的陶瓷(试样85-89)的各性能值也示于表24。
                         表24
  添加的金属微粒 尺寸变化率(%)   气孔率(%)   介电系数  导热系数(W/m·k) 平均表面光洁度(μm)
  试样84     Fe     0.0     9     5.1     1.9     0.36
  试样85     Cr     0.1     10     5.0     2.0     0.37
  试样86     Ni     0.1     10     4.9     1.9     0.36
  试样87     Cu     0.0     9     5.0     1.8     0.35
  试样88     Zn     0.0     10     5.0     2.0     0.35
  试样89     Ti     0.0     9     5.1     2.0     0.34
  比较品5     -     0.0     16     7.3     0.7     0.51
从表24可见,试样84-89、比较样品5的尺寸变化率虽皆极小,但根据本发明,可如试样84-89那样,由减小气孔率获得较优异的导热性能,由添加Fe、Cr、Ni、Cu、Zn、Ti中的至少一种以上得到表面性能良好的堇青石质陶瓷。
另外,在实施例1至实施例16中,尺寸变化率、气孔率、导热系数、热膨胀系数、介电系数系按如下的方法测定,并算出。
尺寸变化率由测定焙烧前的生片和烧成后的平板状陶瓷的尺寸,算出其比值。负的符号表示收缩。
气孔率由从外部尺寸算得的表观体积和从氦气干式密度汁得到的、除去开孔部分的体积之比算出。
导热系数由激光闪耀(快速加热)法在室温下测得。
热膨胀系数从热机械测定装置测得的0℃-100℃的膨胀而算出。
介电系数由在平板状陶瓷的二面涂敷电极,从LCR仪测得的1MHg时的介电容量算出。
机械强度根据从三点支撑法所得的最大断裂抗折强度算出。
尺寸离散度系在相同条件下对同一尺寸的30张生片进行焙烧,分别求其焙烧后的尺寸变化率,根据该些尺寸变化率的最大值和最小值之差求得尺寸离散度。
工业上的利用可能性
如上所述,根据本发明,由至少二种以上的金属微粒组成的混合物、或含有至少一种以上的金属微粒的无机化合物微粒的混合物在焙烧时,所述金属微粒和供自外界的氧作化学反应而形成的氧化物渐渐填埋成型体(坯件)的空隙,进一步地,所述氧化物与无机化合物起化学反应形成复合氧化物,同时,该复合氧化物填塞外部氧通过的气孔。该复合氧化物颗粒和无机功能性材料颗粒组成陶瓷。从而提供了一种制造成本可以较低的陶瓷及其制造方法,该陶瓷可以发挥出无机功能性材料颗粒的功能,同时又可将焙烧中成型体产生的收缩率抑止在极小,减小气孔率;另外,所述陶瓷生坯可在大气中焙烧,且烧成后具有高精度的形状和尺寸。
在本发明的附图中,1表示无机功能性材料颗粒,1a表示无机功能性材料粉末,2表示复合氧化物颗粒,2a为含金属微粒的无机化合物微粒的混合物,3为气孔。

Claims (4)

1.一种陶瓷,所述陶瓷包括:
氧化铝颗粒,及
含有填充于所述氧化铝颗粒之间的钽氧化物的MgAl2O4系尖晶石复合氧化物颗粒。
2.一种陶瓷的制造方法,其特征在于,所述方法包括以下的步骤:
(a)形成含有至少下述成分的混合物的工序,
(1)氧化铝粉末、Al颗粒、Ta2O5,及
(2)选自MgCO3和MgO的粉末或颗粒,
(b)将上述混合物模塑成型为成型品的工序,及
(c)在氧气氛下焙烧所述成型品,其中,
(1)所述氧化铝颗粒由所述氧化铝粉末形成,
(2)含有Ta的MgAl2O4颗粒由所述混合物的氧化反应形成,而
(3)位于所述氧化铝颗粒之间的空隙填埋有所述MgAl2O4颗粒。
3.如权利要求2所述的陶瓷制造方法,其特征在于,所述混合物包括氧化铝、Al、MgCO3和Ta2O5粉末或颗粒。
4.一种陶瓷的制造方法,其特征在于,所述方法包括以下的步骤:
(a)形成含有至少下述成分的混合物的工序,
(1)氧化铝、Al、MgO粉末或颗粒和至少一种选自GeO2、Ge2O3、Y2O3及Ag2O颗粒的颗粒或粉末;及
(2)选自MgCO3和MgO的粉末,
(b)将上述混合物模塑成型为成型品的工序,及
(c)在氧气氛下焙烧所述成型品,其中,
(1)所述氧化铝颗粒由所述氧化铝粉末形成,
(2)至少含有Ge、Y及Ag的MgAl2O4颗粒由所述混合物的氧化反应形成;而
(3)位于所述氧化铝颗粒之间的空隙填埋有所述至少含有Ge、Y及Ag的MgAl2O4颗粒。
CNB951006258A 1994-02-14 1995-01-26 陶瓷及其制造方法 Expired - Fee Related CN1153748C (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP1717394 1994-02-14
JP17173/94 1994-02-14
JP17173/1994 1994-02-14
JP226576/94 1994-09-21
JP22657694 1994-09-21
JP226576/1994 1994-09-21
JP253392/1994 1994-10-19
JP253392/94 1994-10-19
JP25339294 1994-10-19
JP304631/94 1994-12-08
JP304631/1994 1994-12-08
JP30463194A JP3287149B2 (ja) 1994-02-14 1994-12-08 アルミナ質のセラミックス

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CNB011330805A Division CN1229301C (zh) 1994-02-14 1995-01-26 陶瓷
CNB011330791A Division CN1259277C (zh) 1994-02-14 2001-09-14 陶瓷及其制造方法

Publications (2)

Publication Number Publication Date
CN1109036A CN1109036A (zh) 1995-09-27
CN1153748C true CN1153748C (zh) 2004-06-16

Family

ID=27456729

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB011330805A Expired - Fee Related CN1229301C (zh) 1994-02-14 1995-01-26 陶瓷
CNB951006258A Expired - Fee Related CN1153748C (zh) 1994-02-14 1995-01-26 陶瓷及其制造方法
CNB011330791A Expired - Fee Related CN1259277C (zh) 1994-02-14 2001-09-14 陶瓷及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB011330805A Expired - Fee Related CN1229301C (zh) 1994-02-14 1995-01-26 陶瓷

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB011330791A Expired - Fee Related CN1259277C (zh) 1994-02-14 2001-09-14 陶瓷及其制造方法

Country Status (5)

Country Link
US (2) US5639704A (zh)
EP (1) EP0667325A1 (zh)
JP (1) JP3287149B2 (zh)
KR (1) KR0138017B1 (zh)
CN (3) CN1229301C (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045628A (en) * 1996-04-30 2000-04-04 American Scientific Materials Technologies, L.P. Thin-walled monolithic metal oxide structures made from metals, and methods for manufacturing such structures
DE4447130A1 (de) * 1994-12-29 1996-07-04 Nils Claussen Herstellung eines aluminidhaltigen keramischen Formkörpers
JP3826961B2 (ja) * 1996-03-25 2006-09-27 ローム株式会社 加熱体およびその製造方法
US6193928B1 (en) * 1997-02-20 2001-02-27 Daimlerchrysler Ag Process for manufacturing ceramic metal composite bodies, the ceramic metal composite bodies and their use
JP3320645B2 (ja) * 1997-11-06 2002-09-03 株式会社東芝 セラミックス焼結体の製造方法
US6461562B1 (en) 1999-02-17 2002-10-08 American Scientific Materials Technologies, Lp Methods of making sintered metal oxide articles
US6407023B1 (en) 1999-10-28 2002-06-18 North American Refractories Co. Cristobalite-free mullite grain having reduced reactivity to molten aluminum and method of producing the same
US6642656B2 (en) * 2000-03-28 2003-11-04 Ngk Insulators, Ltd. Corrosion-resistant alumina member and arc tube for high-intensity discharge lamp
US6692844B2 (en) * 2000-08-29 2004-02-17 The Boeing Company Glaze for ceramic superplastic forming (SPF) dies
DE10212018A1 (de) * 2002-03-19 2003-10-02 Bosch Gmbh Robert Isolationsmaterial und Gassensor
EP1787601B1 (en) * 2004-08-27 2015-04-15 Tosoh Corporation Orthodontic bracket and process for producing the same
JP2006151775A (ja) * 2004-12-01 2006-06-15 Matsushita Electric Ind Co Ltd 低温焼成酸化物セラミック材料の製造方法、低温焼成酸化物セラミック材料、低温焼成酸化物セラミック電子部品及びその製造方法
CN101910086B (zh) * 2007-11-15 2014-04-09 新泽西州州立大学(拉特格斯) 陶瓷材料及其衍生产品的水热液相烧结方法
JP4975050B2 (ja) * 2009-02-05 2012-07-11 株式会社豊田中央研究所 シリカ構造体の製造方法
CN102241517B (zh) * 2011-04-07 2014-08-27 佛山市中国科学院上海硅酸盐研究所陶瓷研发中心 一种功能型建筑陶瓷的制备方法
CN102432273B (zh) * 2011-09-21 2013-12-04 景德镇陶瓷学院 一种降低氧化铝陶瓷材料烧成收缩率的方法及其制得的产品
CN104195402B (zh) * 2014-04-18 2018-11-30 宁夏东方钽业股份有限公司 一种高温抗氧化紧固件的制备方法及抗氧化材料
EP3218324A4 (en) * 2014-11-10 2018-04-11 Saint-Gobain Ceramics&Plastics, Inc. Sintered ceramic component and a process of forming the same
CN106048363A (zh) * 2016-05-31 2016-10-26 合肥正浩机械科技有限公司 一种高耐磨抗冲刷陶瓷密封环及其制备方法
CN106041046A (zh) * 2016-05-31 2016-10-26 合肥正浩机械科技有限公司 一种耐高温金属陶瓷密封环及其制备方法
CN110997597B (zh) 2017-08-18 2023-06-20 日本碍子株式会社 烧结体、电路元件及烧结体的制造方法
WO2019131644A1 (ja) * 2017-12-27 2019-07-04 昭和電工株式会社 アルミナ焼結体の前駆体、アルミナ焼結体の製造方法、砥粒の製造方法及びアルミナ焼結体
EP4041828A1 (en) * 2019-10-09 2022-08-17 DIC Corporation Plate-like alumina particle and method for manufacturing plate-like alumina particle
JP7388548B2 (ja) * 2019-10-09 2023-11-29 Dic株式会社 アルミナ粒子、及びアルミナ粒子の製造方法
US20230096825A1 (en) * 2019-10-09 2023-03-30 Dic Corporation Plate-like alumina particle and method for manufacturing plate-like alumina particle
CN112266238B (zh) * 2020-10-23 2022-09-16 厦门松元电子股份有限公司 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN113387695A (zh) * 2021-06-08 2021-09-14 杭州电子科技大学 一种5g通信用低介高品质微波介质陶瓷及其制备方法
JP7194306B1 (ja) * 2022-07-27 2022-12-21 黒崎播磨株式会社 アルミナ焼結体及び静電チャック

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765914A (en) * 1971-06-28 1973-10-16 Carborundum Co Siliceous bonded refractory
US4393143A (en) * 1981-05-22 1983-07-12 Tsurumi Synthetic Refractories Co., Ltd. Amorphous refractory settable at low temperatures
US4533646A (en) * 1982-06-03 1985-08-06 Dresser Industries, Inc. Nitride bonded oxide refractories
JPS59145703A (ja) * 1983-02-09 1984-08-21 Toyo Tire & Rubber Co Ltd 金属粉末の焼結方法
US4483944A (en) * 1983-07-27 1984-11-20 Corning Glass Works Aluminum titanate-mullite ceramic articles
US4528275A (en) * 1984-06-04 1985-07-09 General Electric Company Mullite-cordierite composite ceramic and method for preparation
DE3445765A1 (de) * 1984-09-17 1986-03-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Keramischer formkoerper
US4673435A (en) * 1985-05-21 1987-06-16 Toshiba Ceramics Co., Ltd. Alumina composite body and method for its manufacture
US5032193A (en) * 1986-01-21 1991-07-16 Energy Conversion Devices, Inc. Method of making synthetically engineered materials
EP0230959A3 (en) * 1986-01-21 1989-07-12 Energy Conversion Devices, Inc. Fabrication of atomically alloyed synthetic materials
JPH01119559A (ja) * 1987-11-02 1989-05-11 Kureha Chem Ind Co Ltd ムライト−アルミナ複合焼結体及びその製造方法
JP2644876B2 (ja) * 1988-03-04 1997-08-25 株式会社日立製作所 機能性セラミックス物品の製造方法
EP0331160B1 (en) * 1988-03-04 1994-09-28 Hitachi, Ltd. Functional ceramic shaped article and process for producing the same
DE3812266C1 (zh) * 1988-04-13 1989-08-24 Nils Prof. Dr. 2107 Rosengarten De Claussen
US5002911A (en) * 1989-04-07 1991-03-26 Cerametec, Inc. Ceramics with high toughness, strength and hardness
GB8916951D0 (en) * 1989-07-25 1989-09-13 Glaverbel Ceramic welding process and powder mixture for use in the same
US5242639A (en) * 1989-07-25 1993-09-07 Glaverbel Ceramic welding process
JPH0692266B2 (ja) * 1989-08-30 1994-11-16 秩父セメント株式会社 ムライト・コーディエライト複合セラミックスの製造方法
DE4039530A1 (de) * 1990-05-29 1991-12-05 Claussen Nils Reaktionsgebundener mullit-haltiger keramikformkoerper, seine herstellung und seine verwendung
JPH04367557A (ja) * 1991-06-14 1992-12-18 Hokko Chem Ind Co Ltd ムライト−マグネシア系反応焼結体およびその製造方法
DE4293605T1 (de) * 1991-10-16 1996-03-07 Showa Denko Kk Gesintertes Aluminiumoxid-Schleifkorn und schleifende Erzeugnisse
SE470424B (sv) * 1992-07-15 1994-02-21 Volvo Flygmotor Ab Förfarande för framställning av keramiska blandoxidmaterial
US5518641A (en) * 1992-11-25 1996-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic material and manufacturing method thereof
US5482907A (en) * 1994-05-26 1996-01-09 National Science Council Ceramic composite containing a spinel phase and an oxide phase and the preparation thereof

Also Published As

Publication number Publication date
JPH08169774A (ja) 1996-07-02
CN1229301C (zh) 2005-11-30
CN1389426A (zh) 2003-01-08
KR950025000A (ko) 1995-09-15
KR0138017B1 (ko) 1998-04-27
US5928979A (en) 1999-07-27
US5639704A (en) 1997-06-17
CN1109036A (zh) 1995-09-27
CN1259277C (zh) 2006-06-14
EP0667325A1 (en) 1995-08-16
CN1389427A (zh) 2003-01-08
JP3287149B2 (ja) 2002-05-27

Similar Documents

Publication Publication Date Title
CN1153748C (zh) 陶瓷及其制造方法
CN1293019C (zh) 312相材料的形成方法和烧结方法
CN1300048C (zh) 高饱和磁通密度、低损耗锰锌铁氧体材料制备方法
CN1793038A (zh) 利用微波技术烧结Sialon结合碳化硅耐火材料的方法
JP2024500914A (ja) 高熱伝導性窒化ケイ素セラミックス絶縁板及びその製造方法
CN1708462A (zh) 制备钛酸铝镁烧结体的方法
CN1810713A (zh) 电介质陶瓷组合物及电子部件
CN1889210A (zh) 叠层型陶瓷电容器
CN1778766A (zh) 介电陶瓷组合物、其制造方法以及电子部件
JPS6313955B2 (zh)
CN1197830C (zh) 多孔氮化硅陶瓷及其生产方法
CN1082938C (zh) 高导热性氮化硅烧结体和使用它的压接结构体
CN1796336A (zh) 电子零件用烧成夹具
CN1254453C (zh) 微波电介质复合组合物
CN1179912C (zh) 介电陶瓷组合物、电子器件及其生产方法
CN1412148A (zh) 透明氧化铝陶瓷制品及其制造方法
CN1882517A (zh) 高热导率氮化铝烧结体
CN1790568A (zh) 电介质瓷器组合物、电子部件和它们的制造方法
CN1522309A (zh) 多元系陶瓷粉末及其制造方法、和烧结体及其制造方法
US5079198A (en) Ceramic phase in sintered silicon nitride containing cerium, aluminum, and iron
CN1134380C (zh) 烧结锆莫来石砖的制备方法
JPH07187788A (ja) 窒化アルミニウム焼結体及びその製造方法
JP3942288B2 (ja) セラミックス焼成用セッター材の製造方法
JPH01160870A (ja) 窒化珪素質焼結体及びその製法
JPH07267738A (ja) 耐摩耗性窒化珪素質焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee