CN114669274A - 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法 - Google Patents

同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法 Download PDF

Info

Publication number
CN114669274A
CN114669274A CN202210595723.5A CN202210595723A CN114669274A CN 114669274 A CN114669274 A CN 114669274A CN 202210595723 A CN202210595723 A CN 202210595723A CN 114669274 A CN114669274 A CN 114669274A
Authority
CN
China
Prior art keywords
zeolite
preparation
precursor
sample
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210595723.5A
Other languages
English (en)
Other versions
CN114669274B (zh
Inventor
杜连柱
卢振威
张克强
王思淇
翟中葳
程深伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agro Environmental Protection Institute Ministry of Agriculture
Original Assignee
Agro Environmental Protection Institute Ministry of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agro Environmental Protection Institute Ministry of Agriculture filed Critical Agro Environmental Protection Institute Ministry of Agriculture
Priority to CN202210595723.5A priority Critical patent/CN114669274B/zh
Publication of CN114669274A publication Critical patent/CN114669274A/zh
Application granted granted Critical
Publication of CN114669274B publication Critical patent/CN114669274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法,本发明以NaY人造沸石材料为载体,采用浸渍‑共沉淀法,将Mg、Fe两种金属元素负载至沸石载体表面;之后通过高温煅烧,得到负载Mg氧化物/氢氧化物和Fe氧化物的沸石基吸附材料MNZ‑Tx。该方法可以改善沸石材料的多孔性质,提高其表面活性,增加其对于的氨氮和磷酸根吸附性能,同时有助于解决吸附材料从液相中分离困难的问题。

Description

同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法
技术领域
本发明属于环境功能材料领域与水处理技术领域,具体涉及一种用于同步吸附污水中氨氮和磷酸根的改性沸石材料制备及应用。
背景技术
氮(N)和磷(P)是生物生长和代谢最必需的营养物质。然而,铵态氮
Figure 974460DEST_PATH_IMAGE001
和磷酸盐
Figure 242631DEST_PATH_IMAGE002
的过度富集导致水体富营养化,从而促进藻类快速生长,最终污染水生生态系统乃至人类社会的供水系统。此外,
Figure 172541DEST_PATH_IMAGE003
可以转化为硝酸盐
Figure 133543DEST_PATH_IMAGE004
和亚硝酸盐
Figure 30961DEST_PATH_IMAGE005
这两种致癌物,可能会对公共卫生健康造成危害。此外,磷矿是一种不可再生的矿产资源,由于过度开采和缓慢的自然沉积,预计将在100年内枯竭。磷矿是近90%的磷的来源。因此,必须从富含氮磷的废水中去除和回收营养物质,从而修复水环境,促进可持续发展。
目前常用于回收氮磷的工艺方法中,包括吸附法、膜分离法、沉淀法等。其中鸟粪石沉淀法能够同步回收废水中氮磷元素,并且其回收产物能够作为一种缓释氮磷肥,参与氮磷循环,因此受到广泛关注。但是,由于鸟粪石(MgNH4PO4·6H2O)晶体中的氮和磷元素的摩尔比相等,因此造成常规鸟粪石沉淀法工艺过程回收的氨氮较磷酸盐相比,效率较低。同时,该工艺的回收产物鸟粪石产物的粒径较小,严重阻碍其后续的产物回收和固液分离过程。因此,目前的相关研究采用Mg元素改性多孔吸附材料的方式,实现吸附法和鸟粪石沉淀法的耦合,以完成对鸟粪石产物的有效捕获。但当前研究所制备吸附材料的氮磷回收性能还有一定的提升空间。其次,当前研究依然没有解决单一鸟粪石沉淀法面临的氨氮回收效率不高的问题。最后,在产物回收方面,目前的研究多关注于鸟粪石结晶粒径,结晶位点等问题,对于“吸附材料-鸟粪石”这一整体产物的回收性能关注较少。
发明内容
本发明的目的是解决上述污水处理过程中综合污水处理工艺中,鸟粪石沉淀法产物回收难且回收氨氮效率较低的问题,本发明提出了一种用于同步吸附污水中氨氮和磷酸根的改性沸石材料及应用。
本发明的技术方案如下:
一种同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法,步骤如下:
(1)沸石的制备:采用粉煤灰作为合成沸石的初始原料,目数为100~200目。将20 g上述粉煤灰与100 mL 4mol/L 的NaOH水溶液充分混合,烘干并转移至坩埚内,置入600 ℃马弗炉中焙烧2.5 h,得到粉煤灰熟料;取出该粉煤灰熟料,加入Na2SiO2·9H2O,进行研磨,并加入去离子水配成溶液;之后,将乙醇作为模板剂,加入混合溶液中,搅拌均匀后转移至高压反应釜中,在100 ℃条件下晶化24 h后取出,过滤,烘干,即得NaY人造沸石;
(2)热活化沸石:取人造沸石粉末载体置入马弗炉中,以10 ℃/min的升温速率,在400 ℃下煅烧4 h,得到热活化NaY人造沸石粉末;
(3)负载:在室温搅拌状态下,步骤(2)热活化人造沸石粉末负载上Mg盐和Fe盐,加清水洗涤2~3次,得前驱体C;
(4)煅烧:在室温下,通过抽滤装置将前驱体C过滤,洗涤。之后将得到的混合固体样品置入马弗炉,以10 ℃/min的升温速率,在500~700 ℃下煅烧4 h,得到样品D;
(5)洗脱:将样品D过100~120目筛,并通过抽滤装置充分洗涤,之后在110 ℃条件下充分烘干,即得到改性沸石材料。
而且,所述粉煤灰的SiO2:Al2O3的铝摩尔比为2.5。
而且,所述NaY人造沸石中SiO2:Al2O3的摩尔比为3。
而且,所述前驱体C在600 ℃下煅烧4 h,得到样品D。
而且,所述负载步骤如下:
在室温搅拌状态下,将MgCl2·6H2O,FeCl2·4H2O溶于50 mL超纯水中,待其完全溶解后,得到MgCl2·6H2O负载液A;
取热活化人造沸石粉末,置于负载液A中,在室温下磁力搅拌状态浸渍30 min;
之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行共沉淀,待pH = 10时停止滴加,得到前驱体B,加清水洗涤前驱体B两次;
再将前驱体B加入含MgCl2·6H2O、FeCl2·4H2O和FeCl3的溶液中,浸渍30min,之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行二次共沉淀,加清水洗涤2~3次,得前驱体C。
而且,所述MgCl2·6H2O浓度为2 mol/L。
而且,所述FeCl2·4H2O和FeCl3的浓度为0.1mol/L。
本发明的优点和积极效果如下:
1、本发明通过浸渍法将Mg和Fe离子浸渍到NaY人造沸石载体上,利用共沉淀法,将Mg和Fe等多种金属负载到该载体上,易于操作。
2、本发明中提出的制备方法可以改善吸附材料的孔径性质,大幅提升其对于氨氮和磷酸根的吸附能力。同时,通过Fe氧化物具有铁磁性的特性,提高了吸附材料与水相的分离能力。
3、本方法所回收的产物为鸟粪石,可作为一种缓释肥,参与生物圈的氮磷循环过程。
4、本发明结合污水氮磷回收过程中常用的鸟粪石沉淀法和吸附法,通过孔性质较为优越的NaY人造沸石(NaY artificial zeolite, NZ)作为载体,负载Mg,Fe等金属元素,制备一种同步吸附污水中氨氮和磷酸根的改性沸石材料,改善沸石材料的多孔性质,提高其表面活性,增加其对于的氨氮和磷酸根吸附性能,同时有助于解决吸附材料从液相中分离困难的问题。
附图说明
图1为不同制备条件下MNZ-Tx的吸附能力对比图;
图2为NZ和MNZ-Tx(x=500, 600, 700)的N2吸附-脱附等温线和孔径分布图;
图3为NZ和MNZ-Tx(x=500, 600, 700)的XRD图;
图4为NZ和MNZ-Tx(x=500, 600, 700)的FTIR图;
图5为NZ和MNZ-Tx(x=500, 600, 700)的SEM图;
图6为准一级和准二级吸附动力学拟合曲线;
图7为NZ的热重分析图;
图8为MNZ-T600的磁滞回线与磁性分离效果。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图1对本发明作进一步的详细说明。应该说明的是,下述实施例仅是为了解释本发明,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。
实施例1
一种同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法,步骤如下
(1)沸石的制备:NaY分子筛制备方法如下:采用粉煤灰(所述粉煤灰的SiO2:Al2O3的铝摩尔比为2.5)作为合成沸石的初始原料,目数为100~200目。将20 g上述粉煤灰与100mL 4mol/L 的NaOH水溶液充分混合,烘干并转移至坩埚内,置入600 ℃马弗炉中焙烧2.5h,得到粉煤灰熟料。取出该粉煤灰熟料,加入约10 g的Na2SiO2·9H2O,进行研磨,以调节硅铝比至3以上,并加入去离子水配成溶液。之后,将乙醇作为模板剂,加入混合溶液中,搅拌均匀后转移至高压反应釜中,在100 ℃条件下晶化24 h后取出,过滤,烘干,即得NaY人造沸石,编号为NZ。
(2)热活化沸石:取人造沸石粉末载体(100~120目)置入马弗炉中,以10℃/min的升温速率,在400 ℃下煅烧4 h,得到热活化NaY人造沸石粉末(所述NaY人造沸石中SiO2:Al2O3的摩尔比为3),编号为NZ-T。
(3)负载:在室温搅拌状态下,将MgCl2·6H2O,FeCl2·4H2O溶于50 mL超纯水中,待其完全溶解后,得到MgCl2·6H2O负载液A,其中,MgCl2·6H2O浓度为2mol/L;
取2 g热活化人造沸石粉末NZ-T,置于负载液A中,在室温下磁力搅拌状态(500rpm)浸渍30min。之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行共沉淀,待pH=10时停止滴加,得到前驱体B,加清水洗涤前驱体B两次;
再将前驱体B加入MgCl2·6H2O浓度为2mol/L、FeCl2·4H2O和FeCl3为0.1 mol/L的溶液中,浸渍30min,之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行二次共沉淀,加清水洗涤2~3次,得前驱体C。
(4)煅烧:在室温下,通过抽滤装置将前驱体C过滤,洗涤。之后将得到的混合固体样品置入马弗炉,以10 ℃/min的升温速率,在600 ℃下煅烧4 h,得到样品D。
(5)洗脱:将样品D过100~120目筛,并通过抽滤装置充分洗涤,之后在110℃条件下充分烘干,即得到目标材料,编号为MNZ-T600。
本沸石在制备过程中,需要进行两次煅烧,分别在“浸渍-共沉淀”过程前后。由于沸石材料的孔道结构中,存在水分子和挥发性有机物(如CTAB,乙醇等),步骤(2)前煅烧过程能够通过高温去除其中水分子和挥发性有机物,改善沸石材料的内部结构。由NZ的热重分析图可知,NaY人造沸石在50~400 ℃的范围内,发生水分子和挥发性有机物的大量挥发,因此该制备过程中采用400 ℃的温度对NaY人造沸石进行前煅烧,以确保沸石内部孔道中水分子和挥发性有机物的充分挥发。
步骤(4)煅烧的主要目的,是将“浸渍-共沉淀”过程所得的氢氧化镁转化为氧化镁,并且加固其与沸石材料之间的固连,进一步增加孔径,增加有效比表面积。对于Fe元素,煅烧过程能够使氢氧化铁,氢氧化亚铁沉淀进一步转化为Fe3O4等铁氧化物,使得该材料具备铁磁性。
本发明的负载步骤通过两次,大浓度2mol/L负载,显著提高负载率10%和减少负载时间,由原来的负载3小时,降低到1小时。
实施例2
制备步骤与实施例1 相同,只是将(4)中煅烧温度改为500 ℃,所得催化剂编号为MNZ-T500。
实施例3
制备步骤与实施例1 相同,只是将(4)中煅烧温度改为700 ℃,所得催化剂编号为MNZ-T700。
对比例1
该实施例采用天然沸石替代NaY人造沸石作为载体,吸附材料对于氨氮和磷酸盐的吸附性能。制备步骤与实施例1相同,只是将(1)中所制备的沸石改为市售沸石(购自西亚化学科技(山东)有限公司,CAS号:1318-02-1),所得吸附材料编号为MZ-T600。
表4给出了根据实施例1~3以及对比例1所制备的4种不同吸附材料在相同评价条件下对于溶液中氨氮和总磷的吸附效果(评价条件:100 mg/L氨氮,100 mg/L 总磷,25 mL溶液,投加量为0.4 g/L,反应时间为8h,摇床转速为300 rpm)。
因此,采用材料表征手段,对该发明中采用的NaY人造沸石材料进行表征分析,以明确该材料的物理化学性质。
表1本发明制备的NaY人造沸石的性质
Figure 837243DEST_PATH_IMAGE006
表2MNZ-Tx与NZ吸附材料的孔道性质和化学组成
Figure 887239DEST_PATH_IMAGE007
表3MNZ-T600与其他多种氮磷同步吸附材料吸附能力对比
Figure 753564DEST_PATH_IMAGE008
表4实施例1~3以及对比例1所制备的4种不同吸附材料氮磷吸附性能对比
Figure 138277DEST_PATH_IMAGE009
本实验分别在500 ℃、600 ℃、700 ℃三种不同煅烧温度下,制备Mg/Fe改性NaY沸石吸附材料,根据表2的结果可知,600 ℃条件下制备的Mg/Fe改性NaY沸石吸附材料具有较优越的多孔性质。因此,该改性过程中的600 ℃煅烧,能够最大程度上改善原始材料的多孔性质,以实现更优的吸附性能。
本材料的实际吸附应用
畜禽养殖废水包含大量冲洗畜禽粪污冲洗时的粪、尿等,具有氨氮含量高(400~1500 mg/L),总磷含量高(100~300 mg/L)等显著特性。本发明由于含有高比率的Mg吸附中心,适用于氨氮和总磷浓度较高,且氨氮和总磷浓度比较大的废水中,以提升本发明所得产物中的鸟粪石纯度。因此,高浓度的畜禽养殖废水为本发明的典型应用场景之一。与同类型发明相比,在较高氨氮和总磷浓度的废水处理中,本发明具有较大的优势,如表5所示。
表5不同浓度氮磷条件下MNZ-T600的氮磷吸附效果
Figure 951513DEST_PATH_IMAGE010

Claims (7)

1.一种同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法,其特征在于:步骤如下:
(1)沸石的制备:采用粉煤灰作为合成沸石的初始原料,目数为100~200目,将20 g上述粉煤灰与100 mL 4mol/L 的NaOH水溶液充分混合,烘干并转移至坩埚内,置入600 ℃马弗炉中焙烧2.5 h,得到粉煤灰熟料;取出该粉煤灰熟料,加入Na2SiO2·9H2O,进行研磨,并加入去离子水配成溶液;之后,将乙醇作为模板剂,加入混合溶液中,搅拌均匀后转移至高压反应釜中,在100 ℃条件下晶化24 h后取出,过滤,烘干,即得NaY人造沸石;
(2)热活化沸石:取人造沸石粉末载体置入马弗炉中,以10 ℃/min的升温速率,在400℃下煅烧4 h,得到热活化NaY人造沸石粉末;
(3)负载:在室温搅拌状态下,步骤(2)热活化人造沸石粉末负载上Mg盐和Fe盐,加清水洗涤2~3次,得前驱体C;
(4)煅烧:在室温下,通过抽滤装置将前驱体C过滤,洗涤,之后将得到的混合固体样品置入马弗炉,以10 ℃/min的升温速率,在500~700 ℃下煅烧4 h,得到样品D;
(5)洗脱:将样品D过100~120目筛,并通过抽滤装置充分洗涤,之后在110 ℃条件下充分烘干,即得到改性沸石材料。
2.根据权利要求1所述的改性沸石材料的制备方法,其特征在于:所述粉煤灰的SiO2:Al2O3的铝摩尔比为2.5。
3.根据权利要求1所述的改性沸石材料的制备方法,其特征在于:所述NaY人造沸石中SiO2:Al2O3的摩尔比为3。
4.根据权利要求1所述的改性沸石材料的制备方法,其特征在于:所述前驱体C在600℃下煅烧4 h,得到样品D。
5.根据权利要求1所述的改性沸石材料的制备方法,其特征在于:所述负载步骤如下:
在室温搅拌状态下,将MgCl2·6H2O,FeCl2·4H2O溶于50 mL超纯水中,待其完全溶解后,得到MgCl2·6H2O负载液A;
取热活化人造沸石粉末,置于负载液A中,在室温下磁力搅拌状态浸渍30 min;
之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行共沉淀,待pH = 10时停止滴加,得到前驱体B,加清水洗涤前驱体B两次;
再将前驱体B加入含MgCl2·6H2O、FeCl2·4H2O和FeCl3的溶液中,浸渍30min,之后通过蠕动泵,以10 rpm的滴加速度,向体系中滴加4 mol/L NaOH溶液进行二次共沉淀,加清水洗涤2~3次,得前驱体C。
6.根据权利要求5所述的改性沸石材料的制备方法,其特征在于:所述MgCl2·6H2O浓度为2 mol/L。
7.根据权利要求5所述的改性沸石材料的制备方法,其特征在于:所述FeCl2·4H2O和FeCl3的浓度为0.1mol/L。
CN202210595723.5A 2022-05-30 2022-05-30 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法 Active CN114669274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210595723.5A CN114669274B (zh) 2022-05-30 2022-05-30 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210595723.5A CN114669274B (zh) 2022-05-30 2022-05-30 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法

Publications (2)

Publication Number Publication Date
CN114669274A true CN114669274A (zh) 2022-06-28
CN114669274B CN114669274B (zh) 2022-08-23

Family

ID=82079571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210595723.5A Active CN114669274B (zh) 2022-05-30 2022-05-30 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法

Country Status (1)

Country Link
CN (1) CN114669274B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809074B1 (ko) * 2006-11-08 2008-03-03 한국전력공사 마이크로파 열원을 이용한 고순도 y형 제올라이트의합성방법 및 장치
CN101538046A (zh) * 2009-03-10 2009-09-23 大连工业大学 利用粉煤灰同时制备SiO2气凝胶和沸石的方法
CN104941574A (zh) * 2015-06-02 2015-09-30 南京大学 一种无机离子改性沸石复合材料及其应用
CN105330022A (zh) * 2015-11-30 2016-02-17 云南兆泓环境工程有限公司 一种用于人工湿地同步脱氮除磷的复合填料
CN109879295A (zh) * 2019-04-25 2019-06-14 太原理工大学 一种zsm-5分子筛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809074B1 (ko) * 2006-11-08 2008-03-03 한국전력공사 마이크로파 열원을 이용한 고순도 y형 제올라이트의합성방법 및 장치
CN101538046A (zh) * 2009-03-10 2009-09-23 大连工业大学 利用粉煤灰同时制备SiO2气凝胶和沸石的方法
CN104941574A (zh) * 2015-06-02 2015-09-30 南京大学 一种无机离子改性沸石复合材料及其应用
CN105330022A (zh) * 2015-11-30 2016-02-17 云南兆泓环境工程有限公司 一种用于人工湿地同步脱氮除磷的复合填料
CN109879295A (zh) * 2019-04-25 2019-06-14 太原理工大学 一种zsm-5分子筛

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEYI WU ET AL.: "Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
LU GUO ET AL.: "Enhanced removal performance by the core-shell zeolites/MgFe-layered double hydroxides (LDHs) for municipal wastewater treatment", 《ENVIRON. SCI. POLLUT. RES.》 *

Also Published As

Publication number Publication date
CN114669274B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN111514943A (zh) 一种MOFs衍生材料及其制备方法和应用
CN111359580A (zh) 一种多孔结构的碳铁复合材料的制备方法及应用
CN107913662B (zh) 一种磁性铁/镧复合除砷吸附材料及其制备方法
CN107973352B (zh) 一种铁/铜双金属氧化物降解四环素的方法
CN112237897B (zh) 一种层状双金属基纳米镧材料及其制备方法和应用
CN112169748B (zh) 一种吸附剂及其制备方法和应用
CN111905690A (zh) 一种利用粉煤灰制备水体脱氮除磷增氧复合材料的方法
CN111559760A (zh) 一种磁性水滑石及其制备方法和应用
CN114505054B (zh) 一种负载高含量零价铁磁性生物炭的制备方法及其应用
CN112191221A (zh) 一种快速高效除氮磷的吸附剂及其制备方法
CN114377647B (zh) 一种改性凹凸棒负载硫化亚铁的制备方法及应用
JP6448820B2 (ja) 吸着材粒子
CN114669274B (zh) 同步吸附污水中氨氮和磷酸根的改性沸石材料的制备方法
CN113908809A (zh) 一种活性炭内嵌mof吸附材料及其制备方法与应用
CN113559820A (zh) 一种磷霉素制药废水除磷吸附剂的制备及其应用回收方法
CN110668546B (zh) 一种催化还原含铀废水中铀酰离子的方法
CN114733486B (zh) 一种除磷改性生物炭的制备方法
CN113429975B (zh) 一种修复铅镉砷复合污染的土壤钝化剂及其制备方法和应用
CN115814750A (zh) 一种磷石膏制备多孔硅酸钙吸附剂的方法
CN112691636A (zh) 一种高效稳定的同步除氮磷吸附剂及其制备方法
CN114685217A (zh) 一种利用含有灰分磷的沼渣炭有效回收沼液养分的方法
CN113926422A (zh) 一种具有磁性的蔗渣炭负载水铁矿复合吸附剂的制备与应用
CN111974349A (zh) 一种多孔木质素水热炭基磷酸根吸附剂及其制备方法
CN110721703A (zh) 一种纳米级磁性钴锰尖晶石的制备方法及其应用
CN116371353A (zh) 镧磁性铁改性凹凸棒土除磷吸附剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant