CN114656261A - 一种中介电常数ltcc微波介质陶瓷材料及其制备方法 - Google Patents

一种中介电常数ltcc微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114656261A
CN114656261A CN202210310667.6A CN202210310667A CN114656261A CN 114656261 A CN114656261 A CN 114656261A CN 202210310667 A CN202210310667 A CN 202210310667A CN 114656261 A CN114656261 A CN 114656261A
Authority
CN
China
Prior art keywords
lmzbs
znzrnb
raw materials
glass
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210310667.6A
Other languages
English (en)
Other versions
CN114656261B (zh
Inventor
刘成
张兴
张岱南
李元勋
杨青慧
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210310667.6A priority Critical patent/CN114656261B/zh
Publication of CN114656261A publication Critical patent/CN114656261A/zh
Application granted granted Critical
Publication of CN114656261B publication Critical patent/CN114656261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种中介电常数LTCC微波介质陶瓷材料及其制备方法,属于电子信息功能陶瓷材料与电子器件技术领域。所述微波介质陶瓷材料包括97.5~99wt%的ZnZrNb2O8陶瓷和1~2.5wt%的LMZBS玻璃,LMZBS玻璃包括:10.62wt%的Li2O,14.32wt%的MgO,28.93wt%的ZnO,24.75wt%的B2O3,21.38wt%的SiO2。本发明微波介质陶瓷材料,烧结温度为875~950℃,介电常数为21~27,品质因数为19253~39729GHz,谐振频率温度系数为‑57~‑48ppm/℃,能够很好的满足当前移动通信技术领域小型化和集成化的发展需求。

Description

一种中介电常数LTCC微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子信息功能陶瓷材料与电子器件技术领域,具体涉及一种中介电常数LTCC微波介质陶瓷材料及其制备方法,应用于多层介质谐振器、微波天线和滤波器等领域。
背景技术
随着现代通讯技术的快速发展,人们对电子设备的小型化、集成化和便携化要求越来越高。在这样的时代背景下,低温共烧陶瓷技术(简称LTCC技术)得到了迅速发展。LTCC技术是1982年由美国休斯公司提出的一种先进的无源集成及混合电路封装技术,与传统封装技术相比,LTCC技术具有成本低、优异的集成能力和兼容性高等优点。为了满足LTCC技术的要求,作为其基础材料的微波介质陶瓷应该与Ag电极在低于961℃的条件下实现共烧。为了满足不同的应用需求,在科研工作者的共同努力下,大量性能优异的新型陶瓷不断涌现。其中,ZnZrNb2O8陶瓷由于具有优异的介电性能而被许多学者关注,但是由于通过传统固相法制备ZnZrNb2O8陶瓷的烧结温度过高(1150~1250℃),限制了其在LTCC技术领域的应用。文献《Effect of H3BO3 on sintering behavior and microwave dielectric propertiesof monoclinal structure ZnZrNb2O8 ceramics》(Journal of Materials ScienceMaterials in Electronics,2016,27(8):5055-8061)报道在ZnZrNb2O8陶瓷中加入H3BO3可以将烧结温度降至1200℃,但并不能满足LTCC要求。文献《Synthesis,characterization,and microwave dielectrics properties of monoclinal structure ZnZrNb2O8ceramics through the aqueous sol-gel process》((Journal of Materials ScienceMaterials in Electronics,2016,27(4):3474-3480)通过反应烧结法也没有将ZnZrNb2O8陶瓷的烧结温度降低到满足LTCC技术范围内。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种中介电常数LTCC微波介质陶瓷材料及其制备方法。本发明通过在ZnZrNb2O8陶瓷中加入烧结助剂LMZBS(Li2O-MgO-ZnO-B2O3-SiO2),成功将ZnZrNb2O8陶瓷的烧结温度从1150~1250℃降到了875~950℃,同时保持较好的介电性能,为微波介质元器件向小型化和便携化方向发展提供了一种有效的解决方案。
为实现上述目的,本发明采用的技术方案如下:
一种中介电常数LTCC微波介质陶瓷材料,所述微波介质陶瓷材料包括ZnZrNb2O8陶瓷和LMZBS玻璃,所述ZnZrNb2O8陶瓷的质量百分含量为97.5wt%~99wt%,所述LMZBS玻璃的质量百分含量为1wt%~2.5wt%;所述LMZBS玻璃按照质量比包括:10.62wt%的Li2O,14.32wt%的MgO,28.93wt%的ZnO,24.75wt%的B2O3,21.38wt%的SiO2
一种中介电常数LTCC微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1、以ZnO(纯度为99.0wt%)、ZrO2(纯度为99.0wt%)、Nb2O5(纯度为99.9wt%)为原料,根据ZnZrNb2O8陶瓷中各元素的比例称取原料;将称取的原料采用湿磨法混合8~10h,出料后在75~100℃下烘干,过筛;过筛后的粉料在1050~1150℃下预烧3~5h,得到ZnZrNb2O8预烧料;
步骤2、以Li2CO3(纯度为99.0wt%)、MgO(纯度为98.0wt%)、ZnO(纯度为99.0wt%)、H3BO3(纯度为99.5wt%)和SiO2(纯度为99.0wt%)为原料,按照“19.49wt%的Li2CO3,10.74wt%的MgO,21.46wt%的ZnO,32.45wt%的H3BO3,15.86wt%的SiO2”的比例称取原料,称取的原料经一次球磨、烘干后,在高温炉中1100~1200℃保温2~3h,然后取出倒入去离子水中淬火冷却,得到LMZBS玻璃晶体,经研磨形成LMZBS玻璃粉体;
步骤3、将步骤1得到的ZnZrNb2O8预烧料和步骤2得到的LMZBS玻璃粉体混合,其中,ZnZrNb2O8陶瓷的质量百分含量为97.5wt%~99wt%,LMZBS玻璃粉体的质量百分含量为1wt%~2.5wt%;将混合后的粉料采用湿磨法混合6~8h,出料后在75~100℃下烘干,过筛,造粒,成型;成型后得到的坯件在875~950℃下烧结4~5h,烧结完成后,自然冷却至室温,取出,即可得到所述LTCC微波介质陶瓷材料。
本发明得到的微波介质陶瓷材料的微波介电性能测试采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能[Ref:B.W.Hakki,P.D.Coleman,"Dielectric Resonator Method of Measuring Inductive Capacities inthe Millimeter Range",IEEE Trans.Microw.Theory Technol.,Mtt-8,402(1970)]。
本发明得到的微波介质陶瓷材料,烧结温度为875~950℃,介电常数为21~27,品质因数为19253~39729GHz,谐振频率温度系数为-57~-48ppm/℃。
与现有技术相比,本发明的有益效果为:
本发明提供的一种中介电常数LTCC微波介质陶瓷材料,烧结温度为875~950℃,介电常数为21~27,品质因数为19253~39729GHz,谐振频率温度系数为-57~-48ppm/℃,可应用于多层介质谐振器、微波天线和滤波器中,能够很好的满足当前移动通信技术领域小型化和集成化的发展需求。
附图说明
图1为本发明实施例1~4在950℃下烧结制得的陶瓷材料的XRD图谱;
图2为本发明实施例1~4在950℃下烧结制得的陶瓷材料表面的SEM照片;其中,(a)、(b)、(c)、(d)分别对应实施例1、实施例2、实施例3、实施例4制得的陶瓷材料;
图3为本发明实施例1~4在875~950℃下烧结制得的陶瓷材料的品质因数(a)和介电常数(b)测试结果。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
步骤1:以ZnO(纯度为99.0wt%)、ZrO2(纯度为99.0wt%)、Nb2O5(纯度为99.9wt%)为原料,根据ZnZrNb2O8陶瓷中各元素的比例称取原料;将称取的原料放入尼龙球磨罐中,按照原料:去离子水:二氧化锆为1:1.5:5的比例加入去离子水,采用湿磨法混合8h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至1120℃,保温4h,得到ZnZrNb2O8预烧料;
步骤2:以Li2CO3(纯度为99.0wt%)、MgO(纯度为98.0wt%)、ZnO(纯度为99.0wt%)、H3BO3(纯度为99.5wt%)和SiO2(纯度为99.0wt%)为原料,按照“19.49wt%的Li2CO3,10.74wt%的MgO,21.46wt%的ZnO,32.45wt%的H3BO3,15.86wt%的SiO2”的比例称取原料,称取的原料经一次球磨、烘干后,转移至刚玉坩埚中,放入高温炉中在1200℃保温2h,然后取出倒入去离子水中淬火冷却,得到LMZBS玻璃晶体,经研磨形成LMZBS(Li2O-MgO-ZnO-B2O3-SiO2)玻璃粉体;
步骤3:将步骤1得到的ZnZrNb2O8预烧料和步骤2得到的LMZBS玻璃粉体混合,其中,ZnZrNb2O8陶瓷的质量百分含量为99wt%,LMZBS玻璃粉体的质量百分含量为1wt%;将混合后的粉料放入尼龙球磨罐中,按照原料:去离子水:二氧化锆为1:1.5:5的比例加入去离子水,采用湿磨法混合6h,出料后在75℃下烘干,过80目筛,然后按照重量比加入13wt%的有机粘合剂进行造粒,过120目筛后压制成直径12mm、高6mm的圆柱状坯件;然后将坯件放入马弗炉内,在空气气氛中,温度分别875℃、900℃、925℃、950℃下烧结5h,烧结完成后,自然冷却至室温,取出,即可得到所述LTCC微波介质陶瓷材料;
步骤4:将步骤3烧结得到的LTCC微波介质陶瓷材料的两表面抛光制成成品待测。采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能。
实施例1得到的微波介质陶瓷材料的性能测试结果为:介电常数21.8~25.6,品质因数19253~29208GHz(结果见附图3),谐振频率为-48ppm/℃(950℃)。
实施例2
本实施例与实施例1相比,区别在于:步骤3中,ZnZrNb2O8陶瓷的质量百分含量为98.5wt%,LMZBS玻璃粉体的质量百分含量为1.5wt%;其余步骤与实施例1完全相同。
实施例2得到的微波介质陶瓷材料的性能测试结果为:介电常数22.4~26.0,品质因数21853~32000GHz(结果见附图3),谐振频率为-57ppm/℃(950℃)。
实施例3
本实施例与实施例1相比,区别在于:步骤3中,ZnZrNb2O8陶瓷的质量百分含量为98wt%,LMZBS玻璃粉体的质量百分含量为2wt%;其余步骤与实施例1完全相同。
实施例3得到的微波介质陶瓷材料的性能测试结果为:介电常数23.6~26.3,品质因数24784~39729GHz(结果见附图3),谐振频率为-52ppm/℃(950℃)。
实施例4
本实施例与实施例1相比,区别在于:步骤3中,ZnZrNb2O8陶瓷的质量百分含量为97.5wt%,LMZBS玻璃粉体的质量百分含量为2.5wt%;其余步骤与实施例1完全相同。
实施例4得到的微波介质陶瓷材料的性能测试结果为:介电常数22.8~24.9,品质因数23318~30732GHz(结果见附图3),谐振频率为-49ppm/℃(950℃)。

Claims (2)

1.一种中介电常数LTCC微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料包括ZnZrNb2O8陶瓷和LMZBS玻璃,所述ZnZrNb2O8陶瓷的质量百分含量为97.5wt%~99wt%,所述LMZBS玻璃的质量百分含量为1wt%~2.5wt%;所述LMZBS玻璃包括:10.62wt%的Li2O,14.32wt%的MgO,28.93wt%的ZnO,24.75wt%的B2O3,21.38wt%的SiO2
2.一种中介电常数LTCC微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1、以ZnO、ZrO2、Nb2O5为原料,根据ZnZrNb2O8陶瓷中各元素的比例称取原料;将称取的原料采用湿磨法混合8~10h,出料后在75~100℃下烘干,过筛;过筛后的粉料在1050~1150℃下预烧3~5h,得到ZnZrNb2O8预烧料;
步骤2、以Li2CO3、MgO、ZnO、H3BO3和SiO2为原料,按照“19.49wt%的Li2CO3,10.74wt%的MgO,21.46wt%的ZnO,32.45wt%的H3BO3,15.86wt%的SiO2”的比例称取原料,称取的原料经一次球磨、烘干后,在高温炉中1100~1200℃保温2~3h,然后取出倒入去离子水中淬火冷却,得到LMZBS玻璃晶体,经研磨形成LMZBS玻璃粉体;
步骤3、将步骤1得到的ZnZrNb2O8预烧料和步骤2得到的LMZBS玻璃粉体混合,其中,ZnZrNb2O8陶瓷的质量百分含量为97.5wt%~99wt%,LMZBS玻璃粉体的质量百分含量为1wt%~2.5wt%;将混合后的粉料采用湿磨法混合6~8h,出料后在75~100℃下烘干,过筛,造粒,成型;成型后得到的坯件在875~950℃下烧结4~5h,烧结完成后,自然冷却至室温,取出,即可得到所述LTCC微波介质陶瓷材料。
CN202210310667.6A 2022-03-28 2022-03-28 一种中介电常数ltcc微波介质陶瓷材料及其制备方法 Active CN114656261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210310667.6A CN114656261B (zh) 2022-03-28 2022-03-28 一种中介电常数ltcc微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210310667.6A CN114656261B (zh) 2022-03-28 2022-03-28 一种中介电常数ltcc微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114656261A true CN114656261A (zh) 2022-06-24
CN114656261B CN114656261B (zh) 2023-06-02

Family

ID=82032564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210310667.6A Active CN114656261B (zh) 2022-03-28 2022-03-28 一种中介电常数ltcc微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114656261B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010490A (zh) * 2022-06-29 2022-09-06 安徽大学 一种超低损耗铌锆酸锌系微波介质陶瓷材料及其制备方法
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN116813341A (zh) * 2023-06-27 2023-09-29 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211564A (ja) * 1993-01-14 1994-08-02 Murata Mfg Co Ltd セラミック基板
JPH11310458A (ja) * 1998-04-28 1999-11-09 Ngk Spark Plug Co Ltd ガラスセラミック組成物、その焼成方法及びガラスセラミック複合体
JP2001106571A (ja) * 1999-10-07 2001-04-17 Murata Mfg Co Ltd 誘電体セラミック組成物及びセラミック電子部品
CN1483009A (zh) * 2001-11-05 2004-03-17 旭硝子株式会社 玻璃陶瓷组合物
JP2005008468A (ja) * 2003-06-18 2005-01-13 Ube Ind Ltd 誘電体磁器組成物及びこれを用いた積層セラミック部品
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN102603297A (zh) * 2012-04-05 2012-07-25 天津大学 一种新型低温烧结微波介质陶瓷及其制备方法
CN104844206A (zh) * 2015-04-23 2015-08-19 中国矿业大学 一种高性能微波介质陶瓷材料的制备方法
CN105174949A (zh) * 2015-08-31 2015-12-23 天津大学 一种低损耗锌锆铌系微波介质陶瓷
CN105272245A (zh) * 2015-10-30 2016-01-27 天津大学 一种采用反应烧结法制备低损耗锌锆铌系微波介质陶瓷
CN106946557A (zh) * 2017-03-14 2017-07-14 电子科技大学 一种复合体系ltcc材料及其制备方法
CN107244916A (zh) * 2017-05-19 2017-10-13 电子科技大学 一种铌酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN112125668A (zh) * 2020-09-22 2020-12-25 研创光电科技(赣州)有限公司 一种中介低损耗ltcc微波介电陶瓷材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211564A (ja) * 1993-01-14 1994-08-02 Murata Mfg Co Ltd セラミック基板
JPH11310458A (ja) * 1998-04-28 1999-11-09 Ngk Spark Plug Co Ltd ガラスセラミック組成物、その焼成方法及びガラスセラミック複合体
JP2001106571A (ja) * 1999-10-07 2001-04-17 Murata Mfg Co Ltd 誘電体セラミック組成物及びセラミック電子部品
CN1483009A (zh) * 2001-11-05 2004-03-17 旭硝子株式会社 玻璃陶瓷组合物
JP2005008468A (ja) * 2003-06-18 2005-01-13 Ube Ind Ltd 誘電体磁器組成物及びこれを用いた積層セラミック部品
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN102603297A (zh) * 2012-04-05 2012-07-25 天津大学 一种新型低温烧结微波介质陶瓷及其制备方法
CN104844206A (zh) * 2015-04-23 2015-08-19 中国矿业大学 一种高性能微波介质陶瓷材料的制备方法
CN105174949A (zh) * 2015-08-31 2015-12-23 天津大学 一种低损耗锌锆铌系微波介质陶瓷
CN105272245A (zh) * 2015-10-30 2016-01-27 天津大学 一种采用反应烧结法制备低损耗锌锆铌系微波介质陶瓷
CN106946557A (zh) * 2017-03-14 2017-07-14 电子科技大学 一种复合体系ltcc材料及其制备方法
CN107244916A (zh) * 2017-05-19 2017-10-13 电子科技大学 一种铌酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN112125668A (zh) * 2020-09-22 2020-12-25 研创光电科技(赣州)有限公司 一种中介低损耗ltcc微波介电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张文娟;: "La_2O_3-B_2O_3玻璃添加对Zn_(0.5)Ti_(0.5)NbO_4微波介质陶瓷结构及性能影响" *
李月明;洪倩;谢志翔;沈宗洋;王竹梅;宋福生;洪燕;: "(1-x)Zn_(0.97)Cu_(0.03)Zr(Nb_(0.93)Ta_(0.07))_2O_8-xTiO_2陶瓷微波介电性能研究" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010490A (zh) * 2022-06-29 2022-09-06 安徽大学 一种超低损耗铌锆酸锌系微波介质陶瓷材料及其制备方法
CN115124340A (zh) * 2022-06-29 2022-09-30 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN115124340B (zh) * 2022-06-29 2023-02-28 安徽大学 一种中介低损耗低温共烧陶瓷材料及其制备方法和应用
CN116813341A (zh) * 2023-06-27 2023-09-29 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法
CN116813341B (zh) * 2023-06-27 2024-04-16 安徽大学 一种中介电低损耗低温共烧陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114656261B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN114656261A (zh) 一种中介电常数ltcc微波介质陶瓷材料及其制备方法
KR102618234B1 (ko) Ltcc 마이크로파 유전체 재료 및 이의 제조 방법
KR100426219B1 (ko) 유전체 세라믹 조성물 및 이를 이용한 적층부품의 제조방법
US20200123059A1 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN106699150B (zh) 一种低温烧结低介c0g微波介质材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN113024122A (zh) 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN107176834B (zh) 中高介电常数的ltcc陶瓷材料及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN111517771A (zh) 一种微波介质陶瓷材料及其制备方法
CN103351155A (zh) 低温烧结二氧化硅基复合陶瓷及其制备方法
CN108314327B (zh) Ce掺杂低温共烧陶瓷材料及其制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN113754434A (zh) 一种铈酸锶系中介电常数微波介质陶瓷材料及其制备方法
CN104671775A (zh) 一种Ba-Nd-Ti体系LTCC材料及制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN106986636B (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN110066170B (zh) 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法
CN112830780B (zh) 一种调控剂、ltcc微波介质材料及其制备方法
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN110002874B (zh) 一种超低温烧结微波介质陶瓷材料及其制备方法
CN117383921A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
KR100359721B1 (ko) 저온에서 금속전극과 동시 소성가능한 유전체 세라믹 조성물

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant