CN110002874B - 一种超低温烧结微波介质陶瓷材料及其制备方法 - Google Patents

一种超低温烧结微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110002874B
CN110002874B CN201910362178.3A CN201910362178A CN110002874B CN 110002874 B CN110002874 B CN 110002874B CN 201910362178 A CN201910362178 A CN 201910362178A CN 110002874 B CN110002874 B CN 110002874B
Authority
CN
China
Prior art keywords
microwave dielectric
dielectric ceramic
ceramic material
moo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910362178.3A
Other languages
English (en)
Other versions
CN110002874A (zh
Inventor
刘成
石梁
徐文豪
张洪阳
王刚
王文文
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910362178.3A priority Critical patent/CN110002874B/zh
Publication of CN110002874A publication Critical patent/CN110002874A/zh
Application granted granted Critical
Publication of CN110002874B publication Critical patent/CN110002874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种新型超低温烧结微波介质陶瓷材料及其制备方法,属于电子信息功能陶瓷材料与电子器件技术领域。所述微波介质陶瓷材料的结构式为Ce2Zr3(MoO4)9,以Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制。本发明微波介质陶瓷在无烧结助剂作用下可在700~775℃下烧结成瓷,其介电常数为9.9~10.05,品质因数为15273~29501GHz,谐振频率温度系数为‑14.09~‑24.34ppm/℃。该体系烧结温度低、介电常数小、温度系数近于零(温度稳定性优异)、传输损耗较低(品质因数较高),适合应用于LTCC高频微波电子器件等领域。

Description

一种超低温烧结微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子信息功能陶瓷材料与电子器件技术领域,具体涉及一种超低温烧结微波介质陶瓷材料及其制备方法,可应用于LTCC微波介质基板与集成器件等领域。
背景技术
现代电子信息技术的发展,特别是微波通信技术的高频化、集成化、高可靠性和小型化,对其中使用的谐振器、滤波器、波导、介质基板及天线等材料提出了前所未有的要求。目前广泛采用的微波介质陶瓷材料虽然能够满足以上各类电子元器件对性能的要求,但随着移动通信技术的不断升级,各类移动通信设备的更新换代和普及,研发出一类具有低烧结温度、低原料成本及温度稳定性良好的新型微波介质陶瓷材料具有重要的工程和商业价值。国内外许多公司及研究机构针对微波介质材料的研发已成为目前电子信息功能陶瓷领域的热点,开发一种信号响应速度快、损耗小、工作环境温度适应性强、能够广泛应用在移动通讯雷达及卫星通信等领域、满足LTCC器件性能需求的低温烧结微波介质陶瓷材料是实现上述技术发展需求的关键。本发明所提供的超低温烧结微波介质陶瓷材料具有介电常数较低、品质因数较高、温度稳定性好的特点,有助于进一步丰富此类产品的需求。
发明内容
本发明所要解决的技术问题是,开发一种新型超低温烧结微波介质陶瓷材料,满足日益增长的LTCC元器件需求。该体系具有烧结温度低、介电常数小、品质因数较高、温度稳定性优异等特点,为微波介质元器件向高频化、集成化、LTCC化发展提供了一种有效解决方案。
为了解决上述技术问题,本发明采用的技术方案如下:
一种超低温烧结微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的结构式为Ce2Zr3(MoO4)9
进一步地,所述微波介质陶瓷材料以Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制。
进一步地,本发明微波介质陶瓷材料,其介电常数为9.9~10.05,品质因数为15273~29501GHz,谐振频率温度系数为-14.09~-24.34ppm/℃,烧结温度为700~775℃。
上述超低温烧结微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1、以纯度为99%的Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制得到微波介电相粉体;
步骤2、将步骤1配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合9~10h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至600℃并保温4h,即可制得Ce2Zr3(MoO4)9粉体;
步骤3、将步骤2配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合6~10h,出料后烘干过80目筛;然后按照重量比加入6~10wt%的有机粘合剂进行造粒,过120目筛后压制成直径10~12mm、高5~6mm的圆柱状塑坯;
步骤4、将步骤3得到的塑坯放入马弗炉内,在空气气氛、700~775℃下烧结4h,即可得到所述超低温烧结微波介质陶瓷材料。
将步骤4得到的Ce2Zr3(MoO4)9微波介质陶瓷材料两表面抛光制成成品待测。其中,微波介电性能测试采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能[Ref:B.W.Hakki,P.D.Coleman,"Dielectric Resonator Methodof Measuring Inductive Capacities in the Millimeter Range",IEEETrans.Microw.Theory Technol.,Mtt-8,402(1970)]。
本发明的有益效果为:
本发明提出的一种超低温烧结微波介质陶瓷材料,能很好的满足当前移动通信技术领域对使用环境日趋严苛的要求,不仅具有高品质因数,还具有稳定的温度特性,超低的烧结温度,满足LTCC技术的需求。该超低温烧结微波介质陶瓷材料可用作微波谐振器、波导及相关电子线路基板材料。
附图说明
图1为本发明实施例1~4制备得到的微波介质陶瓷材料的XRD图谱;
图2为本发明实施例1~4制备得到的微波介质陶瓷材料断面的SEM图;其中,(a)为实施例1,(b)为实施例2,(c)为实施例3,(d)为实施例4;
图3为本发明实施例1~4制备得到的微波介质陶瓷材料的微波介电性能;其中,(a)为介电常数,(b)为品质因数,(c)为谐振频率温度系数。
具体实施方式
本发明提供一种新型超低温烧结微波介质陶瓷材料制备方法,可通过下列非限定性实施例得到更加清楚的描述。
实施例1:700℃下烧结的Ce2Zr3(MoO4)9微波介质陶瓷
步骤1、以纯度为99%的Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制得到微波介电相粉体;
步骤2、将步骤1配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合9h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至600℃并保温4h,即可制得Ce2Zr3(MoO4)9粉体;
步骤3、将步骤2配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合8h,出料后烘干过80目筛;然后按照重量比加入8wt%的有机粘合剂进行造粒,过120目筛后压制成直径10~12mm、高5~6mm的圆柱状塑坯;
步骤4、将步骤3得到的塑坯放入马弗炉内,在空气气氛、700℃下烧结4h,即可得到所述超低温烧结微波介质陶瓷材料。
利用阿基米德排水法获得材料的实测表观密度;利用Philips X'Pert X射线衍射仪获得材料的物相结构信息;利用JEOL JSM-6490SEM获得材料的表观形貌。
将步骤4得到的Ce2Zr3(MoO4)9微波介质陶瓷两表面抛光制成成品待测。其中,微波介电性能测试采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能[Ref:B.W.Hakki,P.D.Coleman,"Dielectric Resonator Method ofMeasuring Inductive Capacities in the Millimeter Range",IEEETrans.Microw.Theory Technol.,Mtt-8,402(1970)],采用美国Agilent N5230A网络分析仪测试得到。
实施例1得到的Ce2Zr3(MoO4)9微波介质陶瓷,其微波介电性能测试结果如下:谐振频率11.45GHz,介电常数9.935,品质因数15273GHz,谐振频率温度系数-22.71ppm/℃。
实施例2
本实施例与实施例1相比,区别在于:步骤4中,在空气气氛、725℃下烧结4h,得到所述超低温烧结微波介质陶瓷材料;其余步骤与实施例1相同。
实施例2得到的、725℃下烧结的Ce2Zr3(MoO4)9微波介质陶瓷,其微波介电性能测试结果如下:谐振频率11.355GHz,介电常数10.046,品质因数29501GHz,谐振频率温度系数-14.09ppm/℃。
实施例3
本实施例与实施例1相比,区别在于:步骤4中,在空气气氛、750℃下烧结4h,得到所述超低温烧结微波介质陶瓷材料;其余步骤与实施例1相同。
实施例3得到的、750℃下烧结的Ce2Zr3(MoO4)9微波介质陶瓷,其微波介电性能测试结果如下:谐振频率11.503GHz,介电常数10.041,品质因数20466GHz,谐振频率温度系数-22.73ppm/℃。
实施例4
本实施例与实施例1相比,区别在于:步骤4中,在空气气氛、775℃下烧结4h,得到所述超低温烧结微波介质陶瓷材料;其余步骤与实施例1相同。
实施例4得到的、775℃下烧结的Ce2Zr3(MoO4)9微波介质陶瓷,其微波介电性能测试结果如下:谐振频率11.437GHz,介电常数10.035,品质因数19378GHz,谐振频率温度系数-24.32ppm/℃。
上述的4个具体实施例中,实施例2中725℃下烧结的Ce2Zr3(MoO4)9陶瓷材料,其介电常数和品质因数最大,分别为10.046和29501GHz,表明其信号传输时的能量损耗最低;谐振频率温度系数最接近0,为-14.09ppm/℃,表明其温度稳定性最好。在制备的4个实施例中,综合考量后认为实施例2的综合微波介电性能最优。
本发明包括但不限于以上实施例,凡符合本发明要求的实施方案均属于本发明的保护范围。
综上,本发明提供了一种新型超低温烧结微波介质陶瓷材料制备方法。通过选用新配方获得了具有烧结温度低、介电常数小、品质因数较高、温度稳定性较优异的一种新型超低温烧结微波介质陶瓷材料体系,为微波介质元器件向高频化、小型化、LTCC化发展提供了一种有效解决方案。

Claims (3)

1.一种超低温烧结微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的结构式为Ce2Zr3(MoO4)9;所述微波介质陶瓷材料的介电常数为9.9~10.05,品质因数为15273~29501GHz,谐振频率温度系数为-14.09~-24.34ppm/℃,烧结温度为700~775℃。
2.根据权利要求1所述的超低温烧结微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料以Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制。
3.一种超低温烧结微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1、以Ce2O3、ZrO2和MoO3为原料,按照分子式Ce2Zr3(MoO4)9配制得到微波介电相粉体;
步骤2、将步骤1配制得到的粉体混合均匀,球磨,烘干,过筛后,在600℃下保温4h,即可制得Ce2Zr3(MoO4)9粉体;
步骤3、将步骤2配制得到的粉体混合均匀,球磨,烘干,过筛后,加入有机粘合剂进行造粒,压制成型,得到塑坯;
步骤4、将步骤3得到的塑坯放入马弗炉内,在空气气氛、700~775℃下烧结4h,即可得到所述超低温烧结微波介质陶瓷材料。
CN201910362178.3A 2019-04-30 2019-04-30 一种超低温烧结微波介质陶瓷材料及其制备方法 Active CN110002874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910362178.3A CN110002874B (zh) 2019-04-30 2019-04-30 一种超低温烧结微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910362178.3A CN110002874B (zh) 2019-04-30 2019-04-30 一种超低温烧结微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110002874A CN110002874A (zh) 2019-07-12
CN110002874B true CN110002874B (zh) 2021-09-24

Family

ID=67175319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910362178.3A Active CN110002874B (zh) 2019-04-30 2019-04-30 一种超低温烧结微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110002874B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483044B (zh) * 2019-09-25 2021-08-13 哈尔滨工业大学 一种高q值微波介质陶瓷与铝超低温共烧方法及高q值微波介质陶瓷制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870584B (zh) * 2010-05-12 2013-04-17 西安交通大学 一种钼基超低温烧结微波介质陶瓷材料的制备方法
CN101891476A (zh) * 2010-07-16 2010-11-24 西安工业大学 一种钼基低温烧结微波介质陶瓷材料
CN103172376B (zh) * 2013-03-20 2014-07-09 华为技术有限公司 一种白钨矿型微波介质陶瓷材料及其制备方法
CN103232241B (zh) * 2013-04-22 2014-09-03 西安交通大学 一种超低温烧结的复合微波介质陶瓷材料及其制备方法
CN103951425B (zh) * 2014-04-10 2016-03-30 西安交通大学 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法
CN104177085A (zh) * 2014-08-27 2014-12-03 西安交通大学 一种钼基温度稳定型微波介质陶瓷及其制备方法
CN108610047B (zh) * 2018-05-24 2021-04-30 电子科技大学 一种超低温烧结微波陶瓷材料及其制备方法
CN108585850B (zh) * 2018-06-15 2020-11-13 济南大学 一种超低温烧结微波介质陶瓷及制备方法

Also Published As

Publication number Publication date
CN110002874A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
US11629102B2 (en) Li3Mg2SbO6-based microwave dielectric ceramic material easy to sinter and with high q value, and preparation method therefor
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN110563463B (zh) 一种低介微波介质陶瓷材料及其ltcc材料
CN110092655B (zh) 一种钡钐钛系低损耗微波介质陶瓷及其制备方法
CN104692795A (zh) 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法
CN111517789B (zh) 一种低介电微波介质陶瓷材料及其制备方法
CN114656261B (zh) 一种中介电常数ltcc微波介质陶瓷材料及其制备方法
CN103351155B (zh) 低温烧结二氧化硅基复合陶瓷及其制备方法
CN114907124A (zh) 一种微波介质材料TmVO4及其制备方法
CN110002874B (zh) 一种超低温烧结微波介质陶瓷材料及其制备方法
CN104671773A (zh) 一种低介电常数微波介质陶瓷材料及其制备方法
CN113651600A (zh) 低介电常数高品质因子锗酸盐微波介质陶瓷及其制备方法
CN110066170B (zh) 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法
CN104710175A (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN112830780B (zh) 一种调控剂、ltcc微波介质材料及其制备方法
CN101531511A (zh) 一种低温烧结的高热稳定微波介电陶瓷材料及其制备方法
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN112661509B (zh) 一种高Q值MgZrNb2O8基微波介质陶瓷材料及其制备方法
CN113800908A (zh) 中介电常数双钙钛矿微波介质陶瓷材料及其制备方法
CN109534815A (zh) 改性BaO-TiO2-La2O3介电陶瓷的制备方法
CN116120050B (zh) 一种超低温烧结的ltcc陶瓷材料及其制备方法
CN116715519A (zh) ZnZrTa2O8基微波介质陶瓷材料及其制备方法
KR100261549B1 (ko) 마이크로파용 저온소결형 유전체 조성물 및 이의 제조방법
CN117024131A (zh) 一种低介低损耗高强度ltcc材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant