CN116120050B - 一种超低温烧结的ltcc陶瓷材料及其制备方法 - Google Patents

一种超低温烧结的ltcc陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116120050B
CN116120050B CN202310119597.0A CN202310119597A CN116120050B CN 116120050 B CN116120050 B CN 116120050B CN 202310119597 A CN202310119597 A CN 202310119597A CN 116120050 B CN116120050 B CN 116120050B
Authority
CN
China
Prior art keywords
ceramic material
temperature
ltcc ceramic
ultralow
temperature sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310119597.0A
Other languages
English (en)
Other versions
CN116120050A (zh
Inventor
舒国劲
窦占明
袁世逢
庞锦标
杨俊�
刘凯
韩玉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Zhenhua Group Yunke Electronics Co Ltd
Original Assignee
China Zhenhua Group Yunke Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Zhenhua Group Yunke Electronics Co Ltd filed Critical China Zhenhua Group Yunke Electronics Co Ltd
Priority to CN202310119597.0A priority Critical patent/CN116120050B/zh
Publication of CN116120050A publication Critical patent/CN116120050A/zh
Application granted granted Critical
Publication of CN116120050B publication Critical patent/CN116120050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种超低温烧结的LTCC陶瓷材料及其制备方法,属于电子元器件领域。以Li2CO3、V2O5、(NH4)2HPO4和TiO2为原料,按照分子式Li3‑2x(V1‑ xTix)2(PO4)3配制称量;将配量好的原料以无水乙醇和氧化锆球为球磨介质,在高转速下球磨;将球磨混合后的浆料烘干;烘干后研磨成粉过筛网;然后加入聚乙烯醇水溶液(PVA)进行造粒;造粒粉经过筛网后压制成圆柱生坯;将圆柱生坯放入马弗炉内排胶和烧结得到所述超低温烧结LTCC陶瓷材料。解决了现有LTCC低温共烧陶瓷技术中存在材料性能差、工艺复杂、工艺质量一致性及可靠性差、不适于批量生产、生产成本高的问题。广泛应用于现代微波电子通讯领域。

Description

一种超低温烧结的LTCC陶瓷材料及其制备方法
技术领域
本发明属于电子元器件领域,进一步来说涉及LTCC陶瓷材料领域,具体来说,涉及一种超低温烧结的LTCC陶瓷材料及其制备方法。
背景技术
近年来,随着电子信息产业的飞速发展,与之密切相关的电子元器件的高集成、高可靠性、小型化和低成本发展已成必然趋势。为满足电子元件“小、轻、快”的发展趋势,低温共烧陶瓷技术(LTCC)因其化学稳定性好、设计灵活、布线密度高、烧结温度低且可在空气中与Au、Ag等电极进行共烧等优点,在电子工业领域得到了迅猛发展。
随着移动通信技术的不断升级,以及各类移动通信设备的更新换代和普及,对陶瓷材料提出了更苛刻的要求,要求陶瓷材料不仅可以与Al(熔点660℃)电极共烧,甚至还可以与半导体或聚合物基基板等集成共烧。因此,降低陶瓷材料烧结温度成为一个急需解决的问题,目前国内外研究最多、最常用来实现低温烧结的方法是添加单一或多种复合低熔点氧化物、低熔点玻璃等烧结助剂或者是采用化学或物理方法制备粒度较细的粉体作为原始料来实现低温烧结;其中,添加单一或多种复合低熔点氧化物、低熔点玻璃等烧结助剂虽然可以明显的降低陶瓷材料的烧结温度,但是材料的性能均会被不同程度的恶化;此外,复合低熔点氧化物、低熔点玻璃等烧结助剂都需要单独制备,制备工艺不仅繁琐且易与陶瓷材料发生化学反应生成其他相,从而增加了整个陶瓷材料制备过程中的复杂性和不稳定性。采用化学合成的粉体或者采用物理方法(如:高能球磨法)制备较细的粉体或直接采用纳米级原始粉体虽然都能获得优异的性能和较低的烧结温度,但其复杂的制备工艺、较高的成本、差的重复性、差的可控性使得不宜大批量工业化生产。
对于传统的固相反应法而言,通常是将均匀混合的原料粉末进行预烧,二次球磨、压片再烧结成陶瓷材料。虽然预烧烧过程有利于晶粒生长和形成均匀稳定的主相,但工艺相对繁琐且预烧和二次球磨过程中会大大增加引入杂质的几率,从而恶化材料的性能。
因此,进一步开发具有固有烧结温度低、原料成本低且性能优异的LTCC陶瓷材料具有重要的意义和商业价值。
有鉴于此,特提出本发明。
发明内容
本发明所要解决的技术问题是:提供一种新颖具有超低温烧结、原料成本低且性能优异的LTCC陶瓷材料以及制备方法,解决现有技术存在工艺复杂、工艺质量一致性及可靠性差、不适于批量生产的问题。
本发明的发明构思是:由于反应烧结具有制备工艺简单、烧结陶瓷产品晶粒细小均匀、性能优异、工艺质量一致性好且具有大批量生产的优势。因此,本发明采用反应烧结法制备得到具有超低温烧结的Li3-2x (V1-x Ti x )2(PO4)3陶瓷材料,通过采用TiO2进行部分离子取代V2O5,来调节Li3-2x (V1-x Ti x )2(PO4)3陶瓷的介电常数以及谐振频率温度系数的范围,扩宽Li3-2x (V1-x Ti x )2(PO4)3陶瓷的使用范围。本发明首先以Li2CO3、V2O5、(NH4)2HPO4和TiO2为原料,按照Li3-2x (V1-x Ti x )2(PO4)3化学式的化学计量比(按总质量为500g计算)进行配制,将称量所需各原料进行球磨混合均匀,再经过烘干、造粒、压制成圆柱体生坯,最后经过排胶烧结过程得到所述的一种超低温烧结的LTCC陶瓷材料。
为此,本发明提供一种超低温烧结的LTCC陶瓷材料的制备方法,包括以下步骤:
(1)以Li2CO3、V2O5、(NH4)2HPO4和TiO2为原料,按照分子式Li3-2x (V1-x Ti x )2(PO4)3的化学计量比(按总质量为500g计算)配制称量,其中0.1≤x≤1;
(2)所述化学计量比按照摩尔比:m(Li2CO3):m(V2O5):m(TiO2):m((NH4)2HPO4)=(3-2x)/2 mol:(1-x) mol:2xmol:3mol进行计算配置称量,总质量按总质量为500g计算,其中0.1≤x≤1;
(3)将配量好的原料以无水乙醇和氧化锆球为球磨介质,在转速为250r/min~350r/min的高转速下球磨12h~24h;
(4)将球磨混合后的浆料在80℃~120℃下烘干;
(5)烘干后研磨成粉过60目~90目筛网;
(6)然后加入聚乙烯缩丁醛水溶液(PVB)进行造粒;
(7)造粒粉经过80目~120目的筛网进行过筛在5MPa~10MPa压力下压制成圆柱生坯;
(8)将圆柱生坯放入马弗炉内,在大气气氛下以2℃/min ~8℃/min的升温速率在450℃~550℃进行保温4h~6h排胶;
(9)再以2℃/min ~8℃/min的升温速率在600℃~700℃下烧结1h~4h得到所述超低温烧结LTCC陶瓷材料。
所述Li2CO3、V2O5、(NH4)2HPO4和TiO2为纯度≥99.9%。
所述一种超低温烧结的低介低损耗LTCC陶瓷材料,具有如下特点:
1)烧结温度低,且可调。典型烧结温度范围:600℃~700℃;
2)温度稳定性高,且可调。典型谐振频率温度系数范围:-50.09 ppm/℃~+25.4ppm/℃;
3)介电常数低,且可调。典型介电常数范围:5.5~10.2;
4)品质因数高,且可调。典型品质因数范围:50730 GHz ~88501 GHz。
该陶瓷材料能适用于LTCC技术的需要。同时,其较低的烧结温度(600℃~700℃)使得在工业生产中极大的降低了能耗。
可广泛应用于移动通讯、电子对抗、卫星通讯、北斗系统(GPS)、蓝牙技术、无线局域网(MLAN)和物联网等现代微波电子通讯领域。
附图说明
图1为超低温烧结LTCC陶瓷材料制备流程示意图。
实施方式
如图1所示,以Li3-2x (V1-x Ti x )2(PO4)3(0.1≤x≤1)系超低温烧结LTCC陶瓷材料为例,所述一种超低温烧结的LTCC陶瓷材料及其制备方法的具体实施方式如下:
本发明所述的一种超低温烧结的LTCC陶瓷材料的组成表达式为Li3-2x (V1-x Ti x )2(PO4)3,其中0.1≤x≤1,具体实施例的制备方法及性能如下:
具体实施的制备方法:
1、混料:
(1)以纯度≥99.9%的Li2CO3、V2O5、(NH4)2HPO4和TiO2为原料,按照分子式Li3-2x (V1-x Ti x )2(PO4)3的化学计量比配制称量,所述化学计量比按照摩尔比:m(Li2CO3):m(V2O5):m(TiO2):m((NH4)2HPO4)=(3-2x)/2 mol:(1-x) mol:2xmol:3mol进行计算配置称量,总质量按总质量为500g计算,其中0.1≤x≤1。再将称量好的原料以无水乙醇和氧化锆球为球磨介质,在转速为250r/min~350r/min的高转速下球磨12h~24h;
2、造粒、成型:
将球磨混合后的浆料在80~100℃下烘干,烘干后研磨成粉过80目筛网;然后加入聚乙烯醇水溶液(PVA)进行造粒,造粒粉经过80目的筛网进行过筛在5~10MPa压力下压制成直径为15mm,高7~8mm的圆柱生坯;
3、排胶、烧结:
将步骤2得到的圆柱生坯放入马弗炉内,在大气气氛下以3℃/min的升温速率在500℃保温4h~6h排胶,再以5℃/min的升温速率在600℃~700℃烧结2h得到所述超低温烧结LTCC陶瓷材料;
4、性能测试:
将步骤3烧结得到的圆柱体陶瓷样品两面进行抛光,通过Hakki-Coleman介质谐振器法采用矢量网络分析仪测试样品的介电常数和品质因数(其中,测试温度为室温,测试频率为1~20G);采用高低温试验箱测试样品在25 °C~85 °C下的中心谐振频率,利用以下公式计算谐振频率温度系数:
式中:分别表示85 °C和25 °C时的谐振频率。
所述LTCC陶瓷材料的微波介电性能如下表:
序号 Li3-2x (V1-x Ti x )2(PO4)3 烧结温度(°C) 介电常数 Qxf(GHz) Τ f (ppm/°C)
1 x=0.1 600 5.5 66507 -50.09
2 x=0.1 650 6.1 72589 -48.75
3 x=0.1 700 6.5 78965 -47.56
4 x=0.2 600 6.0 64258 -40.55
5 x=0.2 650 6.5 78624 -40.58
6 x=0.2 700 6.6 88501 -4186
7 x=0.3 600 6.2 63258 -32.44
8 x=0.3 650 6.5 76580 -30.55
9 x=0.3 700 7.1 83251 -31.66
10 x=0.4 600 6.8 62885 -23.44
11 x=0.4 650 7.3 76552 -22.55
12 x=0.4 700 7.8 82553 -23.55
13 x=0.5 600 7.2 62552 -16.55
14 x=0.5 650 7.6 81582 -15.22
15 x=0.5 700 8.6 77595 -14.55
16 x=0.6 600 7.5 61334 -10.58
17 x=0.6 650 8.2 80991 -10.25
18 x=0.6 700 9.0 76358 -10.22
19 x=0.7 600 8.3 60332 -2.22
20 x=0.7 650 8.9 79552 -2.28
21 x=0.7 700 9.2 75223 -2.65
22 x=0.8 600 8.5 59631 3.23
23 x=0.8 650 9.2 76548 3.18
24 x=0.8 700 9.5 74589 3.19
25 x=0.9 600 8.8 55962 10.55
26 x=0.9 650 9.6 76002 11.25
27 x=0.9 700 9.9 73255 13.44
28 x=1 600 9.2 50730 25.44
29 x=1 650 9.8 75325 23.22
30 x=1 700 10.2 70325 24.33
最后应说明的是:上述实施例仅仅是为清楚地说明所作的举例,本发明包括但不限于以上实施例,这里无需也无法对所有的实施方式予以穷举。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。凡符合本发明要求的实施方案均属于本发明的保护范围。

Claims (8)

1.一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于,所述LTCC陶瓷材料的化学组成式为Li3-2x (V1-x Ti x )2(PO4)3,其中0.6≤x≤0.9,材料组分包括Li2CO3、V2O5、(NH4)2HPO4、TiO2
所述LTCC陶瓷材料的制备方法,包括以下步骤:
(1)以Li2CO3、V2O5、(NH4)2HPO4和TiO2为原料,按照材料的化学组成式Li3-2x (V1-x Ti x )2(PO4)3的化学计量比进行配制称量;
(2)所述化学计量比按照摩尔比:m(Li2CO3):m(V2O5):m(TiO2):m((NH4)2HPO4)=(3-2x)/2mol:(1-x) mol:2xmol:3mol进行计算配置称量,总质量按500g计算,所述x 为0.6≤x≤0.9;
(3)将配量好的原料以无水乙醇和氧化锆球为球磨介质,在转速为250r/min~350r/min的高转速下球磨8~24h;
(4)将球磨混合后的浆料在80℃~120℃下烘干;
(5)烘干后研磨成粉过70目~90目筛网;
(6)然后加入聚乙烯醇水溶液进行造粒;
(7)造粒粉经过80目~120目的筛网进行过筛在5MPa~10MPa压力下压制成圆柱生坯;
(8)将圆柱生坯放入马弗炉内,在大气气氛下以2℃/min ~8℃/min的升温速率在450℃~550℃进行保温4h~6h排胶;
(9)再以2℃/min ~8℃/min的升温速率在600℃~700℃下烧结1h~4h得到所述超低温烧结LTCC陶瓷材料;
所述LTCC陶瓷材料的谐振频率温度系数范围为-10.58 ppm/℃~+13.44ppm/℃,介电常数范围为5.5~10.2,品质因数范围为50730 GHz ~88501 GHz。
2.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料,其特征在于:所述Li2CO3、V2O5、(NH4)2HPO4和TiO2纯度≥99.9%。
3.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述圆柱生坯的直径为15mm,高为7~8mm。
4.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述球磨时间为12h~24h。
5.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述烘干温度为80℃~100℃。
6.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述筛网目数为80目。
7.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述排胶升温速率为3℃/min,排胶保温温度为500℃。
8.如权利要求1所述的一种超低温烧结的LTCC陶瓷材料的制备方法,其特征在于:所述烧结的升温速率为5℃/min,烧结的时间为2h。
CN202310119597.0A 2023-02-15 2023-02-15 一种超低温烧结的ltcc陶瓷材料及其制备方法 Active CN116120050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310119597.0A CN116120050B (zh) 2023-02-15 2023-02-15 一种超低温烧结的ltcc陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310119597.0A CN116120050B (zh) 2023-02-15 2023-02-15 一种超低温烧结的ltcc陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116120050A CN116120050A (zh) 2023-05-16
CN116120050B true CN116120050B (zh) 2023-12-19

Family

ID=86302690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310119597.0A Active CN116120050B (zh) 2023-02-15 2023-02-15 一种超低温烧结的ltcc陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116120050B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627266A (zh) * 2012-04-20 2012-08-08 重庆市科学技术研究院 一种锂离子电池正极材料磷酸钒钛锂
CN103708838A (zh) * 2013-09-28 2014-04-09 济南大学 一种低温烧结制备具有单斜结构ZnZrNb2O8微波介质陶瓷新方法
CN104037409A (zh) * 2013-03-05 2014-09-10 吉首大学 锂离子电池用钛掺杂磷酸氧钒锂正极材料的制备方法
CN110085854A (zh) * 2019-06-05 2019-08-02 骆驼集团武汉光谷研发中心有限公司 一种磷酸钒锂正极材料及其制备方法
CN113816736A (zh) * 2021-11-11 2021-12-21 中国振华集团云科电子有限公司 一种超低温烧结的低介低损耗ltcc材料及其制备方法
CN114122502A (zh) * 2020-08-27 2022-03-01 精工爱普生株式会社 固体电解质、固体电解质的制造方法及复合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569797B (zh) * 2012-01-20 2015-04-29 中国科学院宁波材料技术与工程研究所 一种新型磷酸盐基正极复合材料及其制备方法和用途
US10730803B2 (en) * 2015-09-29 2020-08-04 The Penn State Research Foundation Cold sintering ceramics and composites
CN111848132A (zh) * 2020-07-30 2020-10-30 电子科技大学 易烧结高Q值Li3Mg2SbO6基微波介质陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627266A (zh) * 2012-04-20 2012-08-08 重庆市科学技术研究院 一种锂离子电池正极材料磷酸钒钛锂
CN104037409A (zh) * 2013-03-05 2014-09-10 吉首大学 锂离子电池用钛掺杂磷酸氧钒锂正极材料的制备方法
CN103708838A (zh) * 2013-09-28 2014-04-09 济南大学 一种低温烧结制备具有单斜结构ZnZrNb2O8微波介质陶瓷新方法
CN110085854A (zh) * 2019-06-05 2019-08-02 骆驼集团武汉光谷研发中心有限公司 一种磷酸钒锂正极材料及其制备方法
CN114122502A (zh) * 2020-08-27 2022-03-01 精工爱普生株式会社 固体电解质、固体电解质的制造方法及复合体
CN113816736A (zh) * 2021-11-11 2021-12-21 中国振华集团云科电子有限公司 一种超低温烧结的低介低损耗ltcc材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Design of Ti4+-doped Li3V2(PO4)3/C fibers for lithium energy storage;Zan Huang等;《Ceramics International》;8325-8330 *
Suqin Liu等.Effect of Doping Ti4+ on the Structure and Performances of Li3V2(PO4)3.《ACTA PHYSICO-CHIMICA SINICA》.2007,537-542. *

Also Published As

Publication number Publication date
CN116120050A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
US11629102B2 (en) Li3Mg2SbO6-based microwave dielectric ceramic material easy to sinter and with high q value, and preparation method therefor
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN104692795A (zh) 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法
CN103351155B (zh) 低温烧结二氧化硅基复合陶瓷及其制备方法
CN109231967B (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN111763083A (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN110563463A (zh) 一种低介微波介质陶瓷材料及其ltcc材料
CN109320232B (zh) 一种微波介质用陶瓷材料及其制备方法
CN104671773A (zh) 一种低介电常数微波介质陶瓷材料及其制备方法
CN113816736B (zh) 一种超低温烧结的低介低损耗ltcc材料及其制备方法
CN113087525A (zh) 一种钼酸盐基复合微波介质陶瓷材料及其制备方法
CN116120050B (zh) 一种超低温烧结的ltcc陶瓷材料及其制备方法
CN110950656A (zh) 一种复合微波介质陶瓷及其制备方法
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN113956033B (zh) 一种中介高q值微波介质陶瓷及其制备方法
CN101531511A (zh) 一种低温烧结的高热稳定微波介电陶瓷材料及其制备方法
CN104692792A (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN113387695A (zh) 一种5g通信用低介高品质微波介质陶瓷及其制备方法
CN110002874B (zh) 一种超低温烧结微波介质陶瓷材料及其制备方法
CN116535212B (zh) 一种ltcc应用的高性能微波介质陶瓷材料及制备方法
CN115872740B (zh) 一种超低温烧结的低介微波介质陶瓷及其制备方法
CN111995390B (zh) 一种超低温烧结新型微波介质陶瓷材料及其制备方法
CN115947600B (zh) 一种Li-Mg-Mo基单相超低温陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant