CN111995390B - 一种超低温烧结新型微波介质陶瓷材料及其制备方法 - Google Patents

一种超低温烧结新型微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111995390B
CN111995390B CN202010936217.9A CN202010936217A CN111995390B CN 111995390 B CN111995390 B CN 111995390B CN 202010936217 A CN202010936217 A CN 202010936217A CN 111995390 B CN111995390 B CN 111995390B
Authority
CN
China
Prior art keywords
temperature
ceramic material
dielectric ceramic
microwave dielectric
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010936217.9A
Other languages
English (en)
Other versions
CN111995390A (zh
Inventor
李春宏
黄佳
康晓丽
崔旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Science and Technology Development Center of CAEP
Original Assignee
Chengdu Science and Technology Development Center of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Science and Technology Development Center of CAEP filed Critical Chengdu Science and Technology Development Center of CAEP
Priority to CN202010936217.9A priority Critical patent/CN111995390B/zh
Publication of CN111995390A publication Critical patent/CN111995390A/zh
Application granted granted Critical
Publication of CN111995390B publication Critical patent/CN111995390B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种超低温烧结微波介质陶瓷材料及其制备方法,其化学表达式为LiMg(P1‑ xTax)O4,0.01<x<0.08,本发明采用的制备方法包括以下步骤:(1)配料混料;(2)一次球磨;(3)干燥;(4)预烧;(5)二次球磨;(6)造粒压片;(7)烧结。本发明所需的烧结温度为725℃~825℃,极大的降低了产品的烧结温度,节约成本。同时,本发明制备的微波介质陶瓷材料具有较低的介电损耗和较高的品质系数,εr为7.52~13.21,Q×f为65289GHz~88554GHz,较其他磷基介质陶瓷具有更高的密度,可应用于5G通讯基站陶瓷滤波器。

Description

一种超低温烧结新型微波介质陶瓷材料及其制备方法
技术领域
本发明公开了一种超低温烧结新型微波介质陶瓷材料及其制备方法,属于电子陶瓷及其制造技术领域。
背景技术
随着5G技术的快速发展,基站天线通道数量大幅增长,从现有4G的4、8通道逐步升级为16、32、64,及128通道,由于每一通道都需要一套完整的射频元件对上、下行信号进行接收与发送,并由相应的滤波器进行信号频率的选择与处理,因此滤波器的需求量将大幅增加。近年来,LiMPO4(M=Mg,Zn,Ni等)体系作为一种新型的微波介质陶瓷体系,由于其固有烧结温度低、介电常数低、品质因数高等特性而受到越来越多的关注。
2010年,Thomas课题组《Thomas D,Temperature-Compensated LiMgPO4:A NewGlass-Free Low-Temperature Cofired Ceramic[J].Journal of the AmericanCeramicSociety,2010,93(11):3828-3831.》首次报道了LiMgPO4微波介质陶瓷,在950℃温度下烧结2小时就可获得介电性能良好的微波介质陶瓷,其εr≈6.6,Q˙f≈79100GHz,τf≈-55ppm/℃。但是,由于该陶瓷样品τf为一个较大的负值,难以将其用于实际生产。随后,Z.W.Dong等课题组《Dong Z W,et al.Preparation and microwavedielectricproperties of Li(Mg1-xCox)PO4 ceramics for low-temperature cofiredceramicapplications[J]Ceramics International,2014,40(9):14865-14869》提出来用Co2+取代Mg2+,得到的LiMg0.5Co0.05PO4陶瓷显示出优异的微波介电性能:εr≈6.97,Q×f≈111200GHz,τf≈-53.8ppm/℃,利用TiO2对其τf值进行调节,当TiO2的体积分数为0.11时,可将τf调节至近零,其值为-1.4ppm/℃。
发明内容
本发明主要解决的问题是提供一种超低温烧结新型微波介质陶瓷材料及其制备方法,本发明提供的新型微波介质陶瓷材料的烧结温度低。同时,其制备工艺简单,制得的产品介电常数小,品质系数高,较其他磷基介质陶瓷具有更高的密度。
本发明所述的一种超低温烧结微波介质陶瓷材料,该材料的化学式为LiMg(P1- xTax)O4,其中0.01<x<0.08。
本发明提供的一种上述超低温烧结新型微波介质陶瓷材料的制备方法,包括以下步骤:
1)配料。根据配方以及所需各原料的化学计量比对原料进行称量,所述原料为NH4H2PO4、MgO、Ta2O5和Li2CO3
2)一次球磨。将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,球磨时间为12小时,所述原料、无水乙醇、磨球的比值为1:1:2;
3)干燥过筛。将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)预烧。将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)二次球磨。将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)炒蜡成型。将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)烧结。将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至725℃并保温2小时,最后随炉冷却至室温。
与现有技术相比,本发明具有以下优点:
1)本发明采用高温固相法制备,此方法制备条件容易控制,可用于批量化生产;
2)本发明提供的新型微波介质陶瓷材料,烧结温度低,制备工艺简单。
3)本发明提供的新型微波介质陶瓷材料,介电常数小,品质系数高,较其他磷基介质陶瓷具有更高的密度。
具体实施方式
结合实施例说明本发明的具体技术方案。
实施例1
一种超低温烧结微波介质陶瓷材料的制备方法,该材料的化学式为LiMg(P0.98Ta0.02)O4
该微波介质陶瓷材料制备方法,包括以下步骤:
1)根据配方以及所需各原料的化学计量比称量112.73g NH4H2PO4、40.30MgO、8.84g Ta2O5和73.89g Li2CO3
2)将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,原料、无水乙醇和氧化锆磨球的比值为1:1:2,球磨时间为12小时;
3)将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至725℃并保温2小时,最后随炉冷却至室温。
实施例2
一种超低温烧结微波介质陶瓷材料,该材料的化学式为LiMg(P0.96Ta0.04)O4。该微波介质陶瓷材料,包括以下步骤:
1)根据配方以及所需各原料的化学计量比称量106.98g NH4H2PO4、40.30MgO、17.67g Ta2O5和73.89g Li2CO3
2)将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,原料、无水乙醇和氧化锆磨球的比值为1:1:2,球磨时间为12小时;
3)将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至725℃并保温2小时,最后随炉冷却至室温。
实施例3
一种超低温烧结微波介质陶瓷材料,该材料的化学式为LiMg(P0.94Ta0.06)O4
该微波介质陶瓷材料制备方法,包括以下步骤:
1)根据配方以及所需各原料的化学计量比称量108.13g NH4H2PO4、40.30MgO、26.51g Ta2O5和73.89g Li2CO3
2)将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,原料、无水乙醇和氧化锆磨球的比值为1:1:2,球磨时间为2小时;
3)将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至725℃并保温2小时,最后随炉冷却至室温。
实施例4
一种超低温烧结微波介质陶瓷材料,该材料的化学式为LiMg(P0.98Ta0.02)O4
该微波介质陶瓷材料制备方法,包括以下步骤:
1)根据配方以及所需各原料的化学计量比称量112.73g NH4H2PO4、40.30MgO、8.84g Ta2O5和73.89g Li2CO3
2)将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,原料、无水乙醇和氧化锆磨球的比值为1:1:2,球磨时间为2小时;
3)将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至775℃并保温2小时,最后随炉冷却至室温。
实施例5
一种超低温烧结微波介质陶瓷材料材料,该材料的化学式为LiMg(P0.98Ta0.02)O4
该微波介质陶瓷材料,包括以下步骤:
1)根据配方以及所需各原料的化学计量比称量112.73g NH4H2PO4、40.30MgO、8.84g Ta2O5和73.89g Li2CO3
2)将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,原料、无水乙醇和氧化锆磨球的比值为1:1:2,球磨时间为2小时;
3)将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将干燥后的原料进行研磨,并过40目筛;
4)将步骤3)所得的粉料置于氧化铝坩埚中,首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3等气体的排出,在以3℃/min升温至预烧温度600℃并保温4h;
5)将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)将二次球磨后得到的粉料烘干,加入5wt%的石蜡作为粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体在4Mpa压强下压制成圆柱坯体;
7)将得到的圆柱坯体置于高温烧结炉中烧结,首先以3℃/min的升温速率将温度升至200℃,排除坯体中多余的水分;而后经过2℃/min的升温速率将温度从200℃升至500℃,并在500℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后以3℃/min的升温速率升温至825℃并保温2小时,最后随炉冷却至室温。
用圆柱介质谐振器法对样品进行了微波介电性能评价,实施例中材料的微波介电性能与组成的关系如表1所示:
表1
实例 x/mol 烧结温度/℃ εr Q×f/GHz
1 0.02 725 13.21 73752
2 0.04 725 9.36 75622
3 0.06 725 11.69 65289
4 0.02 775 7.52 88554
5 0.02 825 13.21 70336
本发明所需的烧结温度为725℃~825℃,极大的降低了产品的烧结温度。同时,本发明制备的微波介质陶瓷材料具有较低的介电损耗和较高的品质系数,在x=0.02mol,烧结温度为775℃时,具有最好的品质因数Q×f=88554GHz。

Claims (6)

1.一种超低温烧结微波介质陶瓷材料,其特征在于:该微波介质陶瓷材料的化学表达式为: LiMg(P1-xTax)O4,其中0.01<x<0.08。
2.根据权利要求1所述的一种超低温烧结微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
1)配料;根据配方以及所需各原料的化学计量比对原料进行称量;
2)一次球磨;将称量好的原料加入适量的无水乙醇,放入球磨罐中进行球磨,球磨时间为12小时;
3)干燥过筛;将球磨好的浆料放置在90℃的恒温干燥箱中干燥12h,随后将得到的原料进行研磨,并过40目筛;
4)预烧;将步骤3)所得的粉料置于氧化铝坩埚中进行预烧;
5)二次球磨;将预烧后的粉料放入磨罐中进行二次球磨,球磨时间为12h;
6)炒蜡成型;将步骤5)得到的粉料烘干,加入粘合剂,混合均匀后,过80目筛进行造粒,并将得到的粉体通过压片机压制成圆柱坯体;
7)烧结;将步骤6)得到的圆柱坯体置于高温烧结炉中烧结,首先经过1小时从室温升至200℃,排除坯体中多余的水分;而后经过3小时从200℃升至550℃,并在550℃保温2小时以排除石蜡,且保证多余气体的完全排出;然后升温725℃,烧结速率为3℃/min,并保温2小时,最后随炉冷却至室温。
3.根据权利要求2所述的一种超低温烧结微波介质陶瓷材料的制备方法,其特征在于:所述步骤1)中的原料为NH4H2PO4、MgO、Ta2O5和Li2CO3
4.根据权利要求2所述的一种超低温烧结微波介质陶瓷材料的制备方法,其特征在于:所述步骤2)中的磨球为ZrO2,原料、无水乙醇与磨球的质量比值为1:1:2,球磨时间为8h。
5.根据权利要求2所述的一种超低温烧结微波介质陶瓷材料的制备方法,其特征在于:所述步骤4)预烧工艺是首先以3℃/min的升温速率升温至500℃保温并保温2h,以促进粉料中H2O、CO2和NH3气体的排出,在升温至预烧温度600℃并保温4h。
6.根据权利要求2所述的一种超低温烧结微波介质陶瓷材料的制备方法其特征在于:所述步骤6)粘结剂为5wt%的石蜡,压片时压强为4 Mpa。
CN202010936217.9A 2020-09-08 2020-09-08 一种超低温烧结新型微波介质陶瓷材料及其制备方法 Expired - Fee Related CN111995390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010936217.9A CN111995390B (zh) 2020-09-08 2020-09-08 一种超低温烧结新型微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010936217.9A CN111995390B (zh) 2020-09-08 2020-09-08 一种超低温烧结新型微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111995390A CN111995390A (zh) 2020-11-27
CN111995390B true CN111995390B (zh) 2022-02-22

Family

ID=73469668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010936217.9A Expired - Fee Related CN111995390B (zh) 2020-09-08 2020-09-08 一种超低温烧结新型微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111995390B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219806A (zh) * 2008-01-25 2008-07-16 南京大学 锂电池的正极材料及高温固相烧结制备方法
JP6186099B1 (ja) * 2017-06-27 2017-08-23 株式会社山寿セラミックス 弾性表面波素子用基板及びその製造方法
CN109851350A (zh) * 2019-01-17 2019-06-07 天津大学 一种低介高q锂镁磷系介质材料及其制备方法
CN111499372A (zh) * 2020-04-06 2020-08-07 杭州电子科技大学 一种低温节能制备LiMgPO4微波陶瓷材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219806A (zh) * 2008-01-25 2008-07-16 南京大学 锂电池的正极材料及高温固相烧结制备方法
JP6186099B1 (ja) * 2017-06-27 2017-08-23 株式会社山寿セラミックス 弾性表面波素子用基板及びその製造方法
CN109851350A (zh) * 2019-01-17 2019-06-07 天津大学 一种低介高q锂镁磷系介质材料及其制备方法
CN111499372A (zh) * 2020-04-06 2020-08-07 杭州电子科技大学 一种低温节能制备LiMgPO4微波陶瓷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Casting and characterization of LiMgPO4 glass free LTCC tape for;Dhanesh Thomas等;《Journal of the European Ceramic Society》;20120822;第87-93页 *

Also Published As

Publication number Publication date
CN111995390A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111592348A (zh) 一种具有优异温度稳定性的低介电常数微波介质陶瓷及其制备方法
CN110183227B (zh) 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN112876251A (zh) 基于冷烧结技术制备的高性能低介微波陶瓷及方法
CN113087507A (zh) 低介硅酸镁微波介质陶瓷材料及其制备方法
CN113563052A (zh) 一种硼酸盐基低介微波介质陶瓷及其制备方法
CN114804897A (zh) 一种陶瓷用烧结助剂及制法、锆酸锌微波介质陶瓷及制法
CN111187062B (zh) 一种CaSnSiO5-K2MoO4基复合陶瓷微波材料及其制备方法
CN111995390B (zh) 一种超低温烧结新型微波介质陶瓷材料及其制备方法
CN110845226A (zh) 一种微波介质陶瓷材料SrGa2O4及其制备方法
CN113816736B (zh) 一种超低温烧结的低介低损耗ltcc材料及其制备方法
CN106866143B (zh) 微波复相陶瓷AWO4-TiO2及其制备方法
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN111943673B (zh) 一种低温烧结bnt微波介质材料及其制备方法
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN112811890A (zh) 低温烧结低介电常数微波陶瓷材料及其制备方法
CN113387695A (zh) 一种5g通信用低介高品质微波介质陶瓷及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN114380594B (zh) 一种Ba-Mg-Co-Ta基微波介质陶瓷
CN113321499B (zh) 一种微波介质陶瓷复合材料及其制备方法
CN110922186A (zh) 一种中低温烧结高介电常数陶瓷介质材料及其制备方法
CN116120050B (zh) 一种超低温烧结的ltcc陶瓷材料及其制备方法
CN114573344B (zh) 一种两相复合微波介质陶瓷材料及其制备方法和应用
CN114804867B (zh) 适合热压烧结的陶瓷介质材料、陶瓷器件及其制备方法
CN116535212B (zh) 一种ltcc应用的高性能微波介质陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220222