CN101891476A - 一种钼基低温烧结微波介质陶瓷材料 - Google Patents

一种钼基低温烧结微波介质陶瓷材料 Download PDF

Info

Publication number
CN101891476A
CN101891476A CN201010228785XA CN201010228785A CN101891476A CN 101891476 A CN101891476 A CN 101891476A CN 201010228785X A CN201010228785X A CN 201010228785XA CN 201010228785 A CN201010228785 A CN 201010228785A CN 101891476 A CN101891476 A CN 101891476A
Authority
CN
China
Prior art keywords
low
microwave
ceramic material
temperature
molybdenum base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010228785XA
Other languages
English (en)
Inventor
庞利霞
周迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201010228785XA priority Critical patent/CN101891476A/zh
Publication of CN101891476A publication Critical patent/CN101891476A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钼基低温烧结微波介质陶瓷材料,以克服现有技术存在的微波介质陶瓷性能不够理想的问题。本发明提供的钼基低温烧结微波介质陶瓷材料的结构表达式为:(La1-xNdx)2Mo3O12,其中0.0≤x≤1.0。本发明的低温烧结钼基微波介质陶瓷材料具有以下优点:1、相对介电常数低(8.2~10.1),低频下介电损耗小(tanδ<5×10-4,1MHz),微波品质因数高(Qf=60,000~80,000GHz),使用频率可达10GHz以上,谐振频率温度系数为-80~-60ppm/oC;2、烧结温度低(900~1000oC);3、制备工艺简单;4、应用范围宽。

Description

一种钼基低温烧结微波介质陶瓷材料
技术领域
本发明属于电子陶瓷材料技术领域,特别涉及一种钼基低温烧结微波介质陶瓷材料。
背景技术
微波介质陶瓷主要用于制作谐振器、滤波器、振动器、介质基板、介质天线和介质导波等微波元器件,可用于移动通讯、卫星通讯和军用雷达等方面。随着科学技术日新月异的发展,通信信息量的迅猛增加,以及人们对无线通信的要求,使用卫星通讯和卫星直播电视等微波通信系统己成为当前通信技术发展的必然趋势。随着电子信息技术不断向高频化和数字化方向发展,对元器件的小型化,集成化以至模块化的要求也越来越迫切。有人曾预言,未来的电子工业将简化为装配工业-把各种功能模块组装在一起即可。低温共烧陶瓷LTCC(Low Temperature Co-fired Ceramics)以其优异的电学、机械、热学及工艺特性,已经成为电子器件模块化的主要技术之一,在国外及我国台湾地区迅猛发展,已形成产业雏形。过去几年,全球LTCC元件市场产值在手机、蓝牙及WLAN等无线通讯产品的推动下快速增长,预估未来市场表现也将持续亮丽。目前国内已有多家厂商看好该项技术而积极投入,然而由于上游材料及相关技术被国外掌控,使得大量供货的厂商仍在少数,国内LTCC的发展成效将是重要的影响因素之一。
LTCC产品性能的优劣首先取决于所选用材料的性能。LTCC陶瓷材料主要包括微波器件材料、封装材料和LTCC基板材料。介电常数是LTCC材料最关键的性能。要求介电常数在2~20000范围内系列化以适用于不同的工作频率。例如,相对介电常数为3.8的基板适用于高速数字电路的设计;相对介电常数为6~80的基板可很好地完成高频线路的设计;相对介电常数高达20000的基板,则可以使高容性器件集成到多层结构中。高频化是数字产品发展必然的趋势,发展低介电常数(低于10)的LTCC材料以满足高频和高速的要求是LTCC材料如何适应高频应用的一个挑战。为了将性能良好的微波介质陶瓷应用到LTCC技术中,陶瓷的烧结温度必须低于所选择的内电极金属的熔点(例如Ag的熔点为961oC)。大部分具有良好微波介电性能的微波陶瓷都具有较高的烧结温度(一般大于1000oC)。为了将其烧结温度降低到电极金属熔点以下,一般采取两种方法:细化初始原料粉体;添加烧结助剂。对于纳米级别的初始粉体,其陶瓷的烧结温度会比微米级别粉体显著降低。但是,纳米粉体的获得是一个较为复杂的过程,通常需要使用化学的方法制备,耗时耗力,不适合工业生产。第二种方法是添加低熔点的氧化物、氟化物或者低软化点的玻璃相。这种方法操作简单,成本较低,适合于工业生产。其缺点在于,不恰当的烧结助剂的添加容易引入杂相物质,恶化材料的微波介电性能。对于特定体系,特定烧结助剂的添加不仅会降低其烧结温度,还会起到调节新能的作用。
综上所述,随着微波介质陶瓷广泛应用于介质谐振器、滤波器、介质波导以及介质基板等领域,为了满足器件小型化以及集成化的发展需要,低温共烧陶瓷技术(LTCC)以其不可替代的奇特优势,逐渐成为器件开发制造的主流技术。因此,寻找、制备与研究低介电常数(低于10)、低损耗(Qf>5000GHz)、近零谐振频率温度系数(TCF=0ppm/oC)、低烧结温度(低于Ag、Cu、Au、Al 等常用金属的熔点)且跟金属电极烧结匹配、低成本(不含或者含有少量贵重金属)、环保(至少无铅,尽量不含或者含有较少有毒原材料)的微波介质陶瓷成为了人们当前研究的热点与重点。
发明内容
本发明的目的是提供一种钼基低温烧结微波介质陶瓷材料,以克服现有技术存在的微波介质陶瓷性能不够理想的问题。 
为克服现有技术存在的问题,本发明的技术方案如下:一种钼基低温烧结微波介质陶瓷材料,其特征在于:该陶瓷材料结构表达式为 (La1-xNdx)2Mo3O12, 其中0.0≤x≤1.0。
与现有技术相比,本发明的优点是:
1、所提供的微波介质陶瓷材料性能优良:它烧结后的相对介电常数为8.2~10.1,低的低频介电损耗(tanδ<5×10-4,1MHz),良好的微波性能(Qf=60,000~80,000 GHz),使用频率可达10 GHz以上,谐振频率温度系数为-80~-60 ppm/oC。
2、该陶瓷材料不需要添加任何助烧剂就可以在900~1000 oC烧结,其最低烧结温度低至900 oC。
3、制备工艺简单:由于化学组成简单,物相单一,可采用最简单有效的固相反应烧结的方法来制备。
4、应用范围宽:该陶瓷材料不仅适用于普通微波基板、微波天线等高频端微波元器件的生产制备,更适用于LTCC技术的应用需要,扩大了其应用范围。
具体实施方式
下面对本发明的内容作进一步详细说明。
本发明的新型钼基低温烧结微波介质陶瓷材料的配方表达式为:(La1-xNdx)2Mo3O12, 其中0.0≤x≤1.0。
钼基低温烧结微波介质陶瓷材料的制备方法,按传统固相反应烧结的方法进行:
1)将化学原料MoO3、La2O3和Nd2O3按配方通式(La1-xNdx)2Mo3O12配料,其中0.0≤x≤1.0;
2)将步骤1)配料混合,球磨5~8个小时,在100~200 oC下烘干,过筛200目后压制成块状体;
3)将步骤2)的块状体经700oC~900oC预烧,并保温4~6小时,得到样品烧块;
4)将样品烧块粉碎,并经过5~6个小时的二次球磨,在100 ~200oC下烘干、造粒,造粒后经60目与120目筛网双层过筛,得到瓷料粉末;
5)将瓷料粉末压制成型,在900~1000 oC下烧结2~4个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
本发明的低温烧结钼基微波介质陶瓷材料其主要特点是以低熔点氧化物MoO3作为主元,使得在低温下烧结这种介质陶瓷材料成为可能。本发明根据晶体化学原理和电介质有关理论,以缺陷白钨矿组成(Ln2/3--1/3)MoO4(其中Ln=La3+或Nd3+,--表示空位)为基础,通过La+3和Nd+3离子的组合来占据A位,使用高价态的Mo6+离子占据B位,同时在A位存在一个有序的空位,使得晶胞相应的扩展为原来的3倍,成为Ln2 -- Mo3O12(其中Ln=La3+或Nd3+,--表示空位)。在没有添加任何烧结助剂的前提下,可以在较低的温度范围(900~1000 oC)内烧结出致密的且有着优良微波介电性能的新型功能陶瓷,这类陶瓷可以作为射频多层陶瓷电容器、介质基板、片式微波介质谐振器或滤波器、低温共烧陶瓷系统(LTCC)、陶瓷天线、多芯片组件(MCM)等介质材料使用。
实施例1
将分析纯度的原料MoO3和La2O3按配方La2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经800 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3h成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=10.1(12.5 GHz),品质因子Q=4,800,Qf=60,000 GHz,微波下的谐振频率温度系数TCF=-80 ppm/oC(25~85 oC)。
实施例2:
将分析纯度的原料MoO3、La2O3和Nd2O3按配方(La0.9Nd0.1)2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经800 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=9.9(13.1GHz),品质因子Q=4,850,Qf=63,500 GHz,微波下的谐振频率温度系数TCF=-77 ppm/oC(25~85 oC)。
实施例3:
将分析纯度的原料MoO3、La2O3和Nd2O3按配方(La0.75Nd0.25)2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经800 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=9.6(13.7GHz),品质因子Q=4,760,Qf=65,200 GHz,微波下的谐振频率温度系数TCF=-75 ppm/oC(25~85 oC)。
实施例4:
将分析纯度的原料MoO3、La2O3和Nd2O3按配方(La0.5Nd0.5)2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经800 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=9.1(14.2GHz),品质因子Q=5,070,Qf=72,000 GHz,微波下的谐振频率温度系数TCF=-70 ppm/oC(25~85 oC)。
实施例5:
将分析纯度的原料MoO3、La2O3和Nd2O3按配方(La0.25Nd0.75)2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经850 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=8.6(14.9GHz),品质因子Q=5,120,Qf=76,300 GHz,微波下的谐振频率温度系数TCF=-65 ppm/oC(25~85 oC)。
实施例6:
将分析纯度的原料MoO3、La2O3和Nd2O3按配方(La0.1Nd0.9)2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经850 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在900~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
900~1000 oC空气中烧结成瓷,微波下的介电性能εr=8.4(15.4GHz),品质因子Q=5,070,Qf=78,100 GHz,微波下的谐振频率温度系数TCF=-62 ppm/oC(25~85 oC)。
实施例7:
将分析纯度的原料MoO3和Nd2O3按配方Nd2Mo3O12配制。配制后充分混合球磨4个小时,然后烘干、过筛、压块,经850 oC预烧4个小时,然后将预烧后的块状样品粉碎后再进行二次球磨5小时,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型(片状或者柱状),然后在920~1000 oC空气下烧结2~3个小时成瓷,即可得到钼基低温烧结微波介质陶瓷材料。
该组陶瓷材料的性能达到如下指标:
920~1000 oC空气中烧结成瓷,微波下的介电性能εr=8.2(15.9GHz),品质因子Q=5,050,Qf=80,000 GHz,微波下的谐振频率温度系数TCF=-80 ppm/oC(25~85 oC)。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (1)

1.一种钼基低温烧结微波介质陶瓷材料,其特征在于:该陶瓷材料结构表达式为:(La1-xNdx)2Mo3O12, 其中0.0≤x≤1.0。
CN201010228785XA 2010-07-16 2010-07-16 一种钼基低温烧结微波介质陶瓷材料 Pending CN101891476A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010228785XA CN101891476A (zh) 2010-07-16 2010-07-16 一种钼基低温烧结微波介质陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010228785XA CN101891476A (zh) 2010-07-16 2010-07-16 一种钼基低温烧结微波介质陶瓷材料

Publications (1)

Publication Number Publication Date
CN101891476A true CN101891476A (zh) 2010-11-24

Family

ID=43100855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010228785XA Pending CN101891476A (zh) 2010-07-16 2010-07-16 一种钼基低温烧结微波介质陶瓷材料

Country Status (1)

Country Link
CN (1) CN101891476A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002874A (zh) * 2019-04-30 2019-07-12 电子科技大学 一种超低温烧结微波介质陶瓷材料及其制备方法
CN110483044A (zh) * 2019-09-25 2019-11-22 哈尔滨工业大学 一种高q微波介质陶瓷与铝超低温共烧方法及高q微波介质陶瓷制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Eur.J. Inorg.Chem.》 20051231 Khalid Boulahya et al. Synthesis, Structural and Magnetic Characterization of a New Scheelite Related Compound: Eu2Mo3O12 967-970 1 , *
石晓波等: "钼酸镧超细微粒催化剂的合成及表征", 《江西师范大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002874A (zh) * 2019-04-30 2019-07-12 电子科技大学 一种超低温烧结微波介质陶瓷材料及其制备方法
CN110483044A (zh) * 2019-09-25 2019-11-22 哈尔滨工业大学 一种高q微波介质陶瓷与铝超低温共烧方法及高q微波介质陶瓷制备方法
CN110483044B (zh) * 2019-09-25 2021-08-13 哈尔滨工业大学 一种高q值微波介质陶瓷与铝超低温共烧方法及高q值微波介质陶瓷制备方法

Similar Documents

Publication Publication Date Title
CN102249663B (zh) 一种铋基钒基低温烧结微波介质陶瓷材料及其制备方法
CN101823880B (zh) 一种硅铍石型钼基钨基超低温烧结微波介质陶瓷材料及其制备方法
CN101318815B (zh) 铋基钼基超低温烧结微波介质陶瓷材料及其制备
CN101823879B (zh) 一种白钨矿型钼基超低温烧结微波介质陶瓷材料及其制备方法
CN102584218B (zh) L波段用环保型微波介质陶瓷
CN103172376A (zh) 一种白钨矿型微波介质陶瓷材料及其制备方法
CN103864414A (zh) 一种低介电常数的微波介质陶瓷及其制备方法
CN103396120A (zh) 可低温烧结的钼基微波介电陶瓷Ba4Li2Mo2O11
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN103232243A (zh) 钒酸盐微波介电陶瓷Ca1.5M3V3O12及其制备方法
CN102718473B (zh) 一种低温烧结的铋基微波介质陶瓷及其制备方法
CN104003722A (zh) 可低温烧结的超低介电常数微波介电陶瓷Li3AlV2O8及其制备方法
CN101913858B (zh) Li2O-ZnO-TiO2微波介质陶瓷材料及其制备方法
CN103113103B (zh) 可低温烧结微波介电陶瓷BiZn2VO6及其制备方法
CN103951425B (zh) 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法
CN103496973A (zh) 可低温烧结的微波介电陶瓷BiTiNbO6及其制备方法
CN102584214A (zh) 一种小型精密天线用环保型微波介质陶瓷材料
CN103553612A (zh) 可低温烧结的微波介电陶瓷Ba6W2V2O17及其制备方法
CN103496979A (zh) 可低温烧结的微波介电陶瓷La3Cu2VO9及其制备方法
CN103044025A (zh) 钼基低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN101723663B (zh) 低温烧结钙钛矿结构微波介质陶瓷及其制备方法
CN101445364A (zh) 一种可低温烧结的高介电常数锌铌钛微波介质陶瓷及其制备方法
CN102887708B (zh) 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法
CN103539449A (zh) 可低温烧结的微波介电陶瓷BiNbW2O10及其制备方法
CN103553613A (zh) 可低温烧结的微波介电陶瓷BaV2Nb2O11及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20101124