CN110066170B - 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法 - Google Patents

一种高q值低温烧结复合微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110066170B
CN110066170B CN201910377745.2A CN201910377745A CN110066170B CN 110066170 B CN110066170 B CN 110066170B CN 201910377745 A CN201910377745 A CN 201910377745A CN 110066170 B CN110066170 B CN 110066170B
Authority
CN
China
Prior art keywords
microwave dielectric
mgti
ceramic material
dielectric ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910377745.2A
Other languages
English (en)
Other versions
CN110066170A (zh
Inventor
刘成
王文文
张洪阳
徐文豪
石梁
王刚
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910377745.2A priority Critical patent/CN110066170B/zh
Publication of CN110066170A publication Critical patent/CN110066170A/zh
Application granted granted Critical
Publication of CN110066170B publication Critical patent/CN110066170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种高Q值低温烧结复合微波介质陶瓷材料及其制备方法,属于电子信息功能陶瓷材料与电子器件技术领域。所述复合微波介质陶瓷材料由Li2MgTi3O8和Ba3(VO4)2两相构成,所述Li2MgTi3O8的质量百分比为40wt%~80wt%,Ba3(VO4)2的质量百分比为20wt%~60wt%。本发明微波介质陶瓷在无烧结助剂作用下可在925℃下烧结成瓷,其介电常数约为~15,品质因数为43740~108282GHz,谐振频率温度系数为2.05~12.78ppm/℃。该体系烧结温度低、介电常数小、温度系数近零可调、传输损耗较低,适合应用于LTCC高频微波电子器件等领域。

Description

一种高Q值低温烧结复合微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子信息功能陶瓷材料与电子器件技术领域,具体涉及一种高Q值低温烧结复合微波介质陶瓷材料及其制备方法,可应用于LTCC微波介质基板与集成器件等领域。
背景技术
现代微波通信技术的集成化、小型化、高频化特别是5G通信技术的发展,对其中使用的谐振器、滤波器、波导、介质基板及天线等材料提出了新的要求。目前广泛采用的微波介质陶瓷材料虽然能够满足以上各类电子元器件对性能的要求,但随着移动通信技术的不断升级,各类移动通信设备的更新换代和普及,研发出一类具有低烧结温度、低原料成本及温度稳定性良好、Q值较高的新型微波介质陶瓷材料具有重要的工程和商业价值。国内外许多公司及研究机构针对微波介质材料的研发已成为目前电子信息功能陶瓷领域的热点,开发一种信号响应速度快、损耗小、工作环境温度适应性强、能够广泛应用在移动通讯、雷达及卫星通信等领域、满足LTCC器件性能需求的低温烧结微波介质陶瓷材料是实现上述技术发展需求的关键。本发明所提供的低温烧结复合微波介质陶瓷材料具有品质因数较高、介电常数较低、温度稳定性好的特点,有助于进一步丰富此类产品的需求。
发明内容
本发明所要解决的技术问题是,开发一种新型高Q值低温烧结复合微波介质陶瓷材料,满足日益增长的LTCC元器件需求。该体系具有烧结温度低、介电常数小、品质因数高、温度稳定性优异等特点,为微波介质元器件向高频化、集成化、LTCC化发展提供了一种有效解决方案。
为解决上述技术问题,本发明采用的技术方案如下:
一种高Q值低温烧结复合微波介质陶瓷材料,其特征在于,所述复合微波介质陶瓷材料由Li2MgTi3O8和Ba3(VO4)2两相构成,所述Li2MgTi3O8的质量百分比为40wt%~80wt%,Ba3(VO4)2的质量百分比为20wt%~60wt%。
进一步地,所述复合微波介质陶瓷材料中,Li2MgTi3O8相以Li2CO3、MgO、TiO2为原料,按照分子式Li2MgTi3O8配制得到;Ba3(VO4)2相以BaCO3、V2O5为原料,按照分子式Ba3(VO4)2配制。
本发明的微波介质陶瓷材料介电常数约为~15,品质因数为43740~108282GHz,谐振频率温度系数为2.05~12.78ppm/℃。
本发明还提供了一种高Q值低温烧结复合微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1、以纯度为99%的Li2CO3、MgO、TiO2为原料,按照分子式Li2MgTi3O8配制得到微波介电相粉体L;
步骤2、以纯度为99%的BaCO3、V2O5为原料,按照分子式Ba3(VO4)2配制得到微波介电相粉体B;
步骤3、将步骤1配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合9~10h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至900℃并保温4h,得到Li2MgTi3O8粉体L;
步骤4、将步骤2配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合9~10h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至800℃并保温8h,得到Ba3(VO4)2粉体B;
步骤5、将步骤3和步骤4制得的粉体L和粉体B,按照Li2MgTi3O8的质量百分比为40wt%~80wt%、Ba3(VO4)2的质量百分比为20wt%~60wt%的比例,混合均匀;然后,以无水乙醇为分散剂、氧化锆球为球磨介质,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合6~10h,出料后烘干过80目筛;然后按照重量比加入6~10wt%的有机粘合剂进行造粒,过120目筛后压制成直径10~12mm、高5~6mm的圆柱状塑坯;
步骤6、将步骤5得到的塑坯放入马弗炉内,在空气气氛、925℃下烧结4h,得到所述复合微波介质陶瓷材料。
将步骤6得到的Li2MgTi3O8-Ba3(VO4)2复合微波介质陶瓷两表面抛光制成成品待测。其中,微波介电性能测试采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能[Ref:B.W.Hakki,P.D.Coleman,"DielectricResonator Method of Measuring Inductive Capacities in the Millimeter Range",IEEE Trans.Microw.Theory Technol.,Mtt-8,402(1970)]。
本发明的有益效果为:
本发明提出的一种高Q值低温烧结复合微波介质陶瓷材料,能很好的满足当前移动通信技术领域对使用环境日趋严苛的要求,不仅具有高品质因数,还具有稳定的温度特性,满足LTCC技术的需求。该低温烧结复合微波介质陶瓷材料可用作微波谐振器、波导及相关电子线路基板材料。
附图说明
图1为本发明实施例1~4制备得到的复合微波介质陶瓷材料的XRD图谱;
图2为本发明实施例1~4制备得到的复合微波介质陶瓷材料断面的SEM图;其中,(a)为实施例1,(b)为实施例2,(c)为实施例3,(d)为实施例4;
图3为本发明实施例1~4制备得到的复合微波介质陶瓷材料的微波介电性能;其中,(a)为介电常数,(b)为品质因数,(c)为谐振频率温度系数。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
本发明提供的一种高Q值低温烧结复合微波介质陶瓷材料制备方法,可通过下列非限定性实施例得到更加清楚的描述。
实施例1:制备80wt%Li2MgTi3O8-20wt%Ba3(VO4)2低温烧结复合微波介质陶瓷
步骤1、以纯度为99%的Li2CO3、MgO、TiO2为原料,按照分子式Li2MgTi3O8配制得到微波介电相粉体L;
步骤2、以纯度为99%的BaCO3、V2O5为原料,按照分子式Ba3(VO4)2配制得到微波介电相粉体B;
步骤3、将步骤1配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合10h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至900℃并保温4h,得到Li2MgTi3O8粉体L;
步骤4、将步骤2配制得到的粉体混合均匀,以无水乙醇为分散剂、氧化锆球为球磨介质,其中氧化锆球的直径为3~15mm,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合10h,出料后在75℃下烘干,过80目筛后以2℃/min的升温速率由室温升温至800℃并保温8h,得到Ba3(VO4)2粉体B;
步骤5、将步骤3和步骤4制得的粉体L和粉体B,按照Li2MgTi3O8的质量百分比为80wt%、Ba3(VO4)2的质量百分比为20wt%的比例,混合均匀;然后,以无水乙醇为分散剂、氧化锆球为球磨介质,按照原料:无水乙醇:氧化锆球的重量比为1:2:1.5,采用湿磨法混合10h,出料后烘干过80目筛;然后按照重量比加入8wt%的有机粘合剂进行造粒,过120目筛后压制成直径10~12mm、高5~6mm的圆柱状塑坯;
步骤6、将步骤5得到的塑坯放入马弗炉内,在空气气氛、925℃下烧结4h,得到所述复合微波介质陶瓷材料。
利用阿基米德排水法获得材料的实测表观密度;利用Philips X'Pert X射线衍射仪获得材料的物相结构信息;利用JEOL JSM-6490SEM获得材料的表观形貌。
将步骤6得到的80wt%Li2MgTi3O8-20wt%Ba3(VO4)2复合微波介质陶瓷两表面抛光制成成品待测。其中,微波介电性能测试采用Hakki and Coleman提出的介质谐振腔法测试圆柱体谐振频率下的介电常数与微波介电性能[Ref:B.W.Hakki,P.D.Coleman,"Dielectric Resonator Method of Measuring Inductive Capacities in theMillimeter Range",IEEE Trans.Microw.Theory Technol.,Mtt-8,402(1970)],采用美国Agilent N5230A网络分析仪测试得到。
实施例1制得的80wt%Li2MgTi3O8-20wt%Ba3(VO4)2(LB1)复合陶瓷材料,其微波介电性能测试结果如下:谐振频率9.476GHz,介电常数14.59,品质因数44551GHz,谐振频率温度系数12.17ppm/℃。
实施例2
本实施例与实施例1相比,区别在于:步骤5中,将步骤3和步骤4制得的粉体L和粉体B,按照Li2MgTi3O8的质量百分比为60wt%、Ba3(VO4)2的质量百分比为40wt%的比例,混合均匀;其余步骤与实施例1相同。
实施例2制得的60wt%Li2MgTi3O8-40wt%Ba3(VO4)2(LB2)复合陶瓷材料,其微波介电性能测试结果如下:谐振频率9.387GHz,介电常数14.873,品质因数108282GHz,谐振频率温度系数12.78ppm/℃。
实施例3
本实施例与实施例1相比,区别在于:步骤5中,将步骤3和步骤4制得的粉体L和粉体B,按照Li2MgTi3O8的质量百分比为50wt%、Ba3(VO4)2的质量百分比为50wt%的比例,混合均匀;其余步骤与实施例1相同。
实施例3制得的50wt%Li2MgTi3O8-50wt%Ba3(VO4)2(LB3)复合陶瓷材料,其微波介电性能测试结果如下:谐振频率9.499GHz,介电常数15.91,品质因数78569GHz,谐振频率温度系数8.42ppm/℃。
实施例4
本实施例与实施例1相比,区别在于:步骤5中,将步骤3和步骤4制得的粉体L和粉体B,按照Li2MgTi3O8的质量百分比为40wt%、Ba3(VO4)2的质量百分比为60wt%的比例,混合均匀;其余步骤与实施例1相同。
实施例4制得的40wt%Li2MgTi3O8-60wt%Ba3(VO4)2(LB4)复合陶瓷材料,其微波介电性能测试结果如下:谐振频率9.776GHz,介电常数15.96,品质因数43740GHz,谐振频率温度系数2.05ppm/℃。
综上,上述的4个具体实施例中,实施例2制备的60wt%Li2MgTi3O8-40wt%Ba3(VO4)2复合陶瓷材料品质因数最大,为108282GHz,表明其信号传输时的能量损耗最低;介电常数为14.87;谐振频率温度系数12.78ppm/℃。实施例4制备的40wt%Li2MgTi3O8-60wt%Ba3(VO4)2复合陶瓷材料,谐振频率温度系数最接近于零,为2.05ppm/℃,表明其温度稳定性最好;介电常数最大,为15.96;品质因数为43740GHz。在制备的4个实施例中,实施例2因其较高的品质因数Q,且满足LTCC低温共烧技术要求,被认为综合性能最优。
本发明包括但不限于以上实施例,凡符合本发明要求的实施方案均属于本发明的保护范围。
综上,本发明提供了一种新型高Q值低温烧结复合微波介质陶瓷材料及其制备方法。通过选择两种不同的微波介电相基体Li2MgTi3O8和Ba3(VO4)2,获得了具有品质因数高、烧结温度低、介电常数小、温度稳定性较优异的一种高Q值低温烧结复合微波介质陶瓷材料,为微波介质元器件向高频化、小型化、LTCC化发展提供了一种有效解决方案。

Claims (3)

1.一种高Q值低温烧结复合微波介质陶瓷材料,其特征在于,所述复合微波介质陶瓷材料由Li2MgTi3O8和Ba3(VO4)2两相构成,所述Li2MgTi3O8的质量百分比为40wt%~80wt%,Ba3(VO4)2的质量百分比为20wt%~60wt%;所述微波介质陶瓷材料的品质因数为43740~108282GHz。
2.根据权利要求1所述的高Q值低温烧结复合微波介质陶瓷材料,其特征在于,所述复合微波介质陶瓷材料中,Li2MgTi3O8相以Li2CO3、MgO、TiO2为原料,按照分子式Li2MgTi3O8配制得到;Ba3(VO4)2相以BaCO3、V2O5为原料,按照分子式Ba3(VO4)2配制。
3.一种如权利要求1所述的高Q值低温烧结复合微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1、以Li2CO3、MgO、TiO2为原料,按照分子式Li2MgTi3O8配制得到微波介电相粉体L;
步骤2、以BaCO3、V2O5为原料,按照分子式Ba3(VO4)2配制得到微波介电相粉体B;
步骤3、将步骤1配制得到的粉体混合均匀,球磨,烘干,过筛后,在900℃下保温4h,得到Li2MgTi3O8粉体;
步骤4、将步骤2配制得到的粉体混合均匀,球磨,烘干,过筛后,在800℃下保温8h,得到Ba3(VO4)2粉体;
步骤5、将步骤3和步骤4制得的Li2MgTi3O8粉体和Ba3(VO4)2粉体,按照Li2MgTi3O8的质量百分比为40wt%~80wt%、Ba3(VO4)2的质量百分比为20wt%~60wt%的比例,混合均匀;球磨,烘干,过筛后,加入有机粘合剂进行造粒,压制成型,得到塑坯;
步骤6、将步骤5得到的塑坯放入马弗炉内,在空气气氛、925℃下烧结4h,得到所述复合微波介质陶瓷材料。
CN201910377745.2A 2019-04-30 2019-04-30 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法 Active CN110066170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910377745.2A CN110066170B (zh) 2019-04-30 2019-04-30 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910377745.2A CN110066170B (zh) 2019-04-30 2019-04-30 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110066170A CN110066170A (zh) 2019-07-30
CN110066170B true CN110066170B (zh) 2021-10-26

Family

ID=67370389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910377745.2A Active CN110066170B (zh) 2019-04-30 2019-04-30 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110066170B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606709A (zh) * 2020-06-11 2020-09-01 电子科技大学 一种超低温烧结微波介质材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004713A (en) * 1989-07-05 1991-04-02 Corning Incorporated Frequency stable NPO ceramics
JP5491085B2 (ja) * 2008-11-10 2014-05-14 日本碍子株式会社 セラミックスシートの製造方法
CN102674829B (zh) * 2012-05-16 2013-11-06 桂林电子科技大学 低温共烧锂镁钛微波介质陶瓷材料及其制备方法
CN104341148A (zh) * 2014-11-05 2015-02-11 天津大学 Li2MgTi3O8系微波介质陶瓷Sn4+置换B位Ti4+提高Q值的方法
CN104844193B (zh) * 2015-04-08 2017-04-05 天津大学 高q值锂镁钛系微波介质陶瓷及其低温烧结的实现方法

Also Published As

Publication number Publication date
CN110066170A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
US11629102B2 (en) Li3Mg2SbO6-based microwave dielectric ceramic material easy to sinter and with high q value, and preparation method therefor
CN110092655B (zh) 一种钡钐钛系低损耗微波介质陶瓷及其制备方法
CN114656261B (zh) 一种中介电常数ltcc微波介质陶瓷材料及其制备方法
CN104003722A (zh) 可低温烧结的超低介电常数微波介电陶瓷Li3AlV2O8及其制备方法
CN102249670A (zh) 低温烧结的微波介电陶瓷Li2Ba1-xSrxTi4O16及其制备方法
CN110183227A (zh) 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN104557019A (zh) 超低温烧结温度稳定型微波介电陶瓷LiBiB2O5及其制备方法
CN102603292A (zh) 一种用于可低温烧结微波介电陶瓷的复合氧化物
CN110066170B (zh) 一种高q值低温烧结复合微波介质陶瓷材料及其制备方法
CN110229004A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN103570345A (zh) 低温烧结微波介电陶瓷Bi12MgO19及其制备方法
CN102887708B (zh) 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法
CN110002874B (zh) 一种超低温烧结微波介质陶瓷材料及其制备方法
CN103539444A (zh) 低温烧结微波介电陶瓷Ca2Bi2O5及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN103524126B (zh) 低温烧结微波介电陶瓷CaBi2O4及其制备方法
CN101531511A (zh) 一种低温烧结的高热稳定微波介电陶瓷材料及其制备方法
CN104003719A (zh) 可低温烧结的微波介电陶瓷LiTi2V3O12及其制备方法
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN113800908A (zh) 中介电常数双钙钛矿微波介质陶瓷材料及其制备方法
CN112661509B (zh) 一种高Q值MgZrNb2O8基微波介质陶瓷材料及其制备方法
CN103896573A (zh) 可低温烧结的温度稳定型微波介电陶瓷LiPO3及其制备方法
CN104446379A (zh) 一种温度稳定型超低介电常数微波介电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant