CN111517789B - 一种低介电微波介质陶瓷材料及其制备方法 - Google Patents

一种低介电微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111517789B
CN111517789B CN202010358668.9A CN202010358668A CN111517789B CN 111517789 B CN111517789 B CN 111517789B CN 202010358668 A CN202010358668 A CN 202010358668A CN 111517789 B CN111517789 B CN 111517789B
Authority
CN
China
Prior art keywords
equal
ceramic material
dielectric ceramic
low
microwave dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010358668.9A
Other languages
English (en)
Other versions
CN111517789A (zh
Inventor
唐莹
苏聪学
方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202010358668.9A priority Critical patent/CN111517789B/zh
Publication of CN111517789A publication Critical patent/CN111517789A/zh
Application granted granted Critical
Publication of CN111517789B publication Critical patent/CN111517789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低介电微波介质陶瓷材料及其制备方法。原料成分为CaCO3、MgO、Yb2O3、GeO2,所述原料成分以Ca3‑xMgxYb2Ge3O12,其中0≤x≤3化学计量比进行配比。本发明采用传统的高温固相合成法,制备方法简单,制备得到的低介电微波介质陶瓷材料的介电常数εr范围为10.2~13.9,品质因数Qf的范围为19800~98200GHz,谐振频率温度系数为‑48ppm/℃~+70.5ppm/℃。

Description

一种低介电微波介质陶瓷材料及其制备方法
技术领域
本发明涉及用于制造微波频率使用的陶瓷基板、谐振器与滤波器等微波元器件的微波介电陶瓷材料及其制备方法,属于微波介质陶瓷材料技术的领域。
背景技术
微波介质陶瓷作为微波通讯、高速高频电路基板、卫星定位导航系统、雷达探测等现代通信技术领域中的关键基础材料,被广泛用作射频微带天线、波导、放大器、衰减器、耦合器、谐振器、滤波器、介质基片、微波基板和微波电容器等元器件。现代移动通讯迅速发展推动着各类微波移动通信终端设备向小型化、轻量化、多功能化及低成本的方向快速发展。随着5G技术的应用深入,微波通信技术向毫米波段延伸,微波介质陶瓷材料在极高频的毫米波段下需要:1、具有较低的介电常数以提高电信号的传输速率(低介电常数能够降低电磁信号的交互耦合作用,提高电磁波的传播速率);2、极低的介电损耗以提高器件工作频率的可选择性,同时可以降低器件的能量转换消耗;3、近零的谐振频率温度系数来保证谐振与传输时信号的工作稳定性。因此,低介电微波介质陶瓷材料(介电常数εr<15)在近年来备受国内外研究人员的探索与研究。
目前报道的介电常数15以下的石榴石微波介质陶瓷通常具有较高的品质因数,例如钒基石榴石LiCa3MV3O12(M=Mg,Zn)的品质因数高达74700~81100GHz,Ca5M4(VO4)6(M=Mg,Zn,Co,Mn)的品质因数在33800~95200GHz之间,硅基石榴石Y3MgAl3SiO12的品质因数范围为16739~57337GHz,钨基石榴石Li3Nd3W2O12的品质因数为36800GHz,锌基石榴石Ca3Te2Zn3O12的品质因数为20340GHz,但是以上石榴石微波介质陶瓷材料的谐振频率温度系数在负的方向偏大。解决谐振频率温度系数负值较大问题的方法主要是添加正值较大的谐振频率温度系数材料(例如CaTiO3或者TiO2)进行材料复合,以此调节材料体系的谐振频率温度系数近零,但这种方法通常会导致材料体系的品质因数明显下降。
发明内容
为解决上述问题,本发明的目的是提供一种低介电微波介质陶瓷材料以及制备该微波介质陶瓷材料的方法。本发明的低介电微波介质陶瓷材料具有低介电常数和高品质因数,并且谐振频率温度系数范围为-48ppm/℃~+70.5ppm/℃,从负值到近零再到正值均有覆盖,性能优异。
为了克服现有技术的不足,本发明的技术方案为:
一种低介电微波介质陶瓷材料,原料成分为CaCO3、MgO、Yb2O3、GeO2,原料成分以Ca3-xMgxYb2Ge3O12,其中0≤x≤3化学计量比进行配比,所述低介电微波介质陶瓷材料的介电常数εr范围为10.2~13.9,品质因数Qf的范围为19800~98200GHz,谐振频率温度系数为-48ppm/℃~+70.5ppm/℃。
一种低介电微波介质陶瓷材料的制备方法,包括以下步骤:
(1)以CaCO3、MgO、Yb2O3以及GeO2为原料,先将Yb2O3在1000℃预烧2小时;然后将这些原料按照Ca3-xMgxYb2Ge3O12,其中0≤x≤3化学计量比进行称量配比;然后将称量好的原料、二氧化锆球磨珠、无水乙醇按照1:3:1.5的质量比置于行星球磨机中进行湿式球磨,球磨6小时;球磨后将泥浆状原料导出置于烘箱中,并在120℃烘箱烘干得到原料混合物粉体,再将粉体压制成块状体,在1200℃~1250℃下保温6小时,使原料混合物粉体初步反应合成Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物;
(2)将步骤(1)中初步反应合成的Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物、二氧化锆球磨珠、无水乙醇按照1:4:1.2的质量比置于行星球磨机中进行湿式球磨,球磨6小时,形成粒径细化的Ca3-xMgxYb2Ge3O12,其中0≤x≤1化合物浆料;然后将粒径细化的化合物浆料导出置于烘箱中,并在120℃烘箱烘干得到初步合成的Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物干料;
(3)将步骤(2)烘干的化合物干料加入粘合剂聚乙烯醇(PVA)混合均匀成粉料,然后先过60目标准筛,再过120目标准筛,获得颗粒分散均匀,粒径细化的粉料,接着将粉料置于模具中于300MPa压力下压制成圆柱体;
(4)将压制成的圆柱体置于高温炉中,以2℃/min的速度升温至550℃,保温1h以除去圆柱体中的粘合剂PVA,然后直接以5℃/min的速度从550℃升温至1360℃~1440℃烧结8小时成瓷,然后随炉冷却得到低介电微波介质陶瓷材料。
优选地,CaCO3的纯度为99.99%。
优选地,MgO的纯度为99.99%。
优选地,Yb2O3的纯度为99.99%。
优选地,GeO2的纯度为99.99%。
优选地,湿式球磨的转速为180转/分。
优选地,粘合剂为5wt%的聚乙烯醇溶液(PVA).
优选地,圆柱体直径为10~12mm、厚度为5.5~7mm。
优选地,粘合剂的添加量为Ca3-xMgxYb2Ge3O12,其中0≤x≤3的质量的2%~4%。
与现有技术相比,本发明的优点是:本发明提供的材料具有低介电常数(10.2~13.9)以提高电信号的传输速率,具有高的品质因数(19800~98200GHz)以提高器件工作频率的可选择性,以及范围广且近零的谐振频率温度系数(-48ppm/℃~+70.5ppm/℃)以保证器件的热稳定性。
附图说明
图1为x取0,0.5,1,1.5,2,2.5,3的7个样品的XRD图;
图2为x取0,0.5,1,1.5,2,2.5,3的7个样品的表面形貌图与相对密度图;
图3为x取0,0.5,1,1.5,2,2.5,3的7个样品的介电常数与谐振频率温度系数图;
图4为x取0,0.5,1,1.5,2,2.5,3的7个样品的品质因数图。
具体实施方式
以下结合附图和实施例对本发明做进一步的详细说明。
本发明材料原料成分为:CaCO3、MgO、Yb2O3、GeO2,原料成分以Ca3-xMgxYb2Ge3O12,其中0≤x≤3化学计量比进行配比。
其制备方法,包括下列步骤:
(1)以CaCO3、MgO、Yb2O3以及GeO2为原料,原料的纯度均为99.99%。先将Yb2O3在1000℃预烧2小时;然后将这些原料按照Ca3-xMgxYb2Ge3O12,其中0≤x≤3化学计量比进行称量配比;然后将称量好的原料、二氧化锆球磨珠、无水乙醇按照1:3:1.5的质量比置于行星球磨机中进行湿式球磨,湿式球磨的转速为180转/分,球磨6小时;球磨后将泥浆状原料导出置于烘箱中,并在120℃烘箱烘干得到原料混合物粉体,再将粉体压制成块状体,在1220℃下保温6小时,使原料混合物粉体初步反应合成Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物;
(2)将步骤(1)中初步反应合成的Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物、二氧化锆球磨珠、无水乙醇按照1:4:1.2的质量比置于行星球磨机中进行湿式球磨,湿式球磨的转速为180转/分,球磨6小时,形成粒径细化的Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物浆料;然后将粒径细化的化合物浆料导出置于烘箱中,并在120℃烘箱烘干得到初步合成的Ca3- xMgxYb2Ge3O12,其中0≤x≤3化合物干料;
(3)将步骤(2)烘干的化合物干料加入粘合剂聚乙烯醇(PVA)混合均匀成粉料,其中,粘合剂为5wt%的聚乙烯醇溶液(PVA),粘合剂的添加量为Ca3-xMgxYb2Ge3O12,其中0≤x≤3的质量的3%。然后先过60目标准筛,再过120目标准筛,获得颗粒分散均匀,粒径细化的粉料,接着将粉料置于模具中于300MPa压力下压制成圆柱体,圆柱体直径为11mm、厚度为6.5mm;
(4)将压制成的圆柱体置于高温炉中,以2℃/min的速度升温至550℃,保温1h以除去圆柱体中的粘合剂PVA,然后直接以5℃/min的速度从550℃升温至1400℃烧结8小时成瓷,然后随炉冷却得到低介电微波介质陶瓷材料。
表1给出各实施例的微波介电性能。
表1
x取值 样品名称 ε<sub>r</sub> Q×f τ<sub>f</sub>
0 Ca<sub>3</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 10.2 98200 –48
0.5 Ca<sub>2.5</sub>Mg<sub>0.5</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 10.6 89030 –55.6
1 Ca<sub>2</sub>MgYb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 11 87129 –56.3
1.5 Ca<sub>1.5</sub>Mg<sub>1.5</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 11.2 86040 –50.4
2 CaMg<sub>2</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 11.8 78010 –40.3
2.5 Ca<sub>0.5</sub>Mg<sub>2.5</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 12.4 24000 +4.7
3 Mg<sub>3</sub>Yb<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub> 13.9 19800 +70.5
图1为x取0,0.5,1,1.5,2,2.5,3的7个样品的XRD图。从图中可以看出,当x取0,0.5,1,1.5的时候,对应的微波介质陶瓷材料的物相为纯的正石榴石结构立方相,与同为正石榴石结构立方相的Ca3Y2Ge3O12(PDF卡片为98-028-0048)相吻合。当x取2,2.5,3的时候,对应微波介质陶瓷材料的物相为纯的反石榴石结构立方相,与同为反石榴石结构立方相的Mg3Y2Ge3O12(PDF卡片为01-089-6603)相吻合。
图2为x取0,0.5,1,1.5,2,2.5,3的7个样品的表面形貌图与相对密度图。从图中可以看出传统的高温固相合成法可以制备出晶粒尺寸均匀,结构致密的微波介质陶瓷材料,而且这些材料的相对密度均在97%以上,与表面形貌图相吻合。
图3为x取0,0.5,1,1.5,2,2.5,3的7个样品的介电常数与谐振频率温度系数图。从图中可以看出介电常数随着x取值的增大而逐渐增大,但所有样品的介电常数均低于15,有利于提高电信号的传输速率。从图中可以看出,当x取2.5的时候,Ca0.5Mg2.5Yb2Ge3O12可以获得近零的谐振频率温度系数(+4.7ppm/℃)。
图4可以看出随着x取值的变大,材料的品质因数呈下降趋势,但品质因数的范围为19800~98200GHz,有利于提高器件工作频率的可选择性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明所提交的权利要求确定专利保护范围。

Claims (9)

1.一种低介电微波介质陶瓷材料,其特征在于,原料成分为CaCO3、MgO、Yb2O3、GeO2,所述原料成分以Ca3-x MgxYb2Ge3O12,其中0≤x≤3化学计量比进行配比,所述低介电微波介质陶瓷 材料的介电常数εr范围为10 .2~13 .9,品质因数Qf的范围为19800~98200GHz,谐振频率温度系数为-48ppm/℃~+70 .5ppm/℃, 所述低介电微波介质陶瓷材料通过以下方法制备获得:
(1)以CaCO3、MgO、Yb2O3以及GeO2为原料,先将Yb2O3在1000℃预烧2小时;然后将这些原料按照Ca3-x MgxYb2Ge3O12,其中0≤x≤3化学计量比进行称量配比;然后将称量好的原料、二氧化锆球磨珠、无水乙醇按照1:3:1 .5的质量比置于行星球磨机中进行湿式球磨,球磨6小时;球磨后将泥浆状原料导出置于烘箱中,并在120℃烘箱烘干得到原料混合物粉体,再将粉体压制成块状体,在1200℃~1250℃下保温6小时,使原料混合物粉体初步反应合成Ca3-xMgxYb2Ge3O12,其中0≤x≤3化合物;
(2)将步骤(1)中初步反应合成的Ca3-x MgxYb2Ge3O12,其中0≤x≤3化合物、二氧化锆球磨 珠、无水乙醇按照1:4:1 .2的质量比置于行星球磨机中进行湿式球磨,球磨6小时,形成粒径 细化的Ca3-x MgxYb2Ge3O12,其中0≤x≤3化合物浆料;然后将粒径细化的化合物浆料导出置于烘箱中,并在120℃烘箱烘干得到初步合成的Ca3-x MgxYb2Ge3O12,其中0≤x≤3化合物干料;
(3)将步骤(2)烘干的化合物干料加入粘合剂聚乙烯醇混合均匀成粉料,然后先过60目标准筛,再过120目标准筛,获得颗粒分散均匀,粒径细化的粉料,接着将粉料置于模 具中于300MPa压力下压制成圆柱体;
(4)将压制成的圆柱体置于高温炉中,以2℃/min的速度升温至550℃,保温1h以除去圆 柱体中的粘合剂PVA,然后直接以5℃/min的速度从550℃升温至1360℃~1440℃烧结8小时成瓷,得到低介电微波介质陶瓷材料。
2.如权利要求1所述的低介电微波介质陶瓷材料,其特征在于,所述CaCO3的纯度为99.99%。
3.如权利要求1所述的低介电微波介质陶瓷材料,其特征在于,所述MgO的纯度为99.99%。
4.如权利要求1所述的低介电微波介质陶瓷材料,其特征在于,所述Yb2O3的纯度为99.99%。
5.如权利要求1所述的低介电微波介质陶瓷材料,其特征在于,所述GeO2的纯度为99.99%。
6.如权利要求1-5任一所述的低介电微波介质陶瓷材料,其特征在于,所述湿式球磨的转速为180转/分。
7.如权利要求1-5任一所述的低介电微波介质陶瓷材料,其特征在于,所述粘合剂为5wt%的聚乙烯醇溶液。
8.如权利要求1-5任一所述的低介电微波介质陶瓷材料,其特征在于,所述圆柱体直径为10~12mm、厚度为5 .5~7mm。
9.如权利要求7所述的低介电微波介质陶瓷材料,其特征在于,所述粘合剂的添加量为Ca3-x MgxYb2Ge3O12,其中0≤x≤3的质量的2%~4%。
CN202010358668.9A 2020-04-29 2020-04-29 一种低介电微波介质陶瓷材料及其制备方法 Active CN111517789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010358668.9A CN111517789B (zh) 2020-04-29 2020-04-29 一种低介电微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010358668.9A CN111517789B (zh) 2020-04-29 2020-04-29 一种低介电微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111517789A CN111517789A (zh) 2020-08-11
CN111517789B true CN111517789B (zh) 2022-06-14

Family

ID=71905793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010358668.9A Active CN111517789B (zh) 2020-04-29 2020-04-29 一种低介电微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111517789B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024249B (zh) * 2021-03-29 2022-04-22 三峡大学 微波介质陶瓷复合材料及制备方法
CN113651600A (zh) * 2021-08-19 2021-11-16 桂林理工大学 低介电常数高品质因子锗酸盐微波介质陶瓷及其制备方法
CN116283282B (zh) * 2022-12-09 2024-03-08 玉林师范学院 钒基低介电常数微波介质陶瓷材料及其制备方法
CN115872445B (zh) * 2022-12-16 2024-04-19 广东工业大学 一种石榴石型发光材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186495A (zh) * 2001-08-09 2008-05-28 大里齐 微波电介质组合物及微波电介质共振器
CN105777078A (zh) * 2016-05-23 2016-07-20 桂林理工大学 低损耗温度稳定型超低介电常数微波介电陶瓷Mg3Y2Ge3O12
CN105777077A (zh) * 2016-02-17 2016-07-20 桂林理工大学 高品质因数低介电常数微波介电陶瓷Ca3MgTiGe3O12及其制备方法
CN106007673A (zh) * 2016-05-23 2016-10-12 桂林理工大学 高品质因数温度稳定型超低介电常数微波介电陶瓷Ca3Y2Ge3O12
CN107500754A (zh) * 2017-09-30 2017-12-22 厦门松元电子有限公司 一种用于高容高压mlcc的陶瓷介质材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186495A (zh) * 2001-08-09 2008-05-28 大里齐 微波电介质组合物及微波电介质共振器
CN105777077A (zh) * 2016-02-17 2016-07-20 桂林理工大学 高品质因数低介电常数微波介电陶瓷Ca3MgTiGe3O12及其制备方法
CN105777078A (zh) * 2016-05-23 2016-07-20 桂林理工大学 低损耗温度稳定型超低介电常数微波介电陶瓷Mg3Y2Ge3O12
CN106007673A (zh) * 2016-05-23 2016-10-12 桂林理工大学 高品质因数温度稳定型超低介电常数微波介电陶瓷Ca3Y2Ge3O12
CN107500754A (zh) * 2017-09-30 2017-12-22 厦门松元电子有限公司 一种用于高容高压mlcc的陶瓷介质材料及其制备方法

Also Published As

Publication number Publication date
CN111517789A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN111517789B (zh) 一种低介电微波介质陶瓷材料及其制备方法
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN104310980A (zh) 一种微波介质陶瓷材料及其制备方法
CN111848132A (zh) 易烧结高Q值Li3Mg2SbO6基微波介质陶瓷材料及其制备方法
CN114874010B (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN104016664A (zh) 一种低介电常数微波陶瓷材料的制备方法
CN110563463A (zh) 一种低介微波介质陶瓷材料及其ltcc材料
CN111470864B (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN112266232A (zh) 一种适用于5g毫米波通讯应用的低介微波介质陶瓷材料及其制备方法
CN113233889A (zh) 一种钙钕钛系微波介质陶瓷及其制备方法
CN101967058A (zh) 一种高q值微波介质陶瓷及其制备方法
CN110845226A (zh) 一种微波介质陶瓷材料SrGa2O4及其制备方法
CN111187062A (zh) 一种CaSnSiO5-K2MoO4基复合陶瓷微波材料及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN110885243A (zh) 一种低介电常数铝酸盐微波介质陶瓷材料及其制备方法
CN111517771A (zh) 一种微波介质陶瓷材料及其制备方法
CN112979297B (zh) 一种低介电常数微波介质陶瓷材料及陶瓷元器件
CN114163241B (zh) 一种低温热压制备的高性能低介微波介质陶瓷及其方法
CN113387695A (zh) 一种5g通信用低介高品质微波介质陶瓷及其制备方法
CN104710175A (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN110627480B (zh) MgO-Al2O3-GeO2三元体系微波介质材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200811

Assignee: Guangxi Free Trade Zone Lifeng Technology Development Group Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2022450000172

Denomination of invention: A Low Dielectric Microwave Dielectric Ceramic Material and Its Preparation Method

Granted publication date: 20220614

License type: Common License

Record date: 20221124

EE01 Entry into force of recordation of patent licensing contract