CN114628663A - 一种铈掺杂三元正极材料及其制备方法 - Google Patents

一种铈掺杂三元正极材料及其制备方法 Download PDF

Info

Publication number
CN114628663A
CN114628663A CN202210425299.XA CN202210425299A CN114628663A CN 114628663 A CN114628663 A CN 114628663A CN 202210425299 A CN202210425299 A CN 202210425299A CN 114628663 A CN114628663 A CN 114628663A
Authority
CN
China
Prior art keywords
cerium
cathode material
ternary cathode
doped
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210425299.XA
Other languages
English (en)
Other versions
CN114628663B (zh
Inventor
张艾丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huading Guolian Sichuan Battery Material Co ltd
Original Assignee
Huading Guolian Sichuan Battery Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huading Guolian Sichuan Battery Material Co ltd filed Critical Huading Guolian Sichuan Battery Material Co ltd
Priority to CN202210425299.XA priority Critical patent/CN114628663B/zh
Publication of CN114628663A publication Critical patent/CN114628663A/zh
Application granted granted Critical
Publication of CN114628663B publication Critical patent/CN114628663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂离子电池用铈掺杂三元正极材料及其制备方法。所述制备方法中,首先将铈源、三元材料前驱体与锂源于溶剂中溶解,制成混合溶液,而后洗涤、过滤、冷冻干燥,经过焙烧得到具有多孔结构的铈掺杂镍钴锰酸锂三元正极材料。通过该制备方法,调控了材料颗粒大小,加强了三元材料的高温稳定性,同时获得的铈掺杂三元正极材料具有多孔结构,由此提高了锂离子电池的高温存储容量保持率和循环性能。

Description

一种铈掺杂三元正极材料及其制备方法
技术领域
本发明属于锂离子电池制造技术领域,具体涉及一种锂离子电池用铈掺杂三元正极材料及其制备方法。
背景技术
近年来,随着工业的发展和化石能源的消耗,环境污染和温室效应已成为日益严重的问题,亟需绿色清洁的能源来解决。相比于其它电池,锂离子电池由于其容量大、工作电压稳定、无环境污染等优势,被广泛应用于笔记本电脑、手机、数码相机、储能和电动汽车等领域。电动汽车具有绿色环保的优势,受到了广泛的关注,同时也对电池的循环寿命、高温存储容量保持率等性能提出更高的要求。
锂离子电池正极材料的性能对锂离子电池的性能会产生决定性的影响。其中,三元正极材料镍钴锰酸锂具备成本低、比容量高等优势,受到广泛的关注和研究。而适量过渡金属阳离子铈的引入可以通过调控材料颗粒大小和加强三元材料的高温稳定性,从而提升锂离子电池的循环稳定性和高温存储容量保持率。
目前铈掺杂三元正极材料的制备工艺主要有高温固相烧结法、水热法和化学沉淀法。
其中;
高温固相烧结法是首先将铈源、镍钴锰氢氧化物前驱体与锂源通过研磨而混合,之后将上述固体粉末在高温下进行煅烧,随炉冷却至室温,最终制得结晶度较高的铈掺杂三元正极材料。其缺点在于:由于粉碎球磨难以控制,且原材料固体粉末的难以混合均匀,高温固相烧结法所得铈掺杂三元正极材料的颗粒大小和表面形貌难以控制。此外,固相法所需能耗大,且制备效率低下,严重限制了其广泛应用。
水热法是先将铈源、镍源、钴源、锰源与锂源于溶剂中溶解,制成混合溶液,而后于烘箱中加热一定时间,最后将制得的固体颗粒经过多次洗涤、干燥,得到铈掺杂镍钴锰酸锂三元正极材料,其具有颗粒较小,混合均匀的优势。然而,水热法所得的三元材料纯度难以控制,且步骤较为繁琐,产率较低,不能满足工业化大规模生产三元正极材料的实际要求。
由此,亟需一种新的锂离子电池用铈掺杂正极材料制备方法来解决上述技术问题。
发明内容
为此,本发明提供了一种锂离子电池用三元正极材料制备方法及锂离子电池。
本发明提供了一种锂离子电池用铈掺杂三元正极材料制备方法,其为化学沉淀法,具体步骤包括:
(1)将铈源、三元正极材料前驱体加入溶剂中,形成溶液;
(2)向步骤(1)得到的溶液中加入锂源,得到浆料;
(3)对步骤(2)得到的浆料进行抽滤,而后洗涤,得到固体颗粒;
(4)对步骤(3)得到的固体颗粒进行冷冻干燥,得到具有多孔结构的铈掺杂三元正极材料前驱体;
(5)对步骤(4)得到的铈掺杂三元正极材料前驱体进行焙烧,得到具有多孔结构的铈掺杂三元正极材料。
其中,所述铈源包括六水合乙酸铈(Ce(C2H3O2)3·6H2O)。
其中,所述三元正极材料前驱体包括NixCoyMnz(OH)2的二次球或单晶材料前驱体,其中x+y+z=1。
其中,所述锂源包括LiOH·H2O或Li2CO3
其中,所述溶剂为正丙醇或正丁醇。
其中,铈源的用量为a摩尔,三元正极材料前驱体的用量为b摩尔,锂源的用量为c摩尔,a、b、c满足以下关系式:0.7c≤a+b≤0.8c(优选a+b=0.76c),且a≤0.1b。
其中,所述步骤(1)中,在室温(25℃)的水浴锅中,300~800r/min的转速下,将一定摩尔比的铈源和三元正极材料前驱体依次加入到溶剂中,持续搅拌30~80min使上述材料均匀分散,形成均一溶液。
其中,所述步骤(2)中,向步骤(1)得到的溶液中加入锂源,在室温水浴条件下,以900~1600r/min的转速,搅拌30~90min,获得均匀浆料。
其中,所述步骤(3)中,所述洗涤包括:用去离子水和无水乙醇交替洗涤4-7次(优选5次)。
其中,所述步骤(4)中,所述冷冻干燥包括:将固体颗粒置于冷冻干燥机中,在-90至-70℃(优选-80℃)下冷冻干燥40~60h。
其中,所述步骤(5)中,将步骤(4)得到的铈掺杂三元正极材料前驱体置于管式炉中,在惰性气氛保护下,于450~750℃下焙烧240~480min,随炉冷却至室温,得到具有多孔结构的铈掺杂三元正极材料;其中,所述惰性气氛包括氮气、氦气、氩气中的一种或多种。
本发明还提供了一种锂离子电池用铈掺杂三元正极材料,其由上述锂离子电池用铈掺杂三元正极材料制备方法所制备得到。
本发明还提供了一种锂离子电池正极浆料,其包括上述铈掺杂三元正极材料。
本发明还提供了一种锂离子电池正极浆料的制备方法,包括将上述铈掺杂三元正极材料加入到包括N-甲基吡咯烷酮(NMP)、聚偏氟乙烯(PVDF)、碳纳米管(CNT)、导电剂的混合浆料中,通过搅拌使其均匀分散,得到锂离子电池正极浆料。
本发明还提供了一种锂离子电池,其包括上述锂离子电池正极浆料。
由此,本发明具有以下有益技术效果:
本发明采用化学沉淀法,首先将铈源、三元材料前驱体与锂源于溶剂中溶解,制成混合溶液,而后洗涤,过滤,冷冻干燥,经过焙烧得到具有多孔结构的铈掺杂镍钴锰酸锂三元正极材料。
本发明的方法中,铈的引入增强了三元材料的高温稳定性能,降低了三元材料的结晶度,使得材料颗粒直径减小,提高了锂离子电池的高温存储容量保持率。
本发明通过冷冻干燥法进行干燥,获得的铈掺杂三元正极材料具有多孔结构,促进了电解液的浸润,提供了锂离子传输通道,有利于提升锂离子电池的循环稳定性。
本发明所述方法调控了材料颗粒大小,加强了三元材料的高温稳定性;采用本发明所述铈掺杂三元正极材料所制备的正极浆料具备分散均匀、细度较低的优势,有利于进行后续涂布等工艺步骤;获得的锂离子电池循环性能得到改善,具有稳定的长循环性能和出色的高温存储容量保持率,在常温下循环1300圈后,容量保持率依然高于90%。
附图的简要说明
图1为本发明实施例1的三元正极材料及正极浆料制备流程图。
图2为本发明实施例和对比例的正极浆料细度图。
图3为利用本发明实施例2的三元正极材料所制备的锂离子电池常温循环性能图。
具体实施方式
下面结合具体实施例对本发明作进一步详细的描述。但应理解这些实施例仅用于说明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请权利要求书所限定的范围。
实施例1
实施例1所述三元正极材料及正极浆料制备步骤如图1所示,包括:
步骤(1):在室温(25℃)的水浴锅中,600r/min的转速下,将0.05mol的铈源(六水合乙酸铈,Ce(C2H3O2)3·6H2O)和0.71mol的三元正极材料前驱体Ni0.65Co0.15Mn0.2(OH)2依次加入到500mL正丙醇中,持续搅拌65min使上述材料均匀分散,形成均一溶液;
步骤(2):向上述混合溶液中加入1mol的锂源(LiOH·H2O),在25℃水浴条件下,以1600r/min的转速,搅拌80min,获得均匀浆料;
步骤(3):将上一步所得浆料进行抽滤,并采用去离子水和无水乙醇交替洗涤5次;
步骤(4):将步骤(3)所得固体颗粒置于冷冻干燥机中,在-80℃下冷冻干燥50h,得到具有多孔结构的掺杂比例为7.04%的铈掺杂三元正极材料前驱体;
步骤(5):将步骤(4)所得铈掺杂三元正极材料前驱体置于管式炉中,在氮气气氛保护下,于720℃下焙烧240min,随炉冷却至室温,得到具有多孔结构的掺杂比例为7.04%的铈掺杂三元正极材料;
步骤(6):使用步骤(5)所得的铈掺杂三元正极材料,加入到N-甲基吡咯烷酮(NMP)、聚偏氟乙烯(PVDF)、碳纳米管(CNT)、导电剂的混合浆料中,通过搅拌使其均匀分散,得到锂离子电池正极浆料。
实施例1所得三元正极材料对应正极浆料细度如图2(a)所示,细度约为30μm;
实施例1所得三元正极材料对应锂离子电池高温(45℃)存储(7天)容量保持率如表1所示,为96.7%。
表1实施例和对比例的高温存储容量保持率
实施例1 实施例2 对比例1
容量保持率 96.7% 97.5% 95.8%
实施例2
具体步骤和反应条件与实施例1一致,区别在于,步骤(1)中Ce(C2H3O2)3·6H2O和三元正极材料前驱体Ni0.65Co0.15Mn0.2(OH)2的添加量分别为0.01mol和0.75mol,最终获得具有多孔结构的掺杂比例为1.33%的铈掺杂三元正极材料。
实施例2所得铈掺杂三元正极材料对应正极浆料细度如图2(b)所示,细度低于30μm;
实施例2所得铈掺杂三元正极材料制备的锂离子电池常温循环性能如图3所示,常温下循环1300圈后,容量保持率依然高于90%。
实施例2所得三元正极材料对应锂离子电池高温存储(7天)容量保持率如表1所示,为97.5%;
对比例1
具体步骤和反应条件与实施例1一致,区别在于,步骤(1)中Ce(C2H3O2)3·6H2O和三元正极材料前驱体Ni0.65Co0.15Mn0.2(OH)2的添加量分别为0mol和0.76mol,最终获得未掺杂的三元正极材料。
对比例1制得正极浆料细度如图2(c)所示,细度高于30μm。
对比例1所得三元正极材料对应锂离子电池高温存储(7天)容量保持率如表1所示,为95.8%。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种锂离子电池用铈掺杂三元正极材料制备方法,包括:
(1)将铈源、三元正极材料前驱体加入溶剂中,形成溶液;
(2)向步骤(1)得到的溶液中加入锂源,得到浆料;
(3)对步骤(2)得到的浆料进行抽滤,而后洗涤,得到固体颗粒;
(4)对步骤(3)得到的固体颗粒进行冷冻干燥,得到具有多孔结构的铈掺杂三元正极材料前驱体;
(5)对步骤(4)得到的铈掺杂三元正极材料前驱体进行焙烧,得到具有多孔结构的铈掺杂三元正极材料。
2.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,所述铈源包括六水合乙酸铈(Ce(C2H3O2)3·6H2O);所述三元正极材料前驱体包括NixCoyMnz(OH)2的二次球或单晶材料前驱体,其中x+y+z=1;所述锂源包括LiOH·H2O或Li2CO3;所述溶剂为正丙醇或正丁醇。
3.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,铈源的用量为a摩尔,三元正极材料前驱体的用量为b摩尔,锂源的用量为c摩尔,a、b、c满足以下关系式:0.7c≤a+b≤0.8c,且a≤0.1b。
4.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,所述步骤(1)中,在室温的水浴锅中,将一定摩尔比的铈源和三元正极材料前驱体依次加入到溶剂中,持续搅拌使其均匀分散,形成均一溶液。
5.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,所述步骤(2)中,向步骤(1)得到的溶液中加入锂源,在室温水浴条件下,搅拌获得均匀浆料。
6.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,所述步骤(4)中,所述冷冻干燥包括:将固体颗粒置于冷冻干燥机中,在-90至-70℃下冷冻干燥40~60h。
7.如权利要求1所述的铈掺杂三元正极材料制备方法,其中,所述步骤(5)中,将步骤(4)得到的铈掺杂三元正极材料前驱体在惰性气氛保护下,于450~750℃下焙烧240~480min,然后冷却。
8.一种锂离子电池用铈掺杂三元正极材料,其由权利要求1-7任一所述锂离子电池用铈掺杂三元正极材料制备方法所制备得到。
9.一种锂离子电池正极浆料,其包括如权利要求8所述的铈掺杂三元正极材料。
10.一种锂离子电池,其包括如权利要求9所述的锂离子电池正极浆料。
CN202210425299.XA 2022-04-21 2022-04-21 一种铈掺杂三元正极材料及其制备方法 Active CN114628663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210425299.XA CN114628663B (zh) 2022-04-21 2022-04-21 一种铈掺杂三元正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210425299.XA CN114628663B (zh) 2022-04-21 2022-04-21 一种铈掺杂三元正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114628663A true CN114628663A (zh) 2022-06-14
CN114628663B CN114628663B (zh) 2024-04-09

Family

ID=81906026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210425299.XA Active CN114628663B (zh) 2022-04-21 2022-04-21 一种铈掺杂三元正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114628663B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040022710A1 (en) * 2002-06-05 2004-02-05 Universite Laval Mesoporous mixed oxide materials as a new class of SO2 resistant catalysts for hydrocarbon oxidation
CN101399329A (zh) * 2007-09-26 2009-04-01 北京化工大学 一种锂硫电池正极极片及其制备方法
CN103682306A (zh) * 2013-11-06 2014-03-26 杭州金马能源科技有限公司 一种高性能镍钴锰酸锂三元材料的制备方法
WO2016101315A1 (zh) * 2014-12-22 2016-06-30 深圳市格林美高新技术股份有限公司 修复镍钴锰三元电池材料前驱体的方法
CN106328908A (zh) * 2016-11-16 2017-01-11 吉林化工学院 一种锂离子电池富锂正极材料及其制备方法
CN108899512A (zh) * 2018-07-03 2018-11-27 江苏乐能电池股份有限公司 一种多元金属化合物共掺杂三元复合材料的制备方法
CN109301207A (zh) * 2018-09-27 2019-02-01 北京理工大学 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法
CN111697219A (zh) * 2020-06-30 2020-09-22 深圳市金牌新能源科技有限责任公司 一种硅碳复合材料及其制备方法、负极及其应用
CN113725418A (zh) * 2021-09-01 2021-11-30 中国科学院长春应用化学研究所 一种稀土氧化物包覆改性的锂离子电池用三元正极材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040022710A1 (en) * 2002-06-05 2004-02-05 Universite Laval Mesoporous mixed oxide materials as a new class of SO2 resistant catalysts for hydrocarbon oxidation
CN101399329A (zh) * 2007-09-26 2009-04-01 北京化工大学 一种锂硫电池正极极片及其制备方法
CN103682306A (zh) * 2013-11-06 2014-03-26 杭州金马能源科技有限公司 一种高性能镍钴锰酸锂三元材料的制备方法
WO2016101315A1 (zh) * 2014-12-22 2016-06-30 深圳市格林美高新技术股份有限公司 修复镍钴锰三元电池材料前驱体的方法
CN106328908A (zh) * 2016-11-16 2017-01-11 吉林化工学院 一种锂离子电池富锂正极材料及其制备方法
CN108899512A (zh) * 2018-07-03 2018-11-27 江苏乐能电池股份有限公司 一种多元金属化合物共掺杂三元复合材料的制备方法
CN109301207A (zh) * 2018-09-27 2019-02-01 北京理工大学 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法
CN111697219A (zh) * 2020-06-30 2020-09-22 深圳市金牌新能源科技有限责任公司 一种硅碳复合材料及其制备方法、负极及其应用
CN113725418A (zh) * 2021-09-01 2021-11-30 中国科学院长春应用化学研究所 一种稀土氧化物包覆改性的锂离子电池用三元正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏凌峰: ""锂离子电池LiNi0.5Co0.2Mn0.3O2正极材料的制备及稀土元素改性研究"", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, pages 015 - 156 *

Also Published As

Publication number Publication date
CN114628663B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN111916727B (zh) 一种双离子湿法掺杂的三元高镍正极材料及其制备方法
CN105552335A (zh) 一种铁钒协同掺杂的富锂锰基正极材料及其制备方法
CN110492095B (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN105428640A (zh) 一种核壳结构三元正极材料及其制备方法
CN113772748B (zh) 一种锂离子电池正极材料的制备方法
CN114520319A (zh) 一种锂二次电池镍基正极材料及其制备方法
CN111924864A (zh) 一种锂离子电池MnO/MgO复合负极材料及其制备方法
CN107459063B (zh) 一种钼酸锰微纳米材料及其制备方法和应用
CN113044890A (zh) 一种正极材料及其制备方法和锂离子电池
CN112054183A (zh) 制取具有成分梯度特性的材料的方法及在电池中的应用
CN110790321A (zh) 一种掺杂的锂离子电池高电压nca正极材料及其制备方法
CN114725365B (zh) 一种b位中熵焦绿石结构氧化物电池负极材料及其制备方法
CN113871582B (zh) 一种可用于填充导电材料的钠离子电池镍基正极材料
CN115924999A (zh) 一种铜离子掺杂的镍铁锰基三元前驱体、制备方法及其应用
CN114628663B (zh) 一种铈掺杂三元正极材料及其制备方法
CN116040696A (zh) 一种基于液相共沉淀技术的三元正极材料的制备方法
CN110835121B (zh) 一种富锂锰基正极材料及其制备方法与应用
CN113979475A (zh) 一种钛酸铬锂负极材料的制备方法及应用
CN113258062A (zh) 放射状类球顶锥体结构三元前驱体及正极材料和制备方法
WO2020186766A1 (zh) 一种宏量制备NaxMnO 2电极材料的方法
CN108232185B (zh) 液相掺杂三元前驱体的合成方法
CN115367804B (zh) 一种空气稳定的锰基钠离子电池正极材料的制备方法
CN108675359A (zh) 一种高电压锂离子电池镍锰酸锂正极材料的制备方法
CN117594783B (zh) 一种层状复合型富锂锰基正极材料及其制备方法和应用
CN109850945B (zh) 多孔状双金属氧化物及其可控合成方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant