CN1138591C - 包覆颗粒以及其制备和使用方法 - Google Patents

包覆颗粒以及其制备和使用方法 Download PDF

Info

Publication number
CN1138591C
CN1138591C CNB988017466A CN98801746A CN1138591C CN 1138591 C CN1138591 C CN 1138591C CN B988017466 A CNB988017466 A CN B988017466A CN 98801746 A CN98801746 A CN 98801746A CN 1138591 C CN1138591 C CN 1138591C
Authority
CN
China
Prior art keywords
phase
coated particle
ultra microstructure
matrix
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988017466A
Other languages
English (en)
Other versions
CN1248177A (zh
Inventor
D��M������ɭ
D·M·安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEOTROPIK THERAPEUTIC CO
Original Assignee
LEOTROPIK THERAPEUTIC CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEOTROPIK THERAPEUTIC CO filed Critical LEOTROPIK THERAPEUTIC CO
Publication of CN1248177A publication Critical patent/CN1248177A/zh
Application granted granted Critical
Publication of CN1138591C publication Critical patent/CN1138591C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1274Non-vesicle bilayer structures, e.g. liquid crystals, tubules, cubic phases, cochleates; Sponge phases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/501Inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • A61P23/02Local anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Toxicology (AREA)
  • Agronomy & Crop Science (AREA)
  • Nanotechnology (AREA)
  • Anesthesiology (AREA)
  • Composite Materials (AREA)
  • Rheumatology (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)

Abstract

公开了一种包覆颗粒,该颗粒包括含有基质的内芯和外部涂层,所述基质基本上由至少一种超微结构液相,或至少一种超微结构液晶相或两者的结合组成,所述外部涂层包括非层状结晶物质。还公开了这种包覆颗粒的制备和使用方法。

Description

包覆颗粒以及其制备和使用方法
发明背景
发明领域
本发明涉及包覆颗粒,以及其制备和使用方法。这种颗粒可用于向选择的环境释放一种或多种物质、从选择的环境吸收一种或多种物质以及从选择的环境吸附一种或多种物质。
现有技术
两种颗粒技术—聚合物包覆颗粒和脂质体—是令人感兴趣的。
聚合物包覆的颗粒受几方面的限制,正如其聚合物涂层对化学和物理引发剂的消光的扩散响应所表明。这是由于两个因素。一方面,是聚合物的高分子量降低了它们的扩散系数和溶解动力学。第二方面,邻基效应扩大了代表对引发剂化学响应的曲线,如尤其是pH、盐度、氧化、还原、离子化等。(邻基效应表明,在聚合物的一个单体单元中的化学变化显著改变了在相邻单体单元每一个中控制化学转变的参数)。另外,大多数聚合物收集了增加分子量分布的化学部分。而且,对聚合物包覆颗粒的特定应用来说,可获得的合适聚合物种类有限。这是由于以下几方面的原因:管理方面的原因;涂敷过程经常需要苛刻的化学和/或物理条件,如溶剂、自由基、提高的温度、干燥、和/或形成颗粒所需的剪切力;工业应用中的聚合物包覆颗粒的机械和热稳定性也受到限制,此外,大量使用聚合物包覆颗粒对环境有副作用,如用在农业上时。
脂质体也表现出各种限制。其中包括它们的物理和化学不稳定性。释放脂质体内的物质通常取决于脂质体结构的去稳定。特别是由于缺乏孔隙,排除了这些物质的孔控制释放。1)一方面,在需要释放之前,要保持脂质体的物理稳定,2)另一方面,当需要释放时,要使双分子层去稳定,这种双重要求是有困难的。(术语脂质体经常与术语“囊”互换,通常专用于甘油磷脂或其它天然类脂的囊。囊是自支承密封的数千个类脂分子(两亲体)组成的双分子层组合体,其内包封了水相。类脂双分子层是两维流体,由暴露于水溶液的亲水头基和聚集在一起排斥水的疏水尾基组成。双分子层结构还是高度动态有序的,因为类脂在双分子层的每一半内的平面内快速移动。)请参看O’Brien.D.F.andRamaswami,V.(1989)in Mark-Bikales-Overberger-MengesEncyclopidia of Polymer Science and Engineering,Vol.17,2ndED.,John Wiley & Somns.Inc.,p.108。
发明简述
本发明的一个目的是提供包覆颗粒,这种颗粒适合于溶解或包含多种物质,包括对物理、化学或生物变质敏感的物质。
本发明的一个目的是提供包覆颗粒,这种颗粒释放一种或多种分配(dispose)在其内部芯中的基质内的物质,而不要求对所述基质去稳定化。
本发明的一个目的是提供包覆颗粒,这种颗粒响应于一种或多种物理或化学引发剂(trigger),能立即引发向或从选择的环境释放或吸收一种或多种物质。
本发明的一个目的是提供包覆颗粒,这种颗粒提供了广泛的包覆颗粒系统,可以满足它们应用时的特定物理、化学和生物要求,如包覆颗粒在工业应用中的机械和热稳定,或者在农业上大量使用时不会对环境产生不利影响。
本发明的一个目的是提供包覆颗粒,这种颗粒如果必要的话可以提供多孔涂层,这种涂层允许孔控制释放分配在其内的物质,或孔控制吸收分配在其外的物质。
本发明的再一目的是提供包覆颗粒,这种颗粒能用简单的方法制备,包括,优选地,不需苛刻的的物理和/或化学条件。
前述或其它目的是由包含含有基质的内部芯和外部涂层的包覆颗粒实现的。基质基本上由至少一种超微结构(nanostructured)液相,或至少一种超微结构液晶相,或两者的结合组成,而外部涂层包括非层状结晶物质。
在优选方案中,包覆颗粒可以如下制备:
1.提供一定量的(a volume of)基质,该基质包括至少一种化学物质,这种化学物质具有能与第二部分反应形成非层状晶体的部分,和
2.使这一定量的基质在形成非层状晶体物质的条件下与含有至少一种具有第二部分的化学物质的流体接触以使第一部分与第二部分反应,同时向这一定量的基质施加能量将其细分为颗粒。
还可以如下制备:
1.提供一定量的基质,该基质包括一种物质的溶液,它能形成不溶于基质的非层状结晶物质,和
2.使前述物质成为不溶于基质的,同时向这一定量的物质施加能量将其细分为颗粒。
或者结合使用这两种方法。
附图简述
图1是描述本发明包覆颗粒的垂直截面图,包括含有2×2×2个单元小室基质的内芯和外部涂层;
图2是描述本发明包覆颗粒的截面图;
图3是本发明包覆颗粒的扫描电子显微图片;
图4是本发明另一包覆颗粒的扫描电子显微图片;
图5是基于体积加权(volume-weighted)的颗粒直径对累积粒径对本发明包覆颗粒测得的体积加权累积粒径分布曲线;
图6是小角度X-射线散射强度对本发明包覆颗粒的波矢q的曲线;
图7是使用高压液相色谱对对比颗粒测得的探测器读数对以分钟计的时间的曲线;
图8是使用高压液相色谱对本发明包覆颗粒测得的探测器读数对以分钟计的时间的曲线。
优选方案的详细描述
如图1和2所示,本发明包覆颗粒1包含内芯10和外部涂层20。内芯10包括基本上由超微结构物质组成的基质,超微结构物质选自:
a.至少一种超微结构液相,
b.至少一种超微结构液晶相和
c.以下物质的组合
i.至少一种超微结构液相和
ii.至少一种超微结构液晶相。
液相物质和液晶相物质可以含有溶剂(易溶的lyotropic)或不含有溶剂(热致变的)。外部涂层20包括非层状结晶物质。在这里,“外部涂层”是指涂层20位于内部芯10的外部,而不限于指外部涂层20是包覆颗粒1的最外面的一层。
超微结构液相和超微结构液晶相具有独特的物质,不仅对易生产本发明颗粒是重要的,而且对本发明最终包覆颗粒所要求的溶解性、稳定性、外观(presentation)性质以及其它能力也是很重要的。
在本发明中,对于外部涂层20,相对于层状(分层的)物质,非层状晶体结构是特别优选的,非层状晶体结构在三维方向上都表现出粘结和/或填充刚性,众所周知,层状晶体结构在物理和化学上不稳定,例如,(a)包敷了层状液晶层的滴状乳液不稳定(甚至是勉强时),(b)由于在层状维尔纳复合物中客体分子的移动,化学不稳定,(c)石墨与金刚石比较硬度和剪切模量特别低。
本发明包覆颗粒1的平均测径器(caliper)直径为0.1微米至30微米,优选为约0.2微米至约5微米。必要时,可以在包覆颗粒1的外部,即涂层20的外面提供一稳定层,如高分子电解质或表面活性剂单层以防止包覆颗粒1的聚结。
本发明包覆颗粒1具有各种方式的应用。由于外部涂层20的释放,包覆颗粒1可以从选择的环境吸收一种或多种物质,从选择的环境吸附一种或多种物质,或者向选择的环境释放一种或多种分配在基质中的物质,如活性试剂。此外,某些外部涂层具有孔隙,如包合物或沸石,不需要释放这些物质来影响将感兴趣的物质吸收或释放到基质内或外,在有些情况下,通过使用适当调整的孔特征可以获得非常高的选择性。在使用颗粒以吸附感兴趣的一种或多种化合物时,既不需要孔隙也不需要释放外部涂层20,但是,可以提供孔隙,通过使吸附物质扩散到基质中,在外部涂层上提供吸附点以吸附新物质,从而大大提高吸附容量。在优选方案中,可以在基质中分配其它物质,如活性试剂,以释放到选择的环境中。
基质是:
a.热力学稳定的
b.超微结构的,和
c.液相或液晶相或其结合。
超微结构:在这里,涉及物质结构的术语“超微结构”或超微结构的”是指物质的结构单元的尺寸为纳米级(10-9米)或几十纳米(10×10-9米)。一般说来,任何含有1-100nm的畴(domain)或颗粒,或这一厚度的层或细丝的物质都可称为超微结构物质。(请参看Dagani,R.,“Nanostructured Materials Promise to Advance Range ofTechnologies”,November 23,1992 C&E News 18(1992))。这一术语不包括“陶瓷玻璃”,它是晶体材料,其中的晶体尺寸是如此之小,以至于在广角x射线衍射中观察不到峰,可能有些物理学家也称之为超微结构物质;在这里所定义的超微结构液相和液晶相的特征在于其毫微尺寸的畴,由于局部化学组成有许多不同之处,而明显区别于相邻的畴,并且不包括相邻畴中的具有基本相同局部化学组成仅晶格取向不同的物质。因此,在这里术语“畴”是指一个空间区域,其特征在于其特定化学组成,明显不同于相邻的畴:这些畴通常是亲水的(疏水的),而相邻畴是疏水的(亲水的);在本发明中,这些畴的特征尺寸为纳米级。(术语“微畴”通常是指其尺寸在微米或纳米范围内的畴。)
提供了本发明包覆颗粒1的内部芯10的基质的超微结构液相和液晶相具有独特的多种性质,不仅对生产本发明颗粒是至关重要的,而且对得到最终包覆颗粒的特别希望的溶解性、稳定性、外观性质以及各种能力也是很重要的。正如在下面讨论颗粒生产方法时所详细讨论的,为了用这里所描述的方法之一提供准备好的分散性,希望物质具有非常低的水溶性,(否则会在分散过程中溶解,限制了其分散性),同时还要求含有水—其目的都是溶解分散时使用的水溶性反应物以及可以溶解多种活性化合物。
特别地,为了溶解亲水(尤其是带电的)和两性化合物,和为了不仅维持溶解而且维持生物源的敏感化合物如蛋白质的适当的构造和活性,内部基质必须含有一定量的水或其它极性溶剂。从在涂层选择上建立多功能来看,作为本发明有用涂层列出的许多(或许是大部分)化合物需要仅仅溶于极性溶剂的反应物。此外,在大多数情况下,使用有机溶剂来溶解与生物化合物如蛋白质是不协调的,考虑到规章、环境和健康因素,在任何情况下都是不合适的。当然,要求不溶于水又要求能溶解水溶性化合物,这两种要求的方向是相反的,使用单一的、便宜而安全的物质是难于解决的。
满足这样的溶解性要求的非常有效的系统是通过类脂—水体系来提供的,其中存在微畴,这些畴具有非常高的水含量,同时,疏水畴与含水畴非常紧密地接触。含水畴的存在防止了系统中遇到的沉淀趋势,其中水结构被高度负载的共溶剂或共溶质所打断,象例如在浓缩的含水聚合物溶液中。同时,在疏水畴附近提供了两性化合物(以及亲水化合物)的有效溶解性。
具有这些溶解性特征的超微结构液相或液晶相是合成或半合成物质,提供了纯净的、很好特征化的、易于生产的、便宜的基质,该基质具有以下所希望的性质:
a)形成超微结构液相或液晶相的化学系统的多功能性,从对生物分子来说是理想的生物类脂,至絮凝表面活性剂,至连结细菌的糖脂(glycolipids),至具有离子性的或反应性的基团的表面活性剂等,提供了在宽范围条件和用途下的应用;
b)超微结构液相或超微结构液晶相的下列卓越能力:i)溶解宽范围的活性化合物,包括许多传统难溶的化合物,如Paclitaxel和生物药物,避免使用毒性的和常规有机溶剂;ii)得到具有不协调稳定性的活性物质的高浓度;和iii)提供保护其结构和功能的生物化学环境;
c)理想的热力稳定性,它确保没有与其它媒介一起常常出现的的不稳定性,如活性试剂的沉淀,破乳、熔化解囊等;和
d)存在可预选的微米级孔径的孔空间,使得即使在涂层被引发释放后还能容易进一步控制释放动力学,特别是在蛋白质和生物大分子释放中。
内部芯10的超微结构物质的所需性质衍生于几个相关的与一些物质有关的概念,这些物质可以根据表面活性剂使用“极性”、“非极性”、“两亲物”、“表面活性剂”和“极性-非极性界面”,以及类似地根据嵌段共聚物体系如下描述。
极性:极性化合物(如水)和极性基团(如在离子型表面活性剂和类脂上的带电荷头基)是爱水或亲水的,在本发明中,“极性”和“亲水”基本上是同义的。就溶剂而言,水不是唯一的极性溶剂。在本发明中其它重要的极性溶剂是:甘油、乙二醇、甲酰胺、N-甲基甲酰胺、二甲基甲酰胺、乙基硝酸铵和聚乙二醇。注意这些中的一个(聚乙二醇)实际上是聚合物,因此,说明了可能范围。分子量足够低的聚乙二醇(PEG)是液体,尽管PEG作为极性溶剂与表面活性剂结合没有得到广泛的研究,现已发现,PEG确能与例如表面活性剂如BRIJ型表面活性剂一起形成超微结构液相和液晶相,它们是非离子型的,与PEG头基醚连接到烷链的表面活性剂。更一般地,就亲水和两性分子上的极性基团(包括但不限于极性溶剂和表面活性剂)而言,在下面讨论哪些极性基团作为表面活性剂头基是有效的哪些是无效的时列出了许多极性基团。
非极性:非极性(疏水的或“亲油的”)化合物不仅包括表面活性剂的石蜡/烃/烷链,还包括它们的改性物,如全氟烷烃,以及其它疏水基团,如胆酸盐表面活性剂中发现的胆酸中的稠环结构,或TRITON型表面活性剂中形成非极性部分的苯基,以及从聚乙烯(表示一长烷基链)到疏水聚合物的全范围的低聚物或聚合物链,如已研究过的以新肽为基础的表面活性剂上的疏水多肽链。在下面讨论超微结构相内部的有用组分时列出了某些非极性基团和化合物。
两亲物:两亲物可定义为含有亲水和疏水基团两者的化合物,请参看D.H.Everett,Pure and Applied Chemistry,vol.31.no.6,p.611,1972。重要的是要注意,不是所有的两亲物都是表面活性剂。例如,丁醇是一种两亲物,因为丁基是疏水的而羟基是亲水的,但它不是表面活性剂,因为它不满足下面给出的定义。有许多两亲分子,具有高度极性的基团,其水合程度是可以测定的,但不能表现出表面活性剂的行为,请参看R.Laughlin,Advances in liquid crystals,vol.3,p.41,1978。
表面活性剂:表面活性剂是具有两种附加性质的两亲物。第一,与非表面活性剂比较,在非常低浓度下,能明显改进水相的界面物理性质(不仅包括空气-水界面,还包括油-水和固体-水界面)。第二,表面活性剂分子在很大程度上能相互(与多种其它分子)可逆地缔合,形成热稳定的宏观的一相-聚集体或胶束(micelle)的溶液。胶束通常由许多表面活性剂分子(10-1000个)组成,并且具有胶体的尺寸。请参看R.Laughlin,Advances in liquid crystals,vol.3,p.41,1978。类脂,特别是极性类脂,为了讨论的目的,在这里通常被考虑为一种表面活性剂,尽管“类脂”通常被认为是表面活性剂的一个小类,它们与平常称之为表面活性剂的化合物有稍有不同的特征。类脂常具有,尽管不总是具有,的两个特征是,第一,它们通常具有生物源,第二它们更易于油与脂肪,而不是水。确实,许多称之为类脂的化合物在水中的溶解度特别低,因此,为了降低界面张力,和可逆自缔合,需要有疏水溶剂,明显证明类脂确实是一种表面活性剂。因此,例如,即使在水中的特别低的溶解度可能使得难以观察到含水体系中表面张力的下降,这样一种化合物在低浓度下能剧烈降低油和水之间的界面张力;类似地,向类脂-水体系中加入疏水溶剂,可能使测定其自缔合成超微结构液相和超微结构液晶相是特别简单的事情,然而,与高温缔合有关的困难使得这在类脂-水体系中是困难的。
的确,在超微结构液晶结构的研究中,“类脂”和“表面活性剂”之间的共性—过去被认为是内在不同的—确实变得很明显,两种研究机构(类脂,从生物方面,和表面活性剂,从工业方面)的看法是相同,因为在所有作为表面活性剂的类脂中都观察到了超微结构。此外,某些合成表面活性剂表现出“类似类脂”的性能,这一点也变得很明显,如二(十六烷基)二甲基溴化铵,它完全是合成的,而非生物源的,为方便地表示出它们的表面活性,需要疏水性溶剂。另一方面,某些类脂,如溶血类脂(lysolipids),它明显是生物源的,表现出来的相行为多少有点象典型水溶性表面活性剂的行为。实际上,为讨论和比较自缔合和降低界面张力的性质,明显的是更有意义的区别是单尾基和双尾基化合物之间的区别,其中,单尾基化合物通常意味着是水溶性的,而双尾基化合物通常是油性的。
因此,在本发明中,在非常低的浓度下能降低水与疏水物之间的界面张力—不管疏水物是空气还是油—并表现出可逆自缔合在水或油或两者中形成超微结构胶束、反(inverted)胶束或双连续形态的任何两亲物都是表面活性剂。类脂的种类简单地包括一个有生物源的表面活性剂组成的小类。
极性-非极性界面:在表面活性剂分子中,可以在分子中找到一个分割点(在一些情况下,如果在每一端都有极性基团,是两个分割点,甚至多于两个,如在类脂A中,它有七个酰基链,因此,每个分子中有七个分割点),将分子的极性部分和非极性部分分开。在任何超微结构液相或超微结构液晶相中,表面活性剂形成单层或双层膜;在这些膜中,分子中的分割点的位置描述了一个将极性畴与非极性畴分开的表面:这称之为“极性-非极性界面”,或“极性-非极性分割界面”。例如,在球形胶束的情况中,这一界面近似于位于胶束外表面内的球,表面活性剂分子的极性基团在表面外,而非极性链在其内。要小心的是不混淆微观界面和宏观界面,宏观界面将两个可以裸眼看得见的庞大的相分开。
双连续:在双连续结构中,几何结构描述为两个明显的、多连接的、缠绕的子空间,每一子空间在三个方向上都是连续的;因此,可以在任何方向跨过整个跨度,即使通道被限制到这两个子空间的一个或另一个。在双连续结构中,每一子空间富集了一种类型的物质或基团,两个子空间被两种这样的物质或基团所占据,它们中的每一个在整个空间的三个方向上延伸。海绵、砂岩、苹果以及许多熔渣都是物质领域中的永久性实例,尽管是无序双连续结构。在这些实例中,一个子空间被一种或多或少可变形的固体占据,另一子空间虽然可以认为是一空穴,但它被流体占据。某些易溶的液晶态也是实例,一个子空间被两亲物分子占据,这此分子取向并聚集成片状排列,在几何结构上是有序的,另一子空间被溶剂分子占据。有关的液晶态含有两种不相容的溶剂分子,如烃和水,表现出另一可能性,其中一个子空间富含第一溶剂,另一个子空间富含第二溶剂,多连接的层之间的表面富含有取向的表面活性剂分子。某些平衡的微乳状液含有可比量的烃和水以及两亲表面活性剂,可以是无序双连续结构,由于热运动,维持在永久的絮凝无序状态,因为没有证据证明是几何有序的,但有明显证据证明它们是多连接的。双连续形态还发生在某些相分离的嵌段共聚物中。请参看Anderson,D.M.Davis,H.t.,Nitsche,J.C.C.and Scriven.L.E.(1990)Advancesin Chemical Physics.77:337。
化学标准:在表面活性剂的情况下,Robert Laughlin在确定给定极性基团是否起表面活性剂头基的作用时,详细讨论和列出了各种标准,其中表面活性剂的定义包括在水中在相当低的浓度下形成超微结构相,请参看R.Laughlin,Advance in Liquid Crystals,3:41,1978。
Laughlin列出的表中给出的一些不能作为表面活性剂头基的极性基团—因此,例如,连接到这些极性基团之一上的烷基链预计不能形成超微结构液相或液晶相,是—醛、酮、羧酸酯、羧酸、异氰酸酯、酰胺、酰基氰基胍、酰基脒基脲、酰基缩二脲、N,N-二甲基酰胺、亚硝基烷、硝基烷、硝酸酯、亚硝酸酯、硝酮、亚硝胺、吡啶N-氧化物、腈、异腈、胺甲硼烷、胺卤代甲硼烷、砜、硫化膦、硫化胂、磺酰胺、氨磺酰甲亚胺、醇(单官能)、酯(单官能)、仲胺、叔胺、硫醇、硫醚、伯膦、仲膦和叔膦。
某些极性基团可以作为表面活性剂头基,因此,例如,一个烷基链连接到这些极性基团之一上,预计可以形成超微结构液相和液晶相,这些极性基团是:
a.阴离子的:羧酸盐(肥皂)、硫酸盐、氨基磺酸盐、磺酸盐、硫代硫酸盐、亚磺酸盐、磷酸盐、膦酸盐、硝基胺、三(烷基磺酰基)甲基化物、黄酸盐;
b.阳离子的:铵、吡啶鎓、鏻、锍、氧化锍;
c.两性离子的:氨基乙酸盐、磷鎓基丙烷磺酸盐、吡啶鎓基乙基硫酸盐;
d.半极性的:氧化胺、磷酰基、氧化膦、氧化胂、亚砜、磺基肟(sulfoximine)、砜二亚胺、氨合酰胺化物。
Laughlin还证明了,通常,如果给定的极性基团与苯酚(氢键合的供体)形成1∶1缔合复合物的焓小于5kcal,则这种极性基团不能作为表面活性剂头基。
除极性头基外,表面活性剂还需要一个非极性基团,同样,有一个有效非极性基团的指南。对于烷基链,当然是最普通的,如果n是碳原子数,要发生表面活性剂的缔合,则n至少为6,尽管至少为8或10是常用的。感兴趣的辛胺,n=8,胺头基正好有足够的极性作为头基,在环境温度下与水表现出层状相,还有超微结构的L2相。Warnheim,Y.,Bergenstahl,B.,Henriksson,U.,Malnvik,A.-C.and Nilsson.P.(1987)J.of Colloid and Interface Sci.118:233。支链烃在n下限基本上也能满足同样的要求,如2-乙基己基硫酸钠表现出全范围的液晶相。Winsor,P.A.(1968)Chem.Rev.68:1。然而,当n较高时,直链和支链烃这两种情况就明显不同了。对于直链的,饱和烷基链趋向结晶,以至于n大于约18时,Krafft温度变得相当高,超微结构液相和液晶相的温度范围达到了很高的温度,接近或超过100℃,在本发明的大多数应用中,这使得这些表面活性剂与n在8-18之间的表面活性剂相比,其用途要少得多。当在链中引入不饱和或支链时,n的范围可以大大增加。不饱和的这种情况可以用由鱼油衍生的类脂来说明,其链有22个碳原子,具有相当低的熔点,这是因为含有多达6个的双键,如二十二碳六烯酸和其衍生物,包括单酸甘油酯、肥皂等。此外,分子量非常高的聚丁二烯在环境温度下是弹性体,而众所周知,具有聚丁二烯嵌段的嵌段共聚物能产生超微结构的液晶。类似地,引入支链,可以生产如聚环氧丙烷(PPO)的烃聚合物,在许多两亲嵌段共聚物表面活性剂中作为疏水嵌段,是很重要的,如PLURONIC系列的表面活性剂。在表面活性剂中,用氟取代氢,特别是全氟链降低了对n最小值的要求,如全氟辛酸锂(n=8),具有全范围的液晶相,包括中间相,这在表面活性剂体系中是十分少见的。如在其它地方所讨论的,其它疏水基团,如在胆酸盐皂(胆酸盐)中的稠环结构的其它疏水基团,也可以作为有效的非极性基团,尽管这些情况通常必须逐一处理以确定特定的疏水基团是否可以产生表面活性剂性质。
对于单组分嵌段共聚物,相对简单的中值(mean-field)统计理论足以预见什么时候产生超微结构液相和液晶相物质,这在整个嵌段共聚物范围内是十分普通的。如果χ是聚合物嵌段A和B之间的Flory-Huggins相互作用参数,N是嵌段共聚物的总聚合指数(定义为聚合物链中的统计单元或单体单元数,与相互作用参数的定义一致),那么,当产物χN大于10.5时,则可以预见超微结构液相和液晶相。Leibler,L.(1980)Macromolecules 13:1602。对于可比的值,但大于这一临界值10.5,能产生有序超微结构(液晶)相,甚至包括双连续立方相。Hajduk,D.A.,Harper,P.E.,Gruner S.M.,Honeker,C.C.,Kim,G.,Thomas,E.L.and Fetters,L.J.(1994)Macromolecules 27:4063。
适合作为基质的超微结构物质的超微结构液相物质可以是:
a.超微结构L1相物质,
b.超微结构L2相物质,
c.超微结构的微乳状液或
d.超微结构L3相物质。
超微结构液相的特征在于其畴结构,由至少一种具有以下性质的第一类型和第二类型(在某些情况下,是三种或甚至更多类型)的畴组成:
a)第一种类型畴中的化学基团与第二种类型畴中的基团不相容(通常是每一对不同类型的畴是相互不容的),以至于它们在给定条件下不混合,而保持为独立的畴,(例如,第一种类型的畴基本上由极性基团如水和类脂头基团组成,而第二种基本上由非极性基团如烃链组成,或者,第一种类型的畴富含聚苯乙烯,而第二种类型的畴富含聚异戊二烯,以及第三种类型的畴富含聚乙烯基吡咯烷酮);
b)每一畴中的原子序列类似于液体而不类似于固体,即缺乏原子的有序晶格;(可以由广角x射线衍射中的没有尖锐的Bragg峰反射来证明);
c)基本上所有畴的最小尺寸(层状畴的厚度,柱状或球状畴的直径)为纳米级,(约1-约100nm);和
d)畴的组织不表现出长范围的有序,也不与任何周期的晶格一致。这可以由在相的小角x射线散射检查中的没有尖锐的Bragg峰反射来证明。(此外,在下面可以看出,如果高粘度和双折射都缺乏,则强有力地证明是液相,而不是液晶相。)
关于液相中的每一种,首先讨论以表面活性剂为基础的体系,其中两种在超微结构液体中的畴是“极性”和“非极性”。一般,在这之后,讨论以嵌段共聚物为基础的体系。在这些体系中,术语“极性”和、“非极性”可以是适用的,也可以不适用的,但存在“A”型、“B”型畴等,其中如上定义(在超微结构流体的定义中),“A”型和“B”型畴相互不混溶。
L1相:表面活性剂体系中的L1相中,极性-非极性界面朝非极性区域弯曲,通常得到的颗粒是正(normal)胶束—存在于水连续介质中。(在这里,“水”是指任何极性溶剂)。由于条件或组成发生变化引起胶束由球形变为柱形时,它们可能开始容合,可能变为双连续的。除水连续外,疏水畴可能会连接形成跨试样的(sample-spanning)网格(network);这可能还是L1相。此外,有一些L1相的例子,表明不具有任何什么微结构。也就是说,没有胶束,没有所定义的畴,仅仅是表面活性剂分子在无结构的、单相液体溶液中一起混合,因此,不是超微结构物质。通过简单地改变组成,其之间没有任何相变,这些“无结构溶液”有时可以变为超微结构相。换句话说,热力学不会在无结构溶液与超微结构相之间限定相边界。当然,这与在具有长范围序列相(液晶或晶体)和缺乏长范围序列相(液体)之间的转变的情况是相反的,这时需要由热力学限定的相边界。
对于以嵌段共聚物为基础的体系中发生的L1相,可以不用“极性”和“非极性”,但是,在任何情况下,都有两种(有时是多种)类型的畴;我们习惯说A/B界面的弯曲方向朝A畴,所以,典型的超微结构由位于B型畴连续相中的A型畴通常是类球形的颗粒组成。作为例子,在聚苯乙烯-聚异戊二烯双嵌段共聚物中,如果聚苯乙烯嵌段的体积分数非常低,如10%,则常见的微结构是富含聚苯乙烯的球位于连续的聚异戊二烯基质中。与之相反,如果聚苯乙烯-聚异戊二烯双嵌段共聚物中聚异戊二烯的体积分数为10%,则是富含聚异戊二烯的球位于聚苯乙烯连续基质中。
超微结构L1相的鉴定。因为L1相是液体,已开发了一些技术来分辨超微结构L1相与非结构溶液液体相。除下面要讨论的试验调查外,有一种已知的知识提供了一种标准,可以先期确定给定的体系是否可以形成超微结构相还是简单的非结构溶液。
因为在表面活性剂的定义中,形成超微结构液相和超微结构液晶相是一种要求,在识别超微结构液相和非结构溶液时,如果有一个确定给定化合物事实上是表面活性剂的标准的话,它则是极其有价值的,除下面要讨论的直接分析液体的方法外,这种标准对表面活性提供了许多试验。Robert Laughlin在Advance in liquid crystals,3:41,1978中讨论了许多标准。首先,Laughlin列出了先期确定一种给定的化合物是否是表面活性剂的化学标准,这在上面详细讨论了。基于这一标准,如果预计这种化合物确实是一种表面活性剂,则预期这一种化合物在水中形成超微结构相。此外,在有水和疏水物存在的条件下,使用这种化合物,可以预期形成超微结构相,通常至少引入一部分疏水物。
当向这种体系中加入了非表面活性剂两亲物,特别是两亲有机溶剂,如短链醇、二噁烷、四氢呋喃、二甲基甲酰胺、乙腈、二甲基亚砜等时,则可能形成无结构液体,因为有机溶剂的作用将通常会中断胶体的聚集,共同溶解所有的组分。
Laughlin继续讨论了以物理观察为基础的许多标准。一个已知的标准是临界胶束浓度(CMC),这是在表面张力测定中观察到的。如果将所讨论的化合物的水溶液的表面张力绘成为浓度的函数,那么如果加入的化合物确实是一种表面活性剂,则在非常低的浓度时,可以看到表面张力急剧下降。在作为CMC已知的特定浓度下,在图中会产生一个尖锐的拐点,因为线的斜率朝CMC的右侧急剧下降,所以,加入表面活性剂会使表面张力降低非常少。其原因是在CMC之上加入的表面活性剂几乎完全进入了所产生的胶束中,而不是空气-水界面。
Laughlin列举的第二种标准是液晶标准:如果一种化合物在高浓度形成液晶,则这种化合物必定是表面活性剂,将在低于它们存在的浓度下形成液晶相。特别是,在正好低于形成正六方的表面活性剂浓度下,或在一些情况下在正非双连续立方相液晶的情况下,经常发现L1相。
Laughlin讨论的另一标准是基于Krafft边界平衡段的上限与无水化合物熔点之间的温度差。Krafft边界是化合物和水的双组分体系的相图中曲线,在Krafft线下面是晶体,在Krafft线上面是晶体的熔融物,因此,沿Krafft线在一个非常窄的湿度范围内,溶解度有一剧烈的升高。如果确定是一种表面活性剂,则温度差非常大,例如,棕榈酸钠,无水化合物的熔点是228℃,而Krafft线的平衡段的温度是69℃,其差是219℃,Laughlin继续讨论了十二烷基胺,其温度差是14℃,在相图中相应于液晶的范围小,因此,表明适度的缔合胶体性质。与此相反,不管是十二烷基甲胺还是十二烷醇,都没有表面活性剂类型的缔合性质,两者的温度差都为零。
与在液晶中的情况一样,如在此讨论的,对于给定物质,有许多试验方法,可以用来测定这种液体物质是否是超微结构的,这些将在讨论L1相时讨论,尽管通过适当的改性后它们适合于所有超微结构液体。在这种测定中,最好是结合尽可能多的这些特征。
与所有液相一样,在不流动时,L1相是光学各向同性的。使用氚化的表面活性剂,在2H-NMR谱带形上没有给出分裂。
此外,在使用交叉极化滤光片进行的检查中,即使在中等流动条件下,表面活性剂体系的L1相通常也不会给出双折射。在以嵌段共聚物为基础的体系中,与双折射有关的情形是复杂的,因为有可能是着色双折射,所以在这种情况下这不是一种可靠的方法。
回到以表面活性剂为基础的L1相来,粘度通常相当低,大大低于同一体系中的任何液晶。
使用脉冲梯度NMR来测量各种组分的有效自扩散系数,可以看到,表面活性剂以及添加的任何疏水物的自扩散是非常低的,通常在10-13m2/s的数量级上,或更小(除非相是双连续的,请看下文)。这是因为表面活性剂和疏水物的主要扩散方式是胶束整体扩散,是很慢的。由于同样的原因,表面活性剂和疏水物的扩散速率应当基本上相等。
当然,小角度x射线散射(SAXS)不会在纳米范围内(不是任何范围)给出尖锐的Bragg峰。然而,用来自文献中的几种方法分析整个曲线,可以给出超微结构的长度大小。通过分析在低波数(但与表面活性剂分子长度的倒数比较不是太低)上的强度的下降,可以确定表观回转半径;在图上绘出强度对波数平方的曲线,取其斜率,推出Rg(所谓的Guinier图)。通过已知的标准公式将回转半径与胶束单元的尺寸关联。这将落在超微米的范围内。此外,通过画出强度乘以波数的平方对波数的曲线,—即所谓的Hosemann图,可以找到一个峰,它也可以与胶束的尺寸相关联;其优点是对胶束之间的相互作用的敏感程度不如对回转半径。
对于以表面活性剂为基础的双连续L1相,上面所述会有如下变化。首先,当发生双连续相时,粘度会明显升高,表面活性剂膜的刚性也是这样,它是连续的。此外,表面活性剂以及加入的疏水物(可能是故意加入到双组分体系作为标记)的自扩散速率也会剧烈升高,接近甚至超过相同体系中层状相中的值。当进行SAXS分析时,回转半径和Hosemann图得到的尺寸都在超微结构范围内,这些必须解释为双连续畴结构的特征长度大小,而不是离散颗粒的尺寸。(在一些模型中,如作者论文的相互连接圆柱模型或Talmon-Prager模型,双连续畴结构表示为单元集合,尽管有点象“颗粒”,但仅仅在组成团块(blocks)以构成模型化双连续几何结构时是真实的)。
对于以嵌段共聚物为基础的L1相,进行该同样的SAXS分析。与此相反,通常不进行NMR谱带形和自扩散的测定,也不进行表面张力的测定。然而,在过去,通常使用蒸汽迁移测定来代替NMR自扩散。特别地,如果发现一种气体优先在一种畴类型中可溶,而在其它种中不溶,则可以测定这种气体通过样品的迁移来试验这些畴的连续性。如果这是可能的,通过胶束相中连续畴(B型)的迁移应当只比通过纯B聚合物稍微慢一点,而限定为A型畴的气体的气体迁移应当非常慢。
以嵌段共聚物为基础的胶束相的剪切模量通过形成连续畴的习惯上称之为聚合物B的聚合物嵌段的剪切模量来测定。因此,例如,在PS占10%的PS-PI二嵌段聚合物中,PS胶束在连续的PI基质中形成,剪切模量应近似于纯丙异戊二烯的剪切模量,由于PS胶束的存在,仅有小的升高。感兴趣的是在相反的情况下,PS为90%,PI胶束在连续的PS基质中,弹性PI胶束可能提供震动吸收组分,与纯的玻璃态聚苯乙烯相比,其改进了破裂特征。
L2相:这一相与L1相相同,例外的是极性区域和非极性区域的作用是相反的:极性-非极性界面的弯曲朝极性畴,胶束(如果存在)的内部是水和/或其它极性物质,非极性畴(通常是类脂的烷基链)形成连续基质—尽管极性畴也可能连接形成双连续L2相。如上所述,这一相可能是超微结构的或无结构的。
超微结构L2相的鉴定。鉴定超微结构L2相的指南与上面用于L1相的相同,只是作了如下改动。我们仅仅需要讨论以表面活性剂为基础的L2相,因为在以嵌段共聚物为基础的体系中,两种类型的胶束相(B包A,和A包B)是等同的,在上面我们已讨论了嵌段共聚物体系中的胶束相的鉴定。
首先,当HLB低时,L2相通常更突出,例如,氧化乙烯基团数量少(典型的烷基链长通常为5或更少)的乙氧基化醇表面活性剂,或具有双链的表面活性剂。关于相性质,即使与反液晶相相比,它们通常在较高的浓度下发生;在较高的表面活性剂浓度下,对于L2相非常常见的定位与反六方相接近。对于非双连续的L2相,是水自扩散的,这种扩散非常慢,扩散系数的测定(例如,通过脉冲梯度NMR)给出的数值为10-11m2/s数量级或更小。此外,Hosemann图给出了反胶束的尺寸,基本上是水畴的尺寸。
微乳状液:微乳状液定义为热动力学稳定的、低粘度的、光学各向同性的、微结构的液相,含有油(非极性液体)、水(极性液体)和表面活性剂。请参看Danielsson,I.and Lindman,B.(1981)Colloids andSurfaces,3:391。表面活性剂、水和油的热动力学稳定液体混合物通常称为微乳状液。从宏观上看是均匀的,但在微观长度尺寸(10-1000_)上看,它们构成了含水和含油的微畴,这些微畴被富含表面活性剂的膜分开。请参看Skurtveit.R.and Olsson,U.(1991)J.Phys.Chem.95:5353。微乳状液的关键限定特征是它含有“油”(非极性溶剂或液体)以及水和表面活性剂;总是限定为微结构的。一般说来,由于油和水的强分相趋势,在缺乏能同时溶解油和水的有机溶剂(如乙醇、THF、二噁烷、DMF、乙腈、二甲基亚砜,和少量其它溶剂)时,含油、水和表面活性剂的清晰的、单相的液体必定是微乳状液,仅仅在这基础上,就可以安全的推断它是超微结构的。应注意到,微乳状液也可能是L1或L2相,特别是如果它含有已定义的胶束时;然而,如果是L1相,则胶束必须用油溶胀。这一微乳状液是超微结构液相。如果具有“油”、水和表面活性剂的液体的特征畴尺寸大于纳米级,也就是说在微米级范围内,则不再是微乳状液,而是“小乳化液(miniemulsion)”或普通乳化液;后二者都是非平衡的。引入微乳状液这一术语,不管L1和L2相可能含有油,甚至还可能是双连续的这一事实,因为对于三组分油-水-表面活性剂/类脂体系来说,从水连续相到双连续相到油连续相这样连续地发展是相当普遍的,其间没有相边界。在这种情况下,试图在相图的“L1”和“L2”区域之间建立一个分割点是没有意义的,所以,只能说整个区域是“微乳状液”—认为在这一区域的高水含量一端,这一结构是油溶胀L1相的,而在这一区域的高油含量一端,这一结构是L2相的。(在Venn相图上,在微乳状液与L1和L2相之间有一重叠,在L1和L2之间没有)。正如在下面所讨论的,微乳状液的微观结构通常是根据表面活性剂的单层膜来描述,这一层膜将富油畴与富水畴分开。这种富含表面活性剂/类脂的分割膜可以包围形成胶束,或连接成网状结构形成双连续微乳状液。
应当指出,乳化液不是这里所说的超微结构液体。在乳化液中特征长度尺寸,即基本上是乳化液滴的平均尺寸,通常远大于超微结构液体中的特征长度尺寸,落在微米而不是纳米范围内。虽然最近人们试图生产亚微米(submicron)液滴尺寸的乳化液,得到了液滴较小的乳化液,称之为“小乳化液”,但至关重要的区别,这里所说的超微结构液体不包括乳化液和小乳化液。在这里所描述的超微结构液相,包括微乳状液,在热平衡下存在,与此相反,乳化液不是平衡相,仅是亚稳定物质。此外,默认的完全平衡的超微结构液体是光学透明的,而乳化液通常是不透明的—例如,普通牛奶是乳化液。此外,如果Friberg模型对普通乳化液的结构适用的话,这一点在本领域内通常是认可的,则可以看到在分子水平上差别是十分大的。按照这一模型,乳化液滴通常被看作由界面膜所稳定,通过微观考察,这些膜被证明是超微结构液晶相物质的膜;因此,这些乳化液有一分级结构,其中超微结构相在主要组成团块之间起稳定层的作用,这些团块是乳化液滴和连续介质。我们用“超微结构”代替“微结构”是基于更精确的限定的术语“超微结构”的性质,它排除了落入完全不同领域内的其它液体相,如乳化液。很明显,考虑到简单的几何结构,表明乳化液液滴尺寸在10微米这一数量级上,可能是液晶层的稳定膜不适合于作为本发明微粒的内部,其粒径通常在1微米的数量级上。
超微结构的微乳状液的确定。用上面讨论的用于测定超微结构L1相的方法和指南来测定超微结构的微乳状液,但做了如下改动。
对于并不明显落入了L1相或L2相的描述中的微乳状液—它是在这里要处理的另一种情况—我们注意到,如果不是大部分,也有许多是双连续的,在含有油、水和表面活性剂的单一液相内,双连续性提供了强有力的证据:相是超微结构的,因为乳化液和其它普通液体从来就不是双连续的。这一论点在Lindman,B.,Shinoda,K.,Olsson,U.,Anderson,D.M.,Karlstrom,G.and Wennerstrom,H.(1989)Clloidsand Surfaces 38:205的“On the demonstration of bicontiuousstructures in microemulsions”中提出。证实双连续性的长期考验的方法是是使用脉冲-梯度NMR,分别测定油和水的有效自扩散系数;通常,最好是还测定表面活性剂的自扩散。电导率也可以用来确定水的连续性,尽管这样易于产生与“跳跃(hopping)”过程相关的问题。荧光淬灭(fluoresence quinching)也用于连续性的测定。Sanchez-Rubio,M.,Santos-Vidal s,L.M.,Rushforth,D.S.and Puig,J.E.(1985)J.Phys.Chem.89:411。小角度中子和x射线散射分析也用于检测双连续性。Auvtay,L.,Cotton,R.,Ober,R.and Taupin,J.(1984)J.Phys.Chem.88:4586。SAXS曲线的Porod分析用于推导界面的存在,因此,证实超微结构的存在。Martino,A.and Kalar,E.W.(1990)J.Phys.Chem.94:1627。冷冻-破碎电子显微方法,冷冻速度极快,用于研究微乳状液,这是对超微结构液体固定方法研究数十年的结果,已有了讨论该方法和结果可靠性的重要评论。Talmon,Y.,in K.L.Mittal and P.Bothorel(Eds),Vol.6,Plenum press,New York,1986,p.1581。
在油-水-表面活性剂液相不明显是L1和L2相,没有明显双连续性的证据的情况下,用于证实它是超微结构的分析都可以包括在内,单一的技术不能满足。一般说来,可以使用在本节讨论的测定方法,如SANS或SAXS,NMR自扩散,低温EM等,以使超微结构模型中的数据合理化。
L3相:相图中,L2相区域有时有伸出来的“舌头”:长而薄的突出不同于简单L2相区域中的正常外观。这种现象有时也出现在某些L1相区域中,如下描述。当考察这些时,特别是用x射线和中子散射,根本不同于L2相。在L2相中,表面活性剂膜通常是单层的,油(非极性溶剂)在一侧,水(极性溶剂)在另一侧。与此相反,在这里所说的L3相中,表面活性剂是双层的,两侧都有水(极性溶剂)。L3相通常认为是双连续的,事实上,它具有立方相的另一性质:有两个不同的含水网格(network),相互交织,但被双层膜分开。所以L3相确实非常类似于立方相,但缺乏立方相的大范围的有序性。L3相起源于L2相,L2相起源于L1相,具有不同的名称。“L3相”用于与L2相有关的相,而“L3*相”用于与L1相有关的相。
超微结构L3相的测定。L3相的测定区别于在这里讨论的其它液相,是一个复杂的问题,需要结合几种分析技术。现在讨论最重要的一种。
不管默认的L3相的光学各向同性性质和它是一种液体的事实,L3相可以具有令人感兴趣的性质,即表现出流动双折射性。这通常与相当高的粘度有关,其粘度大大高于L1和L2相中所观察到的,与胶束相的粘度是可比的或比之更高。这些性质当然是连续的双层膜的结果,这对超微结构的拓扑学和几何学都有很大的限制。因此,剪切可能导致双层膜的大部分协同变形(和导致排列),例如,与胶束L1相不同,独立的胶束单元简单地随剪切发生位移,在任何情况下,与双层膜相比,单层膜随剪切位移通常更易变形。这种解释得到了以下事实的支持:L3相的粘度通常是表面活性剂体积分数的线性函。Snabre,P.and Porte,G.(1990)Europhys,Lett.13:641。
为了测定超微结构的L3相已开发了复杂的光、中子和x射线散射技术。Safinya,C.R.Roux,D.,Smith,G.S.,Singa,S.K.,Dimon,P.,Clark,N.A.and Bellocq,A.M.(1986)Phys.Rev.Lett.57:2718;Roux,D.and Safinya,C.R.(1988)J.Phys.France 49:307;Nallet,F.,Roux,D.and Prost,J.(1989)J.Phys.France 50:3147。Roux,D.,Cates,M.E.,Olsson,U.,ball,R.C.,Nallet,F.and Belloxq,A.M.,Europhys,Lett.分析声称确定超微结构具有两个含水网格,由表面活性剂双层分开,由于两个网格的等同性,因此导致了某种对称性。
很幸运,以相行为为基础确定L3相的超微结构性质,与典型的L1和L2甚至是微乳状液相情况相比,更加安全。首先,因为L3相通常是通过向层状的或双连续的立方相中加入少量的(百分之几)油或其它化合物,或稍微提高所述相的温度得到的。因为这些液晶相容易证实是超微结构的(特别是x射线中的Bragg峰),可以确信,当液相在组成上与液晶相如此接近时,它也是超微结构的。之后,向超微结构液晶相中加入百分之几的油,将液晶转变为无结构流体是几乎不可能的。的确,在气溶胶OT-盐水体系中的脉冲-梯度NMR自扩散测定表明:在L3相中的自扩散行为非常明显地外推到附近的反双连续立方相的那些。这一L3相已是结合SANS、自扩散和冷冻破碎电子显微研究的主题。Strey,R.Jahn,W.,Skouri,M.,Prote,G.,Marignan,J.and Olsson,U.,的“Structure and Dynamics of Supramolecular Aggregates.”;S.H.Chem,J.S.Haung and P.Tartaglia,Eds.,Kluwer AcademicPublishers,The Neherland。确实,在L3相的SANS和SAXS散射分析中,在相应于d-间距(spacing)的波矢上经常观察到一宽的干扰峰,它与双连续立方相中的处于同一数量级,在相图附近,作者已开发了一种用于L3相超微结构的模型,该模型是已知双连续立方相结构的外推。Anderson.D.M.,Wennerstroom,H.and Olsson.,U.(1989)J.Phys.Chem. 93:4532。
作为包覆颗粒的一种组分,超微结构液晶相物质可以是
a.超微结构正或反立方相物质,
b.超微结构正或反六方相物质,
c.超微结构正或反中间相物质,或
d.超微结构层状相物质。
超微结构液晶相的特征在于其畴结构,由具有如下性质的至少第一种类型和第二种类型的畴(在某些情况下有三种甚至更多种类型的畴)组成:
a)在第一种类型畴中的化学物质与第二种类型畴中的化学物质是不相容的(通常,每一对不同类型的畴是相互不容的),以至于它们在给定条件下不混合,保持为分开的畴;(例如,第一种类型的畴基本由如水和类脂头基的的极性物质组成,第二种类型的畴基本上由如烃基链的非极性物质组成;或者第一种类型的畴是富含聚苯乙烯的,第二种类型的富含聚异戊二烯的,第三种类型的畴富含聚乙烯基吡咯烷酮的);
b)在每一畴内的原子排序是类似于液体,而不类似于固体,缺乏原子的晶格序列;(由广角x射线衍射中没有尖锐的Bragg峰所证);
c)最小的尺寸(例如,层的厚度,柱或球的直径),基本上所有的畴在纳米级(即约1-约100mm);和
d)畴的组织与晶格一致,可以是一维、二维或三维的,其晶格参数(或单元室的尺寸)在纳米级(即约5-约200nm);因此,畴的组织与International Tables of Crystallography中列出的230个空间群(space group)一致,在用3-200nm的最小有序反射的d-间距的充分设计的小角度x射线散射(SAXS)测定中,由存在尖锐的Bragg反射所证实。
层状相:层状相的特征在于:
1.小角度x射线显示在波数上的峰标记(peaks indexing)为1∶2∶3∶4∶5…,
2.用肉眼看,相是透明的,或者是表现出轻微或中等浊度,
3.在极化光学显微镜中,相是双折射的,已知的纹理(texture)已由Rosevear and Winsor(例如,Chem.Rev.1968,p.1)进行了充分的描述。三种最有名的纹理是“Maltese交错”、“镶嵌(mosaic)”式和“含油streak”式。Maltese交错是大致相互垂直的两暗区(干射边沿)的重叠,位于大致为环形光斑的(双折射)上方,形成了明显不同的图案,让人想起WWI德国军事符号。这种纹理以及其源的变化已在J.Bellare,Ph.D.Thesis,Univ.of Minnesota,1987中进行了充分描述。“镶嵌”纹理可以想象为紧密地填充的质密的变形的Maltese交错纹理,产生了随机编织在一起暗亮斑纹。当(低粘度)层状相流经玻璃和滑盖之间时,通常可以看到“含油streak”图案;在这种图案中,放大后(400x)近距离观察时,可以看到长而弯曲的线,由细微的条纹组成,大致垂直于弯曲的线,象枕木构成铁路的轨道(与下面讨论的六方纹理不同)。在某些情况下,特别是如果相在玻璃和滑盖之间轻轻摩擦一段时间后,层状相将排列,使其光轴平行于显微镜中的视线,从而导致双折射现象。
对于表面活性剂-水体系中的层状相:
1.粘度足够低,以至于物质流动(例如,当含有相的管倾斜倒立时)
2.所有组分的自扩散速率高,可以与在主体中的值相比,例如,水在层状相中的有效自扩散系数可以与在纯水中的自扩散系数相比。因为在环境温度下,形成液晶的表面活性剂通常不是液体,表面活性剂的自扩散系数的参考基准不准确,事实上,层状相中的表面活性剂的有效(测定)自扩散系数经常作为解释其它相中的测量的参考基准。
3.如果表面活性剂的头基被氘化,测定2H NMR谱带形,可以看到两个尖峰,其间被割裂两次,那是六方相。
4.关于相行为,在单尾基表面活性剂/水体系中,层状相通常是在高表面活性剂浓度下产生的,一般是高于70%,在双尾基表面活性剂体系中,通常产生在低浓度下,一般达到50%以下。与发生在相图的其它任何液晶相相比,通常延伸到相当高的温度。
单组分嵌段共聚物体系中的层状相:
1.剪切模量通常低于同一体系中的其它液晶相。
2.关于相行为,层状相通常产生在两种嵌段体积分数约50∶50时。
正六方相:正六方相的特征在于:
1.小角度x射线显示的峰标记为1∶√3∶2∶√7∶3…;通常为√(h2+hk+k2),其中h和k为整数—二维对称基的Miller指数。
2.用肉眼观察,当完全平衡时,相通常是透明的,因此,与附近的层状相相比通常是相当清晰的。
3.在极化光学显微镜中,相是双折射的,已知的纹理由Rosevear,and Winsor充分描述了(如Chem.Rev.1968,P1)。其中最有特色的是“扇状”纹理。这种纹理似乎由双折射光斑组成,在给定的光斑内,细条纹形成扇状,使人想起东方人的扇子。在相邻的光斑中,扇的相互方向是随机的。层状相和六方相之间的另一重要区别是:在高放大倍数下近距离观察,与层状相不同,六方相中的条纹被证明不是由与粗条纹垂直的细条纹组成。
关于表面活性剂-水体系中的正六方相:
1.粘度中等,比层状相更粘,但比典型的立方相(其粘度为数百万厘泊)低得多。
2.与层状相相比,表面活性剂的自扩散系数低,水的自扩散系数与主体水中的可比。
3.用氘化表面活性剂的2H NMR带谱形显示有分裂,在层状相中观察到的分裂的一半。
4.关于相行为,在单尾基表面活性剂/水体系中,正六方相通常产生在中等表面活性剂浓度下,通常在50%表面活性剂的水平,一般来说,正六方相邻近胶束(L1)相区,尽管在其间有些可能产生非双连续立方相。在双尾基表面活性剂的情况中,在表面活性剂-水的二元体系中,通常基本不会产生。
对于单组分嵌段共聚物体系中的六方相,术语“正”和“反”通常不适用,(尽管在一个嵌段是极性的,而另一个是非极性的情况下,从原理上讲是有资格适用的)。在相同体系中,这一六方相中的剪切模量通常高于层状相,低于双连续立方相。至于相行为,六方相通常产生在两种嵌段体积分数为35∶65时。一般地,在每一种情况下,两个六方相将跨过一层状相,少数组分在柱内(这一描述代替表面活性剂体系的“正/反”命名法)。
反六方相:在表面活性剂-水体系中,反六方相的确认仅在两个方面不同于上面确认正六方相:
1.反六方相的粘度通常十分高,高于典型的正六方相,接近反立方相,和
2.关于相行为,在双尾表面活性剂/水体系中,反六方相通常发生在高表面活性剂浓度下,经常延伸到或接近100%表面活性剂。一般来说,反六方相区域邻近层状相区域,这是在低表面活性剂浓度下发生的,尽管其间通常会产生双连续反立方相。在许多有单尾基表面活性剂,如许多甘油单酯(包括甘油单油酸酯),具有低HLB的以PEG为基础的非离子表面活性剂的双元体系中,反六方相的出现令人意外。
正如在上面讨论正六方相所指出的,“正”与“反”六方相的区别仅在表面活性剂体系中有意义,在单组分嵌段共聚物六方相则是没有意义。
正双连续立方相:正双连续立方相的特征在于:
1.小角度x射线显示了立方外观的三维间隔基的峰标记。在这些峰标记中,经常遇到的间隔基是Ia3d(#230),其峰标记为√6∶√8∶14∶4∶…;Pn3m(#224),其峰标记为√2∶√3∶2∶√6∶√8∶…;和Im3m(#229),其峰标记为√2∶√4∶√6∶√8∶√10∶…
2.对肉眼来说,完全平衡的相通常是透明的,因此,与附近的任何层状相相比,通常是相当清晰的。
3.在极化光学显微镜中,相是非双折射的,因此,没有光学纹理。
对于表面活性剂-水体系中的正双连续立方相:
1.粘度高,比层状相高许多,甚至比典型的正方相高。大多数立方相的粘度在数百万厘泊的数量级上。
2.在NMR谱带形上没有观察到分裂,仅有一个相应于各向同性运动的峰。
3.关于相行为,在单尾基表面活性剂-水体系中,正双连续立方相通常发生在相当高的表面活性剂浓度下,对非离子表面活性剂通常在70%的水平上。一般来说,正双连续立方相区域在层状相和正六方相区域之间,其高粘度和非双折射使得其确认简单。在双尾基表面活性剂中,在表面活性剂-水的二元体系中,通常不会发生。
对于单组分嵌段共聚物体系中的双连续立方相,术语“正”和“反”通常不适用,(尽管在一个嵌段是极性的,而另一个是非极性的情况下,从原理上讲是有资格适用的)。在相同体系中,这双连续立方相中的剪切模量通常大大高于层状相,明显高于六方相。至于相行为,双连续立方相通常产生在两种嵌段体积分数为26∶74时。一般地,在某些情况下,两个双连续立方相将跨过一层状相,少数组分在柱内(这一描述代替表面活性剂体系的“正/反”命名法),六方相连续跨过立方-层状-立方。
反双连续立方相:反双连续立方相的特征在于:
在表面活性剂-水体系中,反双连续立方相的确认仅在一个方面不同于正双连续立方相的确认。在相行为方面,反双连续相在层状相与反六方相之间,而正双连续立方相在层状相和正六方相之间;因此,应当参考上面的关于区分正六方相与反立方相的讨论。一个好的规则是:如果立方相处于比层状相水浓度高的情况下,则是正的,如果它处于比层状相表面活性剂浓度高的情况下,则是反的。在双尾基表面活性剂-水体系中,反立方相通常发生在高表面活性剂浓度下,尽管这通常是复杂的,由于反立方相可能仅存在于加入了疏水物(“油”)或两亲物的场合。反双连续立方相确实出现在有单尾基表面活性剂的二元体系中,如许多单酸甘油酯(包括单油酸甘油酯)和许多低HLB值的以PEG为基础的非离子表面活性剂的那些。
应当注意到,在反双连续立方相中,尽管不是正的,但也观察到了空间群#212。这一相是由空间群#230的相得到的。正如在讨论正双连续立方相时所指出的,“正”和“反”双连续相的区别仅在表面活性剂体系中有意义,在单组分嵌段共聚物立方相中是没有意义的。
正离散(非双连续)立方相:正非双连续立方相的特征在于:
1.小角度x射线显示了具有立方相外观的三维空间群的的峰标记。在表面活性剂体系中最经常遇到的空间群是Pm3n(#223),其峰标记是√2∶√4∶√5∶…,在单组分嵌段共聚物中,经常观察的空间群是Im3m,相应于体心、球填充,其峰标记为√2∶√4∶√6∶√8∶…。
2.用肉眼观察,当完全平衡时,相通常是透明的,因此,与任何相关的层状相相比非常清晰。
3.在极化光学显微镜中,相是非双折射的,因此没有光斑。
对于表面活性剂-水体系中的正离散立方相:
1.粘度高,比层状相高很多,甚至比典型的正六方相高。大多数立方相的粘度在数百万厘泊的数量级上,不管是离散还是连续的。
2.与双连续立方相一样,在NMR谱带形中没有分裂,只有一个各向同性峰。
3.关于相行为,在单尾基表面活性剂/水体系中,正离散立方相通常发生在相当低的表面活性剂浓度下,对于离子型表面活性剂,一般在40%表面活性剂左右。正离散立方相区域一般在正胶束和正六方相区域之间,由于其高粘度和非双折射性,使得其测定简单。在双尾基表面活性剂的情况下,在表面活性剂-水二元体系中,通常根本不会发生。
对于单组分嵌段共聚物体系中的离散立方相,术语“正”和“反”通常不适用,(尽管一个嵌段是极性的,而另一个是非极性的情况下,从原理上讲是有资格适用的)。这样一种离散立方相中的剪切模量通常几乎完全取决于形成连续相中的嵌段的聚合物的剪切模量。至于相行为,通常仅在两种嵌段中一种或另一种的体积分数相当低的情况下,为20%或更小,才产生离散立方相。
反离散立方相:反离散立方相的特征在于:
在表面活性剂-水体系中,反离散立方相的确认与上述正离散立方相的确认有三个方面不同:
1.关于相行为,反离散立方相在层状相和反六方相之间,而正离散立方相在层状相和正六方相之间;因此必须参考上面的关于区分正六方相和反六方相的讨论。一个很好的规则是:如果立方相处于比层状相水浓度高的情况下,则是正的,如果它处于比层状相表面活性剂浓度高的情况下,则是反的。在双尾基表面活性剂/水体系中,反立方相通常发生在高表面活性剂浓度下,尽管这通常是复杂的,由于反立方相可能仅存在于加入了疏水物(“油”)或两亲物的场合。反离散立方相确实出现在有单尾基表面活性剂的二元体系中,如许多单酸甘油酯(包括单油酸甘油酯),和许多低HLB值的以PEG为基础的非离子表面活性剂的那些。
2.观察到的空间群通常是Fd3m.,#227。
3.水的自扩散系数非常低,而存在的任何疏水物的都高,表面活性剂的通常非常高,可以与层状相中的相比。
正如在讨论正离散相立方相时所指出的,“正”和“反”离散立方相的区别仅在表面活性剂体系中有意义,在单组分嵌段共聚物离散立方相中是没有意义的。
中间相:中间相的特征在于:
这些相十分稀少,如果有的话,它们仅在相图中一个非常窄的区域内发生。目前,它们中许多的结构是未知的或有争论。中间相可以如下分类:
正int(1)相发生在比正双连续立方相低的表面活性剂浓度下,接近于正六方相。粘度通常低,或中等偏低,不高于正六方相的。这一相是双折射的,其纹理一般类似于六方相的。组分的自扩散类似于六方相的。小角度x射线显示与立方相相比,空间群对称性较低,通常是单斜晶的。可以用相当复杂的NMR谱带形和SAXS分析来区分这种相和正六方相。请参看Henriksson,U.,Blackmore,E.S.,Tiddy,G.J.T.andSoderman,0.(1992),J.Phys.Chem.96:3894。典型的谱带形分裂在六方相和零分裂的各向同性相之间的中间,提供了良好的中间相证据。
正int(2)相发现在比正双连续立方相高的表面活性剂浓度下,接近层状相。在性质和也可能在结构上,与正双连续立方相相似,不同的是它们是双折射的,在NMR谱带形和SAXS分析上有些差别。光学纹理有点不寻常,在有些情况下类似于层状相的,在有些情况下又有点类似于六方相,与更普通的相相比,可能相当粗糙。与在int(1)相中一样,空间群是低对称的,一般是菱面体或四角形的,需要两个单元参数来表征,使得SAXS分析很困难。一般来说,如果d-间距比率的平方不能调整到简单的整数方案,则中间相结构是一种猜想。
反int(2)相发现在比反双连续立方相低的浓度下,接近于层状相。它们是双折射的,在NMR谱带形和SAXS分析中是不常见的。正如在int(1)和int(2)相中一样,空间群是低对称的,通常是菱面体或四角形的,需要两个单元参数才能描述其特征,使得SAXS分析很困难。尽管在SAXS谱上存在不指出立方或六方相晶格(它们只有一个晶格参数)的Bragg峰与光学双折射一起说明了这是中间相。可能是中间双连续相的空间群已在本申请发明人的论文中讨论了,D.M.Anderson,Supplement toJ.Physique.Proceedings of Workshop on Geometry and Interfaces,Aussois,France,Sept.1990,C7-1至C7-18。
在形成包覆颗粒10但外部涂层20还未形成时,特别希望超微结构液相物质或超微结构液晶相物质或其结合是与水(极性溶剂)平衡的,或更精确地说,与稀的水溶液是平衡的。一旦包覆颗粒10已经有一外部涂层20,前述超微结构物质就不必是与水平衡的了。能与水平衡的液相是:
L2相(a.k.a.反胶束),
微乳状液,和
L3相(但不是L3*相)。这些补充了可以与水平衡的液晶相:
反立方相,
反六方相,
反中间相,和
层状相。
从制备本发明包覆颗粒的观点来看,能与水平衡的相是优选的。优选地,在使用这里所描述的方法以分散给定的相作为基质时,希望所述相不溶于水,或任何来将颗粒分散在其中的溶剂。此外,当内部相具有附加性质,在形成颗粒的过程中与过量的水溶液平衡时,则相的变形最小。类似地,当在颗粒涂层被释放时或释放后内部相与过量水溶液在所遇到的条件下平衡时,相变也可能最小,在某些应用中这是有利的。
然而在形成颗粒的瞬间,并且经常也是在应用时,对基质来说不溶于水(一般是外部溶剂)是优选的,在应用时,在有些应用中溶解于水是有利的,这可以用本发明来完成。例如,考虑一种基质由溶于水的20%C12E5(五乙二醇十二烷基醚)组成,在75℃下,这一组成产生了L3相,与过量的水(稀释溶液)是平衡的,因此,这一组成在75℃下是可分散的。然而,如果应用温度在0-25℃之间,这一内部组成在水中可能是可溶的。事实上,C12E5在室温下通常是可溶于水的表面活性剂。如果在释放了涂层后想要的最终产品是非油腻的、非comedogenic,甚至是清晰的,则是有利的。
超微结构的液相物质可从以下形成:
a.极性溶剂和表面活性剂或
b.极性溶剂、表面活性剂和两亲物或疏水物或
c.嵌段共聚物或
d.嵌段共聚物和溶剂。
超微结构的液晶相物质可从以下形成:
a.极性溶剂和表面活性剂,
b.极性溶剂、表面活性剂和两亲物或疏水物,
c.嵌段共聚物或
d.嵌段共聚物和溶剂。
前面在标题化学标准(the heading Chemical Criteria)下,论述了可用于选择有效的极性和非极性基团以制备有效的表面活性剂的标准。因此,适用的表面活性剂包括含有两个化学部分的那些化合物,一部分是选自极性基团的描述中所述那些基团的有效极性基团,另一部分是选自非极性基团的描述中所述那些基团的有效非极性基团。
适用的表面活性剂或嵌段共聚物组分(或其混合物)可包括:
a.阳离子表面活性剂
b.阴离子表面活性剂
c.半极性表面活性剂
c.两性离子表面活性剂
i.特别是磷脂
ii.含有磷脂的类脂混合物,设计用来匹配生物膜的物理-化学特征
d.单甘油酯
e.PEG化的表面活性剂
f.上述的且有芳环的物质之一
g.嵌段共聚物
i.两段均疏水但不能互相混溶;
ii.两段均亲水但不能互相混溶;
iii.一段亲水,另一段疏水,(即两亲的)
h.两或多种上述物质的混合物。
适用的类脂包括磷脂类(如磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺、或鞘磷脂),或糖脂类(如MGDG、二酰基吡喃葡糖基甘油和LipidA)。其它适用的类脂是磷脂类(包括磷脂酰胆碱、磷脂酰肌醇、磷脂酰甘油、磷脂酸、磷脂酰丝氨酸、磷脂酰乙醇胺等),鞘脂类(包括鞘磷脂)、糖脂类(如半乳糖脂类如MGDG和DGDG,二酰基吡喃葡糖基甘油和LipidA),胆酸及相关酸如脱氧胆酸、甘氨胆酸、牛磺胆酸等的盐,龙胆二糖基类、类异戊二烯类、脂酰基鞘氨醇类、缩醛磷脂类、脑苷脂类(包括硫脑苷脂)、神经节苷脂类、环戊三醇脂类、二甲氨基丙烷脂类和溶血卵磷脂类和通过去掉一个酰基链由上述物质衍生的其它溶血类脂(lysolipids)。
其它适用类型的表面活性剂包括阴离子型、阳离子型、两性离子型、半极性、PEGy化的和氧化胺。优选的表面活性剂是:
阴离子型—油酸钠、十二烷基硫酸钠、磺基琥珀酸二乙基己酯钠、磺基琥珀酸二甲基己酯钠、二-2-乙基乙酸钠、硫酸2-乙基己酯钠、十一烷-3-硫酸钠、乙基苯基十一酸钠、ICn形式的羧酸皂,其中链长n在8和20之间,I为一价抗衡离子如锂、钠、钾、铷等;
阳离子型—链长为8至20且有氯、溴或硫酸根抗衡离子的二甲铵和三甲铵表面活性剂,肉豆蔻基-γ-甲基吡啶鎓氯化物及有8至18链长烷基的有关物,苯甲酸苯甲烃铵、链长在8和18碳之间且有溴、氯或硫酸根抗衡离子的双尾季铵表面活性剂;
非离子型—式CnEm的PEG化的表面活性剂,其中链烷烃链长n为6至20个碳,烯化氧基的平均数m为2至80;乙氧基化胆固醇;
两性离子和半极性的-N,N,N-三甲基氨基癸酰亚胺,烷基链长为8至18个碳的氧化胺表面活性剂;十二烷基二甲氨基丙烷-1-硫酸盐,十二烷基二甲氨基丁酸盐,十二烷基三亚甲基二(氯化铵);癸基甲基砜二亚胺;二甲基廿烷基氨基己酸盐,及这些两性离子和半极性表面活性剂的烷基链长为8至20的有关物。
FDA认可作为可注射剂的优选表面活性剂包括氯化苯甲烃铵、脱氧胆酸钠、肉豆蔻基-γ-甲基吡啶鎓氯化物、Poloxamer 188、聚烃氧基35蓖麻油、脱水山梨糖醇单棕榈酸酯和2-乙基己酸钠。
适合的嵌段共聚物是选自以下各类聚合物的两或多个不互溶的段组成的那些共聚物:聚二烯烃类、聚丙二烯类、聚丙烯酸类和聚甲基丙烯酸类(包括聚丙烯酸类、聚甲基丙烯酸类、聚丙烯酸酯类、聚甲基丙烯酸酯类、聚双取代酯类、聚丙烯酰胺类、聚甲基丙烯酰胺类等)、聚乙烯基醚类、聚乙烯醇类、聚缩醛类、聚乙烯基酮类、聚卤乙烯类、聚乙烯基腈类、聚乙烯酯类、聚苯乙烯类、聚亚苯类、多氧化物类、聚碳酸酯类、聚酯类、聚酐类、聚氨酯类、聚磺酸酯类、聚硅氧烷类、聚硫化物类、聚砜类、聚酰胺类、聚酰肼类、聚脲类、聚碳化二亚胺类、聚磷腈类、聚硅烷类、聚硅氮烷类、聚苯并噁唑类、聚噁二唑类、聚噁二唑啉类、聚噻唑类、聚苯并噻唑类、聚均苯四酰亚胺类、聚喹喔啉类、聚苯并咪唑类、聚哌嗪类、纤维素衍生物、藻酸及其盐类、壳多糖、脱乙酰壳多糖、糖原、肝素、果胶、聚氯化磷腈、聚氟化三正丁基锡、聚磷酰基二甲基酰胺、聚2,5-亚硒烯(poly-2,5-selenienylene)、聚溴化4-正丁基吡啶鎓、聚碘化2-N-甲基吡啶鎓、聚氯化烯丙基铵和聚三亚甲基氧乙烯磺酸钠。优选的聚合物段是聚环氧乙烷、聚环氧丙烷、聚丁二烯、聚异戊二烯、聚氯丁二烯、聚乙炔、聚丙烯酸及其盐、聚甲基丙烯酸及其盐、聚亚甲基丁二酸及其盐、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丁酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸丙酯、聚N-乙烯咔唑、聚丙烯酰胺、聚异丙基丙烯酰胺、聚甲基丙烯酰胺、聚丙烯腈、聚乙酸乙烯酯、聚辛酸乙烯酯、聚苯乙烯、聚α-甲基苯乙烯、聚苯乙烯磺酸及其盐、聚溴苯乙烯、聚环氧丁烷、聚丙烯醛、聚二甲基硅氧烷、聚乙烯基吡啶、聚乙烯基吡咯烷酮、聚四氢呋喃、聚二甲基富烯、聚甲基苯基硅氧烷、聚亚环戊二烯基亚乙烯、聚烷基噻吩、聚烷基对亚苯、交替的乙烯-丙烯共聚物、聚降冰片烯、聚-5-((三甲基甲硅烷氧基)甲基)降冰片烯、聚硫亚苯、肝素、果胶、壳多糖、脱乙酰壳多糖、和藻酸及其盐。特别优选的嵌段共聚物是苯乙烯-丁二烯嵌段共聚物、苯乙烯-异戊二烯嵌段共聚物、苯乙烯-苯乙烯磺酸嵌段共聚物、环氧乙烷-环氧丙烷嵌段共聚物、苯乙烯-二甲基硅氧烷嵌段共聚物、环氧乙烷-苯乙烯嵌段共聚物、降冰片烯-5-((三甲基甲硅烷氧基)甲基)降冰片烯嵌段共聚物、乙炔-5-((三甲基甲硅烷氧基)甲基)降冰片烯嵌段共聚物、乙炔-降冰片烯嵌段共聚物、环氧乙烷-降冰片烯嵌段共聚物、环氧丁烷-环氧乙烷嵌段共聚物、环氧乙烷-硅氧烷嵌段共聚物、和异戊二烯-苯乙烯-2-乙烯基吡啶三元嵌段共聚物。
3.第三组分:疏水物或非表面活性剂两亲物
a.链烷烃或链烯烃、其它长链脂族化合物
b.芳香化合物如甲苯
c.长链醇
d.甘油酯(甘油二酯或甘油三酯)
e.酰化的脱水山梨醇,如脱水山梨醇三酯(如脱水山梨醇三油酸酯)、或倍半油酸酯,或有在2和6之间的不同酰基链数的脱水山梨醇混合物
f.其它疏水或非表面活性剂两亲物或与一或多种上述物质的混合物
g.无.
适用的第三组分(疏水物或非表面活性剂两亲物)包括:n-链烷烃(其中n为6至20),包括支化的、不饱和的和取代的变体(链烯烃、氯代链烷烃等),胆固醇及相关化合物,萜烯类,二萜烯类,三萜烯类,脂肪醇类,脂肪酸类,芳烃,环己烷类,二环化合物如萘和萘酚类、喹啉类和苯并喹啉类等,三环化合物如咔唑、吩噻嗪等,颜料,叶绿素,固醇类,甘油三酯类,天然油提取物(如丁子香油、茴香油、肉桂油、芫荽油、桉树油、薄荷油),蜡,胆红素,溴,碘,疏水和两亲的蛋白质和多肽(包括杆菌肽、酪蛋白、受体蛋白、类脂锚着蛋白等),局部麻醉剂(如布他卡因、芽子碱、普鲁卡因等),和低分子量疏水聚合物(参见以上所列举的聚合物)。特别优选的第三组分是:茴香油、丁子香油、芫荽油、肉桂油、桉树油、薄荷油、蜂蜡、苯偶姻、苄醇、苯甲酸苄酯、萘酚、辣椒素、cetearyl醇、鲸蜡醇、肉桂醛、可可脂、椰子油、棉子油(氢化的)、环己烷、cyclomethicone、邻苯二甲酸二丁酯、癸二酸二丁酯、邻苯二甲酸二辛酯、DIPAC、邻苯二甲酸乙酯、乙基香兰素、丁子香酚、富马酸、甘油二硬脂酸酯、薄荷醇、丙烯酸甲酯、水杨酸甲酯、肉豆蔻醇、油酸、油醇、苄基氯、石蜡、花生油、胡椒醛、菜籽油、松香、芝麻油、脱水山梨醇脂肪酸酯、角鲨烷、角鲨烯、硬脂酸、三醋精、三肉豆蔻精、香草醛和维生素E。
极性溶剂(或在嵌段共聚物的情况下,所述优先溶剂)可以是:
a.水
b.甘油
c.甲酰胺、N-甲基甲酰胺、或二甲基甲酰胺
d.乙二醇或其它多元醇
e.硝酸乙基铵
f.其它非水的极性溶剂,如N-甲基斯德酮、N-甲基乙酰胺、氯化吡啶鎓等;
g.两种或多种上述溶液的混合物。
理想的极性溶剂是水、甘油、乙二醇、甲酰胺、N-甲基甲酰胺、二甲基甲酰胺、硝酸乙基铵和聚乙二醇。
如前面所述,所述外涂层20可由非层状结晶材料形成。下文中采用术语“非层状”描述晶体结构。层状结晶相与层状液晶相不同,出现在有机化合物(典型地极性类脂)、无机化合物和有机金属化合物中。虽然这些相可为真正的结晶物质因而可表现出构成原子(或分子,在有机结晶物的情况下)在空间中的长程三维晶格排序,但原子间的力和相互作用--可能包括共价键、离子键、氢键、空间相互作用、疏水性相互作用、分散力等--在位于片层平面内的构成原子或分子间比不同片层之间强得多。例如,在层状石墨结构中,层内原子彼此间共价键合形成二维网络,而在不同层之间没有键合,仅有较弱的分散力和空间相互作用。缺少强的局部层间相互作用引起许多物化性能,使之不适于在本发明中作为涂层材料。
首先,层间局部相互作用弱内在地损害层状晶体的物理完整性。这通过石墨(层状结晶型碳)与金刚石(有三维键合的结晶型碳)间对比得到证明。的确,石墨因层间易彼此滑动为某些润滑剂中的重要成分而金刚石是研磨剂的事实说明层状晶体结构在它们对剪切的反应方面的“似液体”(或“似液晶”)性。实际上,此相同的层间滑动作用与引起层状液晶相比其它液晶相粘度低得多(特别是与双连续立方相非常高的粘度相比)的作用相同。此似液性的另一指示是石墨的莫氏硬度为1.0,而金刚石的莫氏硬度为10。日常生活中使用的“铅”笔(为石墨)可见石墨在剪切下损失完整性。
日常生活中不涉及肉眼可见的剪切的场合可见与层状晶体结构相关的不利影响。根据普遍接受的由Stig Friberg改进的乳液结构模型((如Larsson,K.and S.Friberg,Eds.1990,Food Emulsions,2nd Edition,Marcel Dekker,Inc.NY所评论的),层状液晶或通常为层状结晶涂层使油滴稳定在水包油型乳液中,并使水滴稳定在油包水型乳液中。在常遇到的乳液如牛奶、冰淇淋、蛋黄酱等中,公知的不稳定性--在该领域中称为“破乳”--主要是由于这些层状涂料的流动性。甚至在静止的乳液中,这些层状涂料也不断地经历破裂、流动及合并作用,随着时间的推移,任何乳液最终都必须屈从这些破裂作用的去稳定影响。
在另一水平上,层状结晶物质表现出化学不稳定性,妨碍其在本发明实施方案中作为涂料。考虑到与二硫氰酸四(4-甲基吡啶)合镍同晶形的维尔纳配合物的情形,其形成笼形化合物,主晶格含有嵌入的客分子,多数情况下在去除客分子时产生永久孔。一种这样的维尔纳配合物在实施例22中作为颗粒的涂层,从而说明本发明在产生有固定的、控制尺寸和高选择性孔的涂层的颗粒方面的用途。根据J.Lipkowski,Inclusion Compounds I,Academic Press,London(1984),p.59:“ Ni(NCS)2(4-MePy)4的层状结构仅在客分子存在下是稳定的而β-相甚至在不存在客分子的情况下仍保持其多孔性”。该文献中还详细论述了β-相的三维非层状结构,如:“…β-相…有通过分子大小的通道互相连接的三维晶穴体系”。
外涂层20可保护内芯10和其中分配的任何活性试剂或组分,例如防止氧化、水解、过早释放、沉淀、剪切、真空、酶侵袭、因制备中的其它组分而降解和/或包覆颗粒外部的条件,例如在其制备中如pH、离子强度或存在生物活性的杂质如蛋白酶类或核酸酶类。每项的例子是:
氧化:例如对于抗氧化剂如维生素C(因其对氧化非常敏感)或不饱和类脂;
水解:例如对于有不稳定的酯键的药物;
过早释放:例如在储存期间;
沉淀:例如对于将在人体pH下去质子化而变得不溶的质子化(盐酸化物)形式的药物;
剪切:例如在包封后的处理危及对剪切敏感的化合物如蛋白质的情况下;
真空:例如在处理涉及真空干燥的情况下;
酶侵袭:肽荷尔蒙如生长激素释放的抑制因子(通常在体内迅速被酶消化)可在循环中保持活性直至达到释放和作用部位;
因其它组分而降解:例如内芯中分配的组分和外部组分间甚至微小的反应性经数月或数年的保质期限可能产生此问题的情况下;
外部pH:例如质子化形式的药物可能在低的内pH下包封以确保溶解度,但不要求低pH的外部液体使胃部感到不适;
外部离子强度:例如包封蛋白质以避免盐析和变性的情况下;
外部杂质如蛋白酶类或核酸酶类等:当外部含有生物反应剂衍生的产物时,从中去除蛋白酶可能价格过高。
对于外部涂层20,所述非层状结晶物可以是有机化合物、无机化合物、矿物、金属如金或其它结晶元素形式如碘或有机金属配合物。
非层状结晶涂料的结构可以是
a.非多孔的结晶
b.有一维孔网的结晶
c.有二维孔网的结晶
d.有三维孔网的结晶
该涂料可有以下表面电荷特征:
1.净阳离子电荷
a.在正常使用中遇到的所有条件下或
b.在一或多步使用时遇到的某些条件下
2.净阴离子电荷
a.在正常使用中遇到的所有条件下或
b.在一或多步使用时遇到的某些条件下或
3.非荷电的:
a.仅在等电点或
b.在横跨正常使用范围的pH范围内或
c.在使用阶段期间(如通过絮凝收集颗粒期间)达到/导致的pH范围中
适用的非层状结晶涂料(即在适用的温度范围内以非层状结晶形式出现且多数情况下为低毒性和环境影响的化合物)的例子是:
抗坏血酸;抗坏血酸棕榈酸酯;天冬氨酸;安息香胶;β-萘酚;碱式碳酸铋;丁基化羟甲苯;羟苯甲酸丁酯;乙酸钙;抗坏血酸钙;碳酸钙;氯化钙;柠檬酸钙;氢氧化钙;二代磷酸钙;三代磷酸钙;焦磷酸钙;水杨酸钙;硅酸钙;硫酸钙;胭脂红;cetearyl alcohol;鲸蜡醇;肉桂醛;柠檬酸;盐酸半胱氨酸;癸二酸二丁酯;七叶苷;氧化铁;柠檬酸铁;四氧化三铁;龙胆酸;谷氨酸;甘氨酸;金;组氨酸;双氢氯噻嗪;碘;氧化铁;硫酸月桂酯;亮氨酸;镁;硅酸镁铝;碳酸镁;氢氧化镁;氧化镁;硅酸镁;硫酸镁;三硅酸镁;马来酸;D,L-苹果酸;水杨酸甲酯;羟苯甲酸甲酯;谷氨酸—钠;五倍子酸丙酯;羟苯甲酸丙酯;氧化硅;硅;二氧化硅;硅铝酸钠;氨基苯甲酸钠;苯甲酸钠;碳酸氢钠;硫酸氢钠;亚硫酸氢钠;碳酸钠;氯化钠;柠檬酸钠;焦亚硫酸钠;硝酸钠;二代磷酸钠;丙酸钠;水杨酸钠;锡酸钠;琥珀酸钠;硫酸钠;硫代硫酸钠;琥珀酸;滑石;研制滑石;酒石酸;DL-酒石酸;酒石黄;碲;二氧化钛;三醋精;柠檬酸三乙酯;三氯一氟乙烷;三羟甲基氨甲烷和盐酸2-羟基-n-环丙基甲基吗啡喃;氧化锌。
生物医学和制药应用中感兴趣的是磷酸钙涂料,因为磷酸钙是骨骼、牙齿和其它组织的主要组分。例如,在骨质疏松症的治疗中,生理条件可能引发适当药物化合物的释放导致骨头溶解(因而导致颗粒涂层溶解)。
在农业应用中感兴趣的是硝酸钾,因为该涂料也作为植物的肥料。
碘、抗坏血酸、苯甲酸、丁基化羟基甲苯、乙二胺四乙酸钙二钠、龙胆酸、组氨酸、五倍子酸丙酯和氧化锌可能特别适用在潜在的药物应用中作为结晶涂料,因为它们有相对低的水溶性(一般低于5%),在批准用于可注射制剂的钝性成分的FDA列上。
作为涂料特别感兴趣的是茏形物。这种物料的例子如下:
1.笼形物及包合物(有些在除去客分子时留下永久的多孔性):
MX2A4形式的维尔纳配合物,其中M为二价阳离子(Fe、Co、Ni、Cu、Zn、Cd、Mn、Hg、Cr),X为阴离子配体(NCS-、NCO-、CN-、NO3 -、Cl-、Br-、I-),和A为电中性配体取代的吡啶、α-芳烷基胺或异喹啉;A的例子包括4-甲基吡啶、3,5-二甲基吡啶、4-苯基吡啶和4-乙烯基吡啶。这些配合物中可包括宽范围的客分子,例子是苯、甲苯、二甲苯、二氯代苯、硝基苯、甲醇、氨甲烷、氩、氪、氙、氧、氮、二氧化碳、二硫化碳等。
可逆的载氧螯合物如二-水杨醛-乙二亚胺合钴和其它的二-水杨醛-亚胺合钴衍生物、二组氨酸合钴(II)及相关的钴(II)氨基酸配合物、二甲基乙二肟合铁(II)和二甲基乙二肟合镍(II)。
式K2Zn3[Fe(CN)6]2·xH2O的配合物,其中变量x的某些值对应于除去水时产生永久孔的配合物。
2.沸石:
八面NaX型沸石
八面NaY型沸石
VPI-5沸石
本发明的包覆颗粒1在多种领域中可应用。包覆颗粒1适合从所选环境中吸收一或多种物质、从所选环境中吸附一或多种物质或释放一或多种物质如分配在基质中的活性剂。
关于吸收,所述包覆颗粒可用于在生物或化学反应过程中收获产物或清除废物,在那些过程中携带催化剂,在医学应用中排除毒素、抗原或废物,这些仅是一些例子。
关于吸附,所述包覆颗粒可用作色谱介质和气体吸附剂。
关于释放,所述包覆颗粒可用于药剂如抗癌剂或光促治疗剂或化妆品的控制释放。活性剂可分配在基质中以在引发释放时释放。例如,药用或生物活性物质可分配在基质中。
这些微粒用于药物输送或包埋蛋白质或多肽(特别是受体蛋白)中时,有合成或半合成的设计用于近似模拟来自活细胞的天然生物膜的物理化学性质的内基质可能非常有利。这对于例如受体蛋白或其它膜组分的适当作用或促进内基质在药物输送中同化成天然生物膜是重要的。在这方面可能是重要的物理化学性质包括双层硬度(抗弯性的量度)、双层流动性(双层内部微粘度的量度)、酰基链长度和双层厚度、作为类脂酰基链上位置的函数的次序参数、表面电荷密度、双层内存在或不存在分离的不同组成的类脂区域、双层曲率和单层曲率(关于这两种曲率间关系的论述参见H.Wennerstrom and D.M.Anderson,in StatisticalThermodynamics and Differential Geometry of MicrostructuredMaterials,Eds.H.T.Davis and J.C.C.Nitsche,Springer-Verlag,1992,p.137)、胆固醇含量、碳水化合物含量和类脂:蛋白质之比。通过适当选择组成,可在人工系统即超微结构液相或液晶相中在很大程度上调节这些参数。例如,加入两亲物特别是脂肪醇可降低双层硬度;调节非荷电类脂(如卵磷脂)和带电类脂(如磷脂酸)之间的比例可调节双层电荷。而且,添加胆固醇对于多种膜蛋白的作用是重要的。层状相、反双连续立方相、L3相和较低程度的反六方相特别适用于此方法。因此,本发明的颗粒(内基质为这样的相,对于掺入蛋白质或其它生物分子的作用有协调的物理化学性质)在药物、临床化验、生化研究产品等中可能非常有价值。
膜蛋白一般决定性地依赖于双层环境以适当地起作用和甚至保持适当的形态,对于这种蛋白,本发明(特别是有如上所述协调的双层性质)可能是极好且非常适用的基质。膜蛋白的例子除受体蛋白之外还包括蛋白类如蛋白酶A、淀粉葡萄糖苷酶、enkephalinase、二肽基肽酶IV、γ-谷氨酰转移酶、半乳糖、神经氨糖酸苷酶、α-甘露糖苷酶、胆碱酯酶、芳香酰胺酶、surfactin、亚铁螯合酶、spiralin、青酶素束缚蛋白、微粒糖转移酶(microsomal glycotransferase)、激酶、细菌外膜蛋白和组织相容性抗原。
鉴于癌症治疗中对药物输送的要求,本发明的优点和灵活性使之在抗肿瘤药剂的输送和释放方面特别有吸引力,抗肿瘤药剂的例子如下:
抗肿瘤药
烷基化剂
烷基磺酸盐类-白消安、胺丙磺酯、哌酰硫烷,
氮丙啶类-苄替派、卡巴醌、米得派、尿烷亚胺,
氮杂环丙烷类和甲基蜜胺类-六甲蜜胺、三亚乙基蜜胺、三亚乙基磷酰胺、三亚乙基硫代磷酰胺、三羟甲蜜胺,
氮芥类-苯丁酸氮芥、萘氮芥、环磷酰胺、雌氮芥、异环磷酰胺、氮芥、盐酸氧氮芥、苯丙氨酸氮芥、新氮芥、苯乙酸氮芥胆固醇酯、松龙苯芥、氯乙环磷酰胺、尿嘧啶氮芥,
亚硝基脲类-卡氮芥、氯脲菌素、福替目丁、环己亚硝脲、嘧啶亚硝脲、雷诺氮芥,
其它类-达卡巴嗪、甘露醇氮芥、二溴甘露醇、二溴卫矛醇、溴丙哌嗪,
抗生素类-Actacinomycins-放线菌素F1、茴霉素、氮丝氨酸、博来霉素类、Cactinomycin、洋红霉素、嗜癌霉素、色霉素类、更生霉素、柔红霉素、6-重氮-5-OXO-L-norieucine、阿霉素、表阿霉素、丝裂霉素类、霉酚酸、诺加霉素、橄榄霉素类、培来霉素、Plicamycin、Porfiromycin、Puromycin、链黑霉素、链脲霉素、杀结核菌素、羟氨苯丁酰亮氨酸、新制癌菌素、佐柔比星,
抗代谢物
叶酸类似物-二甲叶酸、甲氨蝶呤、蝶酰三谷氨酸、曲美沙特,
嘌呤类似物-氟达拉滨、6-巯基嘌呤、硫咪嘌呤、硫鸟嘌呤,
嘧啶类似物-环胞苷、氮杂胞苷、6-氮杂尿苷、卡莫氟、阿糖胞苷、Doxifluridine、依诺他宾、氟尿苷、氟尿嘧啶、呋氟脲嘧啶,
酶类-L-天冬酰胺酶,
其它类-乙酰葡醛酯、安吖啶、Bestrabucil、比山群、碳铂、顺铂、磷氨氮芥、秋水仙胺、地吖醌、依洛尼塞、醋酸羟哔咔唑、环氧甘醚、依托泊苷、硝酸镓、羟基脲、干扰素-ot、干扰素-P、干扰素-y、白细胞介素-2、香茹多糖、氯尼达明、丙米腙、米托蒽醌、单哌潘生丁、二胺硝吖啶、Pentostatin、蛋氨氮芥、吡喃阿霉素、鬼臼酸、2-乙基酰肼、甲基苄肼、PSK09、丙亚胺、西索菲兰、螺旋锗、太平洋紫杉素、替尼泊苷、细格孢氮杂酸、三亚胺醌、2,2′,211-三氯三乙胺、乌拉坦、长春碱、长春新碱、长春地辛。
抗肿瘤药(激素类)
男性激素类-二甲睾酮、丙酸甲雄烷酮、环硫雄醇、环戊缩环硫雄烷、睾内酯,
抗肾上腺类-氨基导眠能、邻对滴滴滴、曲洛司坦,
Andandrogens-氟利坦、尼鲁米特,
抗雌激素类-他莫昔芬,托米芬(Toremifene),
雌激素类-己烯雌酚二磷酸酯、己烷雌酚、聚磷酸雌二醇,
LH-RH类似物-Buserelin、性瑞林、亮丙瑞林、Triptorelin,
孕激素类-醋酸氯地孕酮、甲羟孕酮、醋酸甲地孕酮、甲烯雌醇(Melengestrol),
抗肿瘤药(辐射源)
镅、钴、131I-Ethiodized Oil、金(放射性、胶状)、镭、氡、碘化钠(放射性)、磷酸钠(放射性),
抗肿瘤辅药
叶酸补充物-亚叶酸,
Uroprotective-巯乙磺酸钠。
本发明包覆颗粒的用途的其它例子包括:
1.油漆和油墨,包括颜料的微包囊;颜料的阳离子负荷(此时与pH的相关性可能是重要的);用于非水油漆的填料和纹饰剂;
2.纸,包括微胶囊状遮光剂(也在涂料中);用于无碳复印纸的压敏墨微胶囊;
3.非织造物,包括整个工艺过程中附着于纤维上的添加剂;
4.农业,包括用于防治昆虫的信息素的控制释放(否则某些信息素是挥发性的或者如不包封则在环境中不稳定);昆虫的化学绝育剂和生长调节剂的控制释放(否则其多数在环境中不稳定);其它农药的控制释放(与温度无关是重要的);除草剂的控制释放;植物生长调节剂乙烯和乙炔的包封(否则它们是挥发性的);阻止哺乳动物害虫的味改善剂(如辣椒辣素);营养物和肥料的释放;
5.环境和林业,包括用于控制杂草的水生除草剂的控制释放;其它除草剂的控制释放;海洋生物养殖中营养物的控制释放;土壤处理和营养物的释放;螯合剂的包封和释放(例如用于重金属污染物);活性物的沉积和环境灾难的控制(即通过对准目标释放晶体涂层和/或粘性立方相);包封吸湿剂或其它(例如尿素和氯化钠)“晶种”剂用于气象控制;
6.疫苗类,包括HIV gag,细胞的gag-pol转染作为例子;用于适当呈现抗原或抗体的佐剂;
7.核医学,包括将两种(否则相互破坏的)放射性核素分成不同的颗粒用于治疗癌症;
8.化妆品,包括抗氧化剂、防老护肤霜;防痤疮药的两组分的分离;有包封的前列腺素和维生素的防晒护肤液;脂溶性维生素、对氧化敏感的维生素、混合维生素的包封;挥发性香精和其它香料的包封;包封的挥发性香精用于擦嗅广告;包封挥发性的卸妆剂或其它化妆品用于形成薄片;包封的溶剂用于指甲油去除剂(或指甲油本身);含有包封的染发剂的气溶胶颗粒;含有包封的除臭剂的卫生巾;
9.兽医,包括挥发性抗蚤化合物的控制释放;包封的饲料添加剂用于反刍动物;畜牧业中抗菌剂和杀虫剂的包封;
10.牙齿,包括控制释放的牙膏组分,特别是水解不稳定的防牙垢化合物;口服抗癌化合物(photophyrin)的输送;
11.一罐(单包装)树脂体系中的聚合催化剂;
12.家庭用品,包括控制释放的空气清新剂、香精;控制释放的驱虫剂;洗涤剂(例如包封的蛋白酶);其它去污应用;软化剂;荧光增白剂;
13.工业,包括用于熏蒸储存产品的膦、二溴化乙烯等挥发物的包封;催化颗粒;用于吸着和提纯的活性炭微粒;
14.聚合物添加剂,包括用于防止电线、纸卡片等被咬的聚合物添加剂;抗冲改性剂;着色剂和遮光剂;阻燃剂和防烟剂;稳定剂;荧光增白剂;
目前聚合物基的添加剂包封方面的限制包括低熔点(在加工期间)、聚合物-聚合物间的不相容性、粒度限制、光学透明度等。用于润滑聚合物的某些聚合物添加剂是基于蜡,其缺点是熔点非常低(一些非常贵的合成石蜡除外)。
15.食品和饮料的加工,包括(挥发性)香料、香气和油(例如椰子、薄荷)的包封;牛饲料中植物油脂的包封;包封的酶用于发酵和纯化(例如啤酒酿造中的二乙酰还原酶);包封作为镀锡的替代品,用于改善冷冻食品的寿命;微胶囊包封的烟草添加剂(调味料);pH触发的缓冲剂;用包封在多孔物质中的活性炭去除杂质和脱色;
16.摄影,包括有光反应性亚微颗粒分散体的细粒胶片;快速胶片,因为亚微分散体的光学透明度高(因而透射率较高)和扩散时间较短;光处理剂的微囊包封;
17.炸药和推进燃料,包括液态和固态的推进燃料和炸药,以胶囊包封的形式使用;而且,水也以胶囊包封的形式在固体推进燃料中作为温度缓和剂;
18.研究,包括萃取和分离中的微胶囊填充塔;生化化验,特别在制药研究和筛选中;
19.诊断,包括用于血管造影和放射照像的包封标记和涉及对环境敏感的蛋白和糖脂类的临床化验。
开始释放活性剂或开始吸收的理想引发是:
I.通过涂层的溶解或破裂释放
A.内涵变量
1.pH
2.离子强度
3.压力
4.温度
B.广延变量或其它
1.稀释作用
2.表面活性剂作用
3.酶的活性
4.化学反应(非酶促的)
5.与目标化合物的配位作用
6.电流
7.辐射
8.时间(即缓慢溶解)
9.剪切(临界剪切速率的效应)
II.通过涂层中的孔释放或吸收,回避对涂层的溶解或破裂的需要
1.通过孔径大小对化合物大小的选择性
2.通过孔壁极性对化合物极性的选择性
3.通过孔壁电离度对化合物电离度的选择性
4.通过孔形状对化合物形状的选择性
5.根据某些化合物或离子形式有涂层的多孔内含化合物的选择性(这一般是上述四种作用的组合)。
在优选实施方案中,所述包覆颗粒可这样制备:
1.提供一定量的基质,所述基质包括至少一种有第一部分的化学物质,所述第一部分与第二部分反应时能形成非层状结晶物质,和
2.使所述基质与含有至少一种有所述第二部分的化学物质的流体接触以使所述第一部分与所述第二部分反应,同时通过向所述基质施加能量使所述基质细分成颗粒。
或者,所述包覆颗粒可这样制备:
1.提供一定量的基质,所述基质包括在其中呈溶液形式的非层状结晶物质,和
2.使所述非层状结晶物质变得不溶于所述基质,同时通过向所述基质施加能量使所述基质细分成颗粒。
在一般的方法中,将与化合物B反应时能形成非层状结晶物质的化合物A加装到一定量的基质中,将含有化合物B的流体(典型地为水溶液,通常称为“上层溶液”)覆盖在所述基质之上,化合物A与化合物B之间的接触导致在内/外界面处结晶,同时施加能量如声处理使被非层状结晶物质包覆的颗粒脱落至所述流体中。本发明的此方法独特地非常适用于生产有低水溶性物质涂层的包覆颗粒的水分散体,低水溶性即优选低于约20g/L水,甚至更优选低于约10g/L水。在这些方法中组分A在与B接触和开始声处理之前溶解(即不仅仅是分散或悬浮)于所述基质中是非常有利的,以最终获得均匀的微粒分散体。如前面所述,这是超微结构的基质有含水微畴以使多数情况下仅溶于极性溶剂的化合物A溶解的重要性的原因之一(此外要求使活性剂特别是生物药剂在基质中的溶解最优化)。特别地,产生非层状无机结晶沉淀的反应一般在含水介质中进行最方便和有效,从溶解的前体产生非层状有机结晶沉淀的反应通常最方便且有效地选择为pH诱导的、所要非层状结晶外涂层物质的可溶性盐形式的质子化或去质子化反应,此时水(或含水微畴)是显而易见的介质。
或者,可用冷却温度、结晶促进剂或电流产生结晶。
除声处理之外,其它标准的乳化方法也可用作能量输入。这些包括微流化、阀门均化[Thornberg,E.and Lundh,G.(1978)J.Food Sci,43:1553]和桨式搅拌等。理想地,将水溶性表面活性剂、优选几千道尔顿分子量的两亲嵌段共聚物如PLURONIC F68加入水溶液中以稳定包覆颗粒防止其形成时聚集。如果用声处理促进颗粒形成,该表面活性剂也用于增强声处理作用。
本文所报道的实施例中描述的许多非层状结晶物包覆的颗粒通过如下方法制备:其中两种或多种反应物在外部溶液和超微结构的液相或液晶相之间的界面处反应形成沉淀,所述沉淀形成外涂层。与此方法有重要的相似性以及重要的区别的另一方法是:其中将要形成涂层的物质(称为物质A)溶解于液相物质或液晶相物质中,通过改变所述物质中的一或多个条件如升高温度(但也可以是另一种改变如降低压力、添加挥发性溶剂等)促进此溶解。此改变必须是可逆的,以当该条件逆转时(如温度降低、压力升高、溶剂蒸发等),所述体系恢复成超微结构的液相或液晶相物质和非层状结晶物质A的两相混合物。在所述非层状结晶物质A有时间变成大晶体之前施加能量输入,这可通过施加超声波或其它乳化方法。这导致被非层状结晶物质A包覆的颗粒脱落。
在使用温度的情况下,化合物A在所述超微结构的液相物质或超微结构的液晶相物质中的溶解度必须随温度改变,溶解度对温度曲线的斜率越大,进行此方法所需温度增量越小。例如,硝酸钾在水中的溶解度随温度变化非常大。
沉淀反应法与此类方法的基本区别在于,在此类方法中,除超微结构的内部基质之外,仅需要一种化合物(A)。在沉淀反应法中,需要至少两种化合物,在超微结构相中的组分A,和开始在覆盖在所述超微结构相之上的外部相(“上层溶液”)中的组分B。在此情况下组分B通常简单地为适当选择的酸或碱性组分。这用于指出这两种方法间的相似性,在于外部相中存在组分B可认为是导致A结晶的“条件”(特别是在酸/碱情况中的pH);即可利用碱性pH使A溶解,利用外部相的存在所施加的酸性pH条件这是可逆的。或许这两种方法间的最重要的区别在于是否仅当或如果所述外部相(“上层溶液”)接触所述超微结构相时发生条件变化导致A结晶(如在A/B沉淀反应中),或者是否在超微结构相的整个主体中同时发生(如在温度诱导的结晶中)。
也可使用上述A/B反应法和温度法组合的方法。典型地在这种方案中,想要的作为颗粒涂层的化合物以两种化学形式加入基质中。第一种是最终涂层的化学形式,典型地为化合物的游离酸(游离碱)形式,它仅在升高的温下溶解而在形成颗粒的温度下不溶于所述基质。第二种是前体形式,典型地为所述游离酸与碱如氢氧化钠反应(或游离碱形式与酸如盐酸反应)制得的盐形式,该前体形式甚至在形成颗粒的温度下也溶于所述基质。例如,以苯甲酸颗粒涂层为例,苯甲酸和苯甲酸钠均加入基质中,所述基质是这样的基质,它在环境温度下不溶解苯甲酸,但在较高温度下溶解苯甲酸。所述上层溶液含有使所述前体转化成最终涂层形式所需的组分,如在苯甲酸钠的例子中为盐酸。加热(以使两种形式均基本上溶解),然后冷却,覆盖上层溶液,对系统进行声处理或施加能量时,包覆颗粒的形成将涉及冷却诱导沉淀和反应引起的涂层晶体的形成和沉淀两种方法。这有以下优点:提供两种结晶涂料源能导致颗粒覆盖比单一方法更早,因而防止颗粒聚变的保护增加(且可能导致粒度分布更均匀),在能量输入需要更低的情况下更有效地形成颗粒等。
可用于制备本发明包覆颗粒的其它方法是:
A.电结晶,
B.放入晶种(基质中为过饱和溶液,在外部相中放入晶种),
C.促进(一相中使用过饱和溶液,另一相中有结晶促进剂),
D.去除抑制(一相中使用过饱和溶液,在另一相中放入晶种),或
E.时间法(在内部相中晶体由过饱和溶液中缓慢生长)。
为形成许多想要的外涂层,包括几乎所有无机涂层,反应物之一(通常两种)不可避免地仅溶于水或其它极性溶剂。特别地,这些沉淀反应中所用的盐多数仅溶于高极性溶剂。同时,为使基质物质按本发明可分散于水中,似乎非常理想(如果不绝对)的条件是,内部相物质基本上不溶于水,否则一些或所有该物质将溶解于上层溶液而非分散于其中。因而,为形成这些涂层,所述基质必须满足以下两个条件:
条件1:它必须含有含水(或其它极性溶剂)畴;和
条件2:它必须是低水溶性的,即足够低(或有足够低的溶解动力学)以致由所述相产生颗粒的过程中(典型地5至100分钟将全部物质分散成颗粒)不发生显著的相溶解,因为这将显著降低生产效率从而减小该方法总的有利性。
这两个条件几乎为相反方向,很少能发现满足二者的体系。超微结构的液相物质和液晶相物质(反式或层状类型的)是这些非常少的体系中的几个。
某些情况下,将一或多种超微结构的液相或液晶相中的组分掺入上层溶液中是有利的,有时以适当量掺入。的确存在着上层溶液有超微结构的富表面活性剂的液相可能是有利的情况。特另地,这可能出现在基质相不与水(或稀水溶液)平衡但与另一种液相或液晶相如胶束相或者甚至低粘度的层状相平衡时。因此,作为在以上给出的该方法的一般性描述中所称的“流体”,可使用这种相或已加入附加组分如反应物B和/或两亲嵌段共聚物稳定剂的这种相。在此情况下,任何将此上层相掺入至微粒中的操作都将不会复杂化,因为能(一般将)选择所述上层相以与基质相平衡(活性成分在两物质间交换除外,这有一些因果关系但通常不重要)。形成包覆颗粒之后,它最初将分散在此上层“溶液”中,通过过滤或渗析,所述连续的外相将由此变成另一种介质如水、盐水、缓冲剂等。
以下实施例说明本发明但不限制本发明。
实施例
以下实施例中,实施例14、15、16和34说明有由体质坚固的无机物如氰亚铁酸铜和磷酸钙组成的涂层的体系,它可使完整颗粒在较强剪切条件下如泵送包覆颗粒分散体(例如用于循环或运输)期间具有稳定性。这些无机物也是低水溶性的,使之在需要通过强剪切释放颗粒涂层同时防止因单纯用水稀释而释放的应用中具有潜在的优势。这种应用的例子是啮齿动物阻碍物如辣椒辣素或啮齿动物毒素包封在本发明的包覆颗粒中,将颗粒注入电线、波纹箱、和需要防止啮齿动物啃咬的其它产品,啮齿动物的啃咬作用将导致活性阻碍物或毒素释放。水溶性低防止阻碍物因潮湿而过早释放。
提供涂层且也是低水溶性的坚固有机物是乙基氢化铜色树碱(ethylhydrocupreine),如实施例17和33中,该化合物的附加特征是它有极苦的味道而在啮齿动物-阻碍应用中具有附加的阻碍作用。
实施例1、2、3、6、7、8、9、10、17、18、19、20、23和33提供在中性pH下为低水溶性但随着pH变成酸性或碱性(取决于化合物)溶解度明显增加的涂层的例子。这可制备在例如需要在特殊pH范围内优先释放如肠释放的涂层的药物输送中具有重要价值的包覆颗粒。或者这种涂层将在细菌活性部位(此处pH典型地为酸性)释放(允许释放抗菌化合物)。或在特殊pH下释放涂层可释放pH稳定的化合物或缓冲体系,例如在设计用于控制游泳池中水的pH的微粒中。
实施例4给出了有碘化银涂层的颗粒的例子,它提供非常适用作云-晶种剂的性能,因为公知碘化银涂层有云-晶种效应,由该颗粒形状和大小所提供的表面积和表面形态能增强碘化银的作用。这应是有商业价值的,因为银化合物很贵,在此情况下不贵的液晶内部能起填料的作用,将在简单碘化银成本的几分之一下提供相同或更大的晶种势能。因表面积增大引起的效应类似增加可能有益于所述颗粒用作粘膜的局部麻醉剂,颗粒内部的类脂和活性麻醉剂疏水物(如利多卡因)的适当平衡能增强所述效应。
实施例5证明了化合物如硫化物和氧化物可用作本发明包覆颗粒的涂料,甚至当它们需要气态反应物来形成时。公知这种化合物不仅是高劲度物质,而且有极好的化学耐性,使这种包覆颗粒在颗粒将遇到苛刻的化学和物理条件的场合应用(如期望用这些颗粒作为聚合物添加剂时)或在涉及高剪切的工艺(如含染料的颗粒在非纺织物中的浸渍)中具有意义。
实施例12和13证明了高水溶性化合物作为涂料的应用,其在需要通过单纯用水稀释迅速且方便地释放涂层的应用中是有价值的。例如,合并两股物流(一股含分散体,另一股含水)的喷雾系统可提供气雾剂,其中适用于在喷雾之前防止附聚的颗粒涂层将在喷雾后溶解而此时颗粒已成烟雾状散开-可谓飞散。由于此溶解能暴露例如非常粘的超微结构的立方相内部,所以可用所述颗粒粘着例如作物上或支气管内衬等。在实施例12和13中将辣椒辣素载于内部使该产品例如在粘性烟雾状颗粒沉积在作物上之后对啮齿动物具有抵抗力方面有潜在价值,因为啮齿动物一般强烈地被甚至非常低浓度下的辣椒辣素的味道排斥。
以下实施例中除非另有说明,所有百分率均为重量百分率。以下实施例中所用组分的量可根据需要改变,只要相对量与实施例中相同;因此,这些量可按比例放大至要求量,当然要考虑到放大至较大量需要较大的设备。
以下实施例中,除非另有说明,包覆颗粒的外涂层均包括非层状结晶物,内芯均包括主要由至少一种超微结构的液相、至少一种超微结构的液晶相或至少一种超微结构的液相和至少一种超微结构的液晶相结合组成的基质。
实施例1
该实施例说明了宽范围的活性化合物(包括在药物和生物技术中重要的化合物)可掺入本发明的非层状结晶物包覆的颗粒中。
将0.266g氢氧化钠溶解于20ml甘油中,用加热和搅拌帮助溶解。然后溶解等摩尔量(即1.01g)羟苯甲酸甲酯(也在加热下)。从此溶液中,取出0.616g,在试管中与0.436g卵磷脂和0.173g油醇混合。此时掺入以下所示活性成分(或试剂),将溶液彻底混合形成活性成分分配在内部的超微结构的液晶相物质。将0.062g PLURONIC F-68(购自BASF的聚环氧丙烷-聚环氧乙烷嵌段共聚物表面活性剂)和0.0132g乙酸溶解在一起并加入所述试管中作为包括所述活性剂的上述溶液之上的一层溶液获得“上层溶液”。立即剧烈摇动含有所述液晶混合物和上层溶液的试管,并在小型台上超声振荡器(Model FS6,Fisher Scientific制造)中声处理3小时。所得分散体用光学显微镜观察时显示出高负荷的约1微米大小的用羟苯甲酸甲酯包覆的颗粒。
实施例1A掺入2.0wt%水杨酸(按液晶相物质的内芯重量计)作为活性剂。
实施例1B掺入2.0wt%硫酸长春碱(按液晶相物质的内芯重量计)作为活性剂。
实施例1C掺入2.4wt%胸苷(按液晶相物质的内芯重量计)作为活性剂。
实施例1D掺入1.6wt%促甲状腺素(按液晶相物质的内芯重量计)作为活性剂。
实施例1E掺入2.9wt%抗-3′,5′-环状AMP抗体(按液晶相物质的内芯重量计)作为活性剂。
实施例1F掺入2.0wt%L-甲状腺素(按液晶相物质的内芯重量计)作为活性剂。
诸如带溶解性随pH增加而明显增加的涂层的颗粒的这些颗粒适用于药物输送,随着从胃到肠沿肠胃道移动pH增加导致有效输送至较低的肠胃道,使整个时间内输送速率更均匀。
实施例2
该实施例证明了本发明颗粒分散体的长期稳定性。
将0.132g氨基酸D,L-亮氨酸溶解于2.514g 1M盐酸中,形成盐酸亮氨酸溶液。使该溶液在空气流下在热板上干燥,但不使之干燥至完全干燥;当重量达到0.1666g时停止干燥,这相当于向亮氨酸中加入1摩尔当量的HCl。将0.130g此化合物加入0.879g通过混合葵花油单甘油酯和水、离心分离和除去过量的水制备的超微结构的反双连续立方相物质中。混合1.0g 1M氢氧化钠与3g水制备上层溶液。所用的所有水均经三重蒸馏。将所述上层溶液覆盖在所述立方相上,密封所述试管并声处理,形成乳白色的包覆有亮氨酸的微粒的分散体。
用PLURONIC F-68作为稳定剂制备类似的分散体。将0.152g盐酸亮氨酸加入0.852g如上的超微结构的反双连续立方相物质中,由0.08gF-68、1.0g 1M氢氧化钠和3.0g水组成的上层相覆盖在所述超微结构的反双连续立方相物质之上并声处理。也形成乳白色的包覆有亮氨酸的微粒的分散体,此时所述F-68两亲嵌段共聚物表面活性剂包覆颗粒的外(基于亮氨酸的)表面。
作为对比试验表明亮氨酸对于形成晶体包覆颗粒的必要性,使1.107g DIMODAN LS(以下“葵花单甘油酯)与1.000g水混合形成超微结构的反双连续立方相物质。将0.08g PLURONIC F-68加入4.00g水中制备上层溶液。与上面用亮氨酸制备分散体的步骤相同,将上层溶液覆盖在超微结构的反双连续立方相物质之上,密封试管并声处理。在此情况下,基本上未形成微粒;甚至在与亮氨酸试验相同的条件下声处理几小时之后超微结构的反双连续立方相物质仍为肉眼可见的大块。
本发明包覆颗粒的该分散体正规检查十二个月的时间,未表现出不可逆絮凝的迹象。在均匀轻搅的情况下,经几周时间未显出不可逆絮凝的迹象。在不搅拌的情况下,显出絮凝的迹象,但轻摇5秒或更长时间,所有絮凝均逆转。在Edge Scientific R400 3-D显微镜中放大1,000倍(100×目标,油浸,透射光)观察一滴分散体,显示出有非常高负荷的亚微颗粒。
有相对较弱有机涂层的颗粒如这些颗粒可用于例如痤疮脂,其中可掺入活性物质如二氯苯甲氯酚,与将物质涂于皮肤相伴的剪切将释放涂层。
实施例3
该实施例中,掺入紫杉醇,含量为内芯的0.5%。颗粒涂层为亮氨酸,其在本文的其它实施例中已显示出提供长期稳定性。
在含有0.280gm卵磷脂、0.091gm油醇和0.390gm甘油的超微结构的反双连续立方相物质中混入4mg紫杉醇(溶解于2ml叔丁醇中)制备含有紫杉醇的超微结构的反双连续立方相物质;在氩气下蒸发出丁醇后,形成超微结构的反双连续立方相物质,为粘稠且光学上各向同性的。将试样离心分离1小时,其间未出现沉淀。光学各向同性在偏振光显微镜中验证。混合0.241g亮氨酸、2.573g 1M HCl和0.970g甘油,然后在空气流下在50℃热板上蒸发出水和过量HCl,干燥3小时,产生盐酸亮氨酸的甘油溶液。然后,将0.882g此亮氨酸-HCl的甘油溶液加入所述超微结构的反双连续立方相物质中。然后将0.102g PLURONIC F-68加至4.42g pH5.0的缓冲水溶液中制备上层溶液。将上层溶液覆盖在超微结构的反双连续立方相物质上之后,声处理2小时使超微结构的反双连续立方相分散成微粒。
颗粒如这些颗粒能用于抗肿瘤剂紫杉醇的控制释放。
实施例4
该实施例中,涂层为碘化银,它具有制备适用于摄影过程的颗粒的潜力。碘化银有点特殊,因为虽然它是简单的盐(仅为一价离子),但它在水中的溶解度非常低。
混合0.509g DIMODAN LS(可商购如购自Grinstedt AB,本文中称为“葵花单甘油酯”)、0.563g三重蒸馏的水和0.060g碘化钠制备超微结构的反双连续立方相物质。将0.220g硝酸银、0.094g PLURONIC F-68和0.008g氯化鲸蜡基吡啶鎓加至3.01g水中制备上层溶液。然后将所述上层溶液覆盖在所述超微结构的双连续立方相物质之上并声处理1小时产生微粒分散体。颗粒涂层为碘化银,它在水中的溶解度低。
实施例5
该实施例中,用硫化镉作为涂层。它是掺杂少量其它离子时物性变化很大的非层状结晶化合物。该实施例还证明本发明中可用气体如硫化氢气体诱导结晶和颗粒的形成。
使0.641g DIMODANLS与0.412g水彻底混合制备超微结构的反双连续立方相物质,向其中加入0.058g水合硫酸镉。然后将0.039g硫化镉覆盖在所述混合物上,用氩气吹扫试管并加盖。将0.088g PLURONIC F-68和1.53g甘油加入1.51g 1M HCl中,然后用氩气吹扫该溶液,制备上层溶液。将所述上层溶液吸入注射器中,加入所述第一试管。添加时在该试管中能闻到硫化氢气体的味道,并形成浅黄色沉淀;这表明硫化氢气体在由硫酸镉生产硫化镉(CdS)中的作用。对该系统进行声处理,得到有硫化镉涂层的微粒分散体。
实施例6
该实施例证明了结晶涂层(此处为亮氨酸)基本上避免内部与颗粒外的条件接触。与锌粉的任何接触均使亚甲蓝在低于1秒的时间内变成无色;这里,加入锌约24小时不退色。虽然最终颜色衰减,但相信此衰减仅是由于锌对亮氨酸涂层的作用。
使0.122g亮氨酸与1.179g 1M HCl混合,蒸发至剩余约1g溶液,制备盐酸亮氨酸水溶液。向其中加入0.922g葵花单甘油酯和10滴颜色很浓的亚甲蓝水溶液。将0.497g 1M NaOH和0.037g PLURONIC F-68加至3.00g pH5缓冲剂中产生上层溶液。覆盖上层溶液,对系统进行声处理,形成微粒分散体。将一等分该分散体试样过滤除去任何未分散的液晶,加入0.1g 100目的锌粉。(锌粉与亚甲蓝溶液一起摇动时,锌的还原作用去掉蓝色,通常在约1秒内或几乎同时)。然而,在该方法产生的微囊包封的亚甲蓝的情况下,经24小时颜色消失,最终得到白色分散体。因此,尽管锌和亮氨酸之间的相互作用可能破坏这些颗粒的涂层,但该涂层仍实质上保护亚甲蓝免于锌的影响,使该染料的锌还原所需时间增加约4-5个数量级。
如果颗粒如这些颗粒用于必须使两种活性成分隔离避免相互接触的产品(如对氧化敏感的抗菌化合物二氯苯氧氯酚和强氧化净化剂过氧化苯甲酰)中,该试验证明了用亮氨酸包覆的颗粒防止包封化合物与颗粒外环境间接触的可行性。
实施例7
在该实施例中,亮氨酸涂层保护颗粒内的亚甲蓝染料与氯化亚铁接触,如通过氯化亚铁加入分散体时没有预计的颜色变化很容易看见的那样。这表明该涂层基本上不能渗透离子。
混合0.242g亮氨酸、2.60g 1M HCl和1.04g甘油,然后在空气流下在50℃热板上干燥1.5小时,制备盐酸亮氨酸的甘油溶液。混合该亮氨酸-HCl溶液、0.291g卵磷脂(EPIKURON 200,来自Lucas-Meyer)、0.116g油醇和0.873g甘油制备超微结构的反双连续立方相物质;加入一撮亚甲蓝使其着色。将0.042g PLURONIC F-68表面活性剂加入4.36gpH5缓冲剂中制备上层溶液,覆盖在所述超微结构的反双连续立方相物质之上,对该体系进行声处理产生微粒分散体。向一等分此分散体中加入0.19g氯化亚铁(还原剂)。无颜色变化表明亚甲蓝被包封在所述亮氨酸包覆的颗粒中未与铁化合物接触,因为氯化亚铁加入亚甲蓝溶液中通常使颜色变成蓝绿色(青绿色)。
与实施例6相似,此试验证明了可保护包封的化合物如亚甲蓝(在此例中其对还原剂敏感)免于颗粒外的还原条件直至涂层释放。这可适用于例如电化学应用,其中通过涂层的化学释放开启施加电流的作用。
实施例8
该实施例与实施例1A和实施例10一起考虑时证明了本发明用羟苯甲酸甲酯包覆的颗粒可由两种完全不同的方法生产:通过热法如加热-冷却法,或通过化学反应如酸-碱法。
混合0.426g葵花单甘油酯(DIMODAN LS)与0.206g pH3的酸性水产生超微结构的反双连续立方相物质,向其中加入0.051g羟苯甲酸甲酯和痕量的亚甲蓝染料。将混合物加热至110℃,摇动,并放在振动混合器上,浸入23℃水中5分钟。覆盖2ml 2%PLURONIC F-68溶液(用HCl酸化至pH3),用扭转盖密封该试管,摇动该试管,然后声处理30分钟。这产生被羟苯甲酸甲酯包覆的微粒的分散体。
由于该实施例与实施例10一起证明了被相同化合物(此例中为羟苯甲酸甲酯)包覆的颗粒可通过热法或通过化学沉淀法生产,这提供了额外的通用性,可能在优化生产效率和最大限度地降低成本方面有价值,例如在微胶囊包封的药物的大规模生产中。
实施例9
该实施例中超微结构的反双连续立方相物质是基于非离子表面活性剂,所述表面活性剂一般被许可用于配制药物,它产生性能可通过很小的温度变化调节的液晶相物质。例如,在痤疮脂中,这可用于在施涂温度下获得净化(清洁)性能,但在配制温度下具有不溶性。此外,由于它是基于两种表面活性剂的调合混合物,且由于其相和性能灵敏地取决于两种表面活性剂之比,这提供了控制内芯性能的方便且功效强的方法。此外,该实施例产生透明的分散体。这是值得注意的,因为即使小分数的粒径大于约0.5微米的颗粒也产生不透明的分散体。
混合0.276g“OE2”(可商购的乙氧基化的醇表面活性剂,如Amerchol,a division of CPC International,Inc.供应的“Ameroxol OE-2”)与0.238g“OE5”(可商购的乙氧基化的醇表面活性剂,如Amerchol,adivision of CPC International,Inc.供应的“Ameroxol OE-5”),并加入0.250g水(包括过量的水),制备超微结构的反双连续立方相物质。向其中加入0.054g羟苯甲酸甲酯和痕量的亚甲蓝染料。将混合物加热至110℃,摇动,并放在振动混合器上,浸入23℃水中5分钟。覆盖2ml 2%PLURONIC F-68溶液(用HCl酸化至pH3),用扭转盖密封该试管,摇动该试管,然后声处理30分钟。这产生被羟苯甲酸甲酯包覆的微粒分散体。有趣的是该颗粒的亚微粒度导致透明的分散体。
实施例10
该实施例表明了羟苯甲酸甲酯包覆的颗粒除前面实施例的酸-碱法之外还可通过加热-冷却法产生。该实施例还证明了两相的混合物可被分散。
使卵磷脂(EPIKURON 200,0.418g)与0.234g油醇和0.416g pH3的酸性水混合,得到超微结构的反双连续立方相物质和超微结构的反六方相物质的混合物。从中取出0.50g,向其中加0.049g羟苯甲酸甲酯,并充分混合。将其加热至120℃,趁热搅拌,然后再加热至120℃。从烘箱中取出试管,将试管浸入冷水中5分钟。然后去掉扭转盖,覆盖2ml2%PLURONIC F-68溶液(用HCl酸化至pH3),搅动试样,摇动,最后声处理。这产生乳白色的被羟基苯甲酸甲酯包覆的微粒分散体。在光学显微镜中观察显示尺寸在2-10微米范围内的微粒。也观察到过量的羟基苯甲酸甲酯结晶物质。
该实施例证明了两种共存的超微结构相的混合物可提供微粒的内部。这在例如控制释放药物输送方面可能是有价值的,其中两相(每相均载有药物)的混合物可用于实现要求的药物动力学:例如,反六方相和立方相的混合物,由这两相的释放按照不同的动力学,因为孔空间的立体几何不同,所产生的动力学将是这两种图形的组合。
实施例11
该实施例表明可产生无水的颗粒内部,如用于保护对水敏感的化合物。
采用与实施例10的制备中相同的步骤,但在超微结构的双连续反立方相液晶物质的制备中用甘油(以过量存在)代替水。各物质的量是:卵磷脂0.418g,油醇0.152g,甘油0.458g和羟基苯甲酸甲酯0.052g。结果是乳白色的羟基苯甲酸甲酯包覆的微粒的分散体。
对水敏感的活性化合物的保护在例如掺入水解不稳定的活性物质的口服保健品中是有价值的。
实施例12
该实施例中,将辣椒辣素掺入硝酸钾包覆的颗粒中,其中所述超微结构的反双连续立方相物质是基于极便宜的表面活性剂。通过简单地加水很容易除去涂层--如在农作物-喷枪中,使分散体流与水流合并,使液体气雾化成为液滴。注意硝酸钾作为肥料的双重用途。
使非离子表面活性剂“OE2”(0.597g)和“OE5”(0.402g)与0.624g已被硝酸钾饱和的水混合。向该混合物中加入0.045g活性化合物辣椒辣素(纯晶体形式,由Snyder Seed Corporation获得)。然后取出0.552g该混合物,加入0.135g硝酸钾,将所得混合物加热至80℃5分钟。取2%PLURONIC F-68水溶液并用硝酸钾饱和之,制备上层溶液。摇动熔化的混合物使之混合,然后放回80℃烘箱中2分钟。将试管浸入20℃水中5分钟,此时覆盖上层溶液,用刮刀搅拌全体混合物,加盖,摇动,和声处理。结果是硝酸甲包覆微粒的分散体,内部含有活性成分辣椒辣素。
用等体积的水稀释所述分散体时,涂层溶解(室温下硝酸钾在水的的溶解度高),这表现为颗粒迅速凝结和聚变成大块。颗粒内部为粘性的液晶,因而在无涂层的情况下,发生凝结和聚变。
我们这里讨论的该实施例是用在装饰植物和/或农作物上的喷射液,能阻止动物吃叶子。我们已在包封化合物辣椒辣素方面取得成功,这种化合物是无毒化合物(在红辣椒和辣椒粉中发现),能在几ppm范围内的浓度下在口中产生灼烧感。辣椒辣素有商业记录用作啮齿和其它动物的阻碍物。
纯辣椒辣素包封在有结晶硝酸钾(硝石)涂层的颗粒的立方相内。颗粒外的外部溶液是硝酸钾的饱和水溶液,其防止涂层溶解直至它被稀释;按约1∶1用水稀释该分散体导致颗粒涂层近似完全溶解。(将此溶解拍摄在录像带上,观看录像带,可清楚地看到涂层的溶解,随后颗粒内部聚变。)
稀释和随后涂层溶解时,露出颗粒内部,为有以下关键性质的立方相:
A)它不溶于水;
B)它极粘;和
C)它有非常高的粘度。
这三种性质合在一起意味着去掉涂层的立方相颗粒将粘附于植物叶,性质A意味着甚至下雨时它也不溶解。
同样这三种性质对该主体立方相在用于治疗口腔癌的光动力疗法(PDT)药剂输送中用作控制释放膏的动物试验的成功也是关键的。
立方相颗粒中所达到的辣椒辣素浓度比治疗关节炎所用药剂中高两个数量级。可能达到更高的负荷,或许高达20%。
从商业化能力的观点出发,该分散体中的组分极便宜,都被许可用于食品、局部应用等。此外,硝酸钾是公知的肥料。
实施例13
该实施例如前一实施例使用辣椒辣素/硝酸钾,但这里所述超微结构的反双连续立方相物质是基于卵磷脂,它是植物和动物生存中的基本化合物,可便宜地获得。该超微结构的双连续立方相物质在宽温度范围内也是稳定的,至少至正常天气条件下可以经受40℃。
使1.150g大豆卵磷脂(EPIKURON 200)与0.300g油醇、1.236g甘油和0.407g硝酸钾混合。向其中加入0.150g活性的辣椒辣素,使该混合物彻底混合。然后,加入0.50g硝酸钾,将所得混合物加热至120℃5分钟。取2%PLURONIC F-68的水溶液,用硝酸钾饱和之,制备上层溶液。将熔化的混合物搅拌,然后放回120℃烘箱中3分钟。将试管浸入冷水5分钟,此时覆盖所述上层溶液,用刮刀搅拌全体混合物,加盖,摇动,和声处理,然后在摇动和声处理之间交替循环30次。结果是硝酸钾包覆的微粒的分散体,内部含有约5%的活性成分辣椒辣素。也存在过量的硝酸钾晶体。
应用与实施例12的相似,但内部使用卵磷脂可使颗粒内部与植物细胞膜的结合更好,可能导致更好的输送。
实施例14
该实施例中表明氰亚铁酸铜包覆的颗粒的耐剪切性。
混合0.296g葵花单甘油酯(DIMODAN LS)与0.263g 10%氰亚铁酸铜水溶液制备超微结构的反双连续立方相物质。将0.021g硫酸铜和0.063gPLURONIC F-68加至4.44g水中制备上层溶液。将上层溶液覆盖在所述超微结构的反双连续立方相物质之上,用扭转盖密封该试管,对系统进行声处理45分钟。结果是高浓度的微粒(被氰亚铁酸铜包覆),直径约3微米。该方法在不需要温度漂移的情况下产生微粒,只是有与声处理相伴的温度漂移,使用其它形式的乳化法可防止发生这些温度漂移。此外,不需要pH漂移。
将一滴放在显微镜载片和盖片之间观察时,发现该氰亚铁酸铜包覆的颗粒很好地耐剪切;在分散体上推盖片时,用手指轻压未使颗粒产生任何明显的变形或聚变。这与例如被碱式碳酸镁包覆的颗粒相反,其中轻压导致颗粒高度变形和聚变。这些观察结果与氰亚铁酸铜的高劲度一致。
有耐剪切涂层的颗粒在需要泵送颗粒的应用中有价值,已知传统的聚合物包覆的颗粒因剪切使涂层降解而有寿命限制。
实施例15
在该实施例中,辣椒辣素以相当高的负荷即9%(重)掺入本发明晶体包覆的颗粒的内部。混合0.329g卵磷脂、0.109g油醇、0.611g甘油和0.105g辣椒辣素(结晶形式,由Snyder Seed Corp.,Buffalo,NY获得)产生超微结构的反双连续立方相。向此立方相中加入0.046g硫酸铜。使0.563g 10%氰亚铁酸钾水溶液与2.54g水混合制备上层溶液。将所述上层溶液覆盖在所述立方相-硫酸铜混合物上,将该试管声处理2小时。生成氰亚铁酸铜的反应根据该化合物的深红棕色很容易证明。此时间结束时,所述立方相被分散成氰亚铁酸铜包覆的颗粒。涂层由氰亚铁酸铜制成,它是坚固的物质,对硫酸根离子有一些选择渗透性。由于此涂料是坚固的晶体(如实施例14可见),和辣椒辣素有啮齿动物极不喜欢的味道,所以这些颗粒适用作啮齿动物阻碍物防止其破坏波纹箱、农业植物等,特别是在啮齿动物的啃咬作用打开微粒使辣椒辣素暴露于动物的味蕾之前颗粒必须耐轻度剪切(如在生产颗粒饰边的箱或颗粒沉积在植物上期间的轻度剪切)。
实施例16
该实施例中用与实施例14相同的方法生产有氰亚铁酸铜涂层的微粒,但此例中将抗体作为活性剂掺入。具体地,将抗3′,5′环腺苷酸(AMP)抗体以内部的1%(重)的负荷作为活性剂加入。使0.501g葵花单甘油酯与0.523g水混合制备立方相。将0.048g氰亚铁酸钾与约0.010g所述抗体一起加入所述立方相中。离心分离除去过量的水溶液。将0.032g硝酸铜和0.06g PLURONIC F-68加入3.0g水中制备上层溶液。覆盖上层溶液和声处理之后,得到乳白色的被氰亚铁酸铜包覆的微粒分散体。这种颗粒可用于生物技术装置(setting)如生物反应器,其中坚硬的氰亚铁酸铜涂层适用于在想要的涂层释放和可利用生物反应性抗体之前限制在遇到轻度剪切条件期间(例如在加压的入口)释放。
实施例17
该实施例中,乙氢去甲奎宁形成极硬的壳。该实施例中使用酸-碱法。
使0.648g葵花单甘油酯(DIMODAN LS)与0.704g水混合制备超微结构的反双连续立方相物质。向其中加入0.084g盐酸乙氢去甲奎宁和痕量的亚甲蓝。将1.01g 0.1M氢氧化钠和0.052g PLURONIC F-68加至3.0g水中制备上层溶液。将上层溶液覆盖在液晶上之后,对系统进行声处理,得到乙氢去甲奎宁(游离碱)包覆的微粒分散体。用光学显微镜观察时,多数颗粒粒度小于1微米。
在干燥下保持完整性的颗粒适用于例如农用活性物(除草剂、信息素、杀虫剂等)的缓释,其中干燥的气侯条件能导致耐性低的颗粒过早释放。
实施例18
该实施例中通过加热-冷却法产生亮氨酸包覆的颗粒。
混合1.51g葵花单甘油酯(DIMODAN LS)与0.723g水制备超微结构的反双连续立方相物质。向取自此混合物的0.52g超微结构的反双连续立方相物质中加入0.048g DL-亮氨酸。将混合物充分搅拌,加热至80℃,然后通过浸入水中冷却至室温。立即覆盖2%PLURONIC F-68水溶液,摇动该混合物,然后声处理。这产生被亮氨酸包覆的微粒的乳状分散体。
通过热法或酸-碱法制备同一种涂层(此例中为亮氨酸)的能力提供有价值的生产灵活性,因为例如某些活性物质(例如蛋白质)非常容易随温度变性但可能相当耐pH,而其它化合物可能耐温度但在酸或碱性pH下可能水解。
实施例19
该实施例表明可保护内部组分不与氧气接触,甚至将氧气鼓泡至外部介质(这里为水)中时。
使2.542g葵花单甘油酯与2.667g水混合制备超微结构的反双连续立方相物质(有过量的水)。从中取出0.60g超微结构的反双连续立方相物质。然后,将0.037g DL-亮氨酸与0.497g 1M HCl混合和干燥,加入0.102g水,产生盐酸亮氨酸溶液,将其与痕量的甲基红染料一起加入所述0.60g超微结构的反双连续立方相物质中。所述超微结构的反双连续立方相物质是浓黄色,但以膜形式展开时,由于氧化,它在约3分钟内变成深红色。使0.511g 1M氢氧化钠、0.013g PLURONIC F-68和2.435g水混合制备上层溶液。将上层溶液覆盖在所述液晶上,声处理,制备亮氨酸包覆的、含有甲基红的微粒分散体。首先检查甲基红的水溶液(有或没有F-68的),空气鼓泡通过时迅速由黄色变成深红色。然而,当空气鼓泡通过含有甲基红的微粒分散体时,发现颜色不由黄色改变,因此证明甲基红包封在微粒内防止甲基红氧化。
能保护活性化合物不与氧气接触的颗粒如这些颗粒适用于保护对氧敏感的化合物如补铁食物,例如在长期储存期间。
实施例20
该实施例中,在内部的超微结构反双连续立方相物质中和作为外部(连续)涂层均使用水代替物甘油,从而基本上从分散体中排除水。
用甘油代替水制备微粒分散体,使大豆卵磷脂和油醇以2.4∶1混合,然后加入过量的甘油,混合和离心分离。使0.70g的此超微结构反双连续立方相物质与0.081g羟苯甲酸甲酯混合。向甘油中加入2%的溴化鲸蜡基吡啶鎓制备上层溶液。密封所述超微结构的反双连续立方相物质-羟苯甲酸甲酯混合物,加热至120℃,充分混合,再加热至120℃,然后浸入冷水中,此时覆盖上层溶液,再密封该试管(用扭转盖),和声处理。产生在甘油连续相中被羟苯甲酸甲酯包覆的微粒。这种甘油基分散体在对水敏感的活性物质的微囊包封中是有益的。
使用微粒分散体如这些分散体,可保护宽范围应用中遇到的水解不稳定的活性物质不水接触,甚至在涂层释放后也不与水接触。
实施例21
与前面的实施例6相似,其中用锌考查包封的亚甲蓝,但这里涂层是硝酸钾。此外,相同的分散体也经重铬酸钾的考查。
使0.667g大豆卵磷脂、0.343g油醇、0.738g甘油和痕量的亚甲蓝混合制备超微结构的反双连续立方相物质。向0.469g该平衡相中加入0.225g硝酸钾。将2%PLURONIC F-68加至硝酸钾饱和水溶液中制备上层溶液。将其覆盖在所述液晶之上,对系统进行声处理直至液晶分散成被硝酸钾包覆的微粒。分散体的颜色为浅蓝色。然后用两个试验证明亚甲蓝包封在微粒中被保护。向约1ml此分散体中加入约0.1g细粉状锌:当粉末状锌与溶液中的亚甲蓝接触时,使颜色损失。摇动后,对该混合物进行非常短的离心分离,装入离心机中,进行离心分离和从离心机中取出的总时间约10秒;这样做避免测定含亚甲蓝颗粒的颜色中受锌的干扰。发现用锌处理后蓝色即使有也是非常小的降低,表明微粒涂层防止亚甲蓝与锌接触。然后将重铬酸钾加至原来的浅蓝色分散体的另一等分试样中。这使颜色变成绿色,没有溶液中亚甲蓝与重铬酸钾接触将产生的紫-棕色的迹象。
该实施例的包覆颗粒特征在于涂层材料硝酸钾的成本极低,仍能保护活性化合物免于因外界条件而化学降解,使之在例如农用缓释中具有潜在的价值。
实施例22
该实施例提供有包合物的选择渗透性涂层的微粒的例子。此特殊的包合物(所谓的维尔纳配合物)具有除去客分子时仍保持多孔性的特性。笼形物和包合物涂层作为选择多孔性的涂层是有益的,其中对释放或吸收的选择性可基于分子大小、形状和/或极性。
首先使0.525g葵花单甘油酯与0.400g水混合制备超微结构的反双连续立方相物质。向其中加入0.039g氯化锰(MnCl2)和0.032g硫氰酸钠。将0.147g 4-甲基吡啶加至3.0ml 2%PLURONIC F-68水溶液中制备上层溶液。将上层溶液覆盖在所述液晶混合物上,密封试管并声处理。从而将超微结构的反双连续立方相物质分散成被锰形维尔纳配合物即Mn(NCS)2(4-MePy)4包覆的微粒。
该实施例中的涂层可用于从工业物流中除去重金属。在此情况下,涂层可为多孔晶体(称为笼形物),它允许原子的离子通过涂层进入立方相内部,该立方相由于具有高表面电荷密度(使用阴离子表面活性剂或选择性更高的螯合基团如双吡啶鎓基等),对离子是吸收容量极高的吸收剂。最可能的永久孔是最好的。由笼形物涂层提供的选择性防止发生传统吸着剂(如活性炭和大网状聚合物)不可避免的因较大的化合物与目标重金属离子竞争可用的吸附位所致吸着能力下降。吸着剂的再生可通过离子交换,而保持颗粒与涂层完整(此后一步骤是释放的例子)。
实施例23
该实施例中,用氰化物考查外涂层包括羟苯甲酸甲酯且在超微结构的反双连续立方相物质中分配有特殊染料的包覆颗粒,所述氰化物与所述染料接触时能使颜色改变。由于所述氰离子极小,所以该试验的成功表明所述涂层甚至对非常小的离子也是不透性的。
使0.424g葵花单甘油酯与0.272g水混合制备超微结构的反双连续立方相物质。向其中加入0.061g羟苯甲酸甲酯和痕量的染料1,2-吡啶偶氮-2-萘酚。制备1%溴化鲸蜡基吡啶鎓的上层溶液。将液晶在120℃烘箱中加热5分钟,剧烈搅拌,再加热,然后浸入冷水中,此时覆盖上层溶液,密封试管,放入声处理器中。结果是羟苯甲酸甲酯包覆的微粒的分散体,平均粒度约1微米。然后用氰化亚铜证明染料被保护而不与外部相接触。氰化亚铜加至1,2-吡啶偶氮-2-萘酚溶液(存在或不存在F-68)时,颜色由橙色变成浓紫。然而,当氰化亚铜加至一等份的含染料颗粒的分散体时,没有颜色变化,表明羟苯甲酸甲酯涂层防止染料与氰化亚铜接触。可计算出亚铜离子至1微米颗粒的中心的扩散时间为约几秒或更短,这不妨碍有涂层未密封颗粒的颜色变化。
保护活性化合物免于与外部环境的离子接触可适用于例如药物输送,特别是可与多价离子接触而配合并钝化的聚电解质的输送。
实施例24
该实施例中,对硝酸钾包覆的颗粒重复上面实施例中氰离子试验。
使0.434g葵花单甘油酯与0.215g水混合制备超微结构的反双连续立方相物质。向其中加入0.158g硝酸钾和痕量的染料1,2-吡啶偶氮-2-萘酚。制备1%溴化鲸蜡基吡啶鎓在饱和硝酸钾水溶液中的上层溶液。将液晶在120℃烘箱中加热5分钟,剧烈搅拌,再加热,然后浸入冷水中,此时覆盖上层溶液,密封试管,放入声处理器中。结果是硝酸钾包覆的微粒的分散体。当氰化亚铜加至一等份的含染料颗粒分散体时,颜色仅有微小变化,表明硝酸钾涂层基本上防止染料与氰化亚铜接触。
这些颗粒的实用性与实施例23的相似,但此例中使用更经济的涂层硝酸钾。
实施例25
使0.913g大豆卵磷脂(EPIKURON 200)、0.430g油醇和0.90g甘油(过量甘油)混合制备超微结构的反双连续立方相物质。彻底混合并离心分离后,取0.50g所述超微结构的反双连续立方相物质,加入0.050g二碱式磷酸钠。将0.10g氯化钙加至3ml含有2%PLURONIC F-68和1%溴化鲸蜡基吡啶鎓的水溶液中制备上层溶液。将上层溶液覆盖在液晶-磷酸钠混合物上之后,密封试管并声处理。结果是磷酸钙包覆的微粒的分散体。磷酸钙涂层在生物领域具有固有的价值,因为磷酸钙是骨骼、牙齿和其它组织的主要组分。
实施例26
该实施例表明碳酸镁包覆的颗粒在干燥时(即当外部水相被干燥掉时)仍保持其完整性.因此,可生产干粉而内部仍为富水的液晶相物质.
“桐-山梨醇化合物”的制备。首先,如下制备“桐-山梨醇化合物”:
在反应烧瓶中使110g桐油(来自Alnor Oil的Chinese Tung Oil)与11.5g山梨醇结合。用氩气吹扫烧瓶,密封并加热至170℃,磁力搅拌。加入碳酸钠(3.6g),将混合物在170℃下搅拌1小时。此时加入3.4g3-氯-1,2-丙二醇,将混合物冷却至室温。使来自此反应的75ml油相与300ml丙酮混合,离心分离后除去白色沉淀。接着,加入18g水和100ml丙酮,将混合物离心分离,除去底部的油状残余物。然后加入44g水,再收集并抛弃底部相。最后,加入20g水,此时收集底部的油状残余物,在氩气流下干燥。产生约50ml山梨醇的桐脂肪酸酯,以下称为“桐-山梨醇产物”。
实施例26A
使0.110g“桐-山梨醇产物”、0.315g大豆卵磷脂和0.248g水混合,彻底混合并离心分离,制备超微结构的反双连续立方相物质。向其中加入0.085g碳酸钾。然后将0.118g PLURONIC F-68和0.147g硫酸镁加至5.34g水中制备上层溶液。将上层溶液覆盖在所述液晶之上,密封试管,摇动,声处理2小时,最后再充分摇动。结果是乳白色的被碱式碳酸镁包覆的微粒的分散体。将两份水加至一份分散体中稀释之,以溶解过量的无机结晶物质。将一小滴分散体轻轻地在显微镜载片上展开,使之干燥。干燥10分钟后,颗粒外的水几乎完全蒸发.显微镜观察显示颗粒仍保持其形状,未变成未包覆颗粒以类似方式干燥时将观察到的无结构液滴(如干燥的液晶混合物变成液体)。
实施例26B
将实施例26A中产生的分散体加热至40℃。根据相行为测定,在此温度下内部相为超微结构的液体L2相物质。该分散体保持乳白色,在显微镜下显示也保持微粒。由于此L2相含有油、水和表面活性剂(即卵磷脂),它也是超微结构的微乳状液。
实施例27
该实施例中,将受体蛋白分配在碳酸镁包覆的颗粒的内芯中超微结构的反双连续立方相物质的基质内,然后将包覆的颗粒包埋在水凝胶中。颗粒上的涂层可用于在装运和储存期间保护受体蛋白,然后在使用前通过洗涤很容易除去。该实施例和实施例28预示本发明包覆颗粒用于例如亲和色谱法的用途,其中使用水凝胶珠,本发明的包覆颗粒包埋在其中。
使0.470g大豆卵磷脂(EPIKURON 200)与0.183g“桐-山梨醇产物)和0.359g水混合。向其中加入0.112g碳酸钾。使之离心分离几小时,除去过量的水相。按L.Pradier and M.G.McNamee in Structure andFunction of Membranes(ed.P.Yeagle,1992,pp.1047-1106)中所述的实验报告制备torpedo烟乙酰胆碱受体制剂。在此制剂中,将50微克受体蛋白包含在50微升类脂中,多数为二油酰磷脂酰胆碱(DOPC)。(其余为其它膜类脂组分,如其它的磷脂、胆固醇等)。将此量的制剂加至所述超微结构的反双连续立方相物质-碳酸钾混合物中,轻搅整个混合物但搅拌足够长时间以保证良好的混合,通过不存在双折射检测。将0.328g硫酸镁、0.324g PLURONIC F-68和0.0722g溴化鲸蜡基吡啶鎓加至20.02g水中制备上层溶液。将5g上层溶液覆盖在包含载有所述受体的超微结构反双连续立方相物质的试管之上,密封所述试管,摇动,并声处理2小时。产生碱式碳酸镁包覆的含有受体的微粒的分散体,大部分粒度在0.5至1微米的范围内。
然后使微粒固定在聚丙烯酰胺水凝胶中。将丙烯酰胺(0.296g)、亚甲双丙烯酰胺(0.024g,为交联剂)、过硫酸铵(0.005g,为引发剂)和四亚甲基二胺(TMED,0.019g,为助引发剂)加至分散体中,使丙烯酰胺在少于30分钟内聚合成交联的水凝胶。在显微镜下观察一薄片该水凝胶,可见高浓度的微粒,正与原分散体相同。
进一步使该水凝胶破碎成尺寸约30微米的小块。通过压迫水凝胶通过40微米筛目大小的金属筛实现。
实施例28
该实施例中受体蛋白分配在本发明包覆颗粒的内芯中,涂层为硝酸钾,然后将包覆颗粒固定在水凝胶珠中。装有受体的珠在UC Davis进行的放射性检测中试验结合活性获得成功。
使0.470g大豆卵磷脂(EPIKURON 200)与0.185g“桐-山梨醇产物”和0.368g水混合。向其中加入0.198g硝酸钾,彻底混合。如前面实施例所述制备torpedo烟乙酰胆碱受体制剂。在此制剂中,将每50微克受体蛋白包含在50微升类脂中,多数为二油酰磷脂酰胆碱(DOPC)。将25毫克制剂加至所述超微结构的反双连续立方相物质-碳酸钾混合物中,轻搅整个混合物但搅拌足够长时间以保证良好的混合。将0.128gPLURONIC F-68和0.015g溴化鲸蜡基吡啶鎓加至6.05g硝酸钾饱和水溶液中制备上层溶液。将所述超微结构的反双连续立方相物质-硝酸钾制剂加热至40℃使硝酸钾溶解,然后浸入10℃水中10分钟。将上层溶液覆盖在包含载有所述受体的超微结构反双连续立方相物质的试管之上,密封所述试管,摇动,并声处理2小时。产生硝酸钾包覆的含有受体的微粒的分散体,大部分粒度在0.3至1微米的范围内。
然后使微粒固定在聚丙烯酰胺水凝胶中.将丙烯酰胺(0.365g)、亚甲双丙烯酰胺(0.049g,为交联剂)、过硫酸铵(0.072g 2%的溶液,为引发剂)和四亚甲基二胺(TMED,0.011g,为助引发剂)加至分散体中,使丙烯酰胺在几小时内聚合成交联的水凝胶。在显微镜下观察一薄片该水凝胶,可见高浓度的微粒(邻近水凝胶底部除外),正与原分散体相同。
进一步使该水凝胶破碎成尺寸约30微米的小块。通过压迫水凝胶通过40微米筛目大小的金属筛实现。在40微米大小下,可估计小分子进入块中心的扩散时间为约1秒或更短,这对后面的受体试验报告无明显影响。
125I-标记的金环蛇毒作为配体,用刚描述的超微结构的反双连续立方相物质微粒-固定的乙酰胆碱受体系统进行受体结合试验。(标准的结合试验已在出版物中由Dr.Mark McNamee’s group描述)。结果显示所述超微结构的反双连续立方相物质微粒-固定的乙酰胆碱受体系统表现出的与金环蛇毒的结合为用标准受体制剂测量的水平的约70%,证明不仅在整个固定步骤中保持蛋白结合性,而且在制备试样和试验间经过一段时间(多于两个月)之后仍保持蛋白结合性。
上述实施例26-28实际上表明颗粒在生化试验中的用途,表明稳定性比常用的脂质体有很大改善,常用的脂质体因具有内在的不稳定性而不方便。这种试验在临床诊断以及药物筛选中有价值。
实施例29
如前面的实施例22,在该实施例中生产笼形物包覆的颗粒。在此实施例中,所述超微结构的反双连续立方相物质内部可聚合,靠可通过涂层的氧气的作用(涂层仍防止水通过)。
由Avanti Polar Lipids of Birmingham,Alabama以磷虾(Krillshrimp)磷脂酰胆碱形式获得由磷虾提取的卵磷脂。使0.220g此卵磷脂与0.110g“桐-山梨醇产物”、0.220g水、0.005g含有环烷酸钴的钴干燥剂(来自该物质供应公司Grumbacher)、和0.30g硫氰酸钾混合。形成绿色的超微结构的反双连续立方相物质。将0.309g氯化锰、0.105g4-甲基吡啶、0.113g PLURONIC F-68和0.021g溴化鲸蜡基吡啶鎓加至5.10g水中制备上层溶液。将上层溶液覆盖在所述超微结构的反双连续立方相物质之上,密封该试管,摇动,并声处理,用冰水作为声处理浴的水。随着绿色的超微结构反双连续立方相物质分散至微粒中,反应使颜色变成棕色。2小时后,基本上所有超微结构的反双连续立方相物质均已分散至颗粒中,所述颗粒多数为亚微细粒。涂层为维尔纳化合物,根据文献记载,它有允许分子氧吸收(或通过)的通道。磷虾卵磷脂(以及桐-山梨醇产物)的高度不饱和与钴干燥剂的催化作用一起使该微囊包封的超微结构反双连续立方相物质与大气中的氧接触时有可能聚合。
此实施例中所述笼形物在前面论述(实施例22)。
实施例30
该实施例是分散超微结构的反六方相物质。
混合0.369g大豆卵磷脂(EPIKURON 200)、0.110g脱水山梨醇三油酸酯和0.370g甘油制备超微结构的反六方相物质。向该超微结构的反六方相物质中加入0.054g硫酸镁。将0.10g碳酸钾、0.10g PLURONIC F-68和0.02g溴化鲸蜡基吡啶鎓加至5g水中制备上层溶液。将上层溶液覆盖在所述超微结构的反六方相物质上,密封该试管,摇动,声处理1小时,得到多数超微结构的反六方相物质成为被碱式碳酸镁包覆的微粒的分散体。
反六方相中孔(圆柱形)的维数提供独特的释放动力图形,可用于例如控制的药物输送。
实施例31
与以上多数实施例相反,该实施例中分散的超微结构反六方相物质不与过量的水平衡,尽管它不溶于水。
使大豆卵磷脂(0.412g)、亚麻子油(0.159g)和甘油(0.458g)彻底混合,在室温下产生超微结构反六方相物质。向该超微结构的反六方相物质中加入0.059g硫酸镁。将0.10g碳酸钾、0.10g PLURONIC F-68和0.02g溴化鲸蜡基吡啶鎓加至5g水中制备上层溶液。将上层溶液覆盖在所述超微结构的反六方相物质上,密封该试管,摇动,声处理30分钟,得到多数超微结构的反六方相物质成为被碱式碳酸镁包覆的微粒的分散体。
分散不与过量水平衡的超微结构相的能力扩大了本发明中可用化学过程的范围。此多功能性在要求高的应用如药物输送中尤为重要,其中必须同时满足许多产品标准。
实施例32
该实施例中,用化学反应法分散超微结构的层状相物质。
使0.832g大豆卵磷脂(EPIKURON 200)与0.666g水混合制备超微结构的层状相物质。向约0.80g该超微结构的层状相物质中加入0.057g硫酸镁。将0.10g碳酸钾、0.10g PLURONIC F-68和0.02g溴化鲸蜡基吡啶鎓加至5g水中制备上层溶液。将上层溶液覆盖在所述超微结构的层状相物质上,密封该试管,摇动,声处理5分钟,得到多数超微结构的层状相物质成为被碱式碳酸镁包覆的微粒的分散体。
该实施例中的颗粒与聚合物包封的脂质体有结构关系,但未遭受生产聚合物包封的脂质体所用的苛刻化学条件;能以单一步骤且在温和条件下产生用宽范围的结晶涂层包覆的内部层状相颗粒使本发明在控制释放的药物输送方面具有价值。
实施例33
游离碱的制备
购买质子化盐酸形式的乙氢去甲奎宁和中性红。在所有情况下均将此盐溶于水,以1∶1摩尔比向其中加入氢氧化钠水溶液。两种水溶液的混合物产生沉淀,将沉淀物水洗(以除NaCl和任何未反应的NaOH),离心分离,然后在游离碱的熔点以上干燥。
超微结构的反双连续立方相分散体的制备
用以下混合物开始配制分散体:
0.417gm甘油单油酸酯(GMO)
0.191gm甘油
0.044gm乙氢去甲奎宁(或者作为例子可以是中性红,二者均为游离碱形式)。
代替常用的单甘油酯-水超微结构的反双连续立方相物质,这些实施例中使用单甘油酯-甘油超微结构的反双连续立方相物质。
在水中溶解PLURONIC F-68至2%的浓度制备上层溶液。
称取各组分加入试管中并用刮刀混合后,将密封(扭转盖)的试管放在140℃的烘箱中至少20分钟,检查乙氢去甲奎宁(或中性红游离碱)已熔化。然后将试管浸入水中,某些情况下该水低于室温(约10℃)而另一些情况下为室温;两种情况下分散体中未发现差别。
试样在冷水中约5分钟后,检测到粘度非常高,表示超微结构的反双连续立方相;某些情况下通过交叉极化观察试样光学各向同性(结晶涂层畴比光波长小得多,太小而不影响光学性质)。将PLURONIC上层溶液注入试管中至约半满。然后摇动试管(用手和利用机械混合器)。随着主体超微结构的反双连续立方相物质消失而变成分散体,溶液逐渐变得不透明。
SEM表征
扫描电子显微镜(SEM)制备不涉及任何固定技术。简单地将一滴分散体放在玻璃载片上,水蒸发,喷上一薄(2nm)层碳以避免带电作用。在喷射装置中,开始喷射之前仔细地将试样在5×10-4Torr的真空下保持约5分钟。这样做是试验颗粒涂层的坚固性。所用SEM为Hitachi S-800场致发射SEM,在25kV下操作。
图3示出乙氢去甲奎宁分散体的SEM显微照片,可见粒度在约0.5-2微米的范围内(下半部为上半部分中分隔面积的10倍,所以上面的放大率为500而下面的放大率为5000)。值得注意的是许多颗粒明显地显示出多面形。
测量该试样的粒度分布(见下文)表明该分散体中主要为约0.5-2微米直径的颗粒,这与显微照片中所见的颗粒很一致。可估计0.5微米颗粒中乙氢去甲奎宁涂层的厚度为约10nm,此厚度显然足以保持颗粒内部的液体组分免于在0.5mTorr真空中蒸发。
此分散体中,所述超微结构的反双连续立方相物质在分散之前载有硫酸锂作为标记物,的确该分散体中颗粒的EDX光谱显示出硫的峰。所用EDX不能检测锂,光谱中的其它峰归因于玻璃基质。
图4示出中性红分散体的SEM显微照片。基本上所有颗粒均在0.3-1微米的范围内。
粒度分布
用Malvern 3600E激光衍射粒度仪测量粒度分布。对于每种要检测的分散体,将几滴加入载流体(水)中,使浓度有很大稀释以避免多次散射。粒度计算为相同体积的球的直径,考虑到颗粒的多面形这是良好的量度。(见后面)。该仪器能测量低至至少0.5微米的颗粒,关于分布的数据包括至少低至0.5微米的贡献。
用13∶1的GMO∶乙氢去甲奎宁制备的分散体的粒度分布示于图5中。一般地,随着超微结构的反双连续立方相物质与结晶涂层试剂之比增加,粒度也增加。此分散体的数据表明按体积平均计10%的颗粒有小于0.6微米的粒度,这表示为等式D(v,0.1)=0.6微米。分布的窄度以两种方式表示。第一,由D(v,0.5)=1.2微米的(体积加权)平均,D(v,0.9)和D(v,0.1)均为2倍。第二,计算“跨度”为1.4,“跨度”给出分布的宽度为:
跨度=[D(v,0.9)-D(v,0.1)]/D(v,0.5)
这些结果表明附聚的程度非常低。
GMO∶中性红=10∶1的分散体分布更窄。跨度为1.1,显而易见其(微分)粒度分布相当陡,迅速下降超过2微米。
测量用较低GMO:乙氢去甲奎宁比制备的分散体,粒度较小,分布平均0.8微米,跨度为1.2。因此,通过超微结构的反双连续立方相物质与结晶涂层试剂之比可控制颗粒,比例降低,粒度下降。
小角x-射线散射(SAXS)
这用于验证乙氢去甲奎宁分散体中颗粒内部为超微结构的反双连续立方相物质。将分散体本身(不是颗粒的浓缩物)装入1.5mm x-射线毛细管中,将之送至Dr.Stephen Hui at Roswell Park Cancer CenterBiophysics Department的实验室。SAXS照相机配有旋转正极,在100kV、40mV功率(4kW)下进行测量。用通过电子装置与Nuceus多频道分析仪相连的线性位敏检测器收集数据。MCA有8,192频道的容量,但仅用2,048分辨增加每个频道的计数。使用约1小时的计数时间,因为分散体(为约85%的颗粒体积)中超微结构的反双连续立方相物质的体积分数为约10%。用软件包“PCA”分析数据。
图6示出测量的SAXS强度对波矢量q的曲线。波矢量q通过下式与x射线的衍射角θ和波长λ相关:
q=4π(sinθ)/λ。
d-间距由Bragg反射的q-值计算:
d=2π/q。
图6中,垂直线给出对有空间群Pn3m和晶格参数7.47nm的晶格精确计算的Bragg峰位置。对于单油精-水体系中的超微结构反立方相,特别是对于与过量水平衡的那些,很好建立此空间群。(的确,在与过量水平衡的超微结构反立方相中,几乎仅出现空间群Pn3m)。有空间群Pn3m的单油精-水超微结构反立方相的晶格参数也接近8nm;更精确的比较是不可能的因为此例中用甘油代替水。任何情况下,由此SAXS扫描推出的晶格类型和大小均精确地与单甘油酯超微结构反立方相的文献数据一致。
在空间群Pn3m中,对于允许峰位置的Miller指数(hkl)和h2+k2+l2的值为:(110),2;(111),3;(200),4;(211),6;(220),8;(221),9;(222),12;和更高。看这些数据和预计的峰位置,显然在(110)和(222)位的峰得到数据的强力支持。(111)峰在扫描右侧似乎是(110)峰的肩,在左侧似小但可辨别的峰。(200)峰至少在扫描的右侧得到支持;在单甘油酯Pn3m相中测得该峰的强度总是比(110)和(111)峰低得多,一般在Pn3m相中,已发现这与理论振幅计算[Strom,P.and Anderson,D.M.(1992)Langmuir,8:691]一致。(211)峰得到扫描左侧数据的支持,(221)被右侧的数据支持。(211)和(222)之间缺少峰或峰强度低是分散体中超微结构反双连续立方相浓度低(10%)的结果,因为衍射的x-射线强度与体积浓度的平方成正比。尽管这样,在(110)和(222)位决定性的峰和推出的晶格和晶格参数与文献中相关体系完全一致为SAXS数据证明颗粒内部超微结构反双连续立方相排序的结论提供了强有力的支持。
这些颗粒可用于例如嗽口液中杀菌剂的控制释放,其中两种涂层在稍低pH(约5)下的溶解度正好在细菌活性位优先输送的范围内。
实施例34
用高压液相色谱(HPLC)表征两种分散体在剪切和加压下的完整性,一种选择硬涂层-氰亚铁酸铜,另一种选择软的易破涂层,后者主要作为对照,以确定较硬涂层在压力下释放的量。换言之,如果两种分散体中的标记物浓度近似相同,硬体系中标记物的释放为软体系中标记物释放的小数即百分数x%(其中x明显小于100),则可得出结论在硬体系中仅x%的颗粒在该压力下破裂,其余(100-x)%在HPLC期间仍保持完整。(的确,此百分率100-x为下限:如果发现对照物中的一些软颗粒实际上保持完整,尽管这种可能性很小,则计算完整硬颗粒的实际百分率更高。无论如何,假定计算是基于最坏的情况,假定所有的对照颗粒均破裂。)
分散体的制备
实施例34A
混合0.499g大豆卵磷脂、0.163g油醇、0.900g甘油和0.124g辣椒辣素制备超微结构的反双连续立方相物质。向来自此体系的0.842g所述超微结构的反双连续立方相物质中加入0.043g胆酸钠。将1滴1MHCl加至3.00g pH5磷酸盐缓冲液中制备上层溶液。将上层溶液覆盖在所述液晶物质之上,密封试管并声处理,得到乳白色的微粒分散体。
实施例34B
混合0.329g大豆卵磷脂、0.108g油醇、0.611g甘油和0.105g辣椒辣素制备超微结构的反双连续立方相物质。向其中加入0.046g硫酸铜。将0.563g 10%氰亚铁酸钾溶液加至2.54g水中制备上层溶液。将上层溶液覆盖在所述液晶之上,密封试管并声处理,得到乳白色的被氰亚铁酸铜包覆的微粒的分散体。
两试样中标记物即辣椒辣素的浓度是可比的。在氰亚铁酸铜分散体中最终浓度为2.44%,实施例34B为3.19%,差30%,这在下面的计算中解释。
然后在HPLC中试验纯的辣椒辣素,测得洗脱时间为22分钟(数据未示出)。在相同条件下,试验如上制备的两种分散体。实施例34B颗粒的数据示于图7中,氰亚铁酸铜颗粒的数据示于图8中。表1和2给出分别与图7和8相对应的积分峰,由HPLC计算机输出,取样率为5Hz。
显然,在图7中在22分钟的洗脱时间时有强峰(由计算机标记的峰13),表1给出该峰的积分强度为3,939,401。图8中可见在22分钟的峰小得多(由计算机标记为10),表2给出强度为304,929。
如果这些积分峰值按两试样中辣椒辣素的浓度归一化,即实施例34B为3,939,401/0.0319,而氰亚铁酸铜为304,929/0.0244,则氰亚铁酸铜与实施例34B的归一化峰强度之比为0.101,即最多10.1%的氰亚铁酸铜颗粒在HPLC条件下释放辣椒辣素标记物。
这些颗粒有低水溶性的无机涂层,使之在需要通过强剪切释放颗粒涂层同时防止因简单地被水稀释而释放的应用中有潜在的实用性。这种应用的例子是包封啮齿动物阻止物如辣椒辣素或啮齿动物毒素,将颗粒浸入电线、波纹箱和其它要求防止被啮齿动物啃咬的产品中,啮齿动物的啃咬作用将导致活性阻止物或毒素释放。水溶性低可防止阻止物因潮湿条件而过早释放。
表1:积分峰强度,对应于图7,用于实施例34B含辣椒辣素的颗粒的HPLC分析。峰#13为主辣椒辣素峰。
峰    面积
1     2914
2     8096
3     2848
4     29466
5     11304
6     2254
7     12871
8     4955
9     124833
10    113828
11    19334
12    7302
13    3939401
14    39153
15    255278
16    755868
17    52623
18    19395
19    4899
20    10519
21    5102
22    1481
23    344230
24    9971
25    194442
26    89831
27    80603
28    105163
29    186224
30    194020
31    36805
32    2115
33    23296
34    4327
35    5166
36    90236
37    62606
38    44523
39    110347
40    4391
41    1275597
42    1353000
43    238187
表2:积分峰强度,对应于图8,用于氰亚铁酸铜包覆的含辣椒辣素的颗粒的HPLC分析。峰#10为主辣椒辣素峰。
峰    面积
1     1681172
2     3011240
3     106006
4     2760
5     59059
6     38727
7     163539
8     44134
9     6757
10    304929
11    10466
12    141800
13    332742
14    14442
15    6996
16    15008
17    11940
19    91446
20    250214
21    251902
22    203000
23    44658
24    110901
25    24296
26    19633
27    25527
28    15593
29    75442
30    40245
31    421437
实施例35
混合0.77g大豆卵磷脂(EPIKURON 200,来自Lucas-Meyer)、0.285g油醇和0.84g甘油,制备超微结构立方相液晶,向其中加入0.11g氯化金。在该混合物的平衡中不用加热,仅用刮刀机械搅拌。取出0.595g该混合物,沿试管内表面的下半部涂抹。使0.14g氯化亚铁和0.04gPLURONIC F-68溶解在1.74g蒸馏水中制备上层溶液。覆盖上层溶液,然后对含有所述立方相的试管进行声处理,得到被金涂层包覆的微粒分散体。与所述第一试样并排对对照试样(其中上层溶液含有F-68但不含氯化亚铁)进行声处理,未产生微粒分散体。氯化亚铁与氧化金之间的反应导致非层状结晶的元素金沉淀,在第一试样的例子中产生被金包覆的有立方相内部的微粒。
然后使0.62g甘油与0.205g水混合制备密度约1.2g/cc的甘油-水混合物,向其中加入约0.1g所述分散体,将新的分散体离心分离。离心分离3小时后大部分微粒被离心至试管底部,证明这些颗粒的密度明显高于1.2;这是由于存在金涂层,因为立方相的密度低于1.2--的确,在声处理期间未被分散的一部分立方相作为密度较低组从原分散体中离心出,表明该液体比原分散体密度低。
因为公知金表现出化学惰性,以非常薄的膜形式存在时机械性能好,由于它也被FDA批准用于许多管理途径,金包覆的颗粒可用于安全的、对环境无害的要求化学和物理上稳定的涂层的产品。此外,这种颗粒在关节炎的治疗中的有效的,提供比其它胶体形式显著增加的金表面积。
实施例36
用0.61g甲醇溶解0.045g紫杉醇、0.57g丁子香酚、0.615g大豆卵磷脂(EPIKURON 200)、0.33g甘油和0.06g硝酸铜制备含有抗肿瘤药紫杉醇的超微结构液相,然后在蒸发皿中使甲醇蒸发,蒸发期间搅拌。溶解0.09g碘化钾、0.05g PLURONIC F-68、0.44g水和1.96g甘油制备富甘油的上层溶液。覆盖上层溶液,对系统进行声处理,产生含有紫杉醇的超微结构液相被结晶碘包覆在微粒内的分散体。由于选择这些成分是因为它们在制药中普遍接受的安全钝性(紫杉醇本身除外)的赋形剂,所以此制剂或其变体在输送紫杉醇用于治疗癌症中有价值。颗粒内部紫杉醇的负荷相当高,即约3%(重),此例中它如此高以致由于在此高负荷下紫杉醇在该立方相中的溶解是亚稳的,所以在每个颗粒内部一些紫杉醇可能发生沉淀。然而,研究显示在这样的负荷下沉淀非常慢,需几小时甚至内天,以致在颗粒的生产过程中基本上所有紫杉醇仍保留在溶液中;之后,紫杉醇限制在包覆颗粒内防止形成大晶体(大于1微米)。如果此系统中的紫杉醇浓度降低至内部的0.7%或更低,则紫杉醇的溶解变成真正稳定的溶液(热动力学平衡),从而完全防止沉淀,用非层状结晶碘包覆的本发明微粒可如此实施例所述生产。因此,该系统提供用于治疗癌症的紫杉醇输送的几种方案。
实施例37
混合0.345g大豆卵磷脂(EPIKURON 200)、0.357g茴香醚、0.26g水和0.02g紫杉醇(来自LKT Laboratories)制备含有紫杉醇的立方相液晶;剧烈搅拌后将该混合物的试管浸入沸水中1分钟,然后冷却至室温,使平衡加速。为提供涂层材料,搅入0.07g五倍子酸丙酯,再在沸水中加热该试管。预先已考查到五倍子酸丙酯在室温下不能适当地溶于此立方相,但在100℃下溶解度显著增加。上层溶液由2.25g 2%PLURONICF-68溶液组成。将所述立方相-五倍子酸丙酯混合物加热至100℃,冷却至约80℃,在此高温下用刮刀搅拌,再加热至100℃。将该混合物冷却约30秒,然后将所述上层溶液覆盖在此混合物上,将试管放在声处理浴中1小时。得到内部含有紫杉醇且被五倍子酸丙酯包覆的微粒的分散体。该分散体有高浓度的极细的微粒(估计粒径小于0.4微米),靠它们的布朗运动在1000x的光学显微镜中可观察到。总粒度分布相当宽,有些颗粒达1-2微米。仅观察到非常少量的沉淀紫杉醇(针状),所以几乎所有紫杉醇均在微粒内部。该实施例中紫杉醇的浓度很高足以使溶液是亚稳的(如前面实施例中所论述的)。由于抗肿瘤药紫杉醇在这些颗粒内部的浓度为约2%,该制剂的组分均为FDA列出的批准用于口服输送(它们几乎也都能注射)的钝性赋形剂,该制剂作为药物输送制剂用于治疗癌症将非常有价值。
实施例38
使1.655g两亲的聚环氧乙烷-聚环氧丙烷嵌段共聚物PLURONIC F-68(也称为POLOXAMER 188)与0.705g丁子香酚和2.06g水混合。离心分离,得到两相,下面的相是超微结构的液相,上面是超微结构立方相。取出0.68g所述液晶相,向其中加入0.05g碘化钠。将一滴丁子香酚加至2.48g所述下面相中以确保低粘度,此超微结构的液相(已加入0.14g硝酸银)在分散所述液晶相中用作“上层溶液”。这样,将液相覆盖在含有碘化物的液晶相之上,将混合物声处理1.5小时。结果是碘化银包覆的颗粒的分散体,在超微结构液相的外部介质中。
该实施例说明用基于嵌段共聚物的超微结构液晶相作为本发明颗粒的内部基质。在此情况下,水作为所述嵌段共聚物的聚环氧乙烷段的优先溶剂,丁子香酚作为所述嵌段共聚物的聚环氧丙烷段的优先溶剂(它不溶于水)。
该实施例还说明用上述一般方法即用超微结构相作为用作“上层溶液”的混合物,提供部分B,其与内部相中的部分A反应导致结晶涂层物质沉淀。此例中,B为硝酸银,它与含有碘化钠的内部基质A(立方相)接触时产生碘化银沉淀。如前面所述,一般希望选择此上层溶液以使之与内部基质平衡,或如此例中,非常接近平衡(仅背离真正的平衡是因为向上层溶液中加入一滴丁子香酚,约0.01g或少于0.5%)。如此方法中,一般适用于这样选择内部基质,即以使它是粘性物质,比粘度较低的上层溶液粘得多。
显而易见,在不背离本发明的精神和范围的情况下可对本发明作很多修改和变化。应理解本发明不限于本文所述的具体解释和安排,而是这种修改形式均在所附权利要求书内。仅通过实例说明具体实施方案,本发明仅由权利要求书限制。

Claims (57)

1.一种包覆颗粒,包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层。
2.权利要求1的包覆颗粒,其中所述超微结构液相物质包括
a.超微结构L1相物质,
b.超微结构L2相物质,
c.超微结构微乳状液或
d.超微结构L3相物质。
3.权利要求1的包覆颗粒,其中所述超微结构液晶相物质包括
a.超微结构正或反立方相物质,
b.超微结构正或反六方相物质,
c.超微结构正或反中间相物质或
d.超微结构层状相物质。
4.权利要求1的包覆颗粒,其中所述超微结构液相物质包括
a.极性溶剂,
b.表面活性剂或类脂。
5.权利要求1的包覆颗粒,其中所述超微结构液相物质包括
a.极性溶剂,
b.表面活性剂或类脂,和
c.两亲物或疏水物。
6.权利要求1的包覆颗粒,其中所述超微结构液相物质包括
a.嵌段共聚物。
7.权利要求1的包覆颗粒,其中所述超微结构液相物质包括
a.嵌段共聚物,和
b.溶剂。
8.权利要求1的包覆颗粒,其中所述超微结构液晶相物质包括
a.极性溶剂,和
b.表面活性剂。
9.权利要求1的包覆颗粒,其中所述超微结构液晶相物质包括
a.极性溶剂,
b.表面活性剂,和
c.两亲物或疏水物。
10.权利要求1的包覆颗粒,其中所述超微结构液晶相物质包括
a.嵌段共聚物。
11.权利要求1的包覆颗粒,其中所述超微结构液晶相物质包括
a.嵌段共聚物,和
b.溶剂。
12.权利要求1包覆颗粒,其中所述内芯包括分配在所述基质内的活性剂。
13.权利要求12的包覆颗粒,其中所述活性剂包括紫杉醇。
14.权利要求12的包覆颗粒,其中所述活性剂包括辣椒辣素。
15.权利要求12的包覆颗粒,其中所述活性剂包括光动力学治疗剂。
16.权利要求12的包覆颗粒,其中所述活性剂包括受体蛋白质。
17.权利要求1的包覆颗粒,其中所述内芯包括反立方相物质。
18.权利要求17的包覆颗粒,其中所述内芯包括分配在所述基质内的活性剂。
19.权利要求18的包覆颗粒,其中所述活性剂包括紫杉醇。
20.权利要求18的包覆颗粒,其中所述活性剂包括辣椒辣素。
21.权利要求18的包覆颗粒,其中所述活性剂包括光动力学治疗剂。
22.权利要求18的包覆颗粒,其中所述活性剂包括核酸。
23.权利要求18的包覆颗粒,其中所述活性剂包括糖脂。
24.权利要求18的包覆颗粒,其中所述活性剂包括氨基酸。
25.权利要求18的包覆颗粒,其中所述活性剂包括多肽。
26.权利要求18的包覆颗粒,其中所述活性剂包括蛋白质。
27.权利要求18的包覆颗粒,其中所述活性剂包括抗肿瘤治疗剂。
28.权利要求18的包覆颗粒,其中所述活性剂包括抗高血压治疗剂。
29.权利要求18的包覆颗粒,其中所述活性剂包括啮齿动物阻碍剂。
30.权利要求18的包覆颗粒,其中所述活性剂包括外激素。
31.权利要求18的包覆颗粒,其中所述活性试剂包括受体蛋白。
32.权利要求1的包覆颗粒,其中所述基质包括具有生物膜的物理化学性质的物质。
33.权利要求32的包覆颗粒,其中所述生物膜物质包括生物活性多肽物质。
34.权利要求32的包覆颗粒,其中所述基质包括固定在所述生物膜中的多肽或蛋白质。
35.权利要求1的包覆颗粒,其中所述外部涂层包括非层状结晶物质,该非层状结晶物质在水中的溶解度小于约10克/升水。
36.权利要求1的包覆颗粒,其中所述外部涂层包括笼形物物质。
37.权利要求1的包覆颗粒,其中所述外部涂层包括包合物。
38.权利要求1的包覆颗粒,其中所述外部涂层包括沸石物质。
39.一种制备包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层
该方法包括
提供一定量的所述基质,该基质包括至少一种化学物质,这种化学物质具有能与第二部分反应形成非层状结晶物质的部分,和
使所述一定量的基质与含有至少一种化学物质的流体接触,这种化学物质具有所述第二部分,以使所述第一部分与所述第二部分反应,同时向所述一定量的基质施加能量将其细分为颗粒。
40.一种制备包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层该方法包括
提供一定量的所述基质,该基质包括溶解在其中的所述非层状结晶物质,和
使所述非层状结晶物质变成在所述基质中不溶,同时向所述一定量的基质施加能量将其细分为颗粒。
41.一种制备包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层,该方法包括
提供一定量的所述基质,该基质包括溶解在其中的非层状结晶物质,并包括至少一种化学物质,该化学物质具有能与第二部分反应形成所述非层状结晶物质的部分,和
使所述一定量的基质与含有至少一种化学物质的流体接触,该化学物质具有所述第二部分,以使所述第一部分与所述第二部分反应,同时使所述非层状结晶物质变成在所述基质中不溶,并向所述一定量的基质施加能量将其细分为颗粒。
42.一种制备包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有第一非层状结晶物质和第二非层状结晶物质的外部涂层,该方法包括
提供一定量的所述基质,该基质包括溶解在其中的第一非层状结晶物质,并包括至少一种化学物质,该化学物质具有能与第二部分反应形成第二非层状结晶物质的部分,和
使所述一定量的基质与含有至少一种化学物质的流体接触,该化学物质具有所述第二部分,以使所述第一部分与所述第二部分反应,同时使所述第一非层状结晶物质变成在所述基质中不溶,并向所述一定量的基质施加能量将其细分为颗粒。
43.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层,该方法包括
将所述颗粒分配到含有可吸附物质的流体介质中,将所述可吸附物质吸附到所述外部涂层上。
44.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层,
该方法包括
将所述颗粒分配到含有可吸收物质的流体介质中,在所述内芯中吸收所述可吸收物质。
45.权利要求44的方法,其中所述吸收是通过所述流体介质溶解所述外部涂层引发的。
46.权利要求44的方法,其中所述吸收是通过所述外部涂层分裂引发的。
47.权利要求44的方法,其中所述吸收是通过所述外部涂层中的孔发生的。
48.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层,该方法包括
将所述颗粒分配到含有可吸收物质的流体介质中,在所述外部涂层中吸收所述可吸收物质。
49.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,和
b.含有非层状结晶物质的外部涂层,该方法包括
将所述颗粒分配到含有可吸收物质的流体介质中,在所述内芯和外部涂层中吸收所述可吸收物质。
50.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,所述基质含有分配在其中的活性剂,和
b.含有非层状结晶物质的外部涂层,该方法包括
将所述颗粒分配到流体介质中,和将所述活性剂释放到所述流体介质中。
51.权利要求50的方法,其中所述释放是通过所述流体介质溶解所述外部涂层引发的。
52.权利要求50的方法,其中所述释放是通过所述外部涂层分裂引发的。
53.权利要求50的方法,其中所述释放是通过所述外部涂层中的孔发生的。
54.一种使用包覆颗粒的方法,所述包覆颗粒包括
a.含有基质的内芯,所述基质基本上由以下组分组成:
i.至少一种超微结构液相,
ii.至少一种超微结构液晶相,或
iii.以下组分的结合
(1)至少一种超微结构液相,
(2)至少一种超微结构液晶相,
所述基质含有分配在其中的活性剂,和
b.含有非层状结晶物质的外部涂层,该方法包括
释放所述活性剂。
55.权利要求54的方法,其中所述释放是通过所述流体介质溶解所述外部涂层引发的。
56.权利要求54的方法,其中所述释放是通过所述外部涂层分裂引发的。
57.权利要求54的方法,其中所述释放是通过所述外部涂层中的孔发生的。
CNB988017466A 1997-09-09 1998-09-08 包覆颗粒以及其制备和使用方法 Expired - Fee Related CN1138591C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5830997P 1997-09-09 1997-09-09
US60/058,309 1997-09-09

Publications (2)

Publication Number Publication Date
CN1248177A CN1248177A (zh) 2000-03-22
CN1138591C true CN1138591C (zh) 2004-02-18

Family

ID=22016018

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988017466A Expired - Fee Related CN1138591C (zh) 1997-09-09 1998-09-08 包覆颗粒以及其制备和使用方法

Country Status (21)

Country Link
US (1) US6482517B1 (zh)
EP (1) EP0942780B1 (zh)
JP (2) JP4792149B2 (zh)
KR (1) KR100551221B1 (zh)
CN (1) CN1138591C (zh)
AT (1) ATE246039T1 (zh)
AU (1) AU747252B2 (zh)
BR (1) BR9806238A (zh)
CA (1) CA2271683C (zh)
DE (1) DE69816778T2 (zh)
DK (1) DK0942780T3 (zh)
ES (1) ES2202901T3 (zh)
HK (1) HK1026655A1 (zh)
HU (1) HU225069B1 (zh)
IL (1) IL129848A (zh)
NO (1) NO992263D0 (zh)
NZ (1) NZ335676A (zh)
PL (1) PL333331A1 (zh)
PT (1) PT942780E (zh)
TR (1) TR199901008T1 (zh)
WO (1) WO1999012640A1 (zh)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638621B2 (en) * 2000-08-16 2003-10-28 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
US6171802B1 (en) * 1998-06-10 2001-01-09 Kent State University Detection and amplification of ligands
US20020052002A1 (en) * 1998-06-10 2002-05-02 Niehaus Gary D. Detection and amplification of ligands
US6436369B2 (en) * 1998-12-17 2002-08-20 Wm. Wrigley Jr. Company Anti-plaque emulsions and products containing same
ES2231263T3 (es) * 1999-08-06 2005-05-16 Max-Delbruck-Centrum Fur Molekulare Medizin Sistemas de liberizacion sostenida de principio activo implantable.
US7897140B2 (en) 1999-12-23 2011-03-01 Health Research, Inc. Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents
US7166719B2 (en) 2002-06-27 2007-01-23 Health Research, Inc. Fluorinated photosensitizers related to chlorins and bacteriochlorins for photodynamic therapy
US20020153508A1 (en) 2000-06-29 2002-10-24 Lynch Matthew Lawrence Cubic liquid crystalline compositions and methods for their preparation
WO2002025288A2 (en) * 2000-09-22 2002-03-28 Clontech Laboratories Inc. Highly sensitive proteomic analysis methods and kits and systems for practicing the same
JP2004533274A (ja) * 2000-11-28 2004-11-04 ボストン サイエンティフィック リミテッド 送出マトリックスから治療剤を送出する方法及び装置
WO2002043696A1 (en) * 2000-11-29 2002-06-06 Lyotropic Therapeutics, Inc. Solvent systems for pharmaceutical agents
US7008646B2 (en) 2001-02-20 2006-03-07 Patrick Thomas Spicer Cubic liquid crystalline compositions and methods for their preparation
US6936187B2 (en) 2001-02-21 2005-08-30 Matthew Lawrence Lynch Functionalized cubic liquid crystalline phase materials and methods for their preparation and use
US6656385B2 (en) 2001-02-21 2003-12-02 The Procter & Gamble Company Functionalized cubic liquid crystalline phase materials and methods for their preparation and use
FR2824001B1 (fr) * 2001-04-26 2003-10-10 Bio Merieux Procede de depot d'un spot d'un produit d'interet, et application pour l'isolement et/ou la determination d'un analyte
WO2002096519A1 (en) * 2001-05-25 2002-12-05 National Aeronautics And Space Administration Flame suppression agent, system and uses
DE10127897B4 (de) 2001-06-08 2006-04-20 Bionorica Ag Manteltablette mit Pflanzentrockenextrakten
EP1408932A4 (en) * 2001-06-23 2009-02-25 Lyotropic Therapeutics Inc PARTICLES WITH ENHANCED SOLUBILIZATION CAPACITY
US7758890B2 (en) 2001-06-23 2010-07-20 Lyotropic Therapeutics, Inc. Treatment using dantrolene
US11207805B2 (en) 2001-10-12 2021-12-28 Aquestive Therapeutics, Inc. Process for manufacturing a resulting pharmaceutical film
US8603514B2 (en) 2002-04-11 2013-12-10 Monosol Rx, Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US7357891B2 (en) 2001-10-12 2008-04-15 Monosol Rx, Llc Process for making an ingestible film
US10285910B2 (en) 2001-10-12 2019-05-14 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US8765167B2 (en) 2001-10-12 2014-07-01 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US8900498B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for manufacturing a resulting multi-layer pharmaceutical film
US20070281003A1 (en) 2001-10-12 2007-12-06 Fuisz Richard C Polymer-Based Films and Drug Delivery Systems Made Therefrom
US8900497B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for making a film having a substantially uniform distribution of components
US20190328679A1 (en) 2001-10-12 2019-10-31 Aquestive Therapeutics, Inc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US20110033542A1 (en) 2009-08-07 2011-02-10 Monosol Rx, Llc Sublingual and buccal film compositions
DK1435910T3 (da) * 2001-10-19 2009-11-09 Isotechnika Inc Nye cyclosporinanaloge mikroemulsionsprækoncentrater
US6814845B2 (en) * 2001-11-21 2004-11-09 University Of Kansas Method for depositing an enzyme on an electrically conductive substrate
DE10204895B4 (de) * 2002-02-06 2004-07-29 Diehl Munitionssysteme Gmbh & Co. Kg Verfahren zur Herstellung von Reaktivstoffen
EP1338334A1 (de) * 2002-02-21 2003-08-27 Cognis Iberia, S.L. Mikrokapseln - XVI
TWI316979B (zh) * 2002-04-09 2009-11-11 China Testile Inst
WO2003091159A1 (en) * 2002-04-25 2003-11-06 General Electric Company Preparation of nanosized copper (i) compounds
JP2005532366A (ja) * 2002-06-13 2005-10-27 リオトロピック セラピュティックス アイエヌシー. 非パラフィン系疎水性物による逆液晶相
US20030232340A1 (en) * 2002-06-13 2003-12-18 David Anderson Nanoporous particle with a retained target
AU2002320083A1 (en) * 2002-06-13 2003-12-31 Lyotropic Therapeutics, Inc. A nanoporous particle with a retained target
CA2488643A1 (en) * 2002-06-13 2003-12-24 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
GB0221823D0 (en) * 2002-09-20 2002-10-30 Pilkington Plc Free flowing glass batch
JP4880449B2 (ja) 2003-03-04 2012-02-22 リオトロピック セラピュティックス アイエヌシー. ダントロレンを用いる治療
US20050119340A1 (en) * 2003-06-13 2005-06-02 David Anderson Treatment methods with low-dose, longer-acting formulations of local anesthetics and other agents
RU2006101616A (ru) * 2003-06-20 2006-07-27 Ньютриниа Лтд. (Il) Способ защиты биоактивных соединений и композиции, содержащие указанные соединения
EP1660227B1 (en) * 2003-08-04 2012-05-23 Camurus Ab Method for improving the properties of amphiphile particles
US7713440B2 (en) 2003-10-08 2010-05-11 Lyotropic Therapeutics, Inc. Stabilized uncoated particles of reversed liquid crystalline phase materials
WO2005070394A2 (en) 2004-01-23 2005-08-04 Camurus Ab Ternary non-lamellar lipid compositions
EP1559790A1 (de) * 2004-02-02 2005-08-03 International University Bremen Gmbh Vesikel zum Abtrennen von Substanzen aus flüssigen Medien
DE102004018723A1 (de) * 2004-04-17 2005-11-03 Wella Ag Itaconsäuremonoester/Acrylat Copolymer und Polystyrolsulfonat enthaltende Haarbehandlungsmittel
US7667570B1 (en) * 2004-05-19 2010-02-23 Lockheed Martin Corporation Nanostructured combination key-lock
EP1758464A4 (en) * 2004-05-24 2012-10-24 Nutrinia Ltd NUTRITIONAL FOOD AND SUPPLEMENT, ITS COMPOSITION, PROCESSING AND METHOD FOR ITS USE
PL1750862T3 (pl) 2004-06-04 2011-06-30 Teva Pharma Kompozycja farmaceutyczna zawierająca irbesartan
CA2590188A1 (en) * 2004-12-08 2006-06-15 Lyotropic Therapeutics, Inc. Compositions for binding to assay substrata and methods of using
GB0515353D0 (en) * 2005-07-27 2005-08-31 Psimedica Ltd Food
EP1931321B1 (en) 2005-08-31 2018-12-26 Abraxis BioScience, LLC Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
PE20070360A1 (es) * 2005-09-01 2007-04-19 Novartis Ag Composiciones de liposomas
US20070093392A1 (en) * 2005-09-30 2007-04-26 Maxam Industires Inc. Long lasting natural anti-pest additive
US20070078071A1 (en) * 2005-09-30 2007-04-05 Kaiping Lee Spray dry capsule products and methods for preparing and using same
WO2007108016A1 (en) * 2006-03-17 2007-09-27 Rosario Aiello Preparation of micro or nano systems based on inorganic oxides with controlled porosity for carrying biologically active or activable substances
WO2008127456A2 (en) * 2006-12-07 2008-10-23 Lyotropic Therapeutics, Inc. Compositions for the reversal and detoxification of anesthetics and other compounds and methods of their use
US7850382B2 (en) 2007-01-18 2010-12-14 Sanford, L.P. Valve made from two materials and writing utensil with retractable tip incorporating same
US7488130B2 (en) 2007-02-01 2009-02-10 Sanford, L.P. Seal assembly for retractable instrument
US8202447B2 (en) * 2007-03-23 2012-06-19 Dic Corporation Method for producing liquid crystal composition
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US8490699B2 (en) * 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US8490698B2 (en) * 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US8936082B2 (en) 2007-07-25 2015-01-20 Schlumberger Technology Corporation High solids content slurry systems and methods
IL188647A0 (en) * 2008-01-08 2008-11-03 Orina Gribova Adaptable structured drug and supplements administration system (for oral and/or transdermal applications)
US8226312B2 (en) 2008-03-28 2012-07-24 Sanford, L.P. Valve door having a force directing component and retractable instruments comprising same
US8221012B2 (en) 2008-11-07 2012-07-17 Sanford, L.P. Retractable instruments comprising a one-piece valve door actuating assembly
US8393814B2 (en) 2009-01-30 2013-03-12 Sanford, L.P. Retractable instrument having a two stage protraction/retraction sequence
US10688026B2 (en) 2009-04-27 2020-06-23 Premier Dental Products Company Buffered microencapsulated compositions and methods
US20100285611A1 (en) * 2009-05-06 2010-11-11 Ostafin Agnes E Photobleaching resistant ph sensitive dye nanoreactors with dual wavelength emission
EP2438902B1 (en) * 2009-06-01 2020-02-26 Kao Corporation Cleansing method
US7833947B1 (en) 2009-06-25 2010-11-16 Schlumberger Technology Corporation Method for treatment of a well using high solid content fluid delivery
CN105997864A (zh) 2009-07-09 2016-10-12 奥莎迪药品管理有限公司 基质载体组合物、方法及用途
WO2011017297A2 (en) 2009-08-03 2011-02-10 The University Of North Carolina At Chapel Hill Biodegradable delivery system complexes for the delivery of bioactive compounds
CA2783877A1 (en) * 2009-12-10 2011-06-16 A. Mark Schobel Ph sensitive compounds in taste masking within oral thin film strips
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
US8440265B2 (en) 2010-04-15 2013-05-14 Appleton Papers Inc. Water- and heat-resistant scratch-and-sniff coating
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US8505628B2 (en) 2010-06-30 2013-08-13 Schlumberger Technology Corporation High solids content slurries, systems and methods
US8518288B2 (en) 2010-07-27 2013-08-27 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis of nanocomposite thermoelectric material
US9149959B2 (en) 2010-10-22 2015-10-06 Monosol Rx, Llc Manufacturing of small film strips
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
KR101494594B1 (ko) 2011-08-30 2015-02-23 주식회사 종근당 약리학적 활성물질의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
KR101586790B1 (ko) * 2012-12-28 2016-01-19 주식회사 종근당 음이온성 약리학적 활성물질의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
KR101586791B1 (ko) 2012-12-28 2016-01-19 주식회사 종근당 GnRH 유도체의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
CN105518069B (zh) 2013-09-27 2018-02-06 罗门哈斯公司 用于包装高含水制剂的水可分散膜
MX2016003090A (es) 2013-09-27 2016-05-31 Rohm & Haas Desintegracion activada por fuerza ionica de peliculas y de particulas.
CN108348829B (zh) * 2015-12-14 2024-04-12 东洋纺Mc株式会社 过滤材料和过滤器
WO2017104840A1 (ja) * 2015-12-18 2017-06-22 メディギア・インターナショナル株式会社 生体分解性腫瘍封止剤
AU2017237164A1 (en) 2016-03-24 2018-10-11 Nutrinia Ltd. Use of insulin for promoting gastric emptying
US11273131B2 (en) 2016-05-05 2022-03-15 Aquestive Therapeutics, Inc. Pharmaceutical compositions with enhanced permeation
JP2019519487A (ja) 2016-05-05 2019-07-11 アクエスティブ セラピューティクス インコーポレイテッド 送達増強エピネフリン組成物
JP6902098B2 (ja) * 2016-10-26 2021-07-14 イーエルシー マネージメント エルエルシー 遅延放出送達系及び方法
CN112105367A (zh) * 2018-03-14 2020-12-18 第一牙科产品公司 缓冲微囊组合物和方法
CN108796441B (zh) * 2018-06-06 2020-03-03 中国科学院宁波材料技术与工程研究所 一种光吸收镀膜、其制备方法及应用
KR102112540B1 (ko) * 2018-06-14 2020-05-19 주식회사 비앤비 탄소나노튜브를 이용한 해양생물 부착방지용 코팅층의 제조방법
CN108640806B (zh) * 2018-08-27 2020-05-22 安徽理工大学 一种地下矿用胶状乳化炸药及其制备方法
CN109125775B (zh) * 2018-09-25 2021-02-09 广东爱车小屋电子商务科技有限公司 持久留香的空气清新剂及其制备方法
WO2021234548A1 (en) * 2020-05-18 2021-11-25 Max Biology Co. Ltd. Lipid-polymer compositions and methods of use
CN112201465B (zh) * 2020-10-10 2022-05-06 河北建投能源科学技术研究院有限公司 一种脱硫废水处理改性生物磁流体的制备方法
DE102021211738B3 (de) 2021-10-18 2023-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Suprapartikel und Additiv zur optischen Indikation von Wasserstoffgas, Verfahren zur Herstellung des/der Suprapartikel(s) oder des Additivs, sowie Verwendung des/der Suprapartikel(s) oder des Additivs
CN114951685B (zh) * 2022-06-10 2023-03-10 中化学科学技术研究有限公司 银纳米线及其制备方法、以及透明导电膜
CN115124962B (zh) * 2022-07-01 2023-11-03 南通金丝楠膜材料有限公司 一种无溶剂散香胶水及其制备方法、复合膜及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344857A (en) * 1975-12-22 1982-08-17 The United States Of America As Represented By The Secretary Of Agriculture Encapsulation by entrapment
SE8206744D0 (sv) 1982-11-26 1982-11-26 Fluidcarbon International Ab Preparat for kontrollerad avgivning av substanser
JPS61151133A (ja) * 1984-12-25 1986-07-09 Toyo Jozo Co Ltd 遅延放出性被覆組成物及びこれにより被覆した被覆製剤
SE462894B (sv) 1985-10-28 1990-09-17 Biogram Ab Mikrokapslar, foerfarande foer framstaellning daerav samt anvaendning
SE452551B (sv) 1986-05-27 1987-12-07 Camurus Ab Artikel belagd med heparinbaserat material samt forfarande for dess framstellning
US5371109A (en) 1986-07-01 1994-12-06 Drilletten Ab Controlled release composition for a biologically active material dissolved or dispersed in an L2-phase
SE457693B (sv) * 1986-07-01 1989-01-23 Drilletten Ab Komposition med reglerad frigoering vari ett biologiskt material aer loest eller dispergerat i en l2-fas
JPS63151353A (ja) * 1986-12-15 1988-06-23 Oogawara Kakoki Kk ワツクスコ−テイングマイクロカプセルの製造方法
DE68920778T2 (de) * 1988-05-24 1995-05-18 Anagen Uk Ltd Magnetisch anziehbare Teilchen und Herstellungsverfahren.
JPH02251240A (ja) * 1989-03-24 1990-10-09 Pias Arise Kk 紫外線吸収剤内包マイクロカプセル及びその製造方法並びにそのマイクロカプセルを含有する化粧料
CA2050911C (en) * 1989-05-04 1997-07-15 Thomas R. Tice Encapsulation process and products therefrom
US5196201A (en) 1989-10-20 1993-03-23 Bioapatite Ab Implant material composition, preparation thereof as well as uses thereof and implant product obtainable therefrom
US5143934A (en) 1990-11-21 1992-09-01 A/S Dumex (Dumex Ltd.) Method and composition for controlled delivery of biologically active agents
EP0550436A1 (en) * 1989-11-06 1993-07-14 Alkermes Controlled Therapeutics, Inc. Protein microspheres and methods of using them
US5084267A (en) 1989-11-17 1992-01-28 The Procter & Gamble Company Sustained release compositions for treating periodontal disease
US5262164A (en) 1989-11-17 1993-11-16 The Procter & Gamble Company Sustained release compositions for treating periodontal disease
WO1993006921A1 (en) 1991-10-04 1993-04-15 Gs Biochem Ab Particles, method of preparing said particles and uses thereof
EP0643620B1 (en) * 1991-10-04 1999-07-21 Gs Development Ab Particles, method of preparing said particles and uses thereof
JP3484611B2 (ja) * 1992-07-16 2004-01-06 富士化学株式会社 微細球状シリカの製造方法
US5785976A (en) * 1993-03-05 1998-07-28 Pharmacia & Upjohn Ab Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof
US5543158A (en) * 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
PT744939E (pt) * 1994-02-04 2003-02-28 Lipocore Holding Ab Preparacoes em bicamada preparadas a partir de digalactosildiacilglicerol contendo galactolipido
JP4137179B2 (ja) * 1994-03-30 2008-08-20 ジーエス ディベロップメント エービー 生物付着性物質としての脂肪酸エステルの使用
AU702030B2 (en) * 1995-10-12 1999-02-11 Gs Development Ab A pharmaceutical composition for administration of an active substance to or through a skin or mucosal surface
JPH10202093A (ja) * 1997-01-24 1998-08-04 Sunstar Inc リン酸カルシウム系無機中空カプセルおよびその製造方法
JPH1147580A (ja) * 1997-07-30 1999-02-23 Q P Corp リポソーム分散液の製造方法

Also Published As

Publication number Publication date
WO1999012640A1 (en) 1999-03-18
JP4792149B2 (ja) 2011-10-12
KR100551221B1 (ko) 2006-02-10
EP0942780B1 (en) 2003-07-30
BR9806238A (pt) 2005-07-12
JP2009242423A (ja) 2009-10-22
DE69816778T2 (de) 2004-04-15
DK0942780T3 (da) 2003-10-27
US6482517B1 (en) 2002-11-19
HU225069B1 (en) 2006-06-28
CN1248177A (zh) 2000-03-22
AU9661498A (en) 1999-03-29
HUP0001546A2 (en) 2000-07-28
ES2202901T3 (es) 2004-04-01
EP0942780A1 (en) 1999-09-22
HK1026655A1 (en) 2000-12-22
PL333331A1 (en) 1999-12-06
TR199901008T1 (xx) 2000-02-21
DE69816778D1 (de) 2003-09-04
CA2271683C (en) 2007-11-27
HUP0001546A3 (en) 2001-06-28
KR20000068940A (ko) 2000-11-25
EP0942780A4 (en) 2001-01-10
IL129848A (en) 2003-04-10
ATE246039T1 (de) 2003-08-15
PT942780E (pt) 2003-11-28
CA2271683A1 (en) 1999-03-18
AU747252B2 (en) 2002-05-09
NO992263D0 (no) 1999-05-10
NZ335676A (en) 2001-03-30
IL129848A0 (en) 2000-02-29
JP2001506541A (ja) 2001-05-22

Similar Documents

Publication Publication Date Title
CN1138591C (zh) 包覆颗粒以及其制备和使用方法
Fong et al. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics
Stiti et al. Carbonic anhydrase inhibitor coated gold nanoparticles selectively inhibit the tumor-associated isoform IX over the cytosolic isozymes I and II
Tierney et al. Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol
Pan et al. How do proteins unfold upon adsorption on nanoparticle surfaces?
JP2001506541A5 (zh)
US7105229B2 (en) Coated particles, methods of making and using
Choi et al. Emissive behavior, cytotoxic activity, cellular uptake, and PEGylation properties of new luminescent rhenium (I) polypyridine poly (ethylene glycol) complexes
CN105188905B (zh) 物质包封微囊及其制备方法
Marconnet et al. Solubilization and stabilization of membrane proteins by cycloalkane-modified amphiphilic polymers
Garcia et al. Micellization and antimicrobial properties of surface-active ionic liquids containing cleavable carbonate linkages
Suga et al. Characterization of aqueous oleic acid/oleate dispersions by fluorescent probes and Raman spectroscopy
CA3088710C (en) Langerin+ cell targeting
Fujii et al. Glutamic acids bearing calix [4] arene micelles: pH-controllable aggregation number corresponding to regular polyhedra
Johnsson et al. Novel sugar‐based gemini surfactants: aggregation properties in aqueous solution
Bastiat et al. Development of non-phospholipid liposomes containing a high cholesterol concentration
Zhang et al. Self-Assembly of Glycerol-Amphiphilic Janus Dendrimers Amplifies and Indicates Principles for the Selection of Stereochemistry by Biological Membranes
Maiti et al. How Do Urea and Trimethylamine N-Oxide Influence the Dehydration-Induced Phase Transition of a Lipid Membrane?
Schmiele et al. Structural characterization of lecithin-stabilized tetracosane lipid nanoparticles. Part I: emulsions
JP2005529949A (ja) 被覆粒子、製造方法および使用
Lukáč et al. Preparation of metallochelating microbubbles and study on their site-specific interaction with rGFP-HisTag as a model protein
Arczewska et al. Effect of the amphotericin B and its copper complex on a model of the outer leaflet of human erythrocyte membrane
Fracassi et al. Characterizing the Self-Assembly Properties of Monoolein Lipid Isosteres
Bailey et al. Electroformation of particulate emulsions using lamellar and nonlamellar lipid self-assemblies
Aikawa et al. Lyoprotective Effect of Alkyl Sulfobetaines for Freeze-drying 1, 2-Dipalmitoyl-sn-glycero-3-phosphocholine Liposomes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1026655

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040218

Termination date: 20110908