CN113717952A - 溶瘤性hsv载体 - Google Patents

溶瘤性hsv载体 Download PDF

Info

Publication number
CN113717952A
CN113717952A CN202110609000.1A CN202110609000A CN113717952A CN 113717952 A CN113717952 A CN 113717952A CN 202110609000 A CN202110609000 A CN 202110609000A CN 113717952 A CN113717952 A CN 113717952A
Authority
CN
China
Prior art keywords
ohsv
mir
hsv
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110609000.1A
Other languages
English (en)
Inventor
内田宏昭
J·科恩
J·C·格洛廖索三世
P·格兰迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pittsburgh
Original Assignee
University of Pittsburgh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pittsburgh filed Critical University of Pittsburgh
Publication of CN113717952A publication Critical patent/CN113717952A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16621Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16645Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16661Methods of inactivation or attenuation
    • C12N2710/16662Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16671Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供了一种重组溶瘤性单纯疱疹病毒(oHSV),其包含特异性针对在细胞(例如癌细胞)表面上存在的分子(蛋白、脂质或碳水化合物抗原决定簇)的非HSV配体,和插入到一个或多个HSV基因(优选地为HSV在正常(即,非癌性)细胞中复制所需的一个或多个HSV基因)座中的一个或多个拷贝的一种或多种microRNA靶序列。本发明进一步提供了包含创新的oHSV的原液和药物组合物,以及使用所述创新的oHSV杀灭肿瘤细胞的方法。

Description

溶瘤性HSV载体
相关申请的交叉引用
本申请为申请日为2014年10月28日,申请号为201480071446.1的中国国家阶段申请的分案申请。其母案申请要求于2013年10月28日提交的美国临时专利申请61/896,497的优先权,其全部内容在此通过引用并入。
关于联邦政府资助的研究与开发的声明
本发明是在由美国国立卫生研究院授予的基金号CA119298、CA163205、CA175052、NS040923和DK044935下借助政府支持而进行的。政府在本发明中具有某些权利。
发明背景
即便应用现有的联合疗法,多形性胶质母细胞瘤(GBM)仍是一种致命性疾病。临床前研究表明具有复制能力的病毒载体(包括溶瘤性HSV(“oHSV”)载体)有望成为替代性的治疗方法,但其在患者的临床试验中治疗效果有限。实现载体安全性依赖于减毒载体突变,而该突变还可能会危害在肿瘤细胞中的裂解复制。
发明概述
本发明提供了一种具有肿瘤选择性扩增能力但未减毒的oHSV,其可通过结合再靶向肿瘤相关细胞表面受体的载体和由细胞microRNA(“miR”)导致的载体的复制抑制来实现,其中所述细胞microRNA在正常脑中高度表达而在肿瘤细胞中几乎是不存在的。miR反应性元件在裸鼠脑中阻碍载体的发病过程,而不妨碍在体外或异种脑肿瘤模型中的原代肿瘤细胞中的胞溶性载体复制。该新载体设计将提供一种更安全且更有效的载体平台,并可进一步开发以应用于患者肿瘤。
附图若干视图的简要说明
图1呈现了来自T124元件的有效性和特异性的实验结果的数据。将在3’UTR中包含T124(pfLuc-T124)或对照序列(pfLuc-Ctrl)的萤火虫荧光素酶(fLuc)表达质粒与海肾荧光素酶(prLuc)内参质粒共转染入在24小时前已经转染了合成的pre-miR-124或pre-miR-21的HEK293AD细胞中。48小时后测定荧光素酶活性。结果表示为根据rLuc活性进行标准化的fLuc活性的三次测定值的均值±标准偏差。具有统计学上显著性差异的数据对由相应P值(未配对t检验)下的方括号表示。
图2呈现了来自胶质瘤细胞中病毒复制实验结果的数据。(A)载体图。亲本KOS-37BAC在病毒UL37和UL38基因之间包含loxP侧接的BAC序列、氯霉素抗性序列和lacZ序列(“BAC”)(Gierasch等人,2006)。如下阐明了用于生成KGBAC和KG4:T124BAC的修饰:gB:NT,gB基因中的增强病毒进入的双重突变;gC-eGFP,经由2A肽序列将完整gC ORF融合至GFP;ΔJoint,删除完整的内部重复区,包括1个拷贝的所述ICP4基因;ICP4:T124,将T124插入剩余的ICP4基因的3’UTR中。UL,病毒基因组的单一长片段;US,单一短片段。(B)T124对于培养中的来源于患者的胶质瘤细胞中病毒复制的作用。以0.01的MOI采用KG或KG4:T124病毒感染Gli68和GBM30细胞,并且一式三份进行平行实验。在感染后的指定时间点,收集细胞裂解物和上清液并在U2OS细胞上测定滴度。值为均值±标准偏差。(C)LV124感染的Gli68细胞中的MiR-124表达。在5cfu/细胞感染细胞,之后三天在含嘌呤霉素培养基中进行筛选,并收获总RNA提取物。对照RNA来自未感染的Gli68和U2OS细胞。通过qRT-PCR三重测定miR-124水平并根据RNU43的水平进行数据标准化。所显示的数据是相对于U2OS细胞增加的倍数±标准偏差。所有数据对间的P<0.05(未配对t检验)。(D)在miR-124转导和对照GBM30和Gli68细胞中的KG和KG4:T124病毒复制。用LV124或LV137R以5cfu/细胞感染细胞,采用嘌呤霉素筛选3天,并用KG或KG4:T124以0.01的MOI重复感染。在U2OS细胞上测定在感染后72小时和96小时收集的细胞裂解物和上清液中合并的感染性HSV的滴度。结果为来自三个HSV感染的平行实验的均值±标准偏差。方括号指示具有显著差异的数据对,同时示出了相应P值(未配对t检验)。
图3呈现了来自裸鼠脑中KG4:T124病毒复制和毒性实验结果的数据。将4.8x109基因组拷贝的KG或KG4:T124颅内注射入各4只BALB/c裸鼠(n=4/组)。(A)载体注射后的经时动物重量。左,注射KG的动物;X,动物死亡。右,注射KG4:T124的小鼠;实心圆,动物处死。(B)载体注射后鼠脑中的经时总病毒基因组拷贝。收集来自载体注射组的在第5、14、21和33天处死的单只KG4:T124注射小鼠和来自KG注射组的在第5天安乐死的具有严重疾病症状的最后存活动物的脑,分离DNA,通过qPCR测定每个脑中的病毒载体基因组总数。(C)本实验中动物的Kaplan-Meier存活曲线。箭头指示来自KG4:T124注射组的单只动物的处死日。P=0.0058,对数秩检验。
图4呈现了来自人恶性胶质瘤裸鼠模型的EGFR再靶向miR-124敏感性HSV载体治疗的实验结果的数据。颅内移植磨碎的GBM30细胞并在5天后在相同坐标注射PBS或1.8x108gc的KGE或KGE-4:T124病毒。(A)Kaplan-Meier存活曲线。对数秩统计:KGE对PBS,P=0.0188;KGE-4:T124对PBS,P=0.0009;KGE对KGE-4:T124,P=0.8327。(B)肿瘤细胞移植后的经时动物重量。X,动物死亡或安乐死。
图5呈现的数据证明KMMP9介导酶活性MMP9的过表达。(A)KMMP9和KGw的结构。(B)感染KMMP9、KGw或KG(MOI=0.1)的Vero细胞的细胞裂解物的蛋白印迹分析。β-微管蛋白和HSV糖蛋白B分别可视化作细胞和病毒加载对照。采用KGw或KMMP9在MOI=1下感染原代GBM细胞系(C)或Vero细胞(D)。感染24小时后收集细胞裂解物和上清液并组合(C)或单独加载(D)在10%聚丙烯酰胺/0.1%明胶凝胶上。电泳后37℃下过夜培养所述凝胶,用0.05%考马斯蓝染色并脱染,并记录图像。缩写:M,KMMP9;G,KGw;KG,对照病毒;un.,未感染;gB,糖蛋白B;Sup.,上清液。
图6呈现的数据证明KMMP9和KGw显示出可比的细胞进入和生长模式。(A)在图上列出的多种gc/细胞下采用病毒感染图左所列细胞。6小时后固定细胞并免疫染色ICP4。(B)分离GBM30和(C)GBM169细胞并采用KMMP9或KGw在200gc/细胞下进行感染。在1、2、4和6dpi下收集细胞裂解物并通过qPCR测定病毒基因组拷贝滴度。在任一宿主细胞系中均未观测到两种病毒间的显著性差异(GBM30:P=0.20;GBM169:P=0.11)。
图7呈现的数据证明KMMP9在与KGw的比较中显示出相似或更高的体外肿瘤细胞杀灭。10或100gc/细胞下感染U87、SNB19或GBM30细胞3或7天。通过MTT试验测定相对于未感染细胞的细胞存活百分数(n=3;星号:P<0.05,未配对学生t检验)。
图8呈现的数据证明MMP9改善oHSV在球状体中的感染性。在悬浮液中生长GBM30细胞并用1x103pfu的KMMP9或KGw对其进行感染。2-6dpi下在整体球状体中每日可视化两种载体中来自gC-T2a-eGFP盒的绿色荧光。(A)3和5dpi下的代表性图像。(B)每种载体6个球状体中eGFP信号的平均量化证实了KMMP9比KGw感染性增加约2倍(P=0.006)。(C-E)在4x107基因组拷贝/球状体下用KMMP9或KGw感染两组GBM30球状体。固定球状体、用DAPI染色,并以5μm间隔记录Z面共焦图像。图(C)显示了自0μm至150μm 3D重建后的分别来自KMMP9和KGw组的2个代表性球状体。蓝色,DAPI;绿色,eGFP。图(D)显示了来自各组的2个球状体在Z=100μm下的Z面。(E)根据Z轴深度将各球状体分为5段(自下而上:0-20μm、25-50μm、55-80μm、85-100μm、105-120μm和125-140μm)。通过用平均eGFP信号除以DAPI信号计算球状体各段中的相对信号强度。n=7;星号:P<0.05.
图9呈现了关于GBM裸鼠模型的KMMP9治疗的数据。颅内移植GBM30细胞并在5天后在相同坐标(0.5mm前、2mm侧(右)、3mm深)注射KMMP9、KGw或PBS。每日监控动物并当显示发病迹象时将其处死。数据呈现为Kaplan-Meier存活曲线。采用KMMP9或KGw治疗的动物相比于采用PBS治疗的那些动物显著存活更长时间(P<0.01)。在KMMP9和KGw之间未发现显著差异(n=4;P=0.61,对数秩检验)。
图10描述了每个病毒或模拟(PBS)治疗GBM30动物治疗组中的一个动物的T2加权脑MRI图像。(A)在GBM30移植10天后进行治疗并在治疗前1天(-1天)和治疗后第3、6、9和13天收集图像。(B)相同天数计算的肿瘤体积。
发明详述
本发明提供了一种重组oHSV,其包含特异性针对在细胞(例如癌细胞)表面上存在的分子(蛋白、脂质或碳水化合物抗原决定簇)的非HSV配体,和插入到一个或多个HSV基因(优选地为HSV在正常(即,非癌性)细胞中复制所需的一个或多个HSV基因)座中的一个或多个拷贝的一种或多种microRNA靶序列。本发明进一步提供了包含所述创新的oHSV的原液和药物组合物,以及使用所述创新的oHSV杀灭肿瘤细胞的方法。
所述创新的oHSV的非HSV配体被并入暴露在所述HSV表面上的糖蛋白(例如gD或gC)中以使用所述配体促进靶向目标细胞。例如,所述配体可被并入至gD的残基1和25之间。用于靶向GBM和其它癌细胞的优选配体包括靶向EGFR和EGFRvIII、CD133、CXCR4、癌胚抗原(CEA)、ClC-3/膜联蛋白-2/MMP-2、人转铁蛋白受体和EpCAM的那些,且所述配体可靶向此受体或细胞表面分子,即,所述配体能够特异性结合此受体或细胞表面分子。文献中已描述了EGFR和EGFRvIII特异性配体,例如抗体,scFv(单链抗体)和VHH(单域抗体)(Kuan等人,Int.J.Cancer,88,962-69(2000);Wickstrand等人,Cancer Res.,55(14):3140-8(1995);Omidfar等人,Tumor Biology,25:296-305(2004);还参见Uchida等人.MolecularTherapy,21:561-9(2013);还参见Braidwood等人,Gene Ther.,15,1579-92(2008))。
所述oHSV通过结合配体也可以或可替代地是靶向与癌症非必要相关的其它细胞表面分子或受体。例如,配体可包含自天然配体结合域(例如,生长因子(例如EGF,其可靶向EGFR,NGF,其可靶向trkA等))、肽或非肽激素、选择结合靶分子的肽(例如,预设计锚蛋白重复蛋白(DARPins))等。所述创新的oHSV还可包含gB和/或gH的突变形式,所述gB和/或gH的突变形式促进载体通过非经典受体进入(且优选地在所述oHSV的基因组内这些基因的一种或两种中也具有此突变)。
包含在所述创新的载体中的优选microRNA靶序列(优选为其串联多拷贝)是miR-124,其对于神经应用具有特殊应用(例如,当使用所述创新的oHSV用于治疗神经系统肿瘤(例如GBM)时保护非癌性神经元)。可替代使用其它microRNA靶序列保护其它类型的组织,且选择适当microRNA靶序列以保护期望的组织或细胞类型是在本领域的普通技术范围内。例如,miR-122和miR-199在正常肝细胞中表达而不在原发性肝癌中表达;因此,miR-122和/或miR-199microRNA靶序列中的一种或组合可用在应用所述创新的oHSV来治疗肝癌的实施方式中。类似地,miR-128和/或miR-137microRNA靶序列可用在用于保护正常脑部的oHSV中。一种示例性microRNA靶序列可为microRNA的反向互补序列。
所述microRNA靶序列优选包含在HSV基因的3’非翻译区(“UTR”)中,以在所述microRNA存在时沉默该基因。优选地,串联插入多拷贝(例如两拷贝、三拷贝、四拷贝、五拷贝、六拷贝、或更多)所述microRNA靶序列。优选地,所述多拷贝的所述microRNA靶序列通过四个或更多个核苷酸(更优选地八个或更多个核苷酸)的间隔序列相分离。不希望受限于理论,但据信更大的间隔(例如,大于约8个核苷酸)提供增加的稳定性。
更优选地,为帮助保护非癌细胞免受HSV感染的溶解效应,所述多拷贝的microRNA靶序列插入非癌细胞复制所必需的HSV基因的3’UTR中,其为普通技术人员所知的。优选地,所述位点为HSV基因组内正常(或天然)基因座中microRNA靶基因的3’UTR。本发明的优选oHSV包含插入ICP4基因3’UTR中的多拷贝的所述microRNA靶序列,例如在具有两个天然拷贝的所述ICP4基因的载体中的一个或两个拷贝的所述ICP4基因。
所述创新的HSV载体的基因组可另外包含一个或多个外源性表达盒(即,包含与启动子、增强子和其它适当调控元件可操作连接的编码序列),例如编码报告蛋白(例如绿色荧光蛋白)、溶瘤因子或增强肿瘤杀灭活性的试剂(例如肿瘤坏死因子(“TNF”)或TNF-相关性凋亡诱导配体(“TRAIL”)、或其它在治疗上重要的基因产物(例如,肽、药物活化酶、抗体、治疗性RNA等)。优选的外源性表达盒编码基质金属蛋白酶,例如基质金属蛋白酶9(“MMP9”),其降解胶原IV型(细胞外基质(ECM)和恶性胶质瘤基底膜的主要成分)(Mammato等人,Am.J.Pathol.,183(4):1293-1305(2013),doi:10.1016/j.ajpath.2013.06.026.Epub 2013年8月5日),因此由于横向扩张增强所述创新的载体的肿瘤细胞感染并增强肿瘤杀灭活性。还优选编码增强所述创新的HSV的横向扩张的其它基因的表达盒。
其它优选的外源性表达盒编码诱导针对所述创新的HSV用于治疗的癌症或肿瘤的患者免疫反应的蛋白或多肽。例如,此表达盒可包含编码因子(如细胞因子(例如,IL-2和IFN B))、针对细胞毒性T-淋巴细胞相关蛋白4(“CTLA-4”)的抗体(Hodi等人,N.Engl.J.Med.,363(8):711-23(2010))、针对程序性细胞死亡蛋白1(“PD1”)配体或受体自身的抗体(Topalian等人,N.Engl.J.Med.,366(26):2443-54(2012))以及上皮细胞黏附分子(“EpCAM”)(Patriarca等人,Cancer Treatment Rev.,38:68-75(2012))的一个或多个核酸。如上所述,EpCAM还可用作被所述创新的载体所识别的靶向标记。而且,在待治疗癌症不是CNS癌症时,且更具体地不是胶质瘤或恶性胶质瘤的情况下,另一转基因可编码粒细胞巨噬细胞集落刺激因子(“GM-CSF”)。
其它优选的表达盒编码催化前药转化为活性剂的蛋白或多肽。例如,此表达盒可编码酶,例如胞嘧啶脱氨酶,其可在感染所述创新的载体的肿瘤或癌细胞中局部转化5-氟胞嘧啶(“5-FC”)为5-氟尿嘧啶(“5-FU”)(参见例如,Akimoto等人,J.Ophthalmol.,86(5):581-86(2002)),以便允许5-FU在此细胞或肿瘤内局部起效而最小化5-FU的系统暴露。类似地,此表达盒可编码胸苷激酶(tk)(例如,可操作地连接至HSV即刻早期启动子或强组成型启动子),其可活化更昔洛韦,或嘌呤核苷磷酸化酶(PNP),其可阻断或减弱核糖核苷酸还原酶的活性。在某些实施方式中,所述创新的载体还可包含功能性天然HSV tk基因。
在所述创新的载体内,所述外源性表达盒内的编码序列可以可操作地与任何期望的基因调节序列连接,例如组成型启动子或可诱导的或组织特异型启动子,其许多实例是现有技术中已知的。例如,一种通常使用的组成型启动子是人巨细胞病毒(hCMV)启动子,并且还可使用其它启动子,例如,CMV早期增强子/鸡β-肌动蛋白(CAG)启动子和HSV即刻早期启动子(例如,ICP4启动子)等。
并且,在某些实施方式中,所述创新的载体的基因组包含内源重复(接合)区连同所述ICP47基因的启动子的删除,所述重复(接合)区包含一个拷贝的各种二倍体基因ICP0、ICP34.5、LAT和ICP4。在其它实施方式中,替代删除所述接合,可通过删除这些基因或另外限制它们的突变形成而沉默所述接合区中基因(特别是ICP0和/或ICP47)的表达。
所述创新的载体可通过HSV病毒学领域普通技术人员已知的标准方法制备。然而,为便于操作所述HSV基因组并制造所述创新的载体,本发明还提供了编码所述创新的载体的核酸。一种优选的核酸是编码所述创新的载体的细菌人工染色体(“BAC”),其便于操作细菌系统中的所述HSV。
应当意识到所述创新的oHSV可用于靶向并杀灭癌细胞,无论在体内或在体外。一种优选的应用是在治疗上使用所述创新的载体,特别是在人类患者中和/或针对人类肿瘤/细胞(其可为各种哺乳动物中的异种移植物)。然而,所述方法还可用于动物中,例如伴侣动物(例如,猫和狗),或农业上重要的动物(例如牛、羊、马等)或动物学上重要的动物。所述创新的载体可用于治疗的示例性肿瘤/癌细胞涉及中枢神经系统癌症,且特别是多形性恶性胶质瘤。
通常,当足量病毒可被递送至细胞群体以确保所述细胞接触适当量的病毒时,所述创新的oHSV载体最为有用。因此,本发明提供了一种原液,优选均质原液,其包含所述创新的oHSV载体。HSV原液的制备和分析是本领域中公知的。例如,可在包含采用oHSV载体转导的细胞的滚瓶中制造病毒原液。然后可在连续Nycodenze梯度上纯化所述病毒原液,并等分和贮存至需要使用时。病毒原液在滴度上相差很大,主要取决于病毒基因型以及用于制备它们的方案和细胞系。优选地,此原液具有至少约105空斑形成单位(pfu)的病毒滴度,例如至少约106pfu或甚至更优选至少约107pfu。在又一更优选实施方式中,所述滴度可为至少约108pfu,或至少约109pfu,且至少约1010pfu或至少约1011pfu的高滴度原液最为优选。例如可使用表达所述载体靶向的受体的细胞建立此滴度。
本发明另外提供了包含所述创新的oHSV载体和运载体(优选生理学上可接受的运载体)的组合物。所述组合物的运载体可为用于所述oHSV载体的任何适宜运载体。所述运载体典型地为液体,但也可为固体,或者液体和固体组分的组合。所述运载体理想地是药学上可接受的(例如,生理学上或药理学上可接受的)运载体(例如,赋形剂或稀释剂)。药学上可接受的运载体是公知的并易于获得。运载体的选择将取决于(至少部分)用于给药所述组合物的特定载体以及特定方法。所述组合物可进一步包含任何其它适当组分,尤其用于增强组合物的稳定性和/或其最终用途。因此,具有多种本发明组合物的适当制剂。以下制剂和方法仅为示例性的且绝非限制。
适用于肠胃外给药的制剂包括水性和非水性、等渗无菌注射溶液,其可包含抗氧化剂、缓冲剂、抑菌剂以及使所述制剂与意图接受者的血液等渗的溶质,以及可包含悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂的水性和非水性无菌悬浮液。所述制剂可呈现在单位剂量或多剂量密闭容器中,例如安瓿和小瓶,并可贮存在仅需在即用前加入无菌液体赋形剂(例如注射用水)的冷冻干燥(冻干)条件中。即用注射溶液和悬浮液可制自前述类型的无菌粉末、颗粒和片剂。
此外,所述组合物可包含附加的治疗剂或生物活性剂。例如,可存在用于治疗特定适应症的治疗因子。控制炎症的因子(例如布洛芬或类固醇)可做为所述组合物的部分以减少与体内给药所述载体相关的肿胀和炎症以及生理痛苦。可连同组合物方法给药免疫系统抑制剂以减少针对所述载体自身的任何免疫反应或相关紊乱。或者,所述组合物中可包含免疫增强剂以上调机体对疾病,特别是对所述创新的载体用于针对的癌症或肿瘤的自然防御。可存在抗生素(即杀菌剂和杀真菌剂)以降低与转基因程序相关的感染和其它紊乱的风险。
实施例1
目的:多形性胶质母细胞瘤(GBM)是一种没有有效疗法的侵袭性脑瘤。已将oHSV载体设计用于在动物中治疗人GBM模型,但在患者试验中证明其功效令人失望。我们试图开发一种实现高选择性肿瘤裂解而无载体减毒的新型oHSV设计。
实验设计:我们报道了在肿瘤细胞中选择性感染和复制的工程化oHSV,所述选择性是通过凭借EGFR的完全再靶向感染以及通过凭借将多拷贝的神经元特异性miR-124的识别序列引入必需的ICP4即刻早期HSV基因的3’UTR以在正常神经元中阻断载体复制。选择miR-124是因为其在神经元中高度表达但在GBM中几乎检测不到。在异种脑瘤治疗实验中测试载体功效。
结果:采用miR-124敏感性病毒高剂量颅内接种裸鼠未产生发病或病毒复制迹象,这与通过miR-124与ICP4 mRNA的相互作用在正常脑中阻塞病毒复制相符。采用EGFR再靶向、miR124敏感性HSV在裸鼠中治疗原代人GBM的原位模型证明了与采用亲本EGFR再靶向病毒治疗相当的长期存活率(≥50%),因此表明miR-124识别元件未导致降低的疗效。
结论:我们总结认为通过组合载体感染的肿瘤靶向与通过在肿瘤中不存在而在正常组织中高度表达的细胞microRNA实现的脱靶载体复制的消除可最大化未减毒oHSV的特异性。
介绍
GBM是有效疗法依旧难以捉摸的最为恶性的癌症形式之一。标准医学实践(例如外科手术以及放疗和化疗)已显示出有限的长期临床收益。许多实验室中正在开发包括来源于单纯疱疹病毒1型(oHSV-1)的那些在内的溶瘤性载体作为潜在的替代治疗策略(1)。oHSV载体已显示出治疗原代GBM动物模型的前景,但除了提供良好安全性以外,来自早期临床试验的结果未证实有效的肿瘤杀灭或患者存活的一致改善(2)(3)。
实现HSV减毒的最常见方法是功能性删除规避宿主针对感染的先天免疫反应的非必需基因,提供用于在非分裂细胞(如神经元)复制的核苷酸池,以及预防细胞凋亡(2)。癌细胞中病毒复制受到某些先天免疫反应丧失(4)以及快速细胞分裂和失活的凋亡途径(2)的促进。然而,这些特性对于当前oHSV在多种肿瘤中的大量复制并非都是足够的。
作为改善载体功效的第一步,我们之前开发了用于完全再靶向HSV的方法以将感染从经典HSV进入受体重定向至高表达的肿瘤细胞表面受体(例如EGFR和EGFRvIII)(5)。再靶向的oHSV显示出强大的溶瘤活性以及对人GBM细胞的高度特异性,导致原位小鼠模型中高水平的人类肿瘤破坏。此外,该治疗载体产生了大多数受治疗动物的长期存活且无载体相关性毒性。然而,大多数高度表达的肿瘤相关性细胞表面标记均以一定程度存在于正常细胞类型中,因此,我们寻求通过独立机制在正常脑中阻断病毒复制而不减少在肿瘤中的复制,以增加肿瘤靶向性非减毒载体的安全性。
近期研究已运用正常和癌细胞间microRNA(miRNA)表达模式的差异作为肿瘤靶向的替代途径(6)。已确定有至少30种miRNA在恶性胶质瘤、神经元和神经前体细胞(NPCs)中差异表达(7)(8),提示这些差异可用于限制正常脑细胞中病毒复制而允许肿瘤细胞中的无阻复制。在此我们证实将miR-124识别元件并入基本上野生型病毒的必需ICP4基因阻止了高度表达miR-124的正常脑组织中HSV的复制。此外,我们显示所述miR-124反应元件未降低EGFR再靶向载体的溶瘤活性。重要的是,因为肿瘤表型取决于miR-124的持续缺失,所以潜在上调miR-124作为从裂解病毒复制的细胞逃逸机制将限制细胞不受控制的增殖能力并因此不会危害载体功效。在缺乏miR-124的细胞中进行载体的生成,因此在原液制备期间没有产生miR-124抗性病毒突变体的选择压力。总而言之,这些特征赋予了载体安全性和肿瘤选择性,并提示了适用于多种肿瘤类型的溶瘤性载体设计的总体策略。
结果
miR-124反应元件的验证。在神经元内表达水平高于GBM细胞内表达水平的多种miRNA中,miR-124是最为丰富的在GBM中具有最小表达的一种(6)。我们设计了由不同的8个核苷酸(nt)间隔序列相分离的成熟miR-124反向互补序列的4个串联拷贝组成的miR-124反应元件(T124)。为评估此序列的功能性,我们将其插入萤火虫荧光素酶(fLuc)表达质粒的3’UTR并在经报道很少表达或不表达miR-124的U2OS骨肉瘤细胞中用特异性(pre-miR-124)或非特异性(pre-miR-21)前体miRNA同其进行共转染实验(9);包含海肾荧光素酶(rLuc)表达质粒用于标准化。结果(pfLuc-T124,图1)显示在24小时时在采用pre-miR-124共转染的细胞中fLuc活性相比于模拟共转染细胞或采用pre-miR-21共转染的细胞严重降低。相反,在采用包含4个拷贝的反向miR-21序列的对照fLuc质粒进行转染的细胞(pfLuc-Ctrl,模拟)和采用pre-miR-21或pre-miR-124的pfLuc-Ctrl共转染之间仅观测到很小的fLuc表达差异(图1)。这些结果证实了T124元件作为miR-124-介导的基因表达限制的有效和特异靶点的功能性。
针对miR-124表达的T124修饰HSV的复制敏感性。我们在大肠杆菌中使用双Red重组(10)将一系列修饰引入KOS-37BAC,所述KOS-37BAC为细菌人工染色体(BAC)上的HSV-1KOS菌株的全长基因克隆(11)。删除产物KGBAC(图2A)的包含一个拷贝的各种二倍体基因ICP0、ICP34.5、LAT和ICP4的内源重复(接合)区以及所述ICP47基因的启动子。该删除有助于对4个删除基因的剩余拷贝的操作、提供了用于增强病毒溶瘤活性的转基因的潜在并入的充裕空间、并通过降低神经毒性因子ICP34.5的表达增加了肿瘤特异性(12);消除ICP47表达有益于病毒特异性T细胞对经感染癌细胞的免疫识别(4)。KGBAC还包含经由2A肽序列(13)(14)融合至糖蛋白C(gC)ORF的GFP开放阅读框(ORF)以允许监控后期(复制后)病毒基因的表达。最后,我们显示在gB基因中包含一对突变的KGBAC增强HSV通过非经典受体的进入(15)(16)。我们将所述T124序列重组入KGBAC的剩余ICP4基因的3’UTR中以产生KG4:T124BAC(图2A)。通过转染U2OS-Cre细胞,两种BAC构建体均转化为病毒颗粒,伴随同时除去位于loxP位点间的BAC序列。斑块纯化后,制备KG和KG4:T124病毒原液并在U2OS细胞上测定滴度。
我们首先测定ICP4 3’UTR中4个串联miR-124靶向位点的引入是否会在培养中影响人GBM细胞中的病毒复制。结果(图2B)显示在两种原代恶性胶质瘤细胞系Gli68和GBM30的球状体中KG4:T124以与KG相似的动力学进行复制,且所述2种病毒的产率在任何时间点均无实质差异。我们接着测定复制和病毒产率是否对用人miR-124表达慢病毒(LV124)转导这些细胞系敏感。图2C显示了U2OS、Gli68和Gli68-LV124细胞中的miR-124相对水平,其测定是通过在逆转录小RNA上进行实时qPCR并标准化至内源性RNU43水平。KG在采用表达人miR-137(LV137R)的反向互补序列(LV137R)的慢病毒构建体转导的Gli68-LV124和Gli68细胞中同样良好地生长并具有相似滴度(图2D)。相反,KG4:T124在前者中相比于在后者中生长不良,且采用LV124-相较于LV137R-转导GBM30细胞也获得了相似结果(图2D)。结合来说,这些观测强烈表明(i)ICP4基因中的T124元件作为以miR-124依赖性方式限制HSV复制的手段是有效的,和(ii)2种GBM细胞系中内源性miR-124的水平足够低以最小化该作用。此外,qRT-PCR数据证实了KG4:T124与KG相比,U2OS细胞更适用于KG4:T124的未受损生长和滴度测定。
KG4:T124未在鼠脑中复制或导致疾病。已经显示在培养中的原代胶质瘤细胞中外源性miR-124表达在阻止KG4:T124载体生长方面高度有效的情况下,我们接着测试鼠脑中miR-124的内源性水平是否足以预防载体复制以及与野生型病毒相关的典型神经发病;我们注意到成熟人和小鼠miR-124在序列上相同(17)。我们这些实验中使用裸鼠以限制宿主抗病毒反应效应并因而便于鉴定将T124插入病毒中的直接效应。选择BALB/cnu/nu小鼠,因为这些动物对于HSV复制和发病高度敏感(18)(19)(20)且已在之前用于针对人肿瘤细胞的肿瘤治疗功效实验(21)(12,22)(5)。我们比较KG对照载体和miR-124敏感性测试载体KG4:T124的以下两种能力:在裸鼠脑中复制以及在将相等基因组拷贝(gc)数目(4.8x109gc)颅内接种入右半球后导致致死感染。结果显示注射对照载体导致动物在5天内快速死亡(图3A,C),经感染的脑内存在的总gc数增加2倍(图3B)。相反,如其直至处死的正常增重所例证的,KG4:T124注射小鼠在33天观测期间不具有可观测的健康改变(图3A),且病毒gc含量在此时间期间稳定下降至约输入量的0.4%(图3B)。采用对照或测试载体接种的动物之间的存活差异(图3C)是高度显著的(P=0.0058,对数秩检验),表明插入ICP4基因3’UTR中的4个拷贝的miR-124识别序列能够在高度HSV敏感性裸鼠的脑中阻断致死载体复制。因此,单独的这些序列足以预防脑中的载体毒性。
为证实来自这些结果的启示(即,在病毒原液制备期间miR-124靶向位点的丧失或突变灭活是极其稀少的),从KG4:T124病毒原液分离DNA并将其置于覆盖ICP4 3’UTR中T124插入位点的PCR。通过凝胶电泳的产物分析和DNA测序显示没有异常的PCR产品尺寸或核苷酸变异性证据(数据未示出)。同样地,采用KG4:T124病毒颅内接种正常BALB/c小鼠(1.5x1010gc)3小时或21天后分离的全脑DNA的PCR和序列分析显示整个T124区没有异常(数据未示出)。这些结果减轻了对于在KG4:T124病毒生长期间或在体内的miR-124不敏感性变体潜在的选择的顾虑。
miR-124反应元件未损害EGFR靶向的溶瘤性HSV的活性。我们接着寻求确定保护性miR-124识别元件是否会不利地影响人GBM的裸鼠模型中的病毒性肿瘤杀灭活性。因为当接种入这些动物的脑中时,KG是高度有毒的(图3C),使用该病毒作为荷瘤小鼠存活实验中的治疗对照可能会导致动物因所述病毒而非肿瘤死亡,因此其不具吸引力。取而代之,基于我们发表的完全EGFR再靶向的野生型HSV-1KOS对裸鼠脑部无毒性但在裸鼠中原位人GBM的治疗中有效的发现(5),我们将4拷贝的miR-124结合位点引入KG的完全EGFR再靶向衍生物。因此,KG的EGFR再靶向版本和KG4:T124(分别称作KGE和KGE-4:T124)的比较应能确定miR-124位点对病毒溶瘤活性的任何限制效应。我们使用患者来源的成球GBM30细胞在裸鼠中建立侵袭性颅内肿瘤(5)。每日观测动物并当其显示发病迹象时将其安乐死。和我们发表的结果相似,肿瘤细胞接种5天后在相同立体定位坐标注射PBS的小鼠在肿瘤细胞移植数周内死亡(中位数21.5;图4A,B)。相反,使用EGFR再靶向对照病毒KGE或包含T124的再靶向载体KGE-4:T124的肿瘤治疗在实验持续期间(90天)保护了半数的动物且这两组的中位生存期是可比的(分别为79.5和85.5天;P=0.83,对数秩检验)。这些结果表明KGE-4:T124 ICP4基因中的miR-124位点未损害GBM30肿瘤治疗功效。
讨论
我们的目标是构建一种溶瘤性HSV载体,其表达完全补足的病毒功能,但可仅感染表达GBM相关受体的细胞并仅在肿瘤而非正常脑细胞中进行高效复制。肿瘤选择性感染和裂解性病毒生长依赖于完全病毒进入再靶向(complete viral entry retargeting)(5)和在正常脑组织中细胞miRNA介导的病毒复制限制的组合。此转录和翻译后肿瘤靶向的组合有望提供非常安全和有效的oHSV,因为裂解性感染需要对于维持肿瘤表型而言重要的靶细胞的两个单独特性:靶向受体和肿瘤特异性miRNA表达模式。使用适合不同癌症的靶向和miRNA反应元件,该总体策略是广泛可适用的;通过考虑相同类型的个体肿瘤间特异性抗原和miRNA表达的差异可将其应用优化以用于个体化治疗。
在GBM中,改变的基因表达包括多种miRNA相比于正常脑组织的实质性下调(23-25),表明若干可能的miRNA可用于在正常脑中优先减毒工程化病毒的复制。因为miR-124被认为是神经元分化的潜在诱导物(26)且在GBM中最为高度下调(6),我们将此miRNA聚焦为在正常脑组织中阻断oHSV复制的手段。将miR-124的重复识别位点(T124)引入病毒ICP4基因的3’UTR中,其中ICP4基因的产物是启动HSV裂解周期所绝对需要的。我们发现在胶质瘤细胞中,T124+病毒可与缺乏T124的对照病毒一样强力地进行实质复制而miR-124的慢病毒表达选择性地阻断其复制。此外,T124元件足以完全保护裸鼠免受非常高的颅内载体剂量(4.8x 109颗粒)的影响而对照载体在5天内杀灭所有动物。这些动物脑中总病毒基因组拷贝数的测定未显示出T124+载体复制的证据而是病毒基因组含量的经时逐渐减少。如通过在来自病毒原液和感染动物的纯化DNA中扩增的ICP4 3’UTR的尺寸和序列分析所评估的,所述T124序列是稳定的,这与在无肿瘤动物中或在来自我们肿瘤治疗实验的长期幸存者中缺乏明显的神经发病学相符。最后,我们使用一种不能感染小鼠细胞的再靶向病毒以证实T124元件未降低此病毒在人GBM裸鼠模型中的溶瘤功效。
病毒靶向肿瘤受体和miRNA介导的正常细胞中病毒复制的阻断的组合通过阻断可与肿瘤共享靶向受体(例如,EGFR)的正常细胞的生产性感染而增强裂解病毒的靶向特异性。虽然我们的结果显示将四拷贝的miR-124靶序列插入ICP4基因3’UTR中完全阻断了裸鼠中非常高剂量的病毒的神经发病,但并非所有脑细胞都表达miR-124。例如,预期位于海马体和室下区(SVZ)中的神经元前体细胞(NPC)不被所述miR-124靶序列保护,因为这些细胞具有与GBM细胞相似的miRNA表达模式,包括miR-124的最小表达(27)。然而,若干miRNA在NPC中以比在胶质瘤中高至100倍的水平表达(27)(28)(29)(30),提示将附加的miRNA的靶向位点构建入相同病毒的相同或其它必需基因处以在更广范围的脑细胞内阻断复制而不损害肿瘤特异性病毒复制的可能性。
虽然我们的研究提示病毒靶向肿瘤抗原和miRNA限制正常组织中复制的组合是一种有效且高特异性肿瘤病毒疗法的有吸引力的策略,但很有可能个体肿瘤对于治疗的反应将由于肿瘤抗原水平以及可能的miRNA含量的可变性而不同。例如,在归类为GBM的肿瘤间存在显著差异,且甚至是在分子定义的GBM亚型内,基因表达模式的异质性保留(31)。因此,单一再靶向病毒将不能有效针对所有GBM或相同亚型的所有GBM。此外,可预期由于肿瘤内预先存在或治疗诱导的细胞-细胞(cell-to-cell)变异性而在大量oHSV敏感性肿瘤中可出现抗性细胞群体。过去若干年的发展提示在许多不同肿瘤类型中认定的小群体的自我更新、化疗和放疗抗性癌症干细胞(CSC)是治疗的最相关靶点(32)。虽然比较给定肿瘤和个体CSC是有问题的,但很有可能其在肿瘤内的变异性相对于完全肿瘤细胞群体是受限的。文献中报道描述了不同的胶质瘤干细胞(GSC)标记(33)且再靶向溶瘤性病毒可用于区分这些中的每种对于在裸鼠中建立和维持人GBM的意义。我们预期再靶向不同GSC候选标记的载体的组合能够更为有效地治疗对个体再靶向载体显示出部分反应的肿瘤。因为每种这些载体还可靶向某些正常细胞,类似于我们的EGFR再靶向病毒,因此在这些正常细胞中miRNA介导的病毒复制阻断将越发重要。此外,如由Kambara和同事在oHSV领域中所倡导的(34),可使用细胞类型或发育阶段特异性启动子获得进一步的特异性以控制关键病毒复制功能的表达。虽然这些特征可提供高活性和特异性的溶瘤性载体混合物,但值得注意的是载体(例如KGE-4:T124)具有充足空间以容纳可增强治疗功效的转基因,例如基因编码免疫调节剂、肿瘤细胞迁移抑制剂或降解肿瘤细胞外基质并因而促进瘤内病毒扩张的蛋白水解酶。
总而言之,本实施例中所述KGE-4:T124载体代表了一种新型oHSV,其包含病毒复制功能的完全补足,但由再靶向肿瘤相关受体的病毒包膜和对在正常组织而非肿瘤中表达的miRNA的复制敏感性的组合获得了肿瘤特异性。此控制系统的组合可应用于其它肿瘤类型,但之前尚未在溶瘤性载体中进行描述。我们的策略的关键优势是(i)所述载体不包含任何缺陷基因,可在肿瘤中最大化病毒复制以提供优化的溶瘤病毒疗法,以及(ii)载体复制同时需要重要肿瘤相关细胞表面标记的表达以及实质上不同于正常组织的肿瘤特异性的miRNA表达模式。我们策略的最引人注目的论据在于经选择的在正常脑中控制载体复制的miRNA不能在不损害肿瘤表型的情况下在恶性胶质瘤中上调(7,25,35);损失靶向受体,例如被我们的载体所识别的肿瘤特异性EGFRvIII变体,可具有相似效果。因此,虽然在大多数癌症疗法中肿瘤发展了逃逸治疗的能力,但采用肿瘤抗原靶向性、miRNA调节病毒不大可能发生此结果。总而言之,这些论据支持以下预期:我们的方法将提供用于治疗GBM和其它癌症的高度选择性、安全和有效的溶瘤性HSV载体系统。
材料和方法
细胞培养。U2OS、HEK293T和HEK293AD细胞来自ATCC(Manassas,VA)并在37℃下5%CO2培养器中在添加了5-10%(v/v)胎牛血清(FBS;Sigma,St.Louis,MO)的ATCC推荐培养基中生长。通过逆转录病毒转导生成稳定表达Cre重组酶(U2OS-Cre)的U2OS细胞系(Y.M.和J.C.G.,未发表结果)。GBM30和Gli68患者来源的原代胶质瘤球状体细胞系由E.A.Chiocca(哈佛医学院,MA)慷慨提供,并生长在添加了2%(v/v)B27 w/o维生素A、2mg/mL两性霉素B(Lonza,Walkersville,MD)、100μg/mL庆大霉素(Lonza)、2mM L-谷氨酰胺(Cellgro,Manassas,VA)、加10ng/mL重组人表皮生长因子(rhEGF)和10ng/mL重组人碱性成纤维细胞生长因子(bFGF)(均来自Shenandoah Biotechnology,Warwick,PA)的Neurobasal培养基(Gibco/Invitrogen/Life Technologies,Carlsbad,CA)中。
质粒。pfLuc-T124包含通过8个核苷酸相分离的hsa-miR-124序列的反向互补序列的四个串联重复序列,而pfLuc-Ctrl包含通过8个核苷酸相分离的hsa-miR-21反向序列的四个串联重复序列。两种质粒的构建均是通过将退火的互补寡核苷酸插入pMIR-REPORTTM(miRNA Expression Reporter载体系统;Ambion,Austin,TX)中荧光素酶基因的3’UTR。寡核苷酸为T124-F、T124-R、TconF和TconR(表1)。退火的寡核苷酸采用SpeI和SacI消化,并连接到SpeI-SacI消化的pMIR-REPORTTM
HSV基因组工程化。在细菌人工基因组(BAC)上包含完整菌株KOS HSV-1基因组的KOS-37BAC(11)由David Leib(达特茅斯医学院,NH)友善提供。该BAC中的HSV短独特(US)区相对于HSV-1KOS(36)(GenBank登记号JQ673480)公开序列(132、275-145、608位)(36)为反方向。以下进一步详述的修饰是通过双Red重组引入,其基本如Tischer等人(10)所述。质粒pEPkan-S和pBAD-I-sceI(10)是由Nikolaus Osterrieder(柏林自由大学,德国)慷慨提供。通过PCR分析、限制性内切酶消化的FIGE分析和局部DNA测序核实改变。
如下所示,按顺序得到本研究中使用的载体。KGBAC来源于KOS-37BAC,其通过删除完全HSV内部重复区或“接合”(IRL,IRS)获得,经由Thosea asigna病毒2A(T2A)翻译终止/再起始序列(13)(37)将绿色荧光蛋白(GFP)开放阅读框(ORF)融合至糖蛋白C(gC)ORF,以及在gB编码序列(gB:N/T;(15)中引入两个错义突变。KG4:T124BAC是从KGBAC通过将来自pfLuc-T124的T124元件插入ICP4基因的3’UTR创建得到的。再靶向载体KGEBAC来源于KGBAC,其通过在gD 1位和25位之间包含人EGFR特异性单链抗体序列的gD-scEGFR的相应区域替换gD基因的氨基末端区以及密码子38处的错义突变(5)获得。KGE-4:T124BAC结合了来自KG4:T124BAC和KGEBAC的修饰。
病毒生长和纯化。通过使用LipofectamineTMLTX试剂(Invitrogen)转染U2OS-Cre细胞将BAC DNA转为感染性病毒;这些细胞中表达的Cre重组酶可除去病毒生长抑制性BAC元件以及邻近的位于KOS-37BAC中的lacZ基因和loxP重组信号之间的衍生物(11)。通过有限稀释分离单一斑块并通过X-gal染色测试lacZ基因的消除(38)。使无色斑块经受两个附加循环的有限稀释并通过纯化病毒体DNA的局部DNA测序证实BAC/lacZ区的准确移除。在U2OS细胞上确立病毒原液的生物滴度(PFU/mL);如下所述,通过针对病毒gD基因的定量实时PCR(qPCR)测定基因组拷贝的物理滴度(gc)/mL。
荧光素酶试验。使用Lipofectamine 2000(Invitrogen)将海肾荧光素酶表达质粒prLuc连同不同的萤火虫荧光素酶表达质粒和pre-miRTMmiRNA前体(Ambion)的组合转染HEK293AD细胞。第二天,裂解细胞并使用Berthold LB-953AutoLumat光度计(BertholdTechnologies USA,Oak Ridge,TN)测定萤火虫-海肾荧光素酶表达比率。
miRNA的慢病毒表达。将来自U-87人恶性胶质瘤细胞的基因组DNA用作模板来使用PCR扩增来自hsa-miR-124-3基因的人pri-miR-124序列,所述扩增使用高保真Accuprime富GC DNA聚合酶(Invitrogen)和表1中所列的miR-124引物对。用BamHI和NheI消化320-bp产物,在miRNASelect pEP-miR载体(Cell Biolabs,San Diego,CA)内含子中的相应位点间克隆,并确认序列。随后通过替换固有EF1启动子将所述启动子-内含子-pri-miR-124区转入pCDH-CMV-MCS-EF1-Puro(System Biosciences,Mountain View,CA)以产生慢病毒表达质粒pCDH-miR-124。使用相同程序构建包含反方向pri-miR-137序列的对照慢病毒质粒(pCDH-miR-137R);用于pri-miR-137克隆的PCR引物在表1中列出。通过采用包装质粒pLP1、pLP2、pLP-VSVG(Invitrogen)将pCDH-miR-124或pCDH-miR-137R分别共转染入HEK293T细胞产生慢病毒LV124和LV137R。72小时后收获上清液,通过0.45μm滤器(Millipore,Billerica,MA)并在4℃和6,800x g下离心浓缩16小时。将球丸再悬在DMEM中并将其滴度表示为对HEK293T细胞每ml的嘌呤霉素抗性集落形成单位(cfu)。
在存在8μg/mL聚凝胺的情况下在具有5cfu/细胞的LV124或LV137R的悬浮液中感染2x105磨碎的Gli68或GBM30细胞90min并点板。次日用包含30μg/mL嘌呤霉素的新鲜培养基喂养细胞并在72小时后用KG或KG4:T124病毒以0.01pfu/细胞的MOI重复感染。HSV感染后72和96小时时从细胞和上清液收集感染性病毒颗粒并在U2OS细胞上计算滴度。如下所述,72小时嘌呤霉素选择后从LV124感染的Gli68细胞的平行培养液分离RNA用于通过qRT-PCR测定miR-124水平。
RNA分离和逆转录(RT)-qPCR。根据制造商的说明使用TRIzol试剂(Invitrogen)从U2OS、Gli68和LV124Gli68感染细胞提取总RNA。采用DNA酶I(Invitrogen)处理RNA样本、使用NanoDrop 2000c分光光度计(Thermo-Fisher,Pittsburgh,PA)定量并在MOPS-甲醛凝胶上可视化用于质量保证。根据TaqMan Small RNA试验方案(Applied Biosystems/LifeTechnologies,Carlsbad,CA)相对于RNU43测定成熟hsa-miR-124水平。TaqMan引物和探针来自Applied Biosystems。所有TaqMan PCR反应重复进行三次。
动物。3-4周龄BALB/c无胸腺nu/nu小鼠购自Charles River实验室(Wilmington,MA)并饲养在BSL2设施中。根据如匹兹堡大学机构动物管理及使用委员会(IACUC)批准的实验动物护理及使用指南(实验动物资源研究所,1985)中的要求和建议进行所有动物程序。
颅内毒性。如同所述(5)进行颅内病毒接种。小鼠接受4.8x109gc KG或KG4:T124病毒(n=4/组)。每日监控动物的发病迹象并隔日称重。KG组的所有小鼠死于第5天且其它组的一只小鼠在相同天数处死。KG4:T124组的剩余动物在第14、21和33天处死。从安乐死小鼠收集全脑用于如下所述的总DNA提取和病毒基因组qPCR。
病毒基因组qPCR。根据制造商程序使用DNeasy Blood&Tissue试剂盒(Qiagen,Valencia,CA)从鼠脑或病毒原液提取DNA。使用Applied Biosystems StepOneTM和StepOnePlusTM实时PCR系统手册中描述的方案在来自包含完全HSV-1(菌株KOS)gD编码序列(pE-gD18)的pENTR1A(Invitrogen)质粒的DNA上产生qPCR标准曲线。引物和探针序列在表1中列出。
表1
Figure BDA0003094805510000231
Figure BDA0003094805510000241
Figure BDA0003094805510000251
肿瘤模型和治疗。根据描述(5)将人GBM30细胞颅内移植入裸鼠。在第5天时,也如所述(5)在相同坐标处接种病毒(1.8x108gc KGE或KGE-4:T124,n=8/组)或PBS(n=2)。如上所述在“颅内毒性”项下监控动物健康状况。当显示发病迹象时将动物安乐死。
统计分析。使用用于Windows的GraphPad Prism 6.01版(GraphPad Software,LaJolla,CA;www.graphpad.com)进行具有Welch修正的未配对t检验。将动物存活数据绘制为Kaplan-Meier曲线并使用相同软件通过Mantel-Cox对数秩检验进行比较。
实施例1的参考文献
1.Parker JN,Bauer DF,Cody JJ,Markert JM.Oncolytic viral therapy ofmalignant glioma.Neurotherapeutics.2009;6:558-69.
2.Grandi P,Peruzzi P,Reinhart B,Cohen JB,Chiocca EA,GloriosoJC.Design and application of oncolytic HSV vectors for glioblastomatherapy.Expert Rev Neurother.2009;9:505-17.
3.Markert JM,Medlock MD,Rabkin SD,Gillespie GY,Todo T,Hunter WD等人,Conditionally replicating herpes simplex virus mutant,G207 for the treatmentof malignant glioma:results of a phase I trial.Gene therapy.2000;7:867-74.
4.Todo T.Oncolytic virus therapy using genetically engineered herpessimplex viruses.Frontiers in bioscience:a journal and virtual library.2008;13:2060-4.
5.Uchida H,Marzulli M,Nakano K,Goins WF,Chan J,Hong CS等人,Effectivetreatment of an orthotopic xenograft model of human glioblastoma using anEGFR-retargeted oncolytic herpes simplex virus.Molecular therapy:the journalof the American Society of Gene Therapy.2013;21:561-9.
6.Gaur A,Jewell DA,Liang Y,Ridzon D,Moore JH,Chen C等人,Characterization of microRNA expression levels and their biologicalcorrelates in human cancer cell lines.Cancer research.2007;67:2456-68.
7.Karsy M,Arslan E,Moy F.Current Progress on Understanding MicroRNAsin Glioblastoma Multiforme.Genes&cancer.2012;3:3-15.
8.Riddick G,Fine HA.Integration and analysis of genome-scale datafrom gliomas.Nature reviews Neurology.2011;7:439-50.
9.Kumar MS,Lu J,Mercer KL,Golub TR,Jacks T.Impaired microRNAprocessing enhances cellular transformation and tumorigenesis.Naturegenetics.2007;39:673-7.
10.Tischer BK,von Einem J,Kaufer B,Osterrieder N.Two-step red-mediated recombination for versatile high-efficiency markerless DNAmanipulation in Escherichia coli.Biotechniques.2006;40:191-7.
11.Gierasch WW,Zimmerman DL,Ward SL,Vanheyningen TK,Romine JD,LeibDA.Construction and characterization of bacterial artificial chromosomescontaining HSV-1strains 17and KOS.J Virol Methods.2006;135:197-206.
12.Bennett JJ,Delman KA,Burt BM,Mariotti A,Malhotra S,Zager J等人,Comparison of safety,delivery,and efficacy of two oncolytic herpes viruses(G207 and NV1020)for peritoneal cancer.Cancer gene therapy.2002;9:935-45.
13.Szymczak AL,Vignali DA.Development of 2A peptide-based strategiesin the design of multicistronic vectors.Expert Opin Biol Ther.2005;5:627-38.
14.Doronina VA,Wu C,de Felipe P,Sachs MS,Ryan MD,Brown JD.Site-specific release of nascent chains from ribosomes at a sense codon.Mol CellBiol.2008;28:4227-39.
15.Uchida H,Chan J,Goins WF,Grandi P,Kumagai I,Cohen JB等人,A doublemutation in glycoprotein gB compensates for ineffective gD-dependentinitiation of herpes simplex virus type 1infection.Journal of virology.2010;84:12200-9.
16.Uchida H,Chan J,Shrivastava I,Reinhart B,Grandi P,Glorioso JC等人,Novel Mutations in gB and gH Circumvent the Requirement for Known gDReceptors in Herpes Simplex Virus 1Entry and Cell-to-Cell Spread.Journal ofvirology.2013;87:1430-42.
17.Cao X,Pfaff SL,Gage FH.A functional study of miR-124in thedeveloping neural tube.Genes&development.2007;21:531-6.
18.Fujioka N,Akazawa R,Ohashi K,Fujii M,Ikeda M,KurimotoM.Interleukin-18protects mice against acute herpes simplex virus type1infection.Journal of virology.1999;73:2401-9.
19.Manickan E,Rouse RJ,Yu Z,Wire WS,Rouse BT.Genetic immunizationagainst herpes simplex virus.Protection is mediated by CD4+Tlymphocytes.Journal of immunology.1995;155:259-65.
20.Sethi KK,Omata Y,Schneweis KE.Protection of mice from fatal herpessimplex virus type 1 infection by adoptive transfer of cloned virus-specificand H-2-restricted cytotoxic T lymphocytes.The Journal of generalvirology.1983;64(Pt 2):443-7.
21.Currier MA,Gillespie RA,Sawtell NM,Mahller YY,Stroup G,Collins MH等人,Efficacy and safety of the oncolytic herpes simplex virus rRp450 aloneand combined with cyclophosphamide.Molecular therapy:the journal of theAmerican Society of Gene Therapy.2008;16:879-85.
22.Hong CS,Fellows W,Niranjan A,Alber S,Watkins S,Cohen JB等人,Ectopic matrix metalloproteinase-9 expression in human brain tumor cellsenhances oncolytic HSV vector infection.Gene therapy.2010;17:1200-5.
23.Zhang Y,Chao T,Li R,Liu W,Chen Y,Yan X等人,MicroRNA-128inhibitsglioma cells proliferation by targeting transcription factor E2F3a.J MolMed.2009;87:43-51.
24.Shi L,Cheng Z,Zhang J,Li R,Zhao P,Fu Z等人,hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells.Brain Res.2008;1236:185-93.
25.Silber J,Lim DA,Petritsch C,Persson AI,Maunakea AK,Yu M等人,miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells andinduce differentiation of brain tumor stem cells.BMC Med.2008;6:14.
26.Maiorano NA,Mallamaci A.The pro-differentiating role of miR-124:indicating the road to become a neuron.RNA Biol.7:528-33.
27.Lavon I,Zrihan D,Granit A,Einstein O,Fainstein N,Cohen MA等人,Gliomas display a microRNA expression profile reminiscent of neural precursorcells.Neuro Oncol.12:422-33.
28.Karpowicz P,Willaime-Morawek S,Balenci L,DeVeale B,Inoue T,van derKooy D.E-Cadherin regulates neural stem cell self-renewal.J Neurosci.2009;29:3885-96.
29.Katoh Y,Katoh M.Hedgehog signaling,epithelial-to-mesenchymaltransition and miRNA(review).Int J Mol Med.2008;22:271-5.
30.Ocana OH,Nieto MA.A new regulatory loop in cancer-cellinvasion.EMBO Rep.2008;9:521-2.
31.Verhaak RG,Hoadley KA,Purdom E,Wang V,Qi Y,Wilkerson MD等人,Integrated genomic analysis identifies clinically relevant subtypes ofglioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,andNF1.Cancer cell.17:98-110.
32.Nduom EK,Hadjipanayis CG,Van Meir EG.Glioblastoma cancer stem-likecells:implications for pathogenesis and treatment.Cancer journal.2012;18:100-6.
33.He J,Liu Y,Lubman DM.Targeting glioblastoma stem cells:cellsurface markers.Current medicinal chemistry.2012;19:6050-5.
34.Kambara H,Okano H,Chiocca EA,Saeki Y.An oncolytic HSV-1 mutantexpressing ICP34.5 under control of a nestin promoter increases survival ofanimals even when symptomatic from a brain tumor.Cancer research.2005;65:2832-9.
35.Xia H,Cheung WK,Ng SS,Jiang X,Jiang S,Sze J等人,Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness ofglioma cells.The Journal of biological chemistry.2012;287:9962-71.
36.Macdonald SJ,Mostafa HH,Morrison LA,Davido DJ.Genome sequence ofherpes simplex virus 1strain KOS.Journal of virology.2012;86:6371-2.
37.Kaji K,Norrby K,Paca A,Mileikovsky M,Mohseni P,Woltjen K.Virus-free induction of pluripotency and subsequent excision of reprogrammingfactors.Nature.2009;458:771-5.
38.Krisky DM,Marconi PC,Oligino T,Rouse RJ,Fink DJ,Glorioso JC.Rapidmethod for construction of recombinant HSV gene transfer vectors.Genetherapy.1997;4:1120-5.
实施例2
本实施例描述了装载基质金属蛋白酶9的肿瘤靶向I型oHSV以用于增强载体分布和杀灭活性。
材料和方法
细胞系。通过标准方法培养人恶性胶质瘤SNB19、U251、U87(由匹兹堡大学H Okada博士友善提供)、J/A、J/C、J/EGFR[9]、非洲绿猴肾脏Vero细胞和7b[15]。
在补充了10%胎牛血清(Sigma.St.Louis,MO)的达尔伯克改良伊格尔培养基(Life technologies,Grand Island,NY)中培养细胞。在补充了Glutamax、B27、人β-FGF、EGF、肝素和青霉素-链霉素的Neurobasal培养基中,以球状体形式培养原代恶性胶质瘤细胞系GBM169、OG2(由俄亥俄州立大学Balveen Kaur博士友善提供)、GBM30。
质粒。通过在KGE-4:T124BAC中插入采用如下引物扩增自pcDNA3.1GW的Gateway盒以产生KGw BAC:5'-TGCCCGTCGCGCGTGTTTGATGTTAATAAATAACACATAAATTTGGCTGGCCACTAGTCCAGTGTGGTGG-3'(SEQ ID NO:12)和5'-CTGAAATGCCCCCCCCCCCTTGCGGGCGGTCCATTAAAGACAACAAACAAATCCCCAGCATGCCTGCTATTGT-3'.(SEQ ID NO:13)。
通过将来自质粒pCAGH[10]的CAG启动子克隆入pEntr-MMP9制备pEnCM。pEntr-MMP9的制备是通过将来自之前报道的质粒pCMV6-XL4-MMP9的mmp9 cDNA克隆入pEntr1A质粒[13]。
HSV基因组工程化。KOS-37BAC包含在细菌人工基因组(BAC)上完整菌株KOS HSV-1基因组[14],其由David Leib(达特茅斯医学院,NH)友情提供。使用大肠杆菌内双Red重组[24]将一系列修饰引入KOS-37BAC,所述KOS-37BAC为细菌人工染色体(BAC)上的HSV-1KOS菌株的全长基因克隆[14]。删除产物KGBAC(图5)的内源重复(接合)区连同所述ICP47基因的启动子,所述重复(接合)区包含一个拷贝的各种二倍体基因ICP0、ICP34.5、LAT和ICP4。
KGwG4:T124BAC(称作KGw)创建自KGE-4:T124BAC(在实施例1中讨论过),上述创建是通过经由Red/ET重组技术(Gene Bridges GmbH,Heidelberg)将Gateway盒(来自pcDNA3.1GW)和牛生长激素聚腺苷酸化序列插入UL3–UL4基因间隔区。MMP9表达载体KMMP9G4:T124BAC(称作KMMP9)来源于KGwG4:T124BAC,其产生是通过Clonase反应采用来自pEnCM的CAG启动子-MMP9盒替换GW盒。为产生所述病毒,用KGwG4:T124BAC或KMMP9G4:T124BAC转染Vero 7b细胞。利用通过相关修饰区的FIGE绘图、PCR和DNA测序确证所有重组载体。
病毒生长和纯化。通过使用LipofectamineTMLTX试剂(Invitrogen)转染Vero 7b细胞将BAC DNA转化为感染性病毒。在Vero细胞上确立病毒原液的生物滴度(PFU/mL);如下所述,通过针对病毒gD基因的定量实时PCR(qPCR)测定基因组拷贝的物理滴度(gc)/mL。
病毒基因组qPCR。根据制造商程序使用DNeasy Blood&Tissue试剂盒(Qiagen,Valencia,CA)从病毒原液提取DNA。使用Applied Biosystems StepOneTM和StepOnePlusTM实时PCR系统手册中描述的方案在来自包含完全HSV-1(菌株KOS)gD编码序列(pE-gD18)的pENTR1A(Invitrogen)质粒的DNA上产生qPCR标准曲线。引物和探针序列列出如下:gD正向:5’-CCCCGCTGGAACTACTATGACA-3’(SEQ ID NO:14);gD反向:5’-GCATCAGGAACCCCAGGTT-3’(SEQ ID NO:15);探针:5’-FAM-TTCAGCGCCGTCAGCGAGGA-TAMRA-3’(SEQ ID NO:16)。
免疫印迹。在1%NP40缓冲液中溶解细胞,溶解产物通过10%SDS-聚丙烯酰胺凝胶电泳,并使蛋白印迹与多克隆抗MMP-9抗体(1:1000稀释)(Abcam,Cambridge,MA)或与抗gD抗体(1:2000)(Santa Cruz,CA)以及HRP偶联的抗兔第二抗体(Sigma,St.Louis,MO)反应。用化学发光底物(Amersham Pharmacia,Piscataway,NJ)显色印迹。使各印迹的下部与多克隆抗β微管蛋白抗体(1:3000)(Sigma,St.Louis,MO)反应以检测装载差异。用SuperSignalWest Dura化学发光底物(Thermo Scientific,Rockford,IL)显色印迹。
明胶酶谱。在包含0.2%明胶的10%SDS-聚丙烯酰胺凝胶上进行分离前,即不对样本进行还原剂处理也不对其进行加热处理。在酶谱洗涤缓冲液(10mM Tris pH 7.5,2.5%Triton X-100)中洗涤所述凝胶,在孵育缓冲液(50mM Tris pH 7.5,5mM CaCl2,1μMZnCl2)中37℃下培养16小时,用1%考马斯亮蓝R-250染色并用脱染缓冲液(4%甲醇,8%醋酸)脱染[13]。
进入试验。用KMMP9、KGw或KG(表达gD:wt)以10,000、1,000或100gc/细胞感染J/A、J/C和J/EGFR细胞6小时并用单克隆鼠抗ICP4(1:300;Santa Cruz Biotechnology)和Cy3偶联羊抗鼠IgG(1:400;Sigma)免疫染色[9]。
MTT试验。将细胞点种在48孔板中并以100gc/细胞(MOI 0.2)感染3或6天。然后在37℃下用0.5mg/ml MTT(Sigma)溶液处理细胞3小时。除去MTT溶液后,加入100%DMSO并通过Wallac酶标仪(Perkin Elmer,Waltham,MA)记录OD570。将细胞存活百分数计算为100%×OD(感染)/OD(未感染)。
球状体培养和共焦成像。分离球状体并计数。在悬浮液中单独生长3,000细胞2天直至球状体形成。在微量分析板中用1000pfu或4×107gc的KMMP9或KGw分别感染各球状体。用荧光显微镜每日获得eGFP图像。对于共焦成像,感染时将球状体转移至玻璃底培养皿(Willco wells,Amsterdam,荷兰)。5dpi下在4%多聚甲醛中固定球状体,用具有DAPI(Vector Laboratories,Burlingame,CA)的封片剂处理并用FV1000共焦成像系统(Olympus,Miami,FL)获得Z面图像。
肿瘤模型和治疗。3-4周龄BALB/c无胸腺nu/nu小鼠购自Charles River实验室(Wilmington,MA)并饲养在BSL2设施中。根据如匹兹堡大学机构动物管理及使用委员会(IACUC)批准的实验动物护理及使用指南(实验动物资源研究所,1985)中的要求和建议进行所有动物程序。
根据描述[9]将人GBM30细胞颅内移植入裸鼠。在5或10dpi下,也如所述[9]在注射肿瘤细胞的相同坐标处(前0.5mm前2mm侧(右)3mm深)接种5.65x109基因组拷贝的KMMP9、KGw或PBS(n=3-4/组)。监控动物健康状况并当显示发病迹象时将动物安乐死。
MRI成像。从各治疗组(KMMP9、KGw、PBS)随机选择若干小鼠。在治疗前1天(GBM30移植后9天)和治疗后第3、6、9和13天对动物进行成像。使用Bruker BioSpec 94/30磁体(Bruker BioSpin,Karlsruhe,德国)、2.0cm直径仅接受(receive-only)鼠脑线圈和70mm直径线性卷线圈进行成像。向麻醉小鼠腹膜内注射0.1mmol/kg Magnevist(Bayer HealthCare Pharmaceuticals,Wayne,NJ)并在运行Paravision 4.0的400MHz Bruker水平孔磁体(Bruker Biospin,Billerica,MA)上呈冠状穿过感兴趣区域获得T2加权图像(重复时间=3,500ms,回声时间=12ms,rare因数=8,navgs=4)。
统计分析。使用用于Windows的GraphPad Prism 6.01版(GraphPad Software,LaJolla,CA;www.graphpad.com)进行具有Welch修正的未配对t检验。将动物存活数据绘制为Kaplan-Meier曲线并使用相同软件通过Mantel-Cox对数秩检验进行比较。
结果
表达MMP9的再靶向miR控制载体的构建和表征
图5A中图解了用于本研究的载体工程化和设计,且其包括意图避免改变任何病毒裂解功能并因此最大化肿瘤细胞中的复制和裂解活性而避免正常脑中的病毒生长的多处修饰。
将Gateway盒(Gw)和牛生长激素聚腺苷酸化序列插入KGE-4:T124(实施例1中所述)的UL3和UL4基因座之间以创建KGwG4:T124BAC(在此称作KGw,对照载体);通过使用在CAG(CMV鸡β肌动蛋白)启动子驱动下的MMP9基因替换所述Gateway盒获得表达MMP9的溶瘤性载体(KMMP9G4:T124BAC在此称作KMMP9)。
对感染KMMP9的Vero细胞的免疫印迹分析证实了MMP9的正确表达(图5B)。明胶酶谱显示出感染KMMP9的三个原代GBM细胞系GBM 30、GBM169和OG2中相比于感染对照载体的细胞具有更高的明胶酶活性(图5C),并且KMMP9感染Vero细胞的上清液相比于对照感染的Vero细胞的上清液具有更高的明胶酶活性(图5D)。
我们然后测定MMP9表达是否影响病毒通过识别表皮生长因子受体(EGFR)的进入。测试了如下细胞系的病毒进入,由于不存在gD受体而抵抗wt HSV的EGFR转导的J1.1-2细胞(J/EGFR)(Nakano等人,Virol.,413:12-18(2011))、表达人HVEM的J/A细胞(Uchida等人,J.Virol.83:2951-2961(2009))以及表达人粘连蛋白-1的J/C细胞(Frampton等人,J.Virol.,81:10879-889(2007));HVEM和粘连蛋白-1是wt gD的天然受体。感染6小时后通过针对即刻早期HSV蛋白ICP4的免疫染色检测病毒进入。如图6A中所示,EGFR再靶向病毒KMMP9和KGw进入J/EGFR细胞和表达gD:wt的亲本HSV-1载体进入J/A或J/C细胞一样高效。即便是在高病毒输入(10,000gc/细胞)下也没有一种再靶向病毒可检测地进入J/A或J/C细胞,证实所述MMP9表达未影响再靶向载体感染的功效或特异性。
我们还评估了MMP9表达是否可能影响培养中的人GBM细胞中的病毒复制。结果(图6B和6C)显示在两种原代恶性胶质瘤细胞系GBM169和GBM30的球状体中KMMP9以与KGw相似地动力学进行复制,且所述2种病毒的产率(通过qPCR测定)在任何时间点均无实质差异。
为评估KMMP9的溶瘤活性,采用0.005MOI(100gc/细胞)感染已知表达EGFR的HSV可进入的人胶质瘤细胞系(包括U87MG、SNB19和GBM30)并在感染后第3天(图7A)和第7天(图7B)通过溴化3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑(MTT)试验测定细胞活力。在晚一些的时间点,KMMP9相比于KGw显示出显著更高的2种所述细胞系的杀灭,提示MMP9可增加载体介导的溶瘤作用。
MMP-9在球状体中培养中增加HSV感染性。
为评估增加的MMP-9的细胞表达对HSV在肿瘤细胞球状体中扩张的影响,将GBM30和GBM169细胞培养为单一球状体并用KMMP9或KGw病毒感染(图8A)。在5dpi下,KMMP9相比于KGw显示出增强的载体表达的eGFP的分布。对各球状体中eGFP阳性细胞的定量证实了在6dpi下KMMP9感染球状体相对于KGw感染球状体有约1.5倍的增加(图8B;P=0.006)。
为进一步量化MMP9对原发肿瘤来源球状体的HSV感染性的影响,用KMMP9或KGw感染GBM30细胞,并通过共聚焦显微镜成像由所述载体表达的eGFP表达作为评估病毒渗透和感染性的手段。来自5μm Z截面堆叠的3D重建显示出KMMP9相比于KGw在球状体内增强的相对感染性(图8C)。我们还检查了各球状体根据Z轴深度的5段(自下而上0-20μm、25-50μm、55-80μm、85-100μm、105-120μm和125-140μm)的感染性差异(图8D和8E)。虽然在最外层段(0-20μm)未发现差异(图8D和8E),但深入球状体内,KMMP9显示出相比于KGw显著更高的感染性(25-50和50-85μm,P<0.05),提示MMP9增强载体扩张贯穿所述球状体。当在球状体之间比较所有段时也发现了显著性差异(配对t检验,P=0.013)。
MMP9溶瘤性载体在小鼠GBM治疗中高度有效。
我们之前显示GBM30在裸鼠中能稳定地建立致死肿瘤,其导致动物在肿瘤细胞接种后20天内死亡[9]。我们使用患者来源的成球GBM30细胞在裸鼠中建立侵袭性颅内肿瘤[9]。每日观测动物并当显示发病迹象时将其安乐死。和我们发表的结果相似,肿瘤细胞接种5天后在相同立体定位坐标注射PBS的小鼠在肿瘤细胞移植数周内死亡(中位数18天;图9)。相反,使用MMP9表达病毒KMMP9或对照病毒KGw的肿瘤治疗保护半数动物至少35天且这两组的中位生存期是可比的(分别为29和31.5天;P=0.61,对数秩检验)。这些结果显示50%的MMP9治疗动物存活直至35天,相比而言无治疗动物则为18天(图9)。
在平行独立实验中,通过在肿瘤接种10天后在原位GBM30异种移植模型中注射载体以将KMMP9和KGw的抗肿瘤功效与模拟(PBS)治疗进行比较。在治疗前1天并再在治疗后第3、6、9和13天通过磁共振成像(MRI)对小鼠成像以观测肿瘤大小变化。图10A显示了来自各组的一个实例的T2加权图像。对在治疗起始时具有可比肿瘤体积的来自各组的单个动物进行比较,显而易见MMP9相比于KGw载体具有更强的溶瘤作用(图10B)。
实施例2的参考文献
1.Grossman,S.A.等人,Survival of patients with newly diagnosedglioblastoma treated with radiation and temozolomide in research studies inthe United States.Clin Cancer Res,2010.16(8):p.2443-9.
2.Assi,H.等人,Gene therapy for brain tumors:basic developments andclinical implementation.Neurosci Lett,2012.527(2):p.71-7.
3.Friedman,G.K.等人,Herpes simplex virus oncolytic therapy forpediatric malignancies.Mol Ther,2009.17(7):p.1125-35.
4.Mohyeldin,A.和E.A.Chiocca,Gene and viral therapy for glioblastoma:areview of clinical trials and future directions.Cancer J,2012.18(1):p.82-8.
5.Campadelli-Fiume,G.等人,Rethinking herpes simplex virus:the way tooncolytic agents.Rev Med Virol,2011.21(4):p.213-26.
6.Broberg,E.K.和V.Hukkanen,Immune response to herpes simplex virusand gamma134.5 deleted HSV vectors.Curr Gene Ther,2005.5(5):p.523-30.
7.Aghi,M.等人,Oncolytic herpes virus with defective ICP6 specificallyreplicates in quiescent cells with homozygous genetic mutations inp16.Oncogene,2008.27(30):p.4249-54.
8.Navaratnarajah,C.K.等人,Targeted entry of enveloped viruses:measlesand herpes simplex virus I.Curr Opin Virol,2012.2(1):p.43-9.
9.Uchida,H.等人,Effective treatment of an orthotopic xenograft modelof human glioblastoma using an EGFR-retargeted oncolytic herpes simplexvirus.Mol Ther,2013.21(3):p.561-9.
10.Uchida,H.等人,A double mutation in glycoprotein gB compensates forineffective gD-dependent initiation of herpes simplex virus type 1infection.JVirol,2010.84(23):p.12200-9.
11.Payne,L.S.和P.H.Huang,The pathobiology of collagens in glioma.MolCancer Res,2013.11(10):p.1129-40.
12.Mok,W.,Y.Boucher和R.K.Jain,Matrix metalloproteinases-1 and-8improve the distribution and efficacy of an oncolytic virus.Cancer Res,2007.67(22):p.10664-8.
13.Hong,C.S.等人,Ectopic matrix metalloproteinase-9 expression inhuman brain tumor cells enhances oncolytic HSV vector infection.Gene Ther,2010.17(10):p.1200-5.
14.Gierasch,W.W.等人,Construction and characterization of bacterialartificial chromosomes containing HSV-1 strains 17 and KOS.J Virol Methods,2006.135(2):p.197-206.
15.Krisky,D.M.等人,Deletion of multiple immediate-early genes fromherpes simplex virus reduces cytotoxicity and permits long-term geneexpression in neurons.Gene Ther,1998.5(12):p.1593-603.
16.Szymczak,A.L.和D.A.Vignali,Development of 2A peptide-basedstrategies in the design of multicistronic vectors.Expert Opin Biol Ther,2005.5(5):p.627-38.
17.Miao,H.等人,EphA2 promotes infiltrative invasion of glioma stemcells in vivo through cross-talk with Akt and regulates stem cellproperties.Oncogene,2014.
18.Yin,A.A.等人,The treatment of glioblastomas:a systematic update onclinical Phase III trials.Crit Rev Oncol Hematol,2013.87(3):p.265-82.
19.Wong,J.等人,Targeted oncolytic herpes simplex viruses foraggressive cancers.Curr Pharm Biotechnol,2012.13(9):p.1786-94.
20.Wakimoto,H.等人,Effects of innate immunity on herpes simplex virusand its ability to kill tumor cells.Gene Ther,2003.10(11):p.983-90.
21.McKee,T.D.等人,Degradation of fibrillar collagen in a humanmelanoma xenograft improves the efficacy of an oncolytic herpes simplex virusvector.Cancer Res,2006.66(5):p.2509-13.
22.Yun,C.O.,Overcoming the extracellular matrix barrier to improveintratumoral spread and therapeutic potential of oncolytic virotherapy.CurrOpin Mol Ther,2008.10(4):p.356-61.
23.Dmitrieva,N.等人,Chondroitinase ABC I-mediated enhancement ofoncolytic virus spread and antitumor efficacy.Clin Cancer Res,2011.17(6):p.1362-72.
24.Tischer,B.K.等人,Two-step red-mediated recombination for versatilehigh-efficiency markerless DNA manipulation in Escherichiacoli.Biotechniques,2006.40(2):p.191-7.
25.Ishida,D.等人,Enhanced cytotoxicity with a novel system combiningthe paclitaxel-2'-ethylcarbonate prodrug and an HSV amplicon with anattenuated replication-competent virus,HF10 as a helper virus.Cancer Lett,2010.288(1):p.17-27.
本文中所引用的所有参考文献,包括公开、专利申请和专利都在此通过引用并入本文,就如同每个参考文献个别并特定地指示通过引用并入本文中并且整体记载于本文中。已公开为US 2013/0096186和WO 2011/130749且要求美国临时专利申请61/325,137的优先权的美国专利申请13/641,649(PCT/US2011/032923的国家阶段)的内容也在此以其整体并入,且特别关注US 2013/0096186的[0039]、[0040]和[0041]段。还通过参照以其整体并入的是Mazzacurati等人,Mol.Ther.2014Sep 9.doi:10.1038/mt.2014.177[Epub在印刷之前]。
除非本文中另外指示或上下文明显相矛盾,否则在描述本发明的上下文中(特别是在以下权利要求书的上下文中)术语“一(a)”和“一(an)”和“所述(the)”以及类似指示物的使用视为既涵盖单数也覆盖复数。除非另作说明,否则术语“包含(comprising)”、“具有(having)”、“包括(including)”以及“含有(containing)”应理解为开放术语(即,意指“包括,但不限于”)。除非本文中另外指示,否则本文中数值范围的叙述仅意图充当个别提及在所述范围内的每一各别值的速记方法,并且每一各别值并入本说明书中就如同在本文中分别记载了这些值。除非本文中另外指示或另外上下文明显相矛盾,否则本文所述的所有方法可按任何适当次序进行。本文所提供的任何和所有实例或示例性措辞(比如“例如”)的使用仅意图更好地说明本发明,并且除非另外要求,否则不会对本发明的范围构成限制。本说明书中的任何措辞都不应理解为指示任何未要求的要素对本发明的实施而言是不可或缺。
本文中描述了本发明的优选实施方式,包括本发明人已知用于进行本发明的最佳模式。通过阅读以上描述,本领域普通技术人员能够显而易见获得那些优选实施方式的变体。发明人预期技术人员能够适当地使用所述变体,并且发明人也要求以除本文中特定描述以外的方式实施本发明。因此,如适用法律允许,本发明包括随附权利要求书中叙述的主题的所有修饰和同等物。此外,除非本文中另外指示或另外上下文明显相矛盾,否则其所有可能变体中的上述要素的任何组合都涵盖在本发明中。
序列表
<110> 联邦高等教育系统-匹兹堡大学
<120> 溶瘤性HSV载体
<130> 718707
<150> US 61/896,497
<151> 2013-10-28
<160> 16
<170> PatentIn version 3.5
<210> 1
<211> 115
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 1
ctagtggcat tcaccgcgtg ccttatagta ccagggcatt caccgcgtgc cttaaggatc 60
ctggcattca ccgcgtgcct taatgactgc ggcattcacc gcgtgcctta gagct 115
<210> 2
<211> 154
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 2
ctagtgcggc cgcgtctcgg gaccgcactc gttatcgaat agtctgacta caacttagta 60
ccagatcgaa tagtctgact acaactagga tcctatcgaa tagtctgact acaactatga 120
ctgcatcgaa tagtctgact acaactctcg agct 154
<210> 3
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 3
tcgaggatcc tgtcagtgcg cacgcacac 29
<210> 4
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 4
tcgaggatcc aaacacccga ggaaatgaaa ag 32
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 5
ccccgctgga actactatga ca 22
<210> 6
<211> 107
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 6
ctaaggcacg cggtgaatgc cgcagtcatt aaggcacgcg gtgaatgcca ggatccttaa 60
ggcacgcggt gaatgccctg gtactataag gcacgcggtg aatgcca 107
<210> 7
<211> 146
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 7
cgagagttgt agtcagacta ttcgatgcag tcatagttgt agtcagacta ttcgatagga 60
tcctagttgt agtcagacta ttcgatctgg tactaagttg tagtcagact attcgataac 120
gagtgcggtc ccgagacgcg gccgca 146
<210> 8
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 8
tgcagctagc cagacccctc ccctcgc 27
<210> 9
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 9
tcgagctagc gctcagcgag cagcaagagt tc 32
<210> 10
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 10
gcatcaggaa ccccaggtt 19
<210> 11
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> probe
<400> 11
ttcagcgccg tcagcgagga 20
<210> 12
<211> 70
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 12
tgcccgtcgc gcgtgtttga tgttaataaa taacacataa atttggctgg ccactagtcc 60
agtgtggtgg 70
<210> 13
<211> 73
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 13
ctgaaatgcc ccccccccct tgcgggcggt ccattaaaga caacaaacaa atccccagca 60
tgcctgctat tgt 73
<210> 14
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 14
ccccgctgga actactatga ca 22
<210> 15
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 15
gcatcaggaa ccccaggtt 19
<210> 16
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 探针
<400> 16
ttcagcgccg tcagcgagga 20

Claims (39)

1.一种重组溶瘤性单纯疱疹病毒(oHSV),其包含:
(a)呈现在所述oHSV衣壳表面上的非HSV配体,其对癌细胞表面上存在的分子具有特异性;和
(b)插入HSV在正常(非癌性)细胞中复制所需的HSV基因的基因座中的多个拷贝的一种或多种microRNA靶序列。
2.权利要求1所述oHSV,其中所述配体并入暴露在所述HSV表面上的糖蛋白中。
3.权利要求1或2所述oHSV,其中所述病毒包膜蛋白是gD或gC。
4.权利要求1-3任一项所述oHSV,其中所述配体并入gD的残基1和25之间。
5.权利要求1-4任一项所述oHSV,其中所述配体能够特异性结合EGFR或EGFRvIII。
6.权利要求1-5任一项所述oHSV,其中所述配体是结合细胞受体的单链抗体(scFv)或者肽或非肽激素或者生长因子。
7.权利要求1-6任一项所述oHSV,其中所述microRNA靶序列是microRNA的反向互补序列。
8.权利要求1-7任一项所述oHSV,其包含插入所述HSV基因的基因座中的两个或多个(串联的2个、3个、4个、5个或6个)所述microRNA靶序列。
9.权利要求8所述oHSV,其包含插入所述HSV基因的基因座中的4个串联拷贝的所述microRNA靶序列。
10.权利要求8或9所述oHSV,其中所述多拷贝的所述microRNA靶序列通过所述oHSV基因组内的四个或更多个核苷酸的间隔序列相分离。
11.权利要求1-10任一项所述oHSV,其中插入所述microRNA靶序列的所述HSV基因是ICP4。
12.权利要求1-11任一项所述oHSV,其中所述microRNA靶序列插入所述HSV基因的3’非翻译区(3’UTR)。
13.权利要求1-12任一项所述oHSV,其中所述microRNA是miR-124。
14.权利要求1-12任一项所述oHSV,其中所述microRNA是miR-122、miR-124、miR-128、miR-137和/或miR-199,或其两种或多种的组合。
15.一种重组oHSV,其包含
(a)针对癌细胞表面上存在的蛋白具有特异性的非HSV配体,其为特异性结合EGFR或EGFRvIII的scFv,且其插入所述oHSV gD糖蛋白的残基1和25之间,和
(b)插入所述oHSV基因组的ICP4的3’UTR中的4个拷贝的microRNA miR-124的反向互补序列,每个所述拷贝通过8个核苷酸的间隔序列相分离。
16.权利要求1-15任一项所述oHSV,其包含内源重复(接合)区连同所述ICP47基因的启动子的删除,所述重复(接合)区包含一个拷贝的各种二倍体基因ICP0、ICP34.5、LAT和ICP4。
17.权利要求1-16任一项所述oHSV,其进一步包含促进载体通过非经典受体的进入的gB或gH基因突变。
18.权利要求1-17任一项所述oHSV,其进一步包含转基因。
19.权利要求18所述oHSV,其中所述转基因编码溶瘤因子。
20.权利要求18所述oHSV,其中所述转基因编码增强所述oHSV的横向扩张的蛋白或多肽。
21.权利要求20所述oHSV,其中所述转基因编码金属蛋白酶9(“MMP9”)。
22.权利要求18所述oHSV,其中所述转基因编码诱导患者抗癌免疫反应的蛋白或多肽。
23.权利要求18所述oHSV,其中所述转基因编码催化前药转化的蛋白或多肽。
24.权利要求23所述oHSV,其中所述转基因编码胞嘧啶脱氨酶或胸苷激酶。
25.权利要求18所述oHSV,其中所述转基因编码嘌呤核苷磷酸化酶(PNP)。
26.权利要求1所述oHSV,其为KGE-4:T124。
27.编码权利要求1-26任一项所述oHSV的核酸。
28.权利要求27所述核酸,其为细菌人工染色体(BAC)。
29.一种病毒原液,其包含权利要求1-26任一项所述oHSV载体。
30.一种组合物,其包含权利要求1-26任一项所述oHSV和药学上可接受的载体。
31.一种组合物,其包含权利要求29所述病毒原液和药学上可接受的载体。
32.一种杀灭癌细胞的方法,其包括在足以使所述oHSV感染所述癌细胞的条件下将所述细胞暴露至权利要求1-26任一项所述oHSV、权利要求29所述原液或者权利要求30或31所述组合物,从而在所述癌细胞内所述oHSV的复制导致细胞死亡。
33.权利要求32所述方法,其中所述细胞是在体内。
34.权利要求32或33所述方法,其中所述细胞是在肿瘤内。
35.权利要求34所述方法,其中所述肿瘤是多形性成胶质细胞瘤。
36.权利要求32-35任一项所述方法,其中所述细胞是人细胞。
37.权利要求34或35所述方法,其中所述肿瘤是在动物脑内。
38.权利要求37所述方法,其中通过颅内注射所述oHSV、原液或组合物至所述动物将所述oHSV暴露至所述细胞。
39.权利要求38所述方法,其中所述动物是人。
CN202110609000.1A 2013-10-28 2014-10-28 溶瘤性hsv载体 Pending CN113717952A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361896497P 2013-10-28 2013-10-28
US61/896,497 2013-10-28
CN201480071446.1A CN106068326B (zh) 2013-10-28 2014-10-28 溶瘤性hsv载体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480071446.1A Division CN106068326B (zh) 2013-10-28 2014-10-28 溶瘤性hsv载体

Publications (1)

Publication Number Publication Date
CN113717952A true CN113717952A (zh) 2021-11-30

Family

ID=53005031

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480071446.1A Active CN106068326B (zh) 2013-10-28 2014-10-28 溶瘤性hsv载体
CN202110609000.1A Pending CN113717952A (zh) 2013-10-28 2014-10-28 溶瘤性hsv载体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480071446.1A Active CN106068326B (zh) 2013-10-28 2014-10-28 溶瘤性hsv载体

Country Status (18)

Country Link
US (5) US10201575B2 (zh)
EP (3) EP3184641B1 (zh)
JP (3) JP6588024B2 (zh)
KR (2) KR102490462B1 (zh)
CN (2) CN106068326B (zh)
AU (1) AU2014342465B2 (zh)
BR (1) BR112016009465A8 (zh)
CA (1) CA2928956A1 (zh)
DK (1) DK3184641T3 (zh)
ES (2) ES2810800T3 (zh)
HK (1) HK1225756A1 (zh)
IL (2) IL245312B (zh)
MX (2) MX2016005488A (zh)
NZ (1) NZ720021A (zh)
PT (1) PT3184641T (zh)
RU (1) RU2719190C2 (zh)
SG (1) SG11201603119RA (zh)
WO (1) WO2015066042A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130749A2 (en) 2010-04-16 2011-10-20 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Identification of mutations in herpes simplex virus envelope glycoproteins that enable or enhance vector retargeting to novel non-hsv receptors
ES2810800T3 (es) 2013-10-28 2021-03-09 Univ Pittsburgh Commonwealth Sys Higher Education Vector de HSV oncolítico
CA2974868A1 (en) * 2015-02-11 2016-08-18 Alma Mater Studiorum Universita' Di Bologna Retargeted herpesvirus with a glycoprotein h fusion
RU2749050C2 (ru) 2016-01-27 2021-06-03 Онкорус, Инк. Онколитические вирусные векторы и их применение
CN108884460B (zh) * 2016-03-19 2023-04-28 埃克苏马生物技术公司 淋巴细胞转导及其扩增调节的方法与组合物
US11325948B2 (en) 2016-03-19 2022-05-10 Exuma Biotech Corp. Methods and compositions for genetically modifying lymphocytes to express polypeptides comprising the intracellular domain of MPL
JP6970086B2 (ja) * 2016-04-08 2021-11-24 クリスタル バイオテック,インコーポレイティド 皮膚の創傷、障害、及び疾患を処置するための組成物及び方法
EP3380621A4 (en) 2016-04-22 2019-05-08 Immvira Co., Limited CONSTRUCTION OF THE VECTOR OF OBLIGATES ONCOLYTIC HERPES SIMPLEX VIRUSES (OHSV) AND CANCER THERAPY CONSTRUCTIONS
EP3448401B1 (en) * 2016-04-29 2021-10-27 Virogin Biotech Canada Ltd Hsv vectors with enhanced replication in cancer cells
AU2017276723B2 (en) 2016-06-09 2023-10-05 Alma Mater Studiorum Universita Di Bologna Herpesvirus with modified glycoprotein B
DK3469071T3 (da) 2016-06-09 2021-03-01 Univ Bologna Alma Mater Studiorum Herpesvirus med modificeret glycoprotein D
US11427625B2 (en) 2016-06-14 2022-08-30 University of Pittsburgh—of the Commonwealth System of Higher Education Expression of NKG2D activating ligand proteins for sensitizing cancer cells to attack by cytotoxic immune cells
BR112019000015A2 (pt) 2016-06-30 2019-04-24 Oncorus, Inc. distribuição por vírus oncolítico pseudotipado de polipeptídeos terapêuticos
GB201616365D0 (en) * 2016-09-27 2016-11-09 Helsingin Yliopisto Non-genetic modification of enveloped viruses
GB201700350D0 (en) * 2017-01-09 2017-02-22 Replimune Ltd Altered virus
AU2018215558B2 (en) * 2017-02-03 2023-05-25 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Oncolytic virus therapy
CN115820571A (zh) * 2017-03-09 2023-03-21 厦门大学 一种重组单纯疱疹病毒及其用途
EP3658165A4 (en) 2017-07-26 2021-09-01 Oncorus, Inc. ONCOLYTIC VIRUS VECTORS AND USES THEREOF
GB201714430D0 (en) * 2017-09-07 2017-10-25 Micol Romain Compositions and processes for targeted delivery and expression and modulation of therapeutic components in tissue
US20210177921A1 (en) * 2017-11-16 2021-06-17 Virogin Biotech Canada Ltd Targeting moiety-decorated oncolytic viruses
US11865081B2 (en) 2017-12-29 2024-01-09 Virogin Biotech Canada Ltd. Oncolytic viral delivery of therapeutic polypeptides
MA52542A (fr) * 2018-04-13 2021-02-24 Bluebird Bio Inc Thérapie cellulaire adoptive
CN112368007A (zh) * 2018-05-31 2021-02-12 高等教育联邦系统-匹兹堡大学 抗原隐匿的溶瘤病毒
KR101998793B1 (ko) * 2018-09-04 2019-07-10 의료법인 성광의료재단 재조합 단순 헤르페스 바이러스의 제조를 위한 벡터
CN111117973A (zh) * 2018-10-30 2020-05-08 中国科学院武汉病毒研究所 一种受microRNA调控的重组溶瘤肠道病毒71型及应用
TW202038947A (zh) 2018-11-28 2020-11-01 德商創新分子有限責任公司 在與溶瘤病毒之組合療法中治療癌症的解旋酶引子酶抑制劑
CA3157063A1 (en) 2019-10-10 2021-04-15 Oncorus, Inc. Dual viruses and dual oncolytic viruses and methods of treatment
KR20210151002A (ko) * 2020-06-03 2021-12-13 주식회사 젠셀메드 HveC의 세포외 도메인과 암세포 표적화 영역의 융합 단백질을 발현할 수 있는 발현 카세트를 가지는 재조합 헤르페스 심플렉스 바이러스 및 그 용도
CN115843313A (zh) * 2020-06-12 2023-03-24 吉赛尔美德公司 用于多重靶向的重组单纯疱疹病毒及其用途
JP7235334B2 (ja) * 2020-11-26 2023-03-08 イムヴィラ・カンパニー・リミテッド 癌の治療に用いる腫瘍溶解性単純ヘルペスウイルス(oHSV)偏性ベクター及びその構築体の構築
CN117412986A (zh) 2021-04-02 2024-01-16 克里斯托生物技术股份有限公司 用于癌症疗法的病毒载体
CN114010666B (zh) * 2021-10-22 2024-05-07 上海交通大学 溶瘤病毒、parp抑制剂及pd-1抗体在制备抗肿瘤药物中的应用
WO2023147566A1 (en) * 2022-01-29 2023-08-03 Virogin Biotech Canada Ltd Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244792A (en) 1984-04-06 1993-09-14 Chiron Corporation Expression of recombinant glyoprotein B from herpes simplex virus
JPH0668B2 (ja) 1985-08-30 1994-01-05 財団法人化学及血清療法研究所 単純ヘルペスウイルス遺伝子が組込まれた組換えプラスミド
US5849572A (en) 1990-10-10 1998-12-15 Regents Of The University Of Michigan HSV-1 vector containing a lat promoter
US5879934A (en) 1992-07-31 1999-03-09 University Of Pittsburgh Of The Commonwealth System Of Higher Education Herpes simplex virus strains for gene transfer
US5804413A (en) 1992-07-31 1998-09-08 University Of Pittsburgh Of The Commonwealth System Of Higher Education Herpes simplex virus strains for gene transfer
GB9415369D0 (en) 1994-07-29 1994-09-21 Lynxvale Ltd Mutant virus
US6261552B1 (en) 1997-05-22 2001-07-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Herpes simplex virus vectors
GB9700411D0 (en) 1997-01-10 1997-02-26 Univ London Eukaryotic gene expression cassette and uses thereof
AU8605598A (en) 1997-07-31 1999-02-22 University Of Pittsburgh Targeted hsv vectors
CA2315251A1 (en) 1997-12-17 1999-06-24 Immunex Corporation Cell surface glycoproteins associated with human b cell lymphomas - ulbp, dna and polypeptides
EP1002864A1 (en) 1998-11-10 2000-05-24 Universita' degli studi di Bologna HIgR and related V domain for the manufacture of a medicament for preventing or treating HSV-1, HSV-2 and BHV infections
US6897057B1 (en) * 1999-08-31 2005-05-24 The General Hospital Corporation Cell-specific and/or tumor-specific promoter retargeting of herpes γ 34.5 gene expression
GB9930418D0 (en) 1999-12-22 2000-02-16 Neurovex Ltd Replication incompetent herpes virus vectors
WO2002076216A1 (en) * 2001-03-27 2002-10-03 Medigene, Inc. Viral vectors and their use in therapeutic methods
MXPA04003057A (es) 2001-10-04 2005-06-20 Immunex Corp Proteina 4 de enlace ul16.
KR100900249B1 (ko) 2001-12-07 2009-05-29 포항공과대학교 산학협력단 SIVmac239의 면역원성 플라스미드 및 이들을 함유한AIDS DNA 백신
AU2003216502B2 (en) 2002-03-01 2008-04-10 Sloan-Kettering Institute For Cancer Research Prevention of recurrence and metastasis of cancer
US8927251B2 (en) 2002-10-07 2015-01-06 The University Of Chicago Targeting of herpes simplex virus to specific receptors
US7473418B2 (en) * 2004-03-25 2009-01-06 Cell Genesys, Inc. Pan cancer oncolytic vectors and methods of use thereof
CN101203530A (zh) 2004-10-28 2008-06-18 匹兹堡大学高等教育联邦体系 关于脊髓损伤疼痛的外周递送的谷氨酸脱羧酶基因治疗
EP2002003B1 (en) 2005-05-27 2015-12-30 Ospedale San Raffaele S.r.l. Gene vector comprising mi-rna
US20080008686A1 (en) 2006-07-10 2008-01-10 The Brigham And Women's Hospital, Inc. Tetracycline repressor regulated oncolytic viruses
CA2687301C (en) 2007-05-09 2016-08-23 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Synthetic herpes simplex viruses type-1 for treatment of cancers
US20080289058A1 (en) 2007-05-14 2008-11-20 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Targeted delivery of glycine receptors to excitable cells
WO2009111892A1 (en) * 2008-03-14 2009-09-17 Ottawa Health Research Institute Microrna mediated oncolytic targeting
NO2700405T3 (zh) * 2008-05-29 2018-09-01
WO2009148488A2 (en) 2008-05-29 2009-12-10 The General Hospital Corporation Use of oncolytic herpes viruses for killing cancer stem cells
GB0810912D0 (en) 2008-06-13 2008-07-23 Inst Animal Health Ltd Vector
JP2012520085A (ja) 2009-03-13 2012-09-06 エーゲン、インコーポレイテッド 生物活性rnaの送達のための組成物及び方法
WO2011125469A1 (ja) 2010-04-09 2011-10-13 国立大学法人東京大学 マイクロrna制御組換えワクシニアウイルス及びその使用
WO2011130749A2 (en) * 2010-04-16 2011-10-20 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Identification of mutations in herpes simplex virus envelope glycoproteins that enable or enhance vector retargeting to novel non-hsv receptors
WO2012006181A2 (en) 2010-06-29 2012-01-12 Mount Sinai School Of Medicine Compositions and methods for inhibiting oncogenic micrornas and treatment of cancer
US20130156808A1 (en) 2011-11-22 2013-06-20 Stipan Jonjic Vaccine comprising beta-herpesvirus
WO2015009952A1 (en) 2013-07-17 2015-01-22 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Non-toxic hsv vectors for efficient gene delivery applications and complementing cells for their production
ES2810800T3 (es) 2013-10-28 2021-03-09 Univ Pittsburgh Commonwealth Sys Higher Education Vector de HSV oncolítico

Also Published As

Publication number Publication date
PT3184641T (pt) 2020-08-21
EP3184641A1 (en) 2017-06-28
KR20160108301A (ko) 2016-09-19
JP6919912B2 (ja) 2021-08-18
CA2928956A1 (en) 2015-05-07
NZ720021A (en) 2022-08-26
JP2020058341A (ja) 2020-04-16
JP7262134B2 (ja) 2023-04-21
IL245312B (en) 2020-02-27
HK1225756A1 (zh) 2017-09-15
CN106068326A (zh) 2016-11-02
EP3063279A4 (en) 2017-05-17
AU2014342465A1 (en) 2016-06-02
BR112016009465A8 (pt) 2018-01-30
KR102330183B1 (ko) 2021-11-23
AU2014342465B2 (en) 2018-03-08
IL272480B (en) 2021-06-30
EP3063279B1 (en) 2020-01-01
JP6588024B2 (ja) 2019-10-09
JP2021180661A (ja) 2021-11-25
US20190262410A1 (en) 2019-08-29
EP3063279A1 (en) 2016-09-07
US11883448B2 (en) 2024-01-30
RU2016120618A (ru) 2017-12-06
IL272480A (en) 2020-03-31
MX2021001158A (es) 2021-04-28
SG11201603119RA (en) 2016-05-30
RU2016120618A3 (zh) 2018-05-22
ES2781852T3 (es) 2020-09-08
CN106068326B (zh) 2021-06-18
KR20210145296A (ko) 2021-12-01
DK3184641T3 (da) 2020-08-03
US20170035819A1 (en) 2017-02-09
BR112016009465A2 (pt) 2017-10-03
US20160250267A1 (en) 2016-09-01
MX2016005488A (es) 2016-10-03
KR102490462B1 (ko) 2023-01-19
RU2719190C2 (ru) 2020-04-17
US10172893B2 (en) 2019-01-08
EP3778906A1 (en) 2021-02-17
US20210138007A1 (en) 2021-05-13
ES2810800T3 (es) 2021-03-09
US10576115B2 (en) 2020-03-03
EP3184641B1 (en) 2020-07-08
WO2015066042A1 (en) 2015-05-07
US10201575B2 (en) 2019-02-12
US20170274025A1 (en) 2017-09-28
IL245312A0 (en) 2016-06-30
US10188686B2 (en) 2019-01-29
JP2016537020A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
JP7262134B2 (ja) 腫瘍溶解性hsvベクター
Mazzacurati et al. Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV
AU2018230046B9 (en) Recombinant Herpes simplex virus and use thereof
Grandi et al. Design and application of oncolytic HSV vectors for glioblastoma therapy
WO2020112471A1 (en) New generation regulatable fusogenic oncolytic herpes simplex virus type 1 virus and methods of use
JP5070583B2 (ja) ヒトグリオーマ治療に有用なリコンビナントhsv
WO2020106566A1 (en) Regulatable fusogenic oncolytic herpes simplex virus type 1 virus and methods of use
Ni et al. Antitumor efficacy of CRISPR/Cas9–engineered ICP6 mutant herpes simplex viruses in a mouse xenograft model for lung adenocarcinoma
EP3594328A1 (en) Recombinant herpes simplex virus and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination