CN113171796B - 钛溶胶改性臭氧催化氧化材料及制备方法 - Google Patents

钛溶胶改性臭氧催化氧化材料及制备方法 Download PDF

Info

Publication number
CN113171796B
CN113171796B CN202110499763.5A CN202110499763A CN113171796B CN 113171796 B CN113171796 B CN 113171796B CN 202110499763 A CN202110499763 A CN 202110499763A CN 113171796 B CN113171796 B CN 113171796B
Authority
CN
China
Prior art keywords
modified
titanium sol
manganese dioxide
catalytic oxidation
biochar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110499763.5A
Other languages
English (en)
Other versions
CN113171796A (zh
Inventor
姚勇
张敏敏
张兵兵
韦福建
李剑
李科褡
武晓
张凯舟
杨敬葵
靳进波
邵会菊
秦舒浩
秦青青
杨园园
任露露
雷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Material Industrial Technology Research Institute
Original Assignee
Guizhou Material Industrial Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Material Industrial Technology Research Institute filed Critical Guizhou Material Industrial Technology Research Institute
Priority to CN202110499763.5A priority Critical patent/CN113171796B/zh
Publication of CN113171796A publication Critical patent/CN113171796A/zh
Application granted granted Critical
Publication of CN113171796B publication Critical patent/CN113171796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及钛溶胶改性臭氧催化氧化材料及制备方法,属于臭氧催化剂的技术领域。本发明的钛溶胶改性臭氧催化氧化材料以硅烷改性生物炭为基体,用钛溶胶对硅烷改性生物炭进行改性,再将多巴胺改性的二氧化锰负载在钛溶胶处理后硅烷改性生物炭上,煅烧得到钛溶胶改性臭氧催化氧化材料。本发明的臭氧催化氧化材料,吸附能力强,能够充分利用臭氧,提高臭氧催化氧化污染物的效率,同时过渡金属氧化物具有良好的臭氧分解能力,避免臭氧的二次污染。本发明的制备方法简单可行。

Description

钛溶胶改性臭氧催化氧化材料及制备方法
技术领域
本发明涉及钛溶胶改性臭氧催化氧化材料及制备方法,属于臭氧催化剂的技术领域。
背景技术
臭氧催化氧化技术是一种高效的废水深度处理技术,是近年来污水处理领域内的应用热点。与臭氧作为单独氧化剂相比,臭氧在催化剂的作用下形成的[·OH]与有机物的反应速率更高,氧化性更强,几乎可以氧化所有的有机物。
催化剂可以利用臭氧的强氧化性将水中的有机物直接氧化为CO2和H2O,或者将大分子有机物氧化分解成小分子,使其更容易被降解。目前的臭氧催化剂分为均相催化剂和多相臭氧催化剂,均相催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相臭氧催化剂以固态存在,易于与水分离,二次污染少,应用更广泛。
然而目前的多相臭氧催化剂主要是金属氧化物、负载于载体上的金属或金属氧化物以及具有较大比表面积的孔材料,这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生,吸附能力、催化效率有待进一步提高。
发明内容
本发明的第一个目的是提供一种钛溶胶改性臭氧催化氧化材料。
为达到本发明的第一个目的,所述钛溶胶改性臭氧催化氧化材料以硅烷改性生物炭为基体,用钛溶胶对硅烷改性生物炭进行改性,再将多巴胺改性的二氧化锰负载在钛溶胶处理后硅烷改性生物炭上,煅烧得到钛溶胶改性臭氧催化氧化材料。
本发明所述硅烷改性生物炭可以为现有的改性生物炭,例如申请号为CN2019104571762公开的硅烷改性生物炭。
在一种具体实施方式中,所述硅烷改性生物炭占臭氧催化氧化材料的30~70wt%,钛溶胶占臭氧催化氧化材料的10~50wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为5~40wt%,优选硅烷改性生物炭占臭氧催化氧化材料的30~40wt%,钛溶胶占臭氧催化氧化材料的30~40wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为20~40wt%。
在一种具体实施方式中,所述多巴胺改性的二氧化锰中多巴胺和二氧化锰的质量比是0.5~1.5:0.5~1.5。
在一种具体实施方式中,所述臭氧催化氧化材料的制备方法包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料。
步骤1)中硅烷改性生物炭需要在真空干燥后,再加入到水解后的钛溶胶中,二氧化锰同样需要真空干燥后,加入到含水的溶液中,干燥的目的都是为了准确的确定硅烷改性生物炭,二氧化锰的投加量。如果可以通过计算,例如已知硅烷改性生物炭的含水量、二氧化锰的含水量,可计算干燥后的硅烷改性生物炭、二氧化锰的质量,也可以不用干燥,直接通过计算准确控制两者的量。
为了便于操作,准确测量钛溶胶改性的硅烷改性生物炭、多巴胺改性的二氧化锰的量,控制两者的质量比,步骤1)中还可将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀后,再进行抽滤干燥,得到干燥的钛溶胶改性的硅烷改性生物炭,便于步骤2)进行称量。也可以通过计算步骤1)中生成的钛溶胶改性的硅烷改性生物炭、多巴胺改性的二氧化锰的量来控制两者的质量比,通过计算步骤1)中两者的生成量来控制两者的质量比就不用进行抽滤干燥,直接将溶液混合即可。
步骤1)所述的碱可以为常规的碱,例如氢氧化钠、氢氧化钾溶液,多巴胺在碱性条件下改性效果更好。
在一种具体实施方式中,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
在一种具体实施方式中,所述步骤1)中钛溶胶加入水中的钛溶胶和水的质量比为1~3:5。
所述碱溶液可为氢氧化钠、氢氧化钾溶液中的至少一种。
在一种具体实施方式中,所述煅烧为400~800℃下保温1~12h;所述煅烧的升温速率优选为5~20℃/min。
本发明的第二个目的是提供一种上述钛溶胶改性臭氧催化氧化材料的制备方法。
为达到本发明的第二个目的,所述钛溶胶改性臭氧催化氧化材料的制备包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;优选还进行了抽滤干燥,得到钛溶胶改性的硅烷改性生物炭;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料;所述煅烧优选为400~800℃下保温1~12h;所述煅烧的升温速率优选为5~20℃/min。
在一种具体实施方式中,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
在一种具体实施方式中,所述钛溶胶、硅烷改性生物炭、多巴胺、二氧化锰的重量比为4:4:1~2:2。
有益效果:
本发明的臭氧催化氧化材料,吸附能力强,能够充分利用臭氧,提高臭氧催化氧化污染物的效率,同时过渡金属氧化物具有良好的臭氧分解能力,避免臭氧的二次污染。
附图说明
图1为实施例1制备的催化剂1000倍的扫描电镜图;
图2为实施例1制备的催化剂2000倍的扫描电镜图。
具体实施方式
为达到本发明的第一个目的,所述钛溶胶改性臭氧催化氧化材料以硅烷改性生物炭为基体,用钛溶胶对硅烷改性生物炭进行改性,再将多巴胺改性的二氧化锰负载在钛溶胶处理后硅烷改性生物炭上,煅烧得到钛溶胶改性臭氧催化氧化材料。
本发明所述硅烷改性生物炭可以为现有的硅烷改性生物炭,例如申请号为CN2019104571762公开的硅烷改性生物炭。
在一种具体实施方式中,所述硅烷改性生物炭占臭氧催化氧化材料的30~70wt%,钛溶胶占臭氧催化氧化材料的10~50wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为5~40wt%,优选硅烷改性生物炭占臭氧催化氧化材料的30~40wt%,钛溶胶占臭氧催化氧化材料的30~40wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为20~40wt%。
在一种具体实施方式中,所述多巴胺改性的二氧化锰中多巴胺和二氧化锰的质量比是0.5~1.5:0.5~1.5。
在一种具体实施方式中,所述臭氧催化氧化材料的制备方法包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料。
步骤1)中硅烷改性生物炭需要在真空干燥后,再加入到水解后的钛溶胶中,二氧化锰同样需要真空干燥后,加入到含水的溶液中,干燥的目的都是为了准确的确定硅烷改性生物炭,二氧化锰的投加量。如果可以通过计算,例如已知硅烷改性生物炭的含水量、二氧化锰的含水量,可计算干燥后的硅烷改性生物炭、二氧化锰的质量,也可以不用干燥,直接通过计算准确控制两者的量。
为了便于操作,准确测量钛溶胶改性的硅烷改性生物炭、多巴胺改性的二氧化锰的量,控制两者的质量比,步骤1)中还可将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀后,再进行抽滤干燥,得到干燥的钛溶胶改性的硅烷改性生物炭,便于步骤2)进行称量。也可以通过计算步骤1)中生成的钛溶胶改性的硅烷改性生物炭、多巴胺改性的二氧化锰的量来控制两者的质量比,通过计算步骤1)中两者的生成量来控制两者的质量比就不用进行抽滤干燥,直接将溶液混合即可。
步骤1)所述的碱可以为常规的碱,多巴胺在碱性条件下改性效果更好。
在一种具体实施方式中,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
在一种具体实施方式中,所述步骤1)中钛溶胶加入水中的钛溶胶和水的质量比为1~3:5。
在一种具体实施方式中,所述碱溶液为氢氧化钠、氢氧化钾溶液中的至少一种。
在一种具体实施方式中,所述煅烧为400~800℃下保温1~12h;所述煅烧的升温速率优选为5~20℃/min。
本发明的第二个目的是提供一种上述钛溶胶改性臭氧催化氧化材料的制备方法。
为达到本发明的第二个目的,所述钛溶胶改性臭氧催化氧化材料的制备包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;优选还进行了抽滤干燥,得到钛溶胶改性的硅烷改性生物炭;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料;所述煅烧优选为400~800℃下保温1~12h;所述煅烧的升温速率优选为5~20℃/min。
在一种具体实施方式中,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
在一种具体实施方式中,所述钛溶胶、硅烷改性生物炭、多巴胺、二氧化锰的重量比为4:4:1~2:2。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
分别将6g的硅烷改性生物炭和3g的二氧化锰在70℃下真空干燥12小时备用;
钛溶胶改性的硅烷改性生物炭制备:将20g浓度30%的钛溶胶加入到50g蒸馏水中搅拌2小时得到水解后的钛溶胶;将干燥后的硅烷改性生物炭加入到水解后的钛溶胶中,充分搅拌,抽滤干燥后制备钛溶胶改性的硅烷改性生物炭;
多巴胺改性的二氧化锰制备:将3g多巴胺加入到50ml 2%的氢氧化钠溶液中,充分搅拌,然后将3g干燥后的二氧化锰加入溶液中,充分搅拌备用。
将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中,充分搅拌,105℃干燥制备钛溶胶改性材料。
将制备的钛溶胶改性材料压制成型,放在炉子中,以8℃/min升温速率升温至600℃保温2小时制备得到钛溶胶改性臭氧催化氧化材料。
实施例1制备得到钛溶胶改性臭氧催化氧化材料的扫描电镜图如图1和2所示。
将实施例1制备得到的钛溶胶改性臭氧催化氧化材料对洗涤废水进行臭氧氧化处理,检测COD,色度和浊度;检测的反应停留时间为0.5h,臭氧发生器产生的臭氧量3g/h。
实施例2
分别将6g的硅烷改性生物炭和3g的二氧化锰在70℃下真空干燥12小时备用;
钛溶胶改性的硅烷改性生物炭制备:将20g浓度30%的钛溶胶加入到50g蒸馏水中搅拌2小时得到水解后的钛溶胶;将干燥后的硅烷改性生物炭加入到水解后的钛溶胶中,充分搅拌,抽滤干燥后制备钛溶胶改性的硅烷改性生物炭;
多巴胺改性的二氧化锰制备:将3g多巴胺加入到50ml 2%的氢氧化钠溶液中,充分搅拌,然后将3g干燥后的二氧化锰加入溶液中,充分搅拌备用。
将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中,充分搅拌,105℃干燥制备钛溶胶改性材料。
将制备的钛溶胶改性材料压制成型,放在炉子中,以8℃/min升温速率升温至800℃保温2小时制备得到钛溶胶改性臭氧催化氧化材料。
采用本实例制得的催化剂对洗涤废水进行臭氧氧化处理,检测COD,色度和浊度;其中,检测的反应停留时间为0.5h,臭氧发生器产生的臭氧量3g/h。
实施例3
分别将6g的硅烷改性生物炭和3g的二氧化锰在70℃下真空干燥12小时备用;
钛溶胶改性的硅烷改性生物炭制备:将20g浓度30%的钛溶胶加入到50g蒸馏水中搅拌2小时得到水解后的钛溶胶;将干燥后的硅烷改性生物炭加入到水解后的钛溶胶中,充分搅拌,抽滤干燥后制备钛溶胶改性的硅烷改性生物炭;
多巴胺改性的二氧化锰制备:将1.5g多巴胺加入到50ml 2%的氢氧化钠溶液中,充分搅拌,然后将3g干燥后的二氧化锰加入溶液中,充分搅拌备用。
将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中,充分搅拌,105℃干燥制备钛溶胶改性材料。
将制备的钛溶胶改性材料压制成型,放在炉子中,以8℃/min升温速率升温至600℃保温2小时制备得到钛溶胶改性臭氧催化氧化材料。
采用本实例制得的催化剂对洗涤废水进行臭氧氧化处理,检测COD,色度和浊度;其中,检测的反应停留时间为0.5h,臭氧发生器产生的臭氧量3g/h。
检测结果如表1所示,表1中的原水是指未进行臭氧氧化处理的洗涤废水,空白组是指没有添加本发明的臭氧催化剂,进行臭氧氧化处理后的洗涤废水。
表1性能检测结果
样品 色度 浊度(NTU) COD(mg/L)
原水 86.0 51.1 327.9
空白 36.9 18.8 189.7
实施例1 9.5 6.0 110.7
实施例2 12.5 7.1 116.0
实施例3 14.1 8.2 122.7

Claims (10)

1.钛溶胶改性臭氧催化氧化材料,其特征在于,以硅烷改性生物炭为基体,用钛溶胶对硅烷改性生物炭进行改性,再将多巴胺改性的二氧化锰负载在钛溶胶处理后硅烷改性生物炭上,煅烧得到钛溶胶改性臭氧催化氧化材料;所述硅烷改性生物炭占臭氧催化氧化材料的30~70wt%,钛溶胶占臭氧催化氧化材料的10~50wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为5~40wt%;
所述多巴胺改性的二氧化锰中多巴胺和二氧化锰的质量比是1:1;
所述臭氧催化氧化材料的制备方法包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料;所述煅烧为600℃下保温1~12h。
2.根据权利要求1所述的钛溶胶改性臭氧催化氧化材料,其特征在于,硅烷改性生物炭占臭氧催化氧化材料的30~40wt%,钛溶胶占臭氧催化氧化材料的30~40wt%,多巴胺改性的二氧化锰占臭氧催化氧化材料的质量分数为20~40wt%。
3.根据权利要求1所述的钛溶胶改性臭氧催化氧化材料,其特征在于,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
4.根据权利要求1或3所述的钛溶胶改性臭氧催化氧化材料,其特征在于,所述步骤1)中钛溶胶加入水中的钛溶胶和水的质量比为1~3:5。
5.根据权利要求1所述的钛溶胶改性臭氧催化氧化材料,其特征在于,所述煅烧的升温速率为5~20℃/min。
6.根据权利要求1~5任一项所述钛溶胶改性臭氧催化氧化材料的制备方法,其特征在于,所述方法包括:
1)钛溶胶改性的硅烷改性生物炭制备:将钛溶胶加入水中搅拌2~6小时,得到水解后的钛溶胶,再将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;
多巴胺改性的二氧化锰制备:将多巴胺加入到1.5~3wt%的碱溶液中混匀,然后再加入干燥的二氧化锰混匀;
2)最后将钛溶胶改性的硅烷改性生物炭加入多巴胺改性的二氧化锰溶液中混匀,干燥得固体;
3)将步骤2)所述固体压制成型,煅烧制得钛溶胶改性臭氧催化氧化材料;所述煅烧为600℃下保温1~12h。
7.根据权利要求6所述的钛溶胶改性臭氧催化氧化材料的制备方法,其特征在于,将干燥的硅烷改性生物炭加入到水解后的钛溶胶中混匀;还进行了抽滤干燥,得到钛溶胶改性的硅烷改性生物炭。
8.根据权利要求6所述的钛溶胶改性臭氧催化氧化材料的制备方法,其特征在于,所述煅烧的升温速率为5~20℃/min。
9.根据权利要求6所述的钛溶胶改性臭氧催化氧化材料的制备方法,其特征在于,所述干燥的硅烷改性生物炭、干燥的二氧化锰的干燥方法为60~80℃下真空干燥12~28小时;步骤2)所示的干燥的温度为80~110℃。
10.根据权利要求8或9所述的钛溶胶改性臭氧催化氧化材料的制备方法,其特征在于,所述钛溶胶、硅烷改性生物炭、多巴胺、二氧化锰的重量比为4:4:2:2。
CN202110499763.5A 2021-05-08 2021-05-08 钛溶胶改性臭氧催化氧化材料及制备方法 Active CN113171796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110499763.5A CN113171796B (zh) 2021-05-08 2021-05-08 钛溶胶改性臭氧催化氧化材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110499763.5A CN113171796B (zh) 2021-05-08 2021-05-08 钛溶胶改性臭氧催化氧化材料及制备方法

Publications (2)

Publication Number Publication Date
CN113171796A CN113171796A (zh) 2021-07-27
CN113171796B true CN113171796B (zh) 2023-03-17

Family

ID=76928421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110499763.5A Active CN113171796B (zh) 2021-05-08 2021-05-08 钛溶胶改性臭氧催化氧化材料及制备方法

Country Status (1)

Country Link
CN (1) CN113171796B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114159984B (zh) * 2021-12-09 2024-04-23 武汉工程大学 一种含MnO2纳米线或纳米管的太阳能光驱动水蒸发复合膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824290A (zh) * 2017-03-03 2017-06-13 哈尔滨工业大学 一种超稳定自支撑二氧化锰水处理膜的制备方法
CN111389449A (zh) * 2020-05-08 2020-07-10 广东石油化工学院 氮掺杂碳材料改性的磷酸银复合光催化剂及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221649A (en) * 1988-11-28 1993-06-22 Sakai Chemical Industry Co., Ltd. Catalysts and methods for ozone decomposition
JPH0616818B2 (ja) * 1990-03-23 1994-03-09 川崎重工業株式会社 排ガス浄化方法及び装置
US20060246595A1 (en) * 2005-05-02 2006-11-02 Banks Rodney H Method for using an all solid-state fluorometer in monitoring and controlling chemicals in water
GB0816379D0 (en) * 2008-09-08 2008-10-15 Johnson Matthey Plc Adsorbents
CN106215522B (zh) * 2016-09-12 2018-04-13 福州大学 在滤料上原位生成纳米花状二氧化锰催化剂的方法
CN106540686B (zh) * 2016-10-28 2019-04-16 上海纳米技术及应用国家工程研究中心有限公司 用于深度处理的活性炭负载二氧化锰-二氧化钛臭氧催化剂及制备方法
CN106622211B (zh) * 2016-11-16 2019-09-06 深圳科莱环保科技有限公司 一种臭氧催化氧化材料及其制备方法和应用
CN107243321B (zh) * 2017-04-21 2019-07-26 浙江理工大学 一种长效除有机污染物的空气净化用材料
CN109382107A (zh) * 2017-08-07 2019-02-26 光大水务(深圳)有限公司 基于活性炭载体的臭氧氧化催化剂及其制备方法
CN110152682A (zh) * 2018-03-30 2019-08-23 铜仁学院 一种有机废水臭氧氧化催化剂及其制备方法和应用
CN109012658A (zh) * 2018-09-06 2018-12-18 杭州恒畅环保科技有限公司 一种臭氧氧化催化剂及其制备方法
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用
CN110124616B (zh) * 2019-05-29 2022-06-14 贵州省材料产业技术研究院 一种改性生物炭及其改性方法和应用
CN110215902A (zh) * 2019-05-29 2019-09-10 贵州省材料产业技术研究院 硅烷改性生物炭及其制备方法和应用
CN110743524B (zh) * 2019-10-15 2022-04-29 华东理工大学 表面高碱性球状活性炭臭氧催化剂及其应用
CN111841606B (zh) * 2020-07-23 2021-03-12 中国环境科学研究院 一种非均相FeVO4催化材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824290A (zh) * 2017-03-03 2017-06-13 哈尔滨工业大学 一种超稳定自支撑二氧化锰水处理膜的制备方法
CN111389449A (zh) * 2020-05-08 2020-07-10 广东石油化工学院 氮掺杂碳材料改性的磷酸银复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113171796A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN109939643A (zh) α-Fe2O3掺杂生物炭的制备方法及其应用
CN109590027B (zh) 一种MoS2增强非均相Fenton光催化剂及其制备方法
CN109261213A (zh) 一种碘氧化铋/钛基金属有机骨架复合材料的制备方法及应用
CN109999844B (zh) 一种MoS2/施威特曼石类芬顿复合催化剂、制备方法与应用
CN107649168A (zh) 一种光催化降解水中双酚a的方法及其使用的催化剂
CN113171796B (zh) 钛溶胶改性臭氧催化氧化材料及制备方法
CN103623809B (zh) 一种三元异质结1%石墨烯-Bi2MoO6/Bi3.64Mo0.36O6.55催化剂及其制备方法
CN113145110B (zh) 硅溶胶改性臭氧催化氧化材料及制备方法
CN114505101A (zh) 一种基于非均相类芬顿反应的有机染料降解催化剂及其制备和应用
CN111468100B (zh) 一种原位生长的多酸铌/石墨烯光催化剂的制备方法及其在降解四环素中的应用
CN111151278B (zh) 一种碳点复合碳酸氧铋可见光催化剂的制备方法
CN111889126A (zh) 一种具有可见光响应的类芬顿材料的制备方法及应用
CN115715980B (zh) Mn3O4/CNTs类芬顿催化剂及其制备方法和应用
CN115212884B (zh) 一种基于金属离子强化自由基主导的催化剂的制备方法及其应用
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN114405520B (zh) 一种包含杂多酸的三元复合光催化剂及其制备方法与应用
CN111747845B (zh) 一种可见光催化选择性氧化葡萄糖的方法
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN108906123A (zh) 一种杂多酸-氧化石墨烯复合催化材料、制备方法及其应用
CN111054422B (zh) 一种复合光催化剂及其制备方法和应用
CN114524503A (zh) 一种铁-锰/生物炭臭氧催化氧化处理印染废水的方法
CN114588946A (zh) 一种二价铁掺杂Fe-MOF基复合材料的制备方法及其应用
CN110773238A (zh) 一种聚苯胺包裹wo2.72纳米棒复合材料及其制备方法与应用
CN112156804B (zh) MQDs/NCDs/TiO2复合材料,复合催化体系及提高有机污染物降解效率的方法
CN115709100B (zh) 一种黑水虻虫粪在类芬顿催化材料中的制备及应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant