CN113118005A - 树脂多孔质体的制造方法 - Google Patents

树脂多孔质体的制造方法 Download PDF

Info

Publication number
CN113118005A
CN113118005A CN202011636740.6A CN202011636740A CN113118005A CN 113118005 A CN113118005 A CN 113118005A CN 202011636740 A CN202011636740 A CN 202011636740A CN 113118005 A CN113118005 A CN 113118005A
Authority
CN
China
Prior art keywords
solvent
water
insoluble polymer
mixed solvent
insulating particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011636740.6A
Other languages
English (en)
Other versions
CN113118005B (zh
Inventor
松延广平
水口晓夫
宇山浩
吉泽千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN113118005A publication Critical patent/CN113118005A/zh
Application granted granted Critical
Publication of CN113118005B publication Critical patent/CN113118005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供简便性优异、并且能够抑制表皮层形成的、使用非水溶性高分子制造树脂多孔质体的制造方法。这里公开的树脂多孔质体的制造方法包含以下工序:在含有非水溶性高分子的良溶剂和所述非水溶性高分子的不良溶剂的混合溶剂中溶解所述非水溶性高分子,并且使绝缘粒子分散在其中而调制涂布液的工序,将所述涂布液涂布在基材上的工序,以及从所述涂布的涂布液使所述混合溶剂气化而将其除去的工序,所述不良溶剂的沸点高于所述良溶剂的沸点,通过使所述混合溶剂气化将其除去而形成孔隙,得到多孔质体。

Description

树脂多孔质体的制造方法
技术领域
本发明涉及树脂多孔质体的制造方法。
背景技术
使用非水溶性高分子的树脂多孔质体能够显示轻量性、缓冲性、绝热性、消音性、分离性、吸附性等各种特性。因此,使用非水溶性高分子的树脂多孔质体被使用于捆包材料、建筑材料、吸音材料、扫除用品、化妆用品、分离膜、吸附材、精制用载体、催化剂载体、培养基等多种用途。
从制造成本等观点考虑,期望使用非水溶性高分子的树脂多孔质体的制造方法能够简便。因此,作为可以简便地制造作为非水溶性高分子的聚偏氟乙烯的多孔质体的方法,在专利文献1中公开了下述聚偏氟乙烯的多孔质体的制造方法,其包含以下工序:使聚偏氟乙烯在加热下溶解于其良溶剂与其不良溶剂的混合溶剂中而调制溶液;将该溶液冷却而获得成型体;使该成型体浸渍于其它溶剂而将上述混合溶剂置换为其它溶剂;以及将该其它溶剂干燥而除去。
现有技术文献
专利文献
专利文献1:日本专利申请公开第2011-236292号公报
发明内容
本发明人进行了深入的研究,结果发现、上述以往技术的制造方法在简便制造树脂多孔质体方面还有改善的余地。此外发现,树脂多孔质体的表面容易形成不具有孔隙的表皮层。在树脂多孔质体具有表皮层的情况下,流体不能透过,树脂多孔质体的用途受到局限,是不利的。
于是,本发明的目的是提供简便性优异、并且能够抑制表皮层的形成、使用非水溶性高分子的树脂多孔质体的制造方法。
这里公开的树脂多孔质体的制造方法包含以下工序:在含有非水溶性高分子的良溶剂和所述非水溶性高分子的不良溶剂的混合溶剂中溶解所述非水溶性高分子,并且使绝缘粒子分散在其中而调制涂布液的工序,将所述涂布液涂布在基材上的工序,以及从所述涂布的涂布液使所述混合溶剂气化而将其除去的工序,所述不良溶剂的沸点高于所述良溶剂的沸点,通过使所述混合溶剂气化将其除去而形成孔隙,得到多孔质体。
根据该方案,能够提供简便性优异、并且能够抑制表皮层形成的、使用非水溶性高分子制造树脂多孔质体的制造方法。
附图说明
图1是比较例1中得到的薄膜的截面的SEM照片。
图2是实施例7中得到的薄膜的截面的SEM照片。
图3是实施例11中得到的薄膜的截面的SEM照片。
具体实施方式
本发明的树脂多孔质体的制造方法包含以下工序:在含有非水溶性高分子的良溶剂和该非水溶性高分子的不良溶剂的混合溶剂中溶解该非水溶性高分子,并且使绝缘粒子分散而调制涂布液的工序(以下、也称作“涂布液调制工序”),将该涂布液涂布到基材上的工序(以下、也称作“涂布液涂布工序”),和、从该涂布上的涂布液使该混合溶剂气化而除去的工序(以下、也称作“混合溶剂除去工序”)。这里,该不良溶剂的沸点比该良溶剂的沸点高。通过将该混合溶剂气化除去,形成孔隙而得到多孔质体。
先对涂布液调制工序予以说明。本发明中“非水溶性高分子的良溶剂”是指相对于非水溶性高分子在25℃下显示1质量%以上的溶解性的溶剂。良溶剂优选相对于非水溶性高分子在25℃下显示2.5质量%以上的溶解性,更优选显示5质量%以上的溶解性,进而优选显示7.5质量%以上的溶解性,最优选显示10质量%以上的溶解性。再者,本发明中使用的良溶剂的种类可以按照非水溶性高分子的种类来适当选择。良溶剂可以是一种单独的溶剂,也可以是由2种以上的溶剂混合而成的混合溶剂。
本发明中“非水溶性高分子的不良溶剂”是指相对于非水溶性高分子在25℃下显示小于1质量%的溶解性的溶剂。不良溶剂优选相对于非水溶性高分子在25℃下显示0.5质量%以下的溶解性,更优选显示0.2质量%以下的溶解性示、进而优选显示0.1质量%以下的溶解性、最优选显示0.05质量%以下的溶解性。本发明中使用的不良溶剂的种类可以按照非水溶性高分子的种类来适当选择。不良溶剂可以是单独的一种溶剂,也可以是由2种以上溶剂混合而成的混合溶剂。
在判断特定溶剂相对于特定高分子化合物是良溶剂、还是不良溶剂时,可以利用汉森溶解度参数(HSP)。例如在将该高分子化合物的HSP的分散项、极化项、和氢键项分别设为δD1、δP1、δH1,将该溶剂的HSP的分散项、极化项、和氢键项分别设为δD2、δP2、δH2时,有下述式所示的高分子化合物和溶剂之间的HSP的距离Ra(MPa1/2)的值越小,则高分子化合物的溶解度越高的趋势。
Ra2=4(δD1D2)2+(δP1P2)2+(δH1H2)2
此外,在将上述特定的高分子化合物的相互作用半径设为R0时,如果Ra/R0的比低于1,则可以预测为可溶,在Ra/R0的比为1时预测为部分性可溶,在Ra/R0的比大于1时预测为不溶。
或者,能够通过在样品瓶等中进行将特定的高分子化合物和特定的溶剂混合的试验,容易地判断该溶剂相对于该高分子化合物是良溶剂还是不良溶剂。
上述良溶剂和上述不良溶剂被混合而以均相溶剂的形式使用。因此,上述良溶剂和上述不良溶剂具有彼此的相溶性。本发明中、使用的不良溶剂的沸点比使用的良溶剂的沸点高。由于容易得到孔隙率较高、均质的多孔质体,所以优选不良溶剂的沸点比良溶剂的沸点高10℃以上,更优选高90℃以上。不良溶剂的沸点从干燥速度的观点优选低于300℃。
本发明中“非水溶性高分子”是指在25℃下相对于水的溶解度低于1质量%的高分子。非水溶性高分子的25℃下相对于水的溶解度优选为0.5质量%以下、更优选为0.2质量%以下、进而优选为0.1质量%以下。
涂布液调制工序中使用的“非水溶性高分子”是与构成多孔质成型体的非水溶性高分子相同的高分子。作为非水溶性高分子使用具有良溶剂和不良溶剂的高分子。使用的非水溶性高分子的种类只要是有良溶剂和不良溶剂存在,就没有特殊限定。作为非水溶性高分子的例子,可以列举出聚乙烯、聚丙烯等的烯烃系树脂;聚氟乙烯、聚偏氟乙烯等的氟系树脂;聚(甲基)丙烯酸甲基酯、聚(甲基)丙烯酸乙基酯等的(甲基)丙烯酸系树脂;聚苯乙烯、苯乙烯-丙烯腈共聚物、丙烯腈-丁二烯-苯乙烯共聚物等的苯乙烯系树脂;乙基纤维素、乙酸纤维素、纤维素丙酸酯等的非水溶性纤维素衍生物;聚氯乙烯、乙烯-氯乙烯共聚物等的氯乙烯系树脂;乙烯-乙烯醇共聚物等。可以使用将水溶性高分子修饰而非水溶化了的高分子等。其中,从非水溶性高分子的多孔质体的有用性和其简便的制造方法的有用性的观点,非水溶性高分子优选是脂肪族高分子化合物(即、不具有芳香环的高分子化合物)。由于容易得到孔隙率较高、均质的多孔质体,所以非水溶性高分子优选是加成聚合型的高分子化合物(即、由具有烯属不饱和双键的单体的该烯属不饱和双键的聚合而生成的高分子化合物,例如乙烯基系聚合物、偏二取代乙烯系聚合物)。从具有三维网状的多孔质结构的多孔质体的有用性、和其简便的制造方法的有用性的观点考虑,非水溶性高分子优选是乙烯-乙烯醇共聚物。
非水溶性高分子的平均聚合度,没有特殊限定,优选为70以上且500,000以下,更优选为10以上200,000以下。再者、非水溶性高分子的平均聚合度可以通过公知方法(例如NMR测定)等求出。
以下、举出特定的非水溶性高分子的例子来对优选的良溶剂和优选的不良溶剂进行具体说明。针对以下的非水溶性高分子,通过使用以下说明的良溶剂和不良溶剂,能够有利地实施本发明的制造方法。
1.在非水溶性高分子是乙烯-乙烯醇共聚物的情况
乙烯-乙烯醇共聚物(EVOH)是作为单体单元含有乙烯单元和乙烯醇单元的共聚物。EVOH中的乙烯单元的含量,没有特别限制,优选为10摩尔%以上,更优选为15摩尔%以上,进而优选为20摩尔%以上,特别优选为25摩尔%以上。此外,EVOH中的乙烯单元的含量优选为60摩尔%以下,更优选为50摩尔%以下,进而优选为45摩尔%以下。EVOH的皂化度,没有特别限定,优选为80摩尔%以上、更优选为90摩尔%以上、进而优选为95摩尔%以上。皂化度的上限由皂化所涉及的技术限度而定,是例如99.99摩尔%。再者、EVOH的乙烯单元的含量和皂化度可以通过公知方法(例如、1H-NMR测定等)求出。
此外,EVOH通常将乙烯与乙烯基酯的共聚物使用碱催化剂等进行皂化来制造。因此,EVOH能够含有乙烯基酯单元。该单元的乙烯基酯典型地为乙酸乙烯酯,可以为甲酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯等。在不显著损害本发明的效果的范围,EVOH可以含有除乙烯单元、乙烯醇单元、和乙烯基酯单元以外的其它单体单元。
作为EVOH的适合的良溶剂,可举出水与醇的混合溶剂、二甲亚砜(DMSO)等。作为混合溶剂所使用的醇,优选为丙醇。丙醇可以为正丙醇和异丙醇中的任一者。因此,特别适合的良溶剂为水与丙醇的混合溶剂、或DMSO。
作为EVOH的适合的不良溶剂,可举出水、醇、γ-丁内酯等环状酯类;碳酸亚丙酯等环状碳酸酯类;环丁砜等环状砜类;丙二醇单甲基醚、丙二醇单乙基醚、二甘醇单甲基醚、二甘醇单乙基醚、2-乙氧基乙醇等含有醚基的一元醇类、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇等二醇类等。其中,优选为环状酯类、环状碳酸酯类、环状砜类、或含有醚基的一元醇类,更优选为γ-丁内酯、碳酸亚丙酯、环丁砜、或含有醚基的一元醇类,进一步优选为γ-丁内酯、或环丁砜。不良溶剂的溶解参数(希尔德布兰德(Hildebrand)的SP值)δ优选比EVOH的溶解参数δ大1.6MPa1/2以上。
再者、对于EVOH而言,水和醇是EVOH的不良溶剂,但水和醇(特别是丙醇)的混合溶剂是良溶剂。这里,水和醇的混合溶剂可以看做是作为水减量了的良溶剂的、水和醇的混合溶剂、与沸点比该混合溶剂高的不良溶剂的水所形成的混合溶剂,所以在EVOH的溶液的调制中可以单独使用水和醇的混合溶剂。因此,在本发明中、在相对于特定的非水溶性高分子,2种以上的不良溶剂混合后的溶剂变为良溶剂的情况,可以以含有用于溶液调制的非水溶性高分子的良溶剂和非水溶性高分子的不良溶剂的混合溶剂的形式单独使用2种以上不良溶剂的混合溶剂。
2.非水溶性高分子为乙酸纤维素的情况
作为乙酸纤维素的适合的良溶剂,可举出N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮等含氮极性溶剂(特别是含氮非质子性极性溶剂);甲酸甲酯、乙酸甲酯等酯类;丙酮、环己酮等酮类;四氢呋喃、二
Figure BDA0002878675570000061
烷、二氧戊环等环状醚类;甲基乙二醇、甲基乙二醇乙酸酯等二醇衍生物;二氯甲烷、氯仿、四氯乙烷等卤代烃;碳酸亚丙酯等环状碳酸酯类;DMSO等含硫极性溶剂(特别是含硫非质子性极性溶剂)等。其中优选为含硫非质子性极性溶剂,更优选为DMSO。
作为乙酸纤维素的适合的不良溶剂,可举出1-己醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇等醇类。作为醇类,优选为碳原子数4~6的1元或2元醇类。
3.非水溶性高分子为聚偏氟乙烯的情况
作为聚偏氟乙烯的适合的良溶剂,可举出N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮等含氮极性溶剂(特别是含氮非质子性极性溶剂);DMSO等含硫极性溶剂(特别是含硫非质子性极性溶剂)等。其中优选为含氮非质子性极性溶剂,更优选为N,N-二甲基甲酰胺。
作为聚偏氟乙烯的适合的不良溶剂,可举出1-己醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、甘油等醇类;四氢呋喃、二
Figure BDA0002878675570000071
烷、二氧戊环等环状醚类等。其中优选为醇类,更优选为碳原子数3~6的2元或3元醇类。
非水溶性高分子、良溶剂、和不良溶剂的使用量根据所使用的它们的种类来适当选择为好。非水溶性高分子的混合量相对于良溶剂100质量份,优选为1质量份以上,更优选为5质量份以上,进一步优选为10质量份以上。此外,非水溶性高分子的混合量相对于良溶剂100质量份,优选为40质量份以下,更优选为35质量份以下,进一步优选为30质量份以下。不良溶剂的混合量相对于良溶剂100质量份,优选为10质量份以上,更优选为20质量份以上,进一步优选为30质量份以上。此外,不良溶剂的混合量相对于良溶剂100质量份,优选为400质量份以下,更优选为200质量份以下,进一步优选为100质量份以下。通过使它们的量变化,从而可以控制所得的多孔质体的孔的状态(例如,孔隙率、孔隙直径等)。
绝缘粒子在混合溶剂中分散,在混合溶剂不溶解。作为绝缘粒子可以使用无机粒子、有机粒子、有机无机复合粒子中的任一种。作为构成有机粒子的有机材料的例子,可以列举出聚烯烃、(甲基)丙烯酸系树脂、聚苯乙烯、聚酰亚胺、酚醛树脂、三聚氰胺树脂等。作为构成无机粒子的无机材料的例子,可以列举出氧化铝(Al2O3)、氧化镁(MgO)、二氧化硅(SiO2)、氧化钛(TiO2)等的无机氧化物;氮化铝、氮化硅等的氮化物;氢氧化钙、氢氧化镁、氢氧化铝等的金属氢氧化物;云母、滑石、勃姆石、沸石、磷灰石、高岭土等的粘土矿物;玻璃纤维等。作为有机无机复合粒子的例子,可以列举出上述的无机粒子上被覆了上述有机材料而成的粒子等。作为绝缘粒子,由于涂布液中的分散性高而优选氧化铝粒子和勃姆石粒子。
绝缘粒子的形状,没有特殊限定,可以是球状、板状、鳞片状、针状、立方体状、不规则形等。根据绝缘粒子的形状,可以改变表皮层的形成抑制效果的大小程度。此外,绝缘粒子的形状,对所得树脂多孔质体的孔隙率会产生影响。绝缘粒子的长宽比(即、长径相对于短径的比)大的,具有孔隙度变大的倾向。由于能够得到孔隙度高的树脂多孔质体,所以绝缘粒子的长宽比优选为10以上、更优选为20以上。绝缘粒子的长宽比的上限没有特殊限定。绝缘粒子的长宽比是例如40以下。再者、绝缘粒子的长宽比是通过获取绝缘粒子的电子显微镜图像,针对从图像内任意选择出的20个以上粒子计算出长径相对于短径的比例,并求出它们的平均值而得到的。
绝缘粒子的平均粒径,没有特殊限定。具有以下趋势:绝缘粒子的平均粒径小,则表皮层的形成抑制效果小。因此,优选绝缘粒子的平均粒径为0.5μm以上,更优选为0.7μm以上、进而优选为2μm以上、最优选为3μm以上。另一方面具有以下趋势:绝缘粒子的平均粒径大时,容易在涂布液中沉淀,分散稳定性降低。因此,绝缘粒子的平均粒径优选为15μm以下、更优选为10μm以下、进而优选为7μm以下、最优选为6μm以下。再者、本说明书中“平均粒径”是指在通过激光衍射·散射法测定的粒度分布中,累计频数以体积百分率计算达到50%时对应的粒径(D50;也称作中位径、中心粒径)。
涂布液中的绝缘粒子的含量,没有特殊限定。具有以下趋势:绝缘粒子的含量变小、则表皮层的形成抑制效果变小。因此、涂布液中的绝缘粒子的含量相对于非水溶性高分子100质量份优选为50质量份以上、更优选为100质量份以上、进而优选为200质量份以上、最优选为400质量份以上。另一方面具有以下趋势:绝缘粒子的含量变多,则涂布液中分散稳定性降低。此外,绝缘粒子的含量变多,则所得多孔质膜容易发生裂纹。因此、涂布液中的绝缘粒子的含量相对于非水溶性高分子100质量份优选为700质量份以下、更优选为600质量份以下。
再者、为了能够在绝缘粒子的平均粒径小时获得高的表皮层形成抑制效果,增大绝缘粒子的配合量为宜。为了在绝缘粒子的含量小时得到高的表皮层形成抑制效果,增大绝缘粒子的平均粒径为宜。特别是由于能够得到高的表皮层形成抑制效果,在将绝缘粒子的平均粒径设为A(μm)、将涂布液中的绝缘粒子相对于涂布液中的非水溶性高分子100质量份的含量设为B质量份时,优选A与B的积(即、A×B)的值为200以上,更优选为300以上。
在不明显损害本发明的效果的范围内内,涂布液还可以含有上述以外的成分。
对于涂布液的调制方法没有特别限定。可以使用搅拌机将非水溶性高分子、良溶剂、不良溶剂和绝缘粒子混合在一起,使非水溶性高分子溶解,同时使绝缘粒子分散。
合适的涂布液调制方法,首先依照公知方法将非水溶性高分子溶解在良溶剂和不良溶剂的混合溶剂中而调制溶液。在调制该溶液时,也可以使非水溶性高分子溶解在良溶剂中,向其中添加不良溶剂,将其均匀混合。可以将非水溶性高分子添加到良溶剂和不良溶剂的混合溶剂中,将非水溶性高分子溶解。该溶液的调制时可以使用公知的搅拌装置、混合装置等。该溶液的调制时可以进行超声波照射、加热等。加热温度为例如40℃以上100℃以下。在通过加热调制非水溶性高分子的溶液后,在不使良溶剂和不良溶剂分离的范围冷却为宜。此外,该冷却优选在不使非水溶性高分子析出的范围进行。这是由于析出的非水溶性高分子会成为杂质的缘故。
接下来将绝缘粒子依照公知方法分散在该溶剂中来调制涂布液。具体地说,通过使用例如公知的分散装置(例、均质机、乳化分散机、行星混合机、超声波分散机、颜料分散机、球磨机等)进行非水溶性高分子的溶液和绝缘粒子的混合与分散,来调制涂布液。
下面对涂布液涂布工序予以说明。该涂布液涂布工序中使用的基材,只要是能够发挥基材的功能,就没有特殊限定。通常、作为基材使用相对于上述涂布液中含有的溶剂具有耐性的基材。
基材可以是能够最终从多孔质体剥离而使用的,也可以是不剥离就可以使用的。对于基材的形状,没有特殊限定,优选是平面的。作为形状的例子,可以列举出片状、膜状、箔状、板状等。作为基材的构成材料,可以列举出树脂、玻璃、金属等。
作为上述树脂的例子,可以列举出聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯、聚氯乙烯、聚(甲基)丙烯酸酯、聚碳酸酯、聚酰亚胺、聚酰胺、聚酰胺酰亚胺等。
作为上述金属的例子,可以列举出铝、铜、镍、不锈钢等。此外,可以采用玻璃纤维强化环氧树脂等的纤维强化树脂等多种材料制作基材来使用。
此外,基材可以具有多层构造。例如、基材可以具有含有氟树脂的剥离层。例如、基材可以是具有树脂层的纸等。
在基材可以不剥离就使用的情况,基材可以具有所得多孔质体的功能层作用。例如、基材可以具有补强材、支持材等的功能。此外,基材可以是二次电池的电极(特别是二次电池的电极的活性物质层)。此时,可以采用树脂多孔质体的制造方法作为二次电池的电极一体型隔板的制造方法。
对于涂布方法没有特别限定,可以按照基材的种类来适当选择。作为涂布方法的例子,可以列举出模涂法、凹版涂布法、辊涂法、旋转涂布法、浸渍涂布法、棒涂法、刮板涂布法、喷雾涂布法、流延法等。对于涂布厚度没有特别限定,可以按照多孔质体的用途来适当设定,为例如1μm以上且500μm以下、优选为10μm以上300μm以下。
通过实施该涂布液涂布工序而在基材上形成涂布液的涂膜。再者、出于调整涂膜的粘度等目的,可以在涂布液中含有的良溶剂和不良溶剂有残留的范围内进行预干燥。
接下来,对混合溶剂除去工序予以说明。该混合溶剂除去工序中,使良溶剂和不良溶剂气化(特别是挥发)来将除去。在该混合溶剂除去工序中形成非水溶性高分子的多孔质状的骨架。在该混合溶剂除去工序中,通过将混合溶剂除去的操作,具体地通过不良溶剂气化来形成孔隙,得到树脂多孔质体。典型地是,例如、通过将非水溶性高分子、与不良溶剂高浓度化了的混合溶剂相分离来形成孔隙。具体地,由于不良溶剂的沸点比良溶剂高,所以在该工序中良溶剂比不良溶剂优先气化。良溶剂逐渐减少,则混合溶剂中的不良溶剂的浓度增加。非水溶性高分子相对于不良溶剂的溶解度比相对于良溶剂的溶解度小,所以通过使非水溶性高分子、和不良溶剂高浓度化了的混合溶剂发生相分离,能够形成非水溶性高分子的多孔质状的骨架。该相分离可以是斯皮诺达分解。最终除去良溶剂,非水溶性高分子析出,将高沸点的不良溶剂通过气化除去而生成孔隙。通过这样而生成非水溶性高分子的多孔质体。再者、在使非水溶性高分子、和不良溶剂高浓度化了的混合溶剂相分离时,适当选择良溶剂的种类、使用量和不良溶剂的种类和使用量为宜。
使良溶剂和不良溶剂的混合溶剂气化的方法,没有特别限定,可以列举出例如加热的方法、减压下放置的方法、减压下加热的方法、风干的方法等。这些方法可以与公知的干燥方法同样地进行实施。从操作实施的容易性的观点优选加热的方法。对于加热温度,没有特别限定,优选为不使混合溶剂沸腾,并且非水溶性高分子和不良溶剂不分解的温度。具体的,加热温度为例如25℃以上、优选为50℃以上、更优选为70℃以上。此外,加热温度为例如180℃以下、优选为150℃以下、更优选为125℃以下。加热时间按照溶剂的种类、加热温度来适当确定为好。在使良溶剂和不良溶剂气化的过程中,优选将非水溶性高分子的涂布液静置。
这里,混合溶剂除去工序中,由于涂布液的涂膜的表面露出,所以该表面成为干燥界面。在涂布液不含绝缘粒子的情况,涂布液的涂膜的表层部的涂布液的气化速度比涂膜内部大,由此在涂布液的涂膜的表层部和内部在组成上产生差别。结果,在涂膜的表层部不引起多孔质化而形成表皮层。但本发明中涂布液含有绝缘粒子,通过该绝缘粒子,抑制了在涂膜的表层部和内部发生组成差别。结果、涂膜的表层部中也发生多孔质化、表皮层的形成被抑制。该组成差别发生的抑制效果可以认为是,通过绝缘粒子和良溶剂之间的相互作用,涂膜中的良溶剂的移动速度发生变化、良溶剂的干燥性变化而引起的。此外还可以认为,绝缘粒子和非水溶性高分子之间的相互作用参与了多孔质状的骨架形成,有助于抑制表皮层的形成。进而可以认为,由于绝缘粒子存在,所以涂膜中的非水溶性高分子的存在比率降低,涂膜的表层部中非水溶性高分子的不均匀分布析出得到抑制,有助于抑制表皮层的形成。
可以通过以上那样得到树脂多孔质体。树脂多孔质体,由于抑制了表皮层的形成,所以具有孔从一主面连通到另一主面的三维网状多孔结构。
本发明中,通过使涂布液含有绝缘粒子,所得的多孔质体的多孔度变高。这可以认为是由于绝缘粒子成为相分离的核,促进了相分离的缘故。此外,绝缘粒子的形状、特别是绝缘粒子的长宽比对孔隙度有影响,这可以认为是由于形状、特别是长宽比一变化,则成为相分离的核的个数就发生变化的缘故。由本发明的制造方法得到的树脂多孔质体,孔隙度为例如40%以上(特别是50%以上、进而60%以上、进而70%以上)90%以下(特别是小于85%)。再者、孔隙率可以依照公知方法使用真密度和表观密度来计算。
通过本发明,可以通过含有非水溶性高分子和绝缘粒子的涂布液的调制、涂布和干燥之类的容易操作来制造树脂多孔质体。本发明不像以往技术那样需要进行通过冷却将成型体析出的操作和置换溶剂的操作。因此,本发明的树脂多孔质体的制造方法的简便性优异。此外,可以抑制树脂多孔质体的表层部中表皮层的形成。因此,树脂多孔质体可以用于广泛用途。
作为树脂多孔质体的用途的例子,可举出捆包材料、建筑材料、吸音材料、扫除用品、化妆用品、分离膜、吸附材、精制用载体、催化剂载体、培养载体等。此外,由于没有表皮层,所以能够使电解液透过,可以将树脂多孔质体作为二次电池用隔板使用。在将树脂多孔质体用于隔板用途的情况,由于可以在活性物质层上直接形成隔板,所以在隔板的制造方面上有利。
因此,上述的制造方法可以作为二次电池的电极一体型隔板的制造方法来应用,包含以下工序:在含有非水溶性高分子的良溶剂和所述非水溶性高分子的不良溶剂的混合溶剂中溶解所述非水溶性高分子,并且使绝缘粒子分散在其中而调制涂布液的工序,将所述涂布液涂布在电极的活性物质层上的工序,以及从所述涂布的涂布液使所述混合溶剂气化而将其除去的工序,所述不良溶剂的沸点高于所述良溶剂的沸点,通过使所述混合溶剂气化将其除去而形成孔隙,得到多孔质体。
在电极是正极的情况,活性物质层(即、正极活性物质层)可以含有正极活性物质。作为正极活性物质可以列举出例如锂过渡金属氧化物(例如、LiNi1/3Co1/3Mn1/3O2、LiNiO2、LiCoO2、LiFeO2、LiMn2O4、LiNi0.5Mn1.5O4等)、锂过渡金属磷酸化合物(例如、LiFePO4等)等。正极活性物质层中可以含有除活性物质以外的成分,例如导电剂、粘合剂、磷酸锂等。作为导电剂可以很好地使用例如乙炔黑(AB)等的炭黑或其他(例如、石墨等)的碳材料。作为粘合剂可以使用例如聚偏氟乙烯(PVDF)等。
在电极是负极的情况,活性物质层(即、负极活性物质层)可以含有负极活性物质。作为负极活性物质可以列举出例如石墨、硬碳、软碳等碳材料等。负极活性物质层中可以含有除活性物质以外的成分、例如粘合剂、增粘剂等。作为粘合剂可以使用例如苯乙烯丁二烯橡胶(SBR)等。作为增粘剂可以使用例如羧甲基纤维素(CMC)等。
活性物质层典型地是形成在集电体上。作为集电体的例子,可以列举出铝箔、铜箔等。
该二次电池用的电极一体型隔板的制造方法,能够非常容易地制造二次电池的电极一体型隔板,在这一点上非常优异。
实施例
以下对涉及本发明的实施例进行说明,但并不想使本发明受这些实施例限定。
比较例1
在样品瓶中秤量乙烯-乙烯醇共聚物(クラレ社制“エバールL171B”:乙烯含有率27摩尔%、以下记作“EVOH”)1g。向其中添加作为良溶剂的水和正丙醇(nPA)以体积比7:3混合而成的混合溶剂5mL、和作为不良溶剂的γ-丁内酯(GBL)2.1mL。将样品瓶加热到80℃~90℃,搅拌至EVOH在这些溶剂中完全溶解,得到EVOH溶解了的涂布液。接着将所得涂布液冷却到25℃。将该涂布液通过流延涂布到作为基材的铝板上。此时,涂布厚度为100μm。将其放入设定在120℃的热风干燥炉中加热,使良溶剂和不良溶剂气化、除去。像这样在铝板上得到薄膜。
实施例1~12
在样品瓶中秤量乙烯-乙烯醇共聚物(クラレ社制“エバールL171B”:乙烯含有率为27摩尔%、以下记作“EVOH”)1g。向其中添加作为良溶剂的由水和正丙醇(nPA)以体积比7:3混合而成的混合溶剂5mL、和作为不良溶剂的γ-丁内酯(GBL)2.1mL。将样品瓶加热到80℃~90℃,搅拌至EVOH在这些溶剂中完全溶解而得到EVOH溶液。将EVOH溶液冷却到25℃,然后在EVOH溶液中按照表1所示的量加入表1记载的绝缘粒子。将所得混合物使用高速分散机ホモディスパー以旋转速度1000rpm搅拌20分钟,得到了EVOH溶解并且有绝缘粒子分散的涂布液。将所得涂布液流延涂布在作为基材的铝板上。此时的涂布厚度为100μm。将其放入设定在120℃的热风干燥炉中加热,将良溶剂和不良溶剂气化、除去。像这样在铝板上得到薄膜。
〔通过SEM观察进行的评价〕
针对部分实施例和比较例,使用扫描电镜(SEM)观察所得薄膜的截面,确认了薄膜是多孔性的。此外,确认薄膜的表层部中表皮层的形成的有无。作为参考,图1示出了比较例1中得到的薄膜的截面的SEM照片,图2示出了实施例7中得到的薄膜的截面的SEM照片,图3示出了实施例11中得到的薄膜的截面的SEM照片。如图1所示那样,能够确认到尽管比较例1中得到的薄膜是多孔质,但其表层部形成了没有孔的表皮层。另一方面,由图2和图3可知,实施例7和11中得到的薄膜在表层部都具有孔,全部都是多孔质。
〔孔隙率的测定〕
通过将各实施例和比较例中获得的薄膜冲裁成规定尺寸,来制作样品。求出该样品的重量和膜厚。由样品的面积和膜厚,求出样品的体积,算出表观密度。使用构成薄膜的非水溶性高分子和绝缘粒子的真密度、以及它们的含有比例,计算出薄膜的真密度。使用表观密度和真密度通过下述式计算出孔隙率。结果如表1所示。
孔隙率(%)=(1-表观密度/真密度)×100
〔液浸透评价〕
向各实施例和比较例中得到的薄膜的表面滴加有机溶剂(乙醇或碳酸亚丙酯),目视评价其渗入的情况。在有机溶剂浸透到薄膜的背面的情况,可以判断被多孔质化了,没有表皮层。另一方面,在有机溶剂没有浸透的情况,可以判断为形成了表皮层。
表1
Figure BDA0002878675570000161
由表1的结果可以知道,通过本发明,能够抑制表皮层的形成,容易地制造非水溶性高分子的多孔质体。

Claims (4)

1.一种树脂多孔质体的制造方法,包含以下工序:
在含有非水溶性高分子的良溶剂和所述非水溶性高分子的不良溶剂的混合溶剂中溶解所述非水溶性高分子,并且使绝缘粒子分散在其中而调制涂布液的工序,
将所述涂布液涂布在基材上的工序,以及
从所述涂布的涂布液使所述混合溶剂气化而将其除去的工序,
所述不良溶剂的沸点高于所述良溶剂的沸点,
通过使所述混合溶剂气化将其除去而形成孔隙,得到多孔质体。
2.如权利要求1所述的制造方法,所述绝缘粒子是勃姆石粒子或氧化铝粒子。
3.如权利要求1或2所述的制造方法,所述绝缘粒子的长宽比为10以上且40以下。
4.如权利要求1~3的任一项所述的制造方法,所述非水溶性高分子是乙烯-乙烯醇共聚物。
CN202011636740.6A 2020-01-14 2020-12-31 树脂多孔质体的制造方法 Active CN113118005B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-003918 2020-01-14
JP2020003918A JP7340148B2 (ja) 2020-01-14 2020-01-14 樹脂多孔質体の製造方法

Publications (2)

Publication Number Publication Date
CN113118005A true CN113118005A (zh) 2021-07-16
CN113118005B CN113118005B (zh) 2023-02-17

Family

ID=73834201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011636740.6A Active CN113118005B (zh) 2020-01-14 2020-12-31 树脂多孔质体的制造方法

Country Status (5)

Country Link
US (1) US11434343B2 (zh)
EP (1) EP3851188A1 (zh)
JP (1) JP7340148B2 (zh)
KR (1) KR102544659B1 (zh)
CN (1) CN113118005B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276688B2 (ja) 2019-08-29 2023-05-18 トヨタ自動車株式会社 エチレン-ビニルアルコール共重合体の多孔質体の製造方法
JP7240608B2 (ja) * 2019-08-29 2023-03-16 トヨタ自動車株式会社 非水溶性高分子の多孔質体の製造方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450650A (en) * 1963-06-13 1969-06-17 Yuasa Battery Co Ltd Method of making porous bodies
US6287730B1 (en) * 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US20020028320A1 (en) * 2000-04-25 2002-03-07 Yasuo Iwasa Porous resin film and ink jet recording medium
US6464351B1 (en) * 2000-07-27 2002-10-15 Eastman Kodak Company Ink jet printing method
US20050020699A1 (en) * 2001-12-25 2005-01-27 Yasuhide Isobe Inorganic porous fine particles
CN1661829A (zh) * 2004-02-24 2005-08-31 株式会社巴川制纸所 电子部件用隔膜及其制造方法
JP2005238597A (ja) * 2004-02-25 2005-09-08 Terumo Corp シート状多孔質体の製造方法およびシート状多孔質体
JP2006338918A (ja) * 2005-05-31 2006-12-14 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
CN1894029A (zh) * 2003-12-15 2007-01-10 旭化成化学株式会社 多孔成形物及其生产方法
CN101218695A (zh) * 2005-12-08 2008-07-09 日立麦克赛尔株式会社 电化学元件用隔板及其制造方法以及电化学元件及其制造方法
JP2011236292A (ja) * 2010-05-07 2011-11-24 Kri Inc ポリフッ化ビニリデン多孔質体
CN103283061A (zh) * 2010-10-28 2013-09-04 日本瑞翁株式会社 二次电池多孔膜、二次电池多孔膜用浆料以及二次电池
CN104684633A (zh) * 2012-10-02 2015-06-03 捷恩智株式会社 微多孔膜及其制造方法
CN105246984A (zh) * 2013-05-30 2016-01-13 3M创新有限公司 聚(乙烯醇)和二氧化硅纳米粒子多层涂层及方法
JP2018152336A (ja) * 2017-03-10 2018-09-27 ユニチカ株式会社 リチウム二次電池用電極用塗液、リチウム二次電池用電極の製造方法およびリチウム二次電池用電極
PH12019050023A1 (en) * 2018-03-16 2019-07-01 Yamaha Motor Co Ltd Straddled vehicle
JP2019206667A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 水溶性高分子の多孔質体の製造方法
US20210061969A1 (en) * 2019-08-29 2021-03-04 Toyota Jidosha Kabushiki Kaisha Method of producing porous body of ethylene-vinyl alcohol copolymer
CN112442210A (zh) * 2019-08-29 2021-03-05 丰田自动车株式会社 非水溶性高分子的多孔质体的制造方法
CN114369282A (zh) * 2020-10-15 2022-04-19 泰星能源解决方案有限公司 树脂多孔体的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309959A (ja) * 1992-05-06 1993-11-22 Fuji Photo Film Co Ltd 熱転写受像材料
JP2001260520A (ja) * 2000-03-15 2001-09-25 Nichiban Co Ltd インクジェット記録媒体及びその製造方法
JP2002240418A (ja) 2001-02-19 2002-08-28 Toppan Printing Co Ltd インクジェット用記録媒体およびその製造方法
CN101779311B (zh) * 2007-06-06 2013-11-20 帝人株式会社 非水系二次电池隔膜用聚烯烃微多孔膜基材、其制备方法、非水系二次电池隔膜和非水系二次电池
CN103250273B (zh) * 2010-10-07 2016-03-02 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板与二次电池
TWI620373B (zh) * 2013-01-07 2018-04-01 由尼帝佳股份有限公司 鋰二次電池用電極及其製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450650A (en) * 1963-06-13 1969-06-17 Yuasa Battery Co Ltd Method of making porous bodies
US6287730B1 (en) * 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US20020028320A1 (en) * 2000-04-25 2002-03-07 Yasuo Iwasa Porous resin film and ink jet recording medium
US6464351B1 (en) * 2000-07-27 2002-10-15 Eastman Kodak Company Ink jet printing method
US20050020699A1 (en) * 2001-12-25 2005-01-27 Yasuhide Isobe Inorganic porous fine particles
CN1894029A (zh) * 2003-12-15 2007-01-10 旭化成化学株式会社 多孔成形物及其生产方法
CN1661829A (zh) * 2004-02-24 2005-08-31 株式会社巴川制纸所 电子部件用隔膜及其制造方法
JP2005238597A (ja) * 2004-02-25 2005-09-08 Terumo Corp シート状多孔質体の製造方法およびシート状多孔質体
JP2006338918A (ja) * 2005-05-31 2006-12-14 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
CN101218695A (zh) * 2005-12-08 2008-07-09 日立麦克赛尔株式会社 电化学元件用隔板及其制造方法以及电化学元件及其制造方法
JP2011236292A (ja) * 2010-05-07 2011-11-24 Kri Inc ポリフッ化ビニリデン多孔質体
CN103283061A (zh) * 2010-10-28 2013-09-04 日本瑞翁株式会社 二次电池多孔膜、二次电池多孔膜用浆料以及二次电池
CN104684633A (zh) * 2012-10-02 2015-06-03 捷恩智株式会社 微多孔膜及其制造方法
CN105246984A (zh) * 2013-05-30 2016-01-13 3M创新有限公司 聚(乙烯醇)和二氧化硅纳米粒子多层涂层及方法
JP2018152336A (ja) * 2017-03-10 2018-09-27 ユニチカ株式会社 リチウム二次電池用電極用塗液、リチウム二次電池用電極の製造方法およびリチウム二次電池用電極
PH12019050023A1 (en) * 2018-03-16 2019-07-01 Yamaha Motor Co Ltd Straddled vehicle
JP2019206667A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 水溶性高分子の多孔質体の製造方法
US20190367699A1 (en) * 2018-05-30 2019-12-05 Toyota Jidosha Kabushiki Kaisha Method for producing porous material of water-soluble polymer
US20210061969A1 (en) * 2019-08-29 2021-03-04 Toyota Jidosha Kabushiki Kaisha Method of producing porous body of ethylene-vinyl alcohol copolymer
CN112442210A (zh) * 2019-08-29 2021-03-05 丰田自动车株式会社 非水溶性高分子的多孔质体的制造方法
CN114369282A (zh) * 2020-10-15 2022-04-19 泰星能源解决方案有限公司 树脂多孔体的制造方法

Also Published As

Publication number Publication date
JP2021109937A (ja) 2021-08-02
KR20210091665A (ko) 2021-07-22
US20210214516A1 (en) 2021-07-15
US11434343B2 (en) 2022-09-06
JP7340148B2 (ja) 2023-09-07
KR102544659B1 (ko) 2023-06-16
EP3851188A1 (en) 2021-07-21
CN113118005B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN112646423B (zh) 多孔质体的制造方法
KR102335587B1 (ko) 이차전지용 세퍼레이터 및 이차전지
CN113118005B (zh) 树脂多孔质体的制造方法
EP3232494B1 (en) Separator for secondary cell, method for manufacturing separator for secondary cell, and secondary cell
CN112442210A (zh) 非水溶性高分子的多孔质体的制造方法
KR102520618B1 (ko) 세퍼레이터 일체형 전극의 제조 방법
CN114369282B (zh) 树脂多孔体的制造方法
JP7465428B2 (ja) 樹脂多孔質体の製造方法
CN114369283B (zh) 树脂多孔体的制造方法
JP7276691B2 (ja) セパレータ一体型電極の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant