CN113114128A - 基于广义Bouc-Wen逆模型的压电前馈补偿方法 - Google Patents

基于广义Bouc-Wen逆模型的压电前馈补偿方法 Download PDF

Info

Publication number
CN113114128A
CN113114128A CN202110514171.6A CN202110514171A CN113114128A CN 113114128 A CN113114128 A CN 113114128A CN 202110514171 A CN202110514171 A CN 202110514171A CN 113114128 A CN113114128 A CN 113114128A
Authority
CN
China
Prior art keywords
model
inverse
hysteresis
bouc
wen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110514171.6A
Other languages
English (en)
Other versions
CN113114128B (zh
Inventor
张泉
高源蓬
李清灵
尹达一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202110514171.6A priority Critical patent/CN113114128B/zh
Publication of CN113114128A publication Critical patent/CN113114128A/zh
Application granted granted Critical
Publication of CN113114128B publication Critical patent/CN113114128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于广义Bouc‑Wen逆模型的压电前馈补偿方法。针对压电执行器迟滞的率相关性,采用Hammerstein模型来描述压电率相关逆迟滞特性,以广义Bouc‑Wen非对称逆模型表征逆迟滞非线性,以ARX模型表征逆迟滞率相关特性;采用自适应天牛群智能优化算法对模型参数进行辨识;将建立Hammerstein率相关逆迟滞模型与压电执行器级联构成整体线性化系统来对迟滞非线性进行补偿。本发明通过直接建立广义Bouc‑Wen非对称逆迟滞模型和采用自适应天牛群智能优化算法,降低了建模难度和提高了模型准确度,从而使压电执行器能够进行高精度的定位。

Description

基于广义Bouc-Wen逆模型的压电前馈补偿方法
技术领域:
本发明涉及基于广义Bouc-Wen逆模型的压电前馈补偿方法。
背景技术:
在卫星激光通信和空间天文观测等领域中,为了达到秒级甚至是毫秒级的精度,大型光电跟踪系统广泛采用复合轴控制技术,其是实现大范围、高精度跟踪指标的最有效的控制结构。复合轴控制(Compound axis control)是二维关联控制系统的一种实现形式,以快摆镜(Fast Steering Mirror,FSM)为执行机构的控制系统是复合轴系统的精级跟踪系统,系统能够达到的精度主要由快摆镜执行机构决定的。快摆镜机构通常采用音圈电机(Voice Coil Motor,VCM)和压电执行器(piezoelectric actuator,PZT)作为驱动器。相比于前者,后者具有谐振频率高、位移分辨率大的优点,然而其固有的迟滞非线性会对定位精度产生不利影响。学界普遍采用建立前馈补偿器的方法进行压电迟滞补偿,前馈补偿器与被控对象级联构成整体线性化系统。压电执行器的前馈补偿主要有电荷控制补偿和电压控制补偿两种方式。电荷控制补偿方式是通过专门的电荷放大器来对压电执行器迟滞非线性进行抑制。电压控制补偿方式是引入建立好的压电逆迟滞数学模型来补偿迟滞非线性,相比于电荷控制,电压控制不需要额外的电路,且从控制理论的角度来看,电压控制很有意义。
电压控制补偿方式的重点就是压电迟滞模型的建立。从数学特点上来说,压电迟滞曲线具有四点性质:1)多值映射性:相同的输入电压在电压值升高和电压值下降阶段分别对应不同的位移输出;2)非局部记忆性:压电执行器的输出位移既和输入电压的瞬时值相关,又和输出位移的历史极值有关;3)率相关特性:随着输入电压频率的不断增大,压电迟滞曲线呈现频率相关性;4)非对称性:在输入电压升高和输入电压下降两个阶段的电压-位移曲线是不对称的。因此,对于压电陶瓷迟滞曲线的建模要从这四点性质出发才能保证拟合精度。目前,压电迟滞模型的建立和改进基本都是围绕这四点性质进行的。压电迟滞模型主要有微分方程模型和数学算子模型两类。数学算子迟滞模型无法表示压电执行器的动态特征,而微分方程迟滞模型既能表征迟滞的数学特性,还能描述压电执行器的动态特性。有代表性的微分方程迟滞模型是Bouc-Wen模型,其最早是由Bouc于1967年提出的,并在1976年由Wen完善,其将压电执行器等效成一个单自由度的质量-弹簧-阻尼系统。Bouc-Wen模型只利用了一个辅助的微分方程来描述各种迟滞形状,因而受到各类学者的青睐。
传统Bouc-Wen模型只能描述关于原点对称的迟滞曲线,且针对的都是单一频率迟滞曲线,无法满足压电执行器变频控制的要求。虽然可以通过改变模型中的迟滞函数来实现非对称性表征,但是微分方程中过多的未知参数会导致数值解的发散,不利于控制,且非对称模型求逆过程复杂。而且,传统Bouc-Wen模型描述的是固定频率下的压电迟滞曲线,无法表征压电迟滞曲线的率相关性。因此,需要针对上述问题对传统Bouc-Wen模型进行改进,并与压电执行器级联构成整体线性化系统来对迟滞非线性进行补偿。
发明内容:
针对上述应用背景,本发明提出了基于广义Bouc-Wen逆模型的压电动态迟滞前馈补偿方法,包括以下步骤:
1)、根据逆函数定理,建立直接Bouc-Wen逆迟滞模型,并在模型中引入了多项式来表征压电迟滞曲线非对称性;
2)、采用Hammerstein模型来描述压电率相关逆迟滞特性,以广义Bouc-Wen非对称逆模型表征逆迟滞非线性,以ARX模型表征逆迟滞率相关特性;
3)、以模型输出数据与实际采集数据的均方根误差为目标函数,采用自适应天牛群智能优化算法对广义Bouc-Wen逆迟滞模型和ARX率相关模型参数进行辨识;
4)、将建立Hammerstein率相关逆迟滞模型与压电执行器级联构成整体线性化系统来对迟滞非线性进行补偿。
具体地,所述步骤1中:
1)、根据逆函数定理,得到以位移为自变量和以驱动电压为因变量的Bouc-Wen逆迟滞模型,表达式为:
Figure BDA0003061424710000031
u=d1y+d2h (1)
其中,u为驱动电压,h为迟滞状态变量,y为位移,α,β,γ是迟滞曲线形状系数,d1,d2为系数;
2)、为了反映压电迟滞曲线的非对称性质,在逆模型中引入多项式,表达式为:
Figure BDA0003061424710000032
其中,f’和g’是关于y的多项式,α’,β’,γ’是逆迟滞曲线形状系数,pi’,qi’表示多项式f’和g’的系数;
3)、离散化的广义Bouc-Wen逆迟滞模型表达式为:
h(t)-h(t-1)=α[y(t)-y(t-1)]...
-β|[y(t)-y(t-1)]|h(t-1)...
-γ[y(t)-y(t-1)]|h(t-1)|
Figure BDA0003061424710000041
具体地,所述步骤2中:通过串联非线性静态模块和线性动态模块的Hammerstein模型来描述压电逆迟滞非线性,以广义Bouc-wen逆迟滞模型表征逆迟滞静态非线性,以ARX模型表征逆迟滞率相关特性。
ARX模型是离散系统传递函数模型,如式(4)所示:
Figure BDA0003061424710000042
式(4)对应的差分方程如式(5)所示:
out(t)+a1out(t-1)+a2out(t-2)+…+anout(t-n)
=b1in(t-d)+b2in(t-d-1)+…+bmin(t-d-m+1)+ε(t) (5)
其中,in(t)是输入信号,in(t-1)是前一采样时刻输入信号,out(t)是输出信号,out(t-1)是前一采样时刻输出信号,ε(t)为残差信号。
ARX模型的建立是由低频的压电执行器输入输出信号辨识出广义Bouc-Wen逆模型来表征逆迟滞率无关非线性部分,再将扫频压电执行器输出位移信号代入Bouc-Wen逆迟滞模型得到中间量v(t),然后根据v(t)和输入电压u(t)得到ARX模型。
具体地,所述步骤3中:
1):在群体优化算法的启发下,通过对天牛群体觅食行为的模拟来对广义Bouc-Wen逆迟滞模型参数和ARX模型参数进行辨识。假设在D维度待优化问题中,第i只天牛的位置和速度分别表示为Xi=[xi,1,xi,2,…,xi,D]和Vi=[vi,1,vi,2,…,vi,D]。确定在第t次迭代中每只天牛所经过的最佳位置pbest以及群体所发现的最佳位置gbest,通过跟踪这两个最佳位置按照式(6)更新每只天牛的速度和位置。
vi(t)=ωvi(t-1)+c1r1[pbesti-xi(t-1)]+c1r1[gbest-xi(t-1)],
xi(t)=xi(t-1)+λvi(t-1)+(1-k)δ(t-1) (6)
其中,ω为惯性权重系数,c1和c2为正的加速常数,r1和r2为0到1之间均匀分布的随机数,λ为正常数。在天牛群优化中,以每只天牛运动速度的方向表示搜索方向。通过设置每只天牛的位置范围[xmin,xmax],则可以对每只天牛的移动进行适当的限制。
采用线性变化的权重,让惯性权重从最大值ωmax线性减小到最小值ωmin,随算法迭代次数的变化公式为:
Figure BDA0003061424710000051
其中,ωmax,ωmin分别表示ω的最大值和最小值,t表示当前迭代步数,T表示最大迭代步数;
2)、每只天牛的搜索行为是通过迭代机制来模拟的,如式(8)所示:
x(t)=x(t-1)+δ(t),
Figure BDA0003061424710000052
其中,x(t)为第t次迭代天牛的位置,δ(t)表示天牛运动位置的增量,step(t)为第t次迭代天牛的步长,sign(.)为符号函数,f(.)为表示天牛天线处气味强度的目标函数。
天牛左边和右边天线的空间坐标为:
Figure BDA0003061424710000053
Figure BDA0003061424710000054
其中,xr(t)为第t次迭代的天牛右天线空间坐标,xl(t)为第t次迭代天牛左天线的空间坐标,d(t)表示第t次迭代左右天线之间的距离。
天牛天线距离d(t)和步长step(t)需要随着迭代次数的增加而减小,如式(10)和式(11)所示:
step(t)=eta·step(t-1) (10)
d(t)=step(t)/c (11)
其中,c为常数,需要根据实际问题设置。
为了避免算法早熟,采用自适应的衰减因子,如式(12)所示:
Figure BDA0003061424710000061
其中,t表示当前迭代步数,T表示最大迭代步数;
3)、初始化自适应天牛群优化算法的迭代次数,种群数NP,加速常数c1和c2,惯性权重最大值ωmax,惯性权重最小值ωmin,常数λ,初始步长step(1),天线距离衰减因子c,衰减因子初值eta(1),以及每只天牛位置范围。以模型输出电压数据与实际采集数据的均方根误差为目标函数,对Duhem逆模型参数α,β,γ,pi和qi,以及ARX模型参数进行辨识。
具体地,所述步骤4中:基于Hammerstein率相关逆迟滞模型建立了压电执行器动态迟滞前馈补偿器,目标位移通过该前馈补偿器的解算得到压电执行器驱动电压,经过数模转化模块(DA converter,DAC)与压电驱动模块对压电执行器进行控制。
本发明可以避免复杂的正迟滞模型求逆运算,只需要采用智能优化算法辨识出模型参数就可以得到非对称、率相关逆迟滞模型,该模型可以直接作为压电执行器控制系统的前馈补偿器。自适应天牛群优化算法在进行Hammerstein率相关逆迟滞模型参数时不易陷入局部最优,拟合精度高,收敛速度快。通过本发明所提出动态迟滞前馈补偿方法可以实现压电执行器的高精度定位和控制。
附图说明:
图1是基于广义Bouc-Wen逆模型的压电执行器动态迟滞前馈补偿系统结构图。
图2是压电执行器控制系统框图。
图3是0.5Hz频率下广义Bouc-wen逆迟滞曲线与实际逆迟滞曲线。
图4是Hammerstein率相关逆迟滞曲线与实际逆迟滞曲线;其中,图(a)是1Hz频率下曲线;图(b)是10Hz频率下曲线;图(c)是50Hz频率下曲线;图(d)是100Hz频率下曲线。
图5是基于动态迟滞前馈补偿器的实时跟踪及误差曲线。
具体实施方式:
下面结合具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
搭建实际控制系统用于数据采集和压电执行器定位控制。压电执行器控制系统由SGS微位移传感器,SGS信号调理模块,主控模块,压电执行器驱动模块,压电执行器组成,其中主控模块采用半实物实时仿真平台。主控模块产生压电执行器驱动信号,经过驱动模块来控制压电执行器,SGS信号调理模块将检测的实际位移反馈给主控模块,控制系统框图如图2所示。
以最大位移为30μm,最大驱动电压100V的压电执行器为被控对象。首先利用广义Bouc-wen逆模型对Hammerstein动态逆迟滞模型中的非线性部分进行建模。对压电执行器施加最大幅度为80V,频率为0.5Hz的单频变幅值正弦电压信号,采集对应的输出位移信号,采样率为10kHz。采用广义Bouc-wen逆迟滞模型进行该迟滞曲线拟合,模型中的多项式阶数取1。
借助自适应天牛群优化算法辨识模型参数α,β,γ,p0,p1,q1,q0,。设自适应天牛群优化算法的迭代次数为300,种群数NP=120,加速常数c1=2.8,c2=1.3,权重最大值ωmax=0.9,权重最小值ωmin=0.4,λ=0.95,初始步长step(1)=2,c=2,衰减因子初值eta(1)=0.95,位置范围设为[-10,10]。寻优算法的核心问题是选取目标函数:
Figure BDA0003061424710000081
其中,F为模型驱动电压与实际驱动电压的均方根误差,N为数据样本数。自适应天牛群优化算法得到在0.5Hz的单频变幅值正弦电压信号驱动下的广义Bouc-Wen逆迟滞模型参数值如表1所示。
表1广义Bouc-Wen逆迟滞模型参数
Figure BDA0003061424710000082
将表1中的模型参数值代入式(3),得到的逆迟滞拟合曲线,拟合精度为0.3172V,相对误差0.39%,如图3所示。
压电执行器控制系统生成幅值为80V,频率范围为1~100Hz的扫频驱动信号,得到1~100Hz扫频微位移信号。采集的输出位移y(k)代入前文建立的广义Bouc-wen逆迟滞模型得到ARX模型的输入v(k),ARX模型的输出为施加给压电执行器的输入电压u(k)。
动态线性系统的阶次选择2阶,利用自适应天牛群优化算法辨识出式(5)的ARX逆迟滞率相关模型,如式(26)所示:
Figure BDA0003061424710000083
所建立的动态迟滞逆模型可以有效描述出1~100Hz频率范围内压电逆迟滞曲线,将实际采集的逆迟滞曲线与所建立Hammerstein模型拟合的逆迟滞曲线进行比较,如图4所示,拟合逆迟滞曲线与实际曲线的均方根误差和相对误差如表2所示。
表2迟滞曲线拟合误差
Figure BDA0003061424710000091
在搭建的验证平台进行目标位移跟踪试验,验证该动态迟滞前馈补偿器在压电执行器定位中有效性。实时跟踪频率范围为1~100Hz,最大位移为24μm的变频变幅值位移信号,跟踪误差值均方根值为0.2932μm,相对误差为1.22%,有效抑制了压电执行器的迟滞非线性,基于动态迟滞前馈补偿器跟踪和误差曲线如图5所示。

Claims (5)

1.一种基于广义Bouc-Wen逆模型的压电前馈补偿方法,其特征在于包括以下步骤:
1)、根据逆函数定理,建立直接Bouc-Wen逆迟滞模型,并在模型中引入了多项式来表征压电迟滞曲线非对称性;
2)、采用Hammerstein模型来描述压电率相关逆迟滞特性,以广义Bouc-Wen非对称逆模型表征逆迟滞非线性,以ARX模型表征逆迟滞率相关特性;
3)、以模型输出数据与实际采集数据的均方根误差为目标函数,采用自适应天牛群智能优化算法对广义Bouc-Wen逆迟滞模型和ARX率相关模型参数进行辨识;
4)、将建立Hammerstein率相关逆迟滞模型与压电执行器级联构成整体线性化系统来对迟滞非线性进行补偿。
2.根据权利要求1所述的基于广义Bouc-Wen逆模型的压电前馈补偿方法,其特征在于,步骤1)中所述Bouc-Wen逆迟滞模型直接建立过程具体为:
1)、根据逆函数定理,得到以位移为自变量和以驱动电压为因变量的Bouc-Wen逆迟滞模型,表达式为:
Figure FDA0003061424700000011
u=d1y+d2h (1)
其中,u为驱动电压,h为迟滞状态变量,y为位移,α,β,γ是迟滞曲线形状系数,d1,d2为系数;
2)、在逆模型中引入多项式,表达式为:
Figure FDA0003061424700000012
其中,
Figure FDA0003061424700000021
和g是关于y的多项式,α,β,γ是逆迟滞曲线形状系数,pi,qi表示多项式
Figure FDA0003061424700000022
和g的系数;
3)、离散化的广义Bouc-Wen逆迟滞模型表达式为:
h(t)-h(t-1)=α[y(t)-y(t-1)]...-β|[y(t)-y(t-1)]|h(t-1)...-γ[y(t)-y(t-1)]|h(t-1)|
Figure FDA0003061424700000023
3.根据权利要求1所述的基于广义Bouc-Wen逆模型的压电前馈补偿方法,其特征在于,步骤2)中所述的ARX模型是离散系统传递函数模型,如式(4)所示:
Figure FDA0003061424700000024
式(4)对应的差分方程如式(5)所示:
out(t)+a1out(t-1)+a2out(t-2)+…+anout(t-n)
=b1in(t-d)+b2in(t-d-1)+…+bmin(t-d-m+1)+ε(t) (5)
其中,in(t)是输入信号,in(t-1)是前一采样时刻输入信号,out(t)是输出信号,out(t-1)是前一采样时刻输出信号,ε(t)为残差信号;
ARX模型的建立是由低频的压电执行器输入输出信号辨识出广义Bouc-Wen逆模型来表征逆迟滞率无关非线性部分,再将扫频压电执行器输出位移信号代入Bouc-Wen逆迟滞模型得到中间量v(t),然后根据v(t)和输入电压乩(t)得到ARX模型。
4.根据权利要求1所述的基于广义Bouc-Wen逆模型的压电前馈补偿方法,其特征在于,步骤3)中所述自适应天牛群智能优化算法对广义Bouc-Wen逆迟滞模型和ARX率相关模型参数辨识的具体过程为:
1):在群体优化算法的启发下,通过对天牛群体觅食行为的模拟来对广义Bouc-Wen逆迟滞模型参数和ARX模型参数进行辨识,假设在D维度待优化问题中,第i只天牛的位置和速度分别表示为Xi=[xi,1,xi,2,…,xi,D]和Vi=[vi,1,vi,2,…,Vi,D];确定在第t次迭代中每只天牛所经过的最佳位置pbest以及群体所发现的最佳位置gbest,通过跟踪这两个最佳位置按照式(6)更新每只天牛的速度和位置;
vi(t)=ωvi(t-1)+c1r1[pbesti-xi(t-1)]+c1r1[gbest-xi(t-1)],
xi(t)=xi(t-1)+λvi(t-1)+(1-k)δ(t-1) (6)
其中,ω为惯性权重系数,c1和c2为正的加速常数,r1和r2为0到1之间均匀分布的随机数,λ为正常数。在天牛群优化中,以每只天牛运动速度的方向表示搜索方向,通过设置每只天牛的位置范围[xmin,xmax],则对每只天牛的移动进行适当的限制;
采用线性变化的权重,让惯性权重从最大值ωmax线性减小到最小值ωmin,随算法迭代次数的变化公式为:
Figure FDA0003061424700000031
其中,ωmax,ωmin分别表示ω的最大值和最小值,t表示当前迭代步数,T表示最大迭代步数;
2)、每只天牛的搜索行为是通过迭代机制来模拟的,如式(8)所示:
x(t)=x(t-1)+δ(t),
Figure FDA0003061424700000032
其中,x(t)为第t次迭代天牛的位置,δ(t)表示天牛运动位置的增量,step(t)为第t次迭代天牛的步长,sign(.)为符号函数,f(.)为表示天牛天线处气味强度的目标函数;
天牛左边和右边天线的空间坐标为:
Figure FDA0003061424700000041
Figure FDA0003061424700000042
其中,xr(t)为第t次迭代的天牛右天线空间坐标,xl(t)为第t次迭代天牛左天线的空间坐标,d(t)表示第t次迭代左右天线之间的距离;
天牛天线距离d(t)和步长step(t)需要随着迭代次数的增加而减小,如式(10)和式(11)所示:
step(t)=eta·step(t-1) (10)
d(t)=step(t)/c (11)
其中,c为常数,需要根据实际问题设置;
采用自适应的衰减因子,如式(12)所示:
Figure FDA0003061424700000043
其中,t表示当前迭代步数,T表示最大迭代步数;
3)、初始化自适应天牛群优化算法的迭代次数,种群数NP,加速常数c1和c2,惯性权重最大值ωmax,惯性权重最小值ωmin,常数λ,初始步长step(1),天线距离衰减因子c,衰减因子初值eta(1),以及每只天牛位置范围;以模型输出电压数据与实际采集数据的均方根误差为目标函数,对Duhem逆模型参数α,β,γ,pi和qi,以及ARX模型参数进行辨识。
5.根据权利要求1所述的基于广义Bouc-Wen逆模型的压电前馈补偿方法,其特征在于,所述步骤4)中所述的将建立Hammerstein率相关逆迟滞模型与压电执行器级联构成整体线性化系统来对迟滞非线性进行补偿的方法为:基于Hammerstein率相关逆迟滞模型建立了压电执行器动态迟滞前馈补偿器,目标位移通过该前馈补偿器的解算得到压电执行器驱动电压,经过数模转化模块与压电驱动模块对压电执行器进行控制。
CN202110514171.6A 2021-05-12 2021-05-12 基于广义Bouc-Wen逆模型的压电前馈补偿方法 Active CN113114128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110514171.6A CN113114128B (zh) 2021-05-12 2021-05-12 基于广义Bouc-Wen逆模型的压电前馈补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110514171.6A CN113114128B (zh) 2021-05-12 2021-05-12 基于广义Bouc-Wen逆模型的压电前馈补偿方法

Publications (2)

Publication Number Publication Date
CN113114128A true CN113114128A (zh) 2021-07-13
CN113114128B CN113114128B (zh) 2022-07-29

Family

ID=76721928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110514171.6A Active CN113114128B (zh) 2021-05-12 2021-05-12 基于广义Bouc-Wen逆模型的压电前馈补偿方法

Country Status (1)

Country Link
CN (1) CN113114128B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460847A (zh) * 2022-01-28 2022-05-10 哈尔滨理工大学 一种不对称电压驱动的压电陶瓷驱动器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707760A (zh) * 2017-02-17 2017-05-24 南京理工大学 一种用于压电驱动器动态迟滞补偿的非线性逆控制方法
CN109839823A (zh) * 2019-01-15 2019-06-04 中国科学院西安光学精密机械研究所 压电变形镜的异步迟滞补偿-线性二次型h∞控制方法及系统
CN110336484A (zh) * 2019-06-20 2019-10-15 华侨大学 一种压电陶瓷迟滞非线性的多项式拟合修正方法
DE102018212508A1 (de) * 2018-07-26 2020-01-30 Carl Zeiss Smt Gmbh Spiegel, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage, sowie Verfahren zum Betreiben eines deformierbaren Spiegels
CN111173573A (zh) * 2020-01-08 2020-05-19 上海电力大学 一种汽轮机调节系统功率对象模型的辨识方法
CN111413869A (zh) * 2020-03-18 2020-07-14 紫光云技术有限公司 一种基于模型的压电陶瓷驱动器迟滞补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707760A (zh) * 2017-02-17 2017-05-24 南京理工大学 一种用于压电驱动器动态迟滞补偿的非线性逆控制方法
DE102018212508A1 (de) * 2018-07-26 2020-01-30 Carl Zeiss Smt Gmbh Spiegel, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage, sowie Verfahren zum Betreiben eines deformierbaren Spiegels
CN109839823A (zh) * 2019-01-15 2019-06-04 中国科学院西安光学精密机械研究所 压电变形镜的异步迟滞补偿-线性二次型h∞控制方法及系统
CN110336484A (zh) * 2019-06-20 2019-10-15 华侨大学 一种压电陶瓷迟滞非线性的多项式拟合修正方法
CN111173573A (zh) * 2020-01-08 2020-05-19 上海电力大学 一种汽轮机调节系统功率对象模型的辨识方法
CN111413869A (zh) * 2020-03-18 2020-07-14 紫光云技术有限公司 一种基于模型的压电陶瓷驱动器迟滞补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张泉: "空间大口径快摆镜机构非线性补偿及闭环控制技术研究", 《中国优秀博硕士学位论文全文数据库(博士)基础科学辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460847A (zh) * 2022-01-28 2022-05-10 哈尔滨理工大学 一种不对称电压驱动的压电陶瓷驱动器

Also Published As

Publication number Publication date
CN113114128B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN109839823B (zh) 压电变形镜的异步迟滞补偿-线性二次型h∞控制方法及系统
JP4997103B2 (ja) サーボ機構制御系のための適応コマンドフィルタリング
CN111142404A (zh) 一种基于压电陶瓷驱动的微定位平台及其建模与控制方法
CN110154028A (zh) 机械臂无模型自适应积分终端滑模控制方法
CN104796111A (zh) 一种用于动态迟滞系统建模与补偿的非线性自适应滤波器
CN101986564A (zh) 基于Backlash算子和神经网络的自适应滤波器
CN113241973A (zh) S型滤波器迭代学习控制直线电机轨迹跟踪控制方法
CN113114128B (zh) 基于广义Bouc-Wen逆模型的压电前馈补偿方法
Qin et al. Direct inverse hysteresis compensation of piezoelectric actuators using adaptive Kalman filter
CN105353610A (zh) 基于kp模型的磁控形状记忆合金执行器建模方法
CN113110064A (zh) 基于Duhem逆模型的压电动态迟滞前馈补偿方法
CN112947083B (zh) 一种基于磁悬浮控制系统的非线性模型预测控制优化方法
CN110045603B (zh) 压电陶瓷驱动部件变载荷环境下的鲁棒自适应控制方法
Zhang et al. Adaptive compound control based on generalized Bouc–Wen inverse hysteresis modeling in piezoelectric actuators
Lin et al. Tuning PID control parameters for micro-piezo-stage by using grey relational analysis
CN112835295A (zh) 基于pi模型的压电陶瓷执行器参数辨识和复合控制方法
CN113009830A (zh) 一种压电作动器的非线性建模及控制方法
CN111796518B (zh) 磁控形状记忆合金执行器位移控制方法
CN114077196A (zh) 一种基于改进Prandtl-Ishlinskii模型的压电驱动器复合控制方法
CN114137835B (zh) 基于b-w模型的压电陶瓷执行器参数辨识复合控制方法
CN113110105B (zh) 一种基于逆补偿和扰动触发的压电执行器控制方法
CN114296349B (zh) 一种纳米定位平台的磁滞控制方法和装置
Yi et al. Reinforcement-Learning-Based Active Disturbance Rejection Control of Piezoelectric Actuators
Wang et al. Rate-dependent modeling and tracking control for piezoelectric micro-positioning platform
CN114609988B (zh) 一种基于改进推理控制器的大滞后系统控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant