CN112771201A - 等离子体增强原子层沉积(peald)设备 - Google Patents

等离子体增强原子层沉积(peald)设备 Download PDF

Info

Publication number
CN112771201A
CN112771201A CN201980065060.2A CN201980065060A CN112771201A CN 112771201 A CN112771201 A CN 112771201A CN 201980065060 A CN201980065060 A CN 201980065060A CN 112771201 A CN112771201 A CN 112771201A
Authority
CN
China
Prior art keywords
substrate
receptacle
vacuum
substrate carrier
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980065060.2A
Other languages
English (en)
Inventor
J·帕茨谢德尔
H·罗尔曼
J·维查尔特
F·布里特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Alpha Technology
Evatec AG
Original Assignee
Swiss Alpha Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Alpha Technology filed Critical Swiss Alpha Technology
Publication of CN112771201A publication Critical patent/CN112771201A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

在真空接受器(1)内,进行等离子体增强原子层沉积(PEALD),其中前体气体从前体气体入口(13)进入,且单分子层通过吸附沉积在基体(4)上。随后,反应气体通过反应气体入口(15)进入,且基体(4)上的单分子层反应由UHF等离子体(PLA)增强,UHF等离子体产生沿几何轨迹(L)分布,几何轨迹(L)围绕基体载体(3)以及因此该载体上的基体(4)。

Description

等离子体增强原子层沉积(PEALD)设备
技术领域
本发明涉及等离子体增强原子层沉积(PEALD)设备,以及包括基体和由PEALD在其上沉积的层的装置的制造方法。通过原子层沉积,通过吸附来沉积分子层。
背景技术
在三维结构的非常小的(至亚纳米级)结构上进行大规模的工业层沉积是非常苛刻的目标。
根据本发明,通过等离子体增强原子层沉积(PEALD)设备解决了该目的,该设备包括:
•真空接受器;
•来自真空接受器的至少一个可控泵送端口;
•与接受器的内部连通的至少一个可控等离子体源;
•通向所述接受器的内部的至少一个可控前体气体入口;
•通向所述接受器的内部的至少一个可控反应气体入口;
•所述接受器中的基体载体。
至少一个等离子体源是UHF等离子体源,且构造成在真空接受器中产生沿在基体载体的周边周围的轨迹(locus)分布的等离子体。
根据本发明的设备提供了较短的PEALD总体处理时间,并因此提供了高产量。这主要是由于以下事实:该设备构造成在一个普通的真空接受器中执行所有PEALD步骤,并提供高效的氧化。
为了充分理解以下说明,我们简要概述了根据本发明的PEALD沉积方法。
通常首先对待处理的基体的表面进行预处理,即与至少一种反应气体反应,所述反应气体可包含例如元素氧、氮、碳中的至少一种。因此,为随后的分子层沉积(ALD)创造了最佳的沉积条件。通过以等离子体增强的方式(因此也可通过所述可控等离子体源)执行该初始步骤(实际上是为随后的ALD沉积提供最佳的起始条件),也可显著改善和缩短该初始步骤。
在停止反应气体馈送并禁用可控等离子体源之后,然后泵送真空接受器,将包含金属的前体气体馈送到真空接受器中,且含金属的前体的单分子层以自限性方式吸附在基体的预处理表面上。一用吸附的分子使相应的表面饱和,吸附就停止。
在从真空接受器中泵送其余的前体气体之后,利用含有例如元素氧、氮、碳、氢中至少一种的反应气体,所得的含金属表面发生反应,并由所述等离子体源的等离子体增强。
通过吸附进行分子层沉积以及随后反应的步骤可在真空接受器中重复多于一次。因此,如果完全进行,则重复的反应步骤和/或初始反应步骤可使用相同或不同的反应气体。因此,该设备可包括多于一个的可控反应气体入口。
类似地,如果要沉积多个分子层,这可用不同的前体气体来完成。因此,该设备可包括多于一个的可控前体气体入口。
发明内容
定义
在整个本说明书和权利要求书中,我们理解UHF(超高频)频率f下,对此有效的是:
Figure 113648DEST_PATH_IMAGE001
定义
在整个本说明书和权利要求书中,我们理解在由PEALD设备的基体载体保持或保持在其上的“基体”下是一个或多于一个的工件。同时经PEALD处理的此类工件的整体称为“基体”。不论基体是由单个工件还是由多于一个的工件组成,一旦将其保持在基体载体上,其或它们通常都限定了此类基体的延伸的整个表面,该表面暴露于PEALD处理并因此暴露于真空接受器中的处理空间。
在根据本发明的设备的一个实施例中,可控等离子体源为电子回旋加速器共振(ECR)源。这另外改善了一个或多个反应步骤的效率。
在根据本发明的设备的一个实施例中,等离子体源包括大量UHF电源,每个UHF电源经由相应的联接区域例如通过真空接受器的壁直接UHF联接到真空接受器的内部空间。因此,实际上,基体载体的周向范围的每相等单位,一个等离子体源在不同位置处通过联接区域直接联接到真空接受器的内部空间,由此对于ECR等离子体源,ECR永磁布置全沿所述轨迹分布。
在根据本发明的设备的一个实施例中,联接区域包括熔融石英窗,该熔融石英窗相对于UHF电源密封真空接受器的内部。
在根据本发明的设备的一个实施例中,等离子体源包括全沿轨迹分布的波导布置,并包括进入真空接受器的一个或多个联接区域,其全沿基体的周边分布,且还包括至少一个UHF功率输入。
由此,实现了沿基体的相应表面的反应效果的均匀分布。
在根据本发明的设备的一个实施例中,在基体载体上的基体具有待PEALD涂覆的延伸表面,该延伸表面暴露于真空接受器中的处理空间,所述轨迹位于处理空间周围。在该空间中,提供了至少一个可控反应气体入口以及至少一个可控前体气体入口,且基体载体上的基体的表面暴露于该空间以进行PEALD。
在根据本发明的设备的一个实施例中,波导布置包括多于一个的不同的波导节段,每个波导节段包括至少一个UHF功率输入。从而可控制电磁场沿基体的分布。
在根据本发明的设备的一个实施例中,波导布置由至少一个中空波导形成,且至少一些联接区域包括在至少一个中空波导中的狭缝。如果波导布置由单个波导形成,则这些狭缝沿该波导分布。如果波导布置包括多于一个的不同波导节段,则一个或一个所述狭缝设在每个波导节段处。
在根据本发明的设备的一个实施例中,真空接受器具有中心轴线,且包括在中心轴线的方向上交错的至少两个所述波导布置。
在根据本发明的设备的刚刚所述实施例的一个实施例中,沿中心轴线方向看,至少两个波导布置中的一个的至少一个UHF功率输入和至少两个波导布置中的另一个的至少一个功率输入定位成相互成角度地移位。从而变得可能使所得等离子体密度沿在基体载体的周边周围的轨迹均一化。
在根据本发明的设备的刚刚所述的实施例的一个实施例中,基体载体限定基体平面,基体载体上的基体沿基体平面延伸,且包括在垂直于基体平面的方向上交错的至少两个所述的波导布置。
在根据本发明的设备的刚刚所述实施例的一个实施例中,朝基体平面的方向看,至少两个波导布置中的一个的至少一个UHF功率输入和至少两个波导布置中的另一个的至少一个功率输入定位成相互成角度地移位。
在根据本发明的设备的一个实施例中,真空接受器具有中心轴线,至少一些狭缝限定相应的狭缝开口表面,其上的中心法线指向中心轴线。从处理空间朝着处于处理位置的基体载体看,真空接受器的内壁通常沿圆形轨迹、椭圆轨迹、多边形轨迹延伸,从而尤其是正方形或二次轨迹。因此,很好地限定了中心轴线。基体载体限定基体平面,基体载体上的基体沿该基体平面延伸。基体载体通常且在处理位置相对于中心轴线居中,且基体平面垂直于所述中心轴线。
因此,在根据本发明的设备的一个实施例中,基体载体限定基体平面,基体载体上的基体沿基体平面延伸,且中心轴线垂直于基体平面。
在根据本发明的设备的一个实施例中,基体载体限定基体平面,基体载体上的基体沿该基体平面延伸。所述的至少一些狭缝限定相应的狭缝开口表面,其上的中心法线平行于基体平面。
在根据本发明的设备的一个实施例中,波导布置的中空波导的截面区域具有垂直于中心轴线和/或平行于基体平面的对称平面或公共对称平面,且至少一些狭缝偏离对称平面或公共对称平面。
在根据本发明的设备的刚刚所述实施例的一个实施例中,一些所述狭缝从相应的对称平面或从公共对称平面偏移到一侧,其它所述狭缝偏移到另一侧。
在根据本发明的设备的一个实施例中,刚刚所述的狭缝交替地偏移到相应对称平面或公共对称平面的一侧和另一侧。
在根据本发明的设备的一个实施例中,波导布置包括具有矩形内部截面的中空波导或由中空波导组成。
在根据本发明的设备的一个实施例中,波导布置包括中空波导或由中空波导组成,且中空波导的内部相对于真空接受器的内部真空密封。
在根据本发明的设备的一个实施例中,所述狭缝相对于真空接受器的内部真空密封。
在根据本发明的设备的一个实施例中,狭缝由熔融石英窗相对于真空接受器的内部真空密封。
在根据本发明的设备的一个实施例中,UHF等离子体源是2.45 GHz的等离子体源。
在根据本发明的设备的一个实施例中,波导布置包括线性延伸的波导区段或由线性延伸的波导区段组成。
在根据本发明的设备的一个实施例中,波导布置位于真空接受器的外部,且UHF经由联接区域与真空接受器的内部连通。
在根据本发明的设备的一个实施例中,基体载体限定基体平面,基体载体上的基体沿该基体平面延伸,所述轨迹沿平行于基体平面的平面延伸。
在根据本发明的设备的一个实施例中,波导布置作为一个不同的部分可从真空接受器中去除。
在根据本发明的设备的一个实施例中,等离子体源是ECR等离子体源,且包括全沿所述轨迹分布的永磁体布置。
在根据本发明的设备的一个实施例中,等离子体源包括与波导布置相邻并沿波导布置的永磁体布置。
在根据本发明的设备的一个实施例中,波导布置由至少一个中空波导组成或包括至少一个中空波导。永磁体布置包括一个磁极性的外磁极区域和另一磁极性的内磁极区域。外极区域与至少一个中空波导的中空内部空间对准地延伸,内极区域远离波导布置但与联接区域相邻地延伸。
根据本发明的设备的一个实施例包括等离子体点火器布置,其包括点火器闪光灯。
在根据本发明的设备的一个实施例中,磁体布置作为一个不同的部分可从真空接受器中去除。
根据本发明的设备的一个实施例包括至少一个前体储器,该至少一个前体储器包含包括金属的前体,且可操作地连接到至少一个可控前体气体入口。如果提供了多于一个的前体储器,且分别可操作地连接到相应可控的前体气体入口,则这些前体储器可包含不同的前体。
在根据本发明的设备的一个实施例中,所述金属是铝。
根据本发明的设备的一个实施例包括至少一个反应气体储箱,该至少一个反应气体储箱操作性地连接到至少一个可控反应气体入口。如果提供分别可操作地连接到相应的可控反应气体入口的多于一个的反应气体储器,则这些反应气体储器可包含不同的反应气体。
在根据本发明的设备的一个实施例中,所述反应气体包含元素氧、氮、碳、氢中的至少一种。
在根据本发明的设备的一个实施例中,至少一个前体气体入口相对于处于处理位置的基体载体上的基体居中并朝着基体排放。
在根据本发明的设备的一个实施例中,至少一个可控前体气体入口和至少一个可控反应气体入口相对于处于处理位置的基体载体上的基体居中且朝着基体排放。
在根据本发明的设备的一个实施例中,具有在处理位置上的基体的基体载体在真空接受器中限定处理隔室,且其中对于处理隔室容积与待在基体载体上进行PEALD处理的基体的顶视表面积之比
Figure 660167DEST_PATH_IMAGE002
有效的是:
Figure 833659DEST_PATH_IMAGE003
优选地
Figure 844341DEST_PATH_IMAGE004
因此,举例来说,如果要处理结构化或非结构化的200 mm晶圆,则顶视表面积为102∙π cm2。5升的处理隔室满足上述条件,其比例
Figure 936930DEST_PATH_IMAGE002
变为
Figure 33062DEST_PATH_IMAGE005
。请注意,在基体的延伸表面上所述顶视表面积不取决于所述延伸表面是三维结构、弯曲的还是平坦的。处理隔室的容积相对于基体范围非常小,这缩短了泵送时间跨度,分子层吸附时间跨度,反应时间跨度,并节省了宝贵的前体气体。
在根据本发明的设备的一个实施例中,每当基体载体上的基体处于处理位置时,包围真空接受器中的处理空间的处理隔室通过可控压力级与真空接受器中的泵送隔室分开。处理隔室可构造成具有最佳的小容积。一旦反应且分子层吸附分别终止,则除去或打开压力级,且可通过从前述处理隔室到泵送隔室以及其中至少一个受控的泵送端口之间的敞开流动连通来建立前述处理隔室的快速泵送。泵送隔室可构造成最佳地大以容纳至少一个大的受控泵送端口。
在根据本发明的设备的一个实施例中,压力级是密封件,在一个实施例中是非接触式流量限制器。在后一种情况下,在建立如所述的压力级时可避免基体的任何振动负载。
在根据本发明的设备的一个实施例中,基体载体可控制地在加载/卸载位置和PEALD处理位置之间移动。
根据本发明的设备的一个实施例包括可操作地联接到基体载体的可控地可移动的基体装卸器布置。
根据本发明的设备的一个实施例包括在真空接受器中的至少一个基体装卸开口。
根据本发明的设备的一个实施例包括与至少一个基体装卸开口协作的双向基体装卸器。
根据本发明的设备的一个实施例包括在真空接受器中的至少两个基体装卸开口、与至少两个基体装卸开口之一协作的输入基体装卸器,以及与至少两个基体装卸开口中的另一个协作的输出基体装卸器。
在根据本发明的设备的一个实施例中,输入基体装卸器和输出基体装卸器两者均由基体传送器共同实现。这样的基体传送器通过至少两个基体装卸开口中的一个将未处理的基体运送进入真空接受器中,因此充当输入基体装卸器,且同时通过第二基体装卸开口从真空接受器中去除尚未处理的基体,因此充当输出基体装卸器。
在根据本发明的设备的一个实施例中,诸如计算机的定时控制器,也称为计时器单元,至少可操作地连接到通向所述至少一个前体气体入口的控制阀布置、通向所述至少一个反应气体入口的控制阀布置、所述至少一个等离子体源(以便在反应空间中启用/禁用等离子体源效应),以及至少一个可控泵送端口(以启用/禁用对真空接受器的泵送效应)。
通过定时单元执行根据本发明的整个设备的定时控制,例如以实践下面所述的方法及其变型。
除非矛盾,否则可组合根据本发明的设备的所述任何数量的实施例。
本发明还涉及一种制造带有由PEALD在其上沉积的层的基体的方法,该方法包括:
(0)在接受器中提供基体;
抽空接受器;
(1)将前体气体送入抽空的接受器
且通过吸附使来自前体气体中的材料的分子层沉积在基体上;
(2)从接受器中泵送其余的前体气体;
(3)点燃接受器中的等离子体,并使在基体上沉积的分子层与反应气体进行等离子体增强反应,
(4)泵送接受器,以及
(5)从接受器中去除基体。
在根据本发明的方法的一种变型中,该方法借助于根据本发明的设备或借助于其至少一个实施例来执行。
在根据本发明的方法的一种变型中,步骤(1)至(4)在步骤(0)之后且在步骤(5)之前重复至少一次。从而使多于一个的分子层沉积并反应。
在根据本发明的方法的一种变型中,步骤(1)的重复通过在至少一些重复步骤(1)期间馈送不同的前体气体来进行。因此,多于一个的分子层中的至少一些可为不同的材料。
在根据本发明的方法的一种变型中,步骤(3)的重复通过在至少一些重复步骤(3)期间馈送不同的反应气体来进行。因此,至少一些吸附的分子层可不同地反应。
在根据本发明的方法的一种变型中,在不点燃等离子体的情况下执行至少一些重复步骤(3)。
根据本发明的方法的一种变型包括在步骤(0)之后并且在步骤(1)之前执行步骤(0a),在该步骤(0a)中,使基体的表面与反应气体反应。
分子层沉积(ALD)通常需要预处理的沉积表面。这可实现为,根据步骤(0)提供到接受器中的基体已经提供了已经预处理的,即反应的表面,如在将基体馈送到接受器中之前实现的那样,或根据刚刚所述的变型,通过在反应气体气氛中进行反应,在作为初始的预处理步骤将基体提供到其中之后,在抽空的接受器中实现。
在根据本发明的方法的一种变型中,在步骤(0a)中点燃等离子体。
在根据本发明的方法的一种变型中,步骤(0a)中的反应气体不同于至少一个步骤(3)中的反应气体。
在根据本发明的方法的一种变型中,步骤(0a)中的反应气体和至少一个步骤(3)中的反应气体是相等的。
在根据本发明的方法的一种变型中,步骤(1)或重复步骤(1)中的至少一个中的前体气体是TMA。
在根据本发明的方法的一种变型中,一种或多种反应气体包含元素氧、氮、碳、氢中的至少一种。
在根据本发明的方法的一种变型中,所述步骤(1)或重复步骤(1)中的至少一个在有效的时间间隔T1中执行:
Figure 922828DEST_PATH_IMAGE006
优选地
Figure 788016DEST_PATH_IMAGE007
在根据本发明的方法的一种变型中,步骤(2)或重复步骤(2)中的至少一个在有效的时间间隔T2中执行:
Figure 926873DEST_PATH_IMAGE008
优选地
Figure 447984DEST_PATH_IMAGE009
在根据本发明的方法的一种变型中,步骤(3)或重复步骤(3)中的至少一个在有效的时间间隔T3中执行:
Figure 697700DEST_PATH_IMAGE010
优选地
Figure 682974DEST_PATH_IMAGE011
在根据本发明的方法的一种变型中,步骤(4)或重复步骤(4)中的至少一个在有效的时间间隔T4中执行:
Figure 992732DEST_PATH_IMAGE012
优选地
Figure 250407DEST_PATH_IMAGE013
根据本发明的方法的一种变型包括在步骤(0)之后并且在步骤(1)之前执行步骤(0a),在该步骤(0a)中,使基体的表面与反应气体反应,步骤(0a)因此在有效的时间间隔T0a中执行:
Figure 303814DEST_PATH_IMAGE014
优选地
Figure 143594DEST_PATH_IMAGE015
根据本发明的方法的一种变型包括在步骤(0)和步骤(1)之间和/或步骤(2)和步骤(3)之间从处理空间到真空接受器中的泵送空间建立较高的气流阻力,并在步骤(1)和步骤(2)之间和/或步骤(3)和步骤(4)之间从处理空间到泵送空间建立较低的气流阻力。
根据本发明的方法的一种变型包括产生在步骤(3)中点燃的等离子体,该等离子体沿在基体的周边周围的轨迹分布。
除非矛盾,否则可组合根据本发明的方法的任何数量的变型。
本发明还涉及一种制造装置的方法,该装置包括根据所述的本发明的方法或其至少一个变型的带有由PEALD在其上沉积的层的基体。
本发明的不同方面及其组合,以及现今实现的这些方面和组合以概括的方式在说明书的结尾列出,且在阅读了随后的实施例的更详细的说明之后将得到更好的理解。
附图说明
现在,按本领域技术人员所需,将借助于附图进一步举例说明本发明。
附图示出:
图1:示意性且部分以框图的形式示出根据本发明的设备的主要结构,该设备适于操作根据本发明的方法;
图2:根据本发明的设备实施例中的等离子体源的实施例的示意性且简化且局部剖切的透视图;
图3:根据本发明的设备实施例的等离子体源处的多个波导的示意性且简化的交错联接区域;
图4:根据本发明的设备实施例的等离子体源处的多个波导的示意性且简化的交错UHF电源位置;
图5:本发明的设备的实施例的波导布置的示意性和简化的截面顶视图;
图6:图5的实施例的具有单个联接区域的波导布置的透视图;
图7:示意性地并简化示出图4和图5的实施例的波导布置的一部分,其具有多于一个的联接区域;
图8:根据本发明的设备的其它实施例的波导布置的另一实现形式;
图9:示意性地并简化示出类似于图8所示,在根据本发明的设备的其它实施例中,将UHF功率馈送到真空接受器;
图10:示意性地并简化示出根据本发明的设备的其它实施例中的包括中空波导的波导布置的实现;
图11:类似于图10所示,根据本发明的设备的其它实施例中的波导布置的实现;
图12:根据本发明的设备的其它实施例的通过联接区域的简化且示意性的截面;
图13:简化且示意性地示出在根据本发明的设备的实施例中沿波导布置的联接狭缝的定位;
图14:在顶视图中,示意性地并简化示出根据本发明的设备的实施例中的弯曲波导布置的实现;
图15:示意性地并简化示出根据本发明的设备的实施例的ECR等离子体源;
图16:示意性地并简化示出根据本发明的设备的实施例处的前体气体和反应气体入口布置;
图17和图18:示意性并简化示出根据本发明的设备的实施例中的其它前体气体和反应气体入口布置;
图19和图20:在根据本发明的设备的实施例中,处理空间与泵送空间的最简化的,一般的和示意性的受控分离;
图21至图25:可在根据本发明的设备的实施例中提供的最示意性和简化的基体装卸器布置;
图26:示意性地并简化示出组合了所述实施例的根据本发明的设备的实施例;
图27:示意性地并且以透视图简化示出在根据本发明的设备的实施例中基体装卸器和基体载体的协作,例如图26的实施例;
图28:根据本发明且可由根据本发明的设备执行的方法的流程图。
具体实施方式
根据图1,根据本发明的设备包括真空接受器1。在真空接受器1内,基体载体3至少在PEALD处理期间将基体4保持在处理位置,其中基体的待PEALD处理的表面暴露于真空接受器1中的处理空间TS。UHF等离子体源5与真空接受器1的内部空间操作连接,且构造成在处理空间TS中产生全沿轨迹L分布的等离子体PLA,该轨迹沿虚线示意性地示出,沿基体载体3的周边延伸,如图1中示意性地示出的,即沿要在基体载体3上进行PEALD处理的基体4的周边。
等离子体PLA不必一定具有全沿轨迹L均匀的等离子体密度,而是也可具有全沿轨迹L变化的密度,例如具有周期性变化的密度。为了改善等离子体效应在基体4上的均匀性,人们甚至可旋转基体4,如在W处示意性示出的。
借助于可控基体装卸器布置7,通过真空接受器1的壁中的相应一个或多于一个装卸开口(图1中未示出),在有或没有基体载体3的情况下将基体运送到处理位置且从处理位置运送基体。
通向真空接受器1的可控泵送端口9由控制阀布置10或可控泵送端口9可操作地连接到的泵送布置11的直接控制来控制。
可由可控阀布置14控制的可控前体气体入口13和可由可控阀布置16控制的可控反应气体入口15在真空接受器1的处理空间TS中的排放,且可分别连接到前体储器布置17和反应气体储箱布置19。
计时器单元21,例如计算机,与基体载体3协作,经由可控的泵送端口9来控制泵送真空接受器1的定时,经由可控的前体气体入口13控制等离子体源5的操作、前体气流,经由可控反应气体入口15控制反应气流,经由可控基体装卸器布置7控制基体装卸。
图2示意性地且简化地并以局部剖切的透视图示出圆柱形真空接受器1。等离子体源5包括一个或(如示出的)多于一个的波导布置25,该波导布置沿真空接受器1的外表面环绕基体载体3的周边,如举例说明的那样。每个波导布置25包括沿真空接受器1成环的一个联接区域,或如图2所示,沿各个回路25分布的多个联接区域27。在联接区域27处,UHF功率从一个或多于一个的波导布置回路25联接到真空接受器的处理TS中。
真空接受器1可具有沿圆形、椭圆形、多边形,尤其是正方形或二次轨迹延伸的内部截面形状。因此,从真空接受器1的顶部看,波导布置25的一个或多于一个回路的形状是沿图2的方向S看的。波导布置25的每个回路由至少一个UHF电源(图2中未示出)馈电。
沿波导布置25的范围L的联接区域27的轨迹可导致等离子体密度沿轨迹L的不均匀分布。如果提供两个或多于两个的波导布置25,每个沿相应的轨迹L分布,则如图2的方向S所示,波导布置25的联接区域27可沿轨迹L相互位移。这在图3中由相等形状的联接区域的位移d示意性地表示。
每当波导布置25在沿轨迹L的区域X处提供UHF功率时,联接到真空接受器1中的功率就沿轨迹L从随后的联接区域27到随后的联接区域27减小。如果提供两个或多于两个的波导布置25,每个沿相应轨迹L分布,则如图2的方向S所示,以及图4的示意图中的D所述,向相应波导布置25提供UHF功率的区域X1和X2可以沿着轨迹L相互移位。在图4中,定性地示出由相应的波导布置25沿轨迹L的范围输送到真空接受器1的UHF功率P1和P2的趋势。可看出,从一个波导布置25耦合到真空接受器1中的UHF功率的衰减由来自另一个波导布置25的UHF功率补偿。
因此,通过调整或选择沿真空接受器1放置在彼此上的至少两个波导布置25的联接区域27和/或UHF电源区域X(D)的相互位移d,可优化沿轨迹L的等离子体密度的均匀性。请注意,如果根据图10的实施例构造至少一个例如图2的波导布置25,则仅通过相对地调节两个波导布置25的位移,就可能调整联接区域和/或UHF供应区域的相互位置。
图5以示意性且简化的截面顶视图示出波导布置25,其包括沿矩形截面真空接受器1的单个环形波导28作为实例。波导28由UHF电源30馈电。如虚线所示,多于一个的UHF电源30可向一个波导28馈电,和/或一个或多于一个的UHF电源可在不同的馈电区域或位置26向波导28馈电。
如图6中示意性示出的,联接区域27可由单个环形联接区域来实现,或如图7所示,可由沿波导布置25的范围分布的多于一个(例如多个)联接区域来实现。
图8示出根据本发明的设备的另一实施例的波导布置25的另一实现形式。在此,波导布置25包括多于一个的不同的波导28,每个波导均由至少一个UHF电源30馈电。
因此,类似于根据图6的实施例的联接区域27,每个单个波导28可由单个连续联接区域UHF联接到真空接受器1的内部,或类似于图7中由多于一个的联接区域27UHF联接到真空接受器1的内部,实际上联接到其中的处理空间TS。而且,在该实施例中,多于一个的UHF电源30可连接到一些或全部波导28,和/或一个UHF电源30可连接到多于一个的波导28,和/或一个UHF电源30可在不同的馈电位置26处连接到波导28之一。在根据图8的实施例的一个极端中,离散波导28的范围实际上减小到零,且UHF功率由多个UHF电源30直接耦合到真空接受器的处理空间TS。在图9中示意性地示出这样的实施例。穿过真空接受器1的壁的连接区域在图9中以参考数字27示意性地示出。
因此,根据该实施例,不提供波导28。UHF等离子电源相对于基体载体3均匀地分布,即,在基体载体3的周向范围的每相等单位L设置一个等离子电源30的周边。
如果基体载体3的周向范围等于所述单位L,则仅将提供一个UHF电源30。
因此,单位L选择为至少40 cm或至少50 cm或至少60 cm或甚至至少100 cm。可选择的单位L越大,对于基体载体的周向范围的给定范围,要提供的UHF电源就越少。请注意,将在以后论述的永磁体布置36(如果提供)全沿基体载体3的周边,即沿待沿其产生等离子体的轨迹,进行延伸或分布。借助于提供这种永磁体布置36,一个或多个等离子体源成为一个或多个电子回旋加速器共振(ECR)-UHF等离子体源。
一个或多个联接区域27从而可为UHF号角天线的输出区域。
考虑到要耦合到真空接受器1的处理空间TS中的所需UHF功率和待施加的UHF功率,所述的一个或多于一个波导布置25主要实现为中空波导28,如图10所示。可利用包括中空波导28或由中空波导组成的相应波导布置25来实现如图2至图9所示的所有实施例。一个或多于一个联接区域27在一个或多于一个中空波导28的壁中分别包括一个或多于一个联接狭缝32。如后所述,这些狭缝由低损耗的介电窗所覆盖,尤其是熔融石英,且如果中空波导28将在不同于真空接受器1中的真空的内部压力下操作,则例如由O形环密封。
在图10的实施例中,一个或多个波导28形成真空接受器1的壁的一部分。因此,联接区域,特别是狭缝32,不横越真空接受器1的壁。回顾图2,这允许相互移位多个波导布置25,而无需考虑穿过真空接受器1的壁设置的联接区域27,特别是狭缝32。
为了避免暴露于处理空间TS的波导28表面上的PEALD沉积,这些表面可由诸如金的贵金属覆盖物覆盖。
更一般地,这种覆盖物可在根据本发明的设备中施加到暴露于PEALD处理但不应该PEALD涂覆的所有表面上。
图11以类似于图10的图示示出实施例,其中中空波导不经受PEALD处理,且一个或多个联接狭缝32穿过波导28的壁以及真空接受器1的壁。
请注意,在图10和图11中,点划线4o指示基体载体3上的基体4的待PEALD处理的延伸表面的位置,从而限制了真空接受器1中的处理空间TS。
在大多数情况下,根据图2的方向S在顶视图中,真空接受器1构造成使得内部空间由壁限制,该壁沿圆形、椭圆形、多边形延伸,从而尤其是正方形或方形。在所有这些情况下,真空接受器具有中心轴线A。
此外,基体载体3通常限定基体平面,基体载体1上的基体沿该基体平面延伸。这种基体平面Es在图1中示出。最经常地,基体平面Es垂直于中心轴线A延伸。
在现今实现的实施例中,联接区域27以及由此一个或多个狭缝32在空间上定向成使得在狭缝开口的中心和上的法线N径向地指向轴线A和/或平行于基体表面Es。这在图10和11中进行了示意性示出。
如图12进一步所示,从一个或多个中空波导28到真空接受器1中的处理空间TS的一个或多个联接狭缝32由电介质材料密封件34(例如,熔融石英)密封地封闭。这允许在周围大气中操作波导28,而在PEALD的不同条件下操作处理空间TS。
如图13中示意性举例说明的,中空波导28的截面区域(圆形或正方形截面波导,如图13所示)具有对称平面Esym或公共对称平面,其垂直于中心轴线A和/或平行于基体平面Es。至少一个狭缝32或多于一个的狭缝32中的至少一些偏离对称平面Esym或公共对称平面。
如图13中进一步举例说明的,多于一个的狭缝32中的至少一些从对称平面Esym或从公共对称平面向一侧偏移,其它狭缝32向另一侧偏移。
如果波导布置25的波导28沿垂直于中心轴线A和/或平行于基体平面Es的单个平面延伸,则存在公共对称平面Esym。如果波导布置25的波导28分别沿垂直于中心轴线A和/或平行于基体平面Es的不同平面延伸,则存在多于一个的对称平面Esym
进一步并且也如图13中举例说明的,狭缝32交替地偏移到相应对称平面Esym或公共对称平面的一侧和另一侧。
如所提到的,狭缝32由诸如熔融石英的介电材料密封件34密封地封闭。
如图14中示意性所示,每当真空接受器1的截面形状是弯曲的(例如圆形)而代替借助于分别弯曲的波导28,特别是中空波导来实现波导布置25时,可借助于线性延伸的波导28以近似弯曲的形状实现波导布置25。因此并且如图14所示,类似于图8的实施例,一些线性波导28可互连并且一些可分开,从而在图14的实施例中得到四个不同的波导28,每个波导由两个线性联合波导部分形成。四个不同的波导28分别由不同的UHF电源30进行UHF馈电。
到目前为止,我们已经提出并论述了纯粹基于UHF电磁功率,借助于根据本发明的设备的等离子体源产生等离子体的方法。因此达到低的离子能量,导致沉积的原子层的低损坏率。
在根据本发明的设备的实施例中,也在现今实现的实施例中,施加了ECR等离子体。通过ECR UHF等离子体,可实现非常高的反应气体分解度和非常高的反应概率。这显著缩短了将尚未沉积的原子层与氧化性反应气体反应或氧化的时间跨度,从而保持了较低的离子能量。
这是通过沿基体载体3的周边且因此也沿波导布置25设置永久磁铁布置36来实现的。
在图2、5至14的所有图中,以虚线示出这种永磁体布置36和所产生的磁场H:可将作为ECR等离子体源的等离子体源与迄今论述并且仍将要论述的所有实施例结合使用。
图15示意性地并简化示出根据本发明的设备的实施例的ECR等离子体源。永磁体布置36可称为“马蹄形”磁体布置。在图15的实例中,一种磁性极性的外部区域36o与波导布置25对齐,而另一种磁性极性的内部区域36i远离波导布置25靠近联接区域延伸,在中空波导28中密封地覆盖(34)狭缝32并穿过真空接受器1的壁。
从根据图15的实施例可看出,该结构允许去除磁体布置36以及波导布置25(如果不包括单独的波导28的话),作为用于维护和/或更换的相应的不同部分。
在一个实施例中,借助于闪光灯例如Xe闪光灯点燃由等离子体源产生的等离子体,且通过切断相应的UHF电源30或切断正在进行操作的UHF电源30与真空接受器1的处理空间TS之间的相应操作连接而熄灭。
如在图1的上下文中已经解决的,根据本发明的设备配备有可控前体气体入口13,其可连接或连接到前体储器布置17。在现今实践的实施例中,前体储器布置17包含TMA,且因此包含铝作为金属。前体储器布置可包括一个或多于一个前体储器,然后容纳不同的前体。
此外,该设备配备有可控反应气体入口15,其可连接或连接到反应气体储箱布置19。反应气体可例如是包含氧、氮、碳、氢中的至少一种的气体。在现今实践的实施例中,反应气体是氧气。
反应气体储箱布置19可包括一个或多个反应气体储箱,然后容纳不同的反应气体。
如图16示意性地示出的,且在根据本发明的设备的一个实施例中,可控前体气体入口17相对于基体载体3位于真空接受器1的中央,且与保持在基体载体3上的基体4相对。因此,实现了沿基体4的待PEALD处理的延伸表面的均匀前体气体分布。尽管就这种分布而言在某种程度上没有那么严格,但是受控反应气体入口15尽可能居中地位于中心前体气体入口13旁边。
由于前体气体和反应气体没有同时馈送到用于PEALD处理的处理空间TS中,因此,在根据本发明的设备的一个实施例中,前体气体入口13和反应气体入口15都居中地引导到真空接受器1中。根据图17的示意性和简化图示,这实现为,两种气体均通过公共入口13/15馈送到真空接受器1,或根据图18,例如用于反应气体的入口15与用于前体气体的入口13同轴。
前体气体入口和反应气体入口的实现形式可与迄今所述且仍将描述的根据本发明的设备的任何实施例组合。
关于通过根据本发明的设备的经PEALD处理的基体的高产量,支配因素是处理空间TS的容积。
在根据本发明的设备中并且如前所述,在处理位置上具有基体4的基体载体3在真空接受器1中限定了处理空间TS。在所述设备的实施例中,对于处理空间TS的容积与待PEALD处理的位于基体载体1上的基体表面的顶视表面积之比
Figure 561937DEST_PATH_IMAGE016
有效的是
Figure 854378DEST_PATH_IMAGE017
优选地
Figure 711475DEST_PATH_IMAGE018
图19以最简化和示意性地示出根据本发明的设备的实施例的整体泵送/处理结构,通过该泵送/处理结构,实现了非常小的处理空间TS的容积和有效的泵送。
基体4和真空接受器1的壁由围绕基体4成环的受控压力级布置40链接。
每当受控压力级布置40在控制输入端C40处受控制以建立高的流动阻力直至实际上无限的流动阻力时,就建立了用于小容积的处理空间TS的处理空间隔室TCS。受控压力级的高流动阻力可通过例如密封表面的机械接触或通过例如迷宫式密封件的非接触来建立。
每当控制受控压力级40以建立低流动阻力时,就对包括处理空间TS的真空接受器1进行有效的泵送。
处理空间隔室TCS的尺寸可独立于泵隔室PC而定,后者可能较大,以便为强大的泵送设备和低流动阻力建立空间。
而在根据图19的实施例中,受控压力级40与基体载体1相互作用或直接与基体4相互作用,根据图20,真空接受器1在两个隔室TSC和PC中由真空接受器1中的刚性横向壁42分开。借助于受控压力级40a,控制从处理空间隔室TSC到泵送隔室PC的流动阻力。受控压力级布置40不必一定围绕基体4或工件载体3,且其操作几乎不会由于接触振动而机械地影响基体。
如图19或图20中举例说明的泵送/处理结构可与目前所述或仍待描述的任何实施例组合。
图21至图25最示意性并简化地示出可在根据本发明的设备的实施例中提供的装卸器布置7(图1)。根据图21,提供了输入/输出基体装卸开口44,基体装卸器46通过该开口将未处理的基体4装载到真空接受器1中以及基体载体3上,并从基体载体3和真空接受器1中去除处理过的基体4。基体装卸器46双向地操作。
根据图22并且与根据图21的实施例的不同之处在于,基体装卸器46将待处理的基体4与基体载体3一起装载到真空接受器1中,且将处理过的基体与基体载体3一起从真空接受器1中去除,两者都通过基体装卸开口44。此处,基体装卸器46也是双向操作的。
根据图23和图24,输入装卸开口44i和输出装卸开口44o设在真空接受器1中。输入基体装卸器46i将(根据图23的没有基体载体3,根据图24具有基体载体3的)未处理的基体4装载到真空接受器1中,而输出基体装卸器46o从真空接受器1中去除经处理的基体(根据图23没有基体载体3,根据图24具有工件载体3)。基体装卸器46i和46o单向操作。
所有的装卸开口44,44i,44o可配备有负载锁(未示出)。
真空接受器1中的基体4的装载/卸载位置可与真空接受器1中的基体4的PEALD处理位置不同。这对于图21至图24的所有实施例都是普遍的。
举例来说,图25示出根据图21的实施例,在该实施例中,基体4的装载/卸载位置与基体4的PEALD处理位置不同。借助于受控的驱动器48,具有基体4的基体载体3从装载/卸载位置PL移动到处理位置PT,反之亦然。因此可利用基体载体3相对于真空接受器1的从动移动,以在受控压力级布置40(见图19)处,在处理位置PT建立高气流阻力,且基体载体3一离开处理位置PT,就建立低流动阻力。在处理位置PT,建立处理空间隔室TSC。
请注意,输入基体装卸器46i和输出基体装卸器46o可共同地由传送器(未示出)实现,例如通过盘形或环形传送器,通过鼓式传送器等,通过该传送器,未处理的基体将输送到真空接受器1中,且PEALD处理过的基体从真空接受器1中去除。
再次强调,根据图21至25的操纵器布置的实施例可与到目前所述以及仍待描述的所有实施例组合。
图26示意性地并简化示出组合了所述实施例的根据本发明的设备的实施例。
类似于图21的实施例,真空接受器1具有输入/输出装卸开口44。基体装卸器46在基体载体3上和从基体载体运送基体4。根据图13的实施例,包括矩形截面波导28的波导布置25通过熔融石英窗密封的狭缝32与真空接受器1中的处理空间TS连通。等离子体源构造成ECR等离子体源,且包括根据图15的实施例形成为“马蹄形”磁体回路的永磁体布置36。可控前体气体入口13以及可控反应气体入口15根据图16的实施例定位。
如图27所示,输入/输出装卸器46被实现为叉。待运输的基体驻留在两个或多于两个的叉形臂52上。通过水平的受控移动(h),借助于受控的线性叉驱动器(未示出),叉臂52进入基体载体3的表面56中的对准凹槽54中。叉臂52由此从基体载体3的表面56处的凹槽54突出,使得叉臂52上的基体4在其邻近基体载体3移动时不接触表面56。凹槽54比叉臂52的厚度深。因此,一旦基体与基体载体3的表面56相邻良好地对准,则通过受控的垂直驱动器(未示出)使叉下降(v),且基体4软沉积在基体载体3的表面56上。
一旦已经处理了基体并将其从真空接受器1中移出,叉臂52就会进入凹槽54,而不会接触位于表面56上的基体,也不会接触凹槽54的壁。然后使叉臂52向上移动(v),以与经处理的基体的背面接触,将基体从表面56上提起,并将基体(h)与基体载体3对准中去除并从真空接受器1中去除。
实际上,类似于图25的实施例,在基体载体3的位置PL中执行将基体装载在基体载体3上和从基体载体3上卸载基体的操作。在图26中,以实线绘制了基体载体3的PL位置。基体载体3借助于由杆驱动器(未示出)可控制地驱动的杆58在装载/卸载位置PL和虚线所示的处理位置PT之间移动。一旦带有待进行PEALD处理的基体的基体载体3处于位置PT,框架60就借助于杆62抬起,并由驱动器(未示出)可控制地驱动框架60,并在处理空间TS(现在是处理空间隔室TSC)与泵送隔室PC之间建立高流动阻力。框架(如框架60)的利用允许建立如图19的实施例的受控压力级布置40,使得仅以最小的机械振动加载基体。特别是如果压力级布置到基体载体侧以非接触方式实现,例如通过迷宫式密封件。
图28示出根据本发明的方法的流程图,且该方法可由迄今为止所描述的设备执行。
将待进行PEALD处理的基体加载到真空接受器(真空接受器1)中。我们将此步骤命名为(0)。如果在加载基体之前尚未抽真空,则在步骤(0)中,真空接受器通过泵送来抽空。
在步骤(1)中,将前体气体馈送到真空接受器(处理空间TS或处理隔室TSC),且将前体吸附在基体的表面上。
在随后的步骤(2)中,将真空接受器(包括处理空间或处理隔室)抽空,以去除多余的前体气体。
在步骤(3)中,在真空接受器中点燃等离子体(ECR-UHF等离子体PLA),并使由步骤(2)产生的沉积的分子层与经等离子体增强的反应气体反应。
在步骤(4)中,泵送真空接受器,并去除过量的反应气体。
可将步骤(1)至(4)重复n次(n≥1),以沉积多个反应的分子层。因此,在步骤(1)中可使用不同的前体和/或在步骤(3)中可使用不同的反应气体,特别是形成氧化物、氮化物、碳化物或金属层。在步骤(5)中,将经处理的基体从真空接受器中去除。
如果在步骤(0)之后和步骤(5)之前重复至少一次步骤(1)至(4),则某些步骤(3)可在不点燃等离子体的情况下执行,或可将不同的等离子体应用于重复的步骤(3)。
通常,仅在经过预处理的表面上才能获得令人满意的前体(如TMA)的吸附。因此,且着眼于目前为止所述的图28,在步骤(0)中装载的基体应该提供经过预处理的(例如氧化的)表面,其可在步骤(0)上游的工艺中施加。
在步骤(0)之后的现今的实践方法中,实现了步骤(0a),其中真空接受器抽空,且待PEALD处理的基体的表面与反应气体反应。在图28中,步骤(0a)以虚线示出。步骤(0a)可在没有等离子体增强的情况下,或以与用于使一个或多于一个沉积的单分子层反应的等离子体增强不同的等离子体增强,或以等于用于使至少一个或多于一个沉积的单分子层反应的等离子体相等的等离子体进行。
此外,在步骤(0a)中,可用与使一个或多于一个单分子层反应的相同反应气体或与不同的反应气体进行反应。
对于步骤(0)、(0a)、(1)、(2)、(3)、(4),上文和图28中指示的时间跨度T0a、T1、T2、T3、T4对下者评估:
•处理空间隔室的容积:5升
•基体:200 mm晶圆
•2.45 GHz的ECR-UHF等离子体
•前体气体:TMA
•反应气体:氧。
本发明的不同方面总结如下并另外公开:
方面:
1. 等离子体增强原子层沉积(PEALD)设备,包括
•真空接受器;
•来自真空接受器的至少一个可控泵送端口;
•与所述接受器的内部连通的至少一个可控等离子体源;
•通向所述真空接受器的内部的至少一个可控前体气体入口;
•通向所述真空接受器的内部的至少一个可控反应气体入口;
•所述接受器中的基体载体;
其中,
•所述至少一个等离子体源是UHF等离子体源,且构造成在所述真空接受器中产生沿在所述基体载体的周边周围的轨迹分布的等离子体。
2. 方面1的PEALD设备,其中所述可控等离子体源是ECR源。
3. 方面1或2的PEALD设备,其中所述等离子体源包括多个UHF电源,每个UHF电源经由相应的联接区域直接UHF联接到所述真空接受器的内部空间。
4. 方面3的PEALD设备,所述联接区域包括熔融石英窗,熔融石英窗相对于UHF电源密封所述真空接受器的内部。
5. 方面1或2中至少一项的PEALD设备,其中所述等离子体源包括全沿所述轨迹分布的波导布置,并包括进入所述真空接受器的一个或多个联接区域,其沿所述基体的整个所述周边分布,并进一步包括至少一个UHF功率输入。
6. 方面1至5中一项的PEALD设备,其中所述基体载体上的基体具有待PEALD涂覆的延伸表面,该延伸表面暴露于所述真空接受器中的处理空间,所述轨迹位于所述处理空间周围。
7. 方面5或6中一项的PEALD设备,所述波导布置包括多于一个的不同波导节段,每个波导节段包括至少一个UHF功率输入。
8. 方面5至7中一项的PEALD设备,所述波导布置由至少一个中空波导形成,且至少一些所述联接区域包括在所述至少一个中空波导中的狭缝。
9. 方面5至8中一项的PEALD设备,其中所述真空接受器具有中心轴线,且包括在所述中心轴线的方向上交错的至少两个所述波导布置。
10. 方面9的PEALD设备,其中沿所述中心轴线的方向看,所述至少两个波导布置中的一个的所述至少一个UHF功率输入和所述至少两个波导布置中的另一个的所述至少一个功率输入定位成相互成角度地移位。
11. 方面5至10中一项的PEALD设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,且包括在垂直于所述基体平面的方向上交错的至少两个所述波导布置。
12. 方面11的PEALD设备,其中沿朝所述基体平面的方向看,所述至少两个波导布置中的一个的所述至少一个UHF功率输入和所述至少两个波导布置中的另一个的所述至少一个功率输入定位成相互成角度地移位。
13. 方面8至12中一项的PEALD设备,其中所述真空接受器具有中心轴线,所述狭缝中的至少一些狭缝限定相应的狭缝开口表面,其上的中心法线指向所述中心轴线。
14. 方面1至13中一项的PEALD设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述真空接受器具有垂直于所述基体平面的中心轴线。
15. 方面8至14中至少一项的PEALD设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述狭缝中的至少一些狭缝限定了相应的狭缝开口表面,其上的相应中心法线平行于所述基体平面。
16. 方面8至15中至少一项的PEALD设备,其中所述真空接受器具有中心轴线,所述波导布置的中空波导的截面区域具有垂直于所述中心轴线的对称平面或公共对称平面,所述至少一个狭缝或多于一个所述狭缝中的至少一些狭缝偏离所述对称平面或偏离所述公共对称平面。
17. 方面16的PEALD设备,其中所述狭缝中的一些狭缝从所述相应的对称平面或从所述公共对称平面向一侧偏移,所述狭缝中的另一些狭缝向另一侧偏移。
18. 方面17的PEALD设备,其中所述狭缝交替地偏移到相应对称平面或公共对称平面的一侧和另一侧。
19. 方面5至18中一项的PEALD设备,所述波导布置包括具有矩形内部截面的中空波导或由其组成。
20. 方面5至19中一项的PEALD设备,其中所述波导布置包括中空波导或由中空波导组成,所述中空波导的内部相对于所述真空接受器的内部真空密封。
21. 方面8至20中一项的PEALD设备,其中所述狭缝相对于所述真空接受器的内部真空密封。
22. 方面8至21中一项的PEALD设备,其中所述狭缝通过熔融石英窗相对于所述真空接受器的内部真空密封。
23. 方面1至22中一项的PEALD设备,所述UHF等离子体源是2.45 GHz等离子体源。
24. 方面5至23中一项的PEALD设备,其中所述波导布置包括线性延伸的波导区段或由线性延伸的波导区段组成。
25. 方面5至24中一项的PEALD设备,其中所述波导布置位于所述真空接受器的外部,且经由穿过所述真空接受器的壁的联接区域与所述真空接受器的内部连通。
26. 方面1至25中一项的PEALD设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述轨迹沿平行于所述基体平面的平面延伸。
27. 方面5至26中一项的PEALD设备,其中所述波导布置作为一个不同的部分可从所述真空接受器中去除。
28. 方面2至27中一项的PEALD设备,所述ECR等离子体源包括全沿所述轨迹分布的永磁体布置。
29. 方面5至28中一项的PEALD设备,其中所述可控等离子体源为电子回旋加速器共振(ECR)源,且包括与所述波导布置相邻并沿所述波导布置的永磁体布置。
30. 方面29所述的PEALD设备,其中所述波导布置包括至少一个中空波导或由其组成,所述永磁体布置包括一个磁极性的外磁极区域和另一磁极性的内磁极区域,所述外部区域与所述至少一个中空波导的中空内部空间对准延伸,所述内部区域远离所述波导布置延伸并邻近所述联接区域。
31. 方面1至30中一项的PEALD设备,包括等离子体点火器布置,该等离子体点火器布置包括点火器闪光灯。
32. 方面28至31中一项的PEALD设备,其中所述磁体布置作为一个不同的部分可从所述真空接受器中去除。
33. 方面1至32中一项的PEALD设备,包括至少一个前体储器,该至少一个前体储器包含包括金属的前体,且可操作地连接到所述至少一个可控前体气体入口。
34. 方面31的PEALD设备,所述金属是铝。
35. 方面1至34中一项的PEALD设备,包括至少一个反应气体储箱,该反应气体储箱包含反应气体,且可操作地连接到所述至少一个可控反应气体入口。
36. 方面35的PEALD设备,所述反应气体储箱包含元素氧、氮、碳、氢中的至少一种。
37. 方面1至36中一项的PEALD设备,所述至少一个前体气体入口相对于处于处理位置中的所述基体载体上的基体居中并朝着所述基体排放。
38. 方面1至37中一项的PEALD设备,其中所述至少一个可控前体气体入口和所述至少一个可控反应气体入口相对于处于处理位置中的所述基体载体上的基体居中并且朝着所述基体排放。
39. 方面1至38中一项的PEALD设备,其中在处理位置上具有基体的所述基体载体在所述真空接受器中限定处理空间,且其中所述处理空间的容积与待在所述基体载体上进行PEALD处理的所述基体的表面的顶视表面积之比
Figure 405762DEST_PATH_IMAGE019
有效的是:
Figure 244274DEST_PATH_IMAGE020
优选地
Figure 289590DEST_PATH_IMAGE021
40. 方面1至39中一项的PEALD设备,其中在所述真空接受器中封闭处理空间的处理隔室通过可控压力级与包括所述至少一个受控泵送端口的泵送隔室隔开。
41. 方面40的PEALD设备,其中所述压力级是气体密封件。
42. 方面40的PEALD设备,其中所述压力级是非接触式气流限制器。
43. 方面1至42中一项的PEALD,其中所述基体载体可在加载/卸载位置和PEALD处理位置之间可控制地移动。
44. 方面1至43中一项的PEALD设备,包括可操作地联接到所述基体载体的可控制移动的基体装卸器布置。
45. 方面1至44中一项的PEALD设备,包括在所述真空接受器中的至少一个基体装卸开口。
46. 方面45的PEALD设备,包括与所述至少一个基体装卸开口协作的双向基体装卸器。
47. 方面1至46中一项的PEALD设备,包括在所述真空接受器中的至少两个基体装卸开口、与所述至少两个基体装卸器开口中的一个协作的输入基体装卸器,以及与所述至少两个基体装卸器开口中的另一个协作的输出基体装卸器。
48. 方面47的PEALD设备,其中所述输入基体装卸器和所述输出基体装卸器两者通常由基体传送器实现。
49. 方面1至48中一项的PEALD设备,包括计时器单元,该计时器单元可操作地至少连接到通向所述至少一个前体气体入口的控制阀布置,通向所述至少一个反应气体入口的控制阀布置,所述至少一个等离子体源,以及所述至少一个可控泵送端口。
50. 一种制造带有由PEALD在其上沉积的层的基体的方法,该方法包括:
(0)在接受器中提供基体;
抽空接受器;
(1)将前体气体馈送到所述抽空的接受器中,且通过吸附使来自所述前体气体中的材料的分子层沉积在所述基体上;
(2)从所述接受器中泵送其余的前体气体;
(3)点燃所述接受器中的等离子体,且使所述基体上沉积的分子层与反应气体进行等离子体增强反应,
(4)泵送所述接受器,以及
(5)从所述接受器中去除基体。
51. 方面50的方法,借助于方面1至49中至少一项的设备执行。
52. 方面50或51的方法,其中步骤(1)至(4)在步骤(0)之后和步骤(5)之前重复至少一次。
53. 方面52的方法,其中通过在至少一些所述重复步骤(1)期间馈送不同的前体气体来执行步骤(1)的所述重复。
54. 方面52或53中一项的方法,其中步骤(3)的所述重复通过在至少一些所述重复步骤(3)期间馈送不同的反应气体来执行。
55. 方面52至54中一项的方法,在不点燃等离子体的情况下执行所述重复步骤(3)中的至少一些。
56. 方面50至55中一项的方法,包括在所述步骤(0)之后,且在所述步骤(1)之前执行步骤(0a),在该步骤(0a)中,抽空所述接受器,并使基体的表面与反应气体反应。
57. 方面56的方法,其中在所述步骤(0a)中点燃等离子体。
58. 方面56或57中一项的方法,其中所述步骤(0a)中的所述反应气体不同于至少一个步骤(3)中的反应气体。
59. 方面56至58中一项的方法,其中在所述步骤(0a)中的所述反应气体和在至少一个步骤(3)中的所述反应气体是相等的。
60. 方面50至59中一项的方法,其中在步骤(1)中或在重复步骤(1)中的至少一个中的所述前体气体是TMA。
61. 方面50至60中一项的方法,其中所述反应气体包含元素氧、氮、碳、氢中的至少一种。
62. 方面50至61中一项的方法,其中所述步骤(1)或重复步骤(1)中的至少一个在有效的时间跨度T1中执行:
Figure 684799DEST_PATH_IMAGE022
优选地
Figure 171276DEST_PATH_IMAGE023
63. 方面50至62中一项的方法,其中所述步骤(2)或重复步骤(2)中的至少一个在有效的时间跨度T2中执行:
Figure 259317DEST_PATH_IMAGE024
优选地
Figure 526351DEST_PATH_IMAGE025
64. 方面50至63中一项的方法,其中所述步骤(3)或重复步骤(3)中的至少一个在有效的时间跨度T3中执行:
Figure 725251DEST_PATH_IMAGE026
优选地
Figure 315501DEST_PATH_IMAGE027
65. 方面50至64中一项的方法,其中所述步骤(4)或重复步骤(4)中的至少一个在有效的时间跨度T4中执行:
Figure 574444DEST_PATH_IMAGE028
优选地
Figure 328773DEST_PATH_IMAGE029
66. 方面50至65中一项的方法,包括在所述步骤(0)之后和所述步骤(1)之前执行步骤(0a),在所述步骤(0a)中,使所述基体的表面与反应气体反应,所述步骤(0a)在有效的时间跨度T0a中执行:
Figure 3468DEST_PATH_IMAGE030
优选地
Figure 526854DEST_PATH_IMAGE031
67. 方面50至66中一项的方法,包括在步骤(0)和步骤(1)之间和/或步骤(2)和步骤(3)之间建立从处理空间到泵送空间的较高气流阻力,并在步骤(1)和步骤(2)之间和/或在步骤(3)和步骤(4)之间建立从所述处理空间到所述泵送空间的较低气流阻力。
68. 方面50至67中一项的方法,包括产生在所述步骤(3)中点燃的所述等离子体,所述等离子体沿在所述基体的周边周围的轨迹分布。
69. 一种制造装置的方法,该装置包括通过根据方面50至68中至少一项的方法的带有由PEALD在其上沉积的层的基体。
因此,现今尤其要实践以下方面:
I. 一种等离子体增强原子层沉积(PEALD)设备,如在图9中特别说明的那样,该设备包括
•真空接受器;
•来自真空接受器的至少一个可控泵送端口;
•与所述接受器的内部连通的至少一个可控等离子体源;
•通向所述真空接受器的内部的至少一个可控前体气体入口;
•通向所述真空接受器的内部的至少一个可控反应气体入口;
•所述接受器中的基体载体;
其中,
•所述至少一个等离子体源为电子回旋加速器共振(ECR)-UHF等离子体源,且构造成在所述真空接受器中产生沿在所述基体载体的周边周围的轨迹分布的等离子体,且其中所述基体载体的周向范围的每相等单位的一个等离子体源在不同位置处通过联接区域直接联接到所述真空接受器的内部空间,且包括全沿所述轨迹分布的ECR永磁体布置。
II. 方面I的设备,其中所述基体载体具有与所述单位相等的周向范围。
III. 方面I或II中一项的设备,其中所述单位为至少40 cm或至少50 cm或至少60cm或至少100 cm。
VI. 方面I至III中一项的设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述联接区域限定开口表面,其上的相应中心法线平行于所述基体平面。
V. 方面I至IV中一项的设备,其中在处理位置上具有基体的所述基体载体在所述真空接受器中限定处理空间,且其中所述处理空间的容积与待在所述基体载体上进行PEALD处理的所述基体的表面的顶视表面积之比
Figure 956698DEST_PATH_IMAGE032
有效的是:
Figure 932744DEST_PATH_IMAGE033
优选地
Figure 663327DEST_PATH_IMAGE034
VI. 方面I至IV中一项的设备,其中在所述真空接受器中封闭处理空间的处理隔室通过可控压力级与包括所述至少一个受控泵送端口的所述真空接受器中的泵送隔室隔开。
VII. 方面VI的设备,其中所述压力级是气体密封件。
VIII. 方面VI的设备,其中所述压力级是非接触式气流限制器。
IX. 方面I至VIII中一项的设备,其中所述基体载体在加载/卸载位置和PEALD处理位置之间可控制地移动。
X. 方面I至IX中一项所述的设备,所述联接区域包括熔融石英窗,熔融石英窗相对于UHF电源密封所述真空接受器的内部。
XI. 方面I至X中一项的设备,其中所述基体载体上的基体具有待PEALD涂覆的延伸表面,该延伸表面暴露于所述真空接受器中的处理空间,所述轨迹位于所述处理空间周围。
XII. 方面I至XI中一项的设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述真空接受器具有垂直于所述基体平面的中心轴线。
XIII. 方面I至XII中一项的设备,所述UHF等离子体源是2.45 GHz等离子体源。
XIV. 方面I至XIII中一项的设备,其中所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述轨迹沿平行于所述基体平面的平面延伸。
XV. 方面I至XIV中一项的设备包括等离子体点火器布置,该等离子体点火器布置包括点火器闪光灯。
XVI. 方面I至XV中一项的设备,其中所述磁体布置作为一个不同的部分可从所述真空接受器中去除。
XVII. 方面I至XVI中一项的设备包括至少一个前体储器,该至少一个前体储器包含包括金属的前体,且可操作地连接到所述至少一个可控前体气体入口。
XVIII. 方面XVII的设备,所述金属是铝。
XIX. 方面I至XVIII中一项的设备,包括至少一个反应气体储箱,该反应气体储箱包含反应气体,且可操作地连接到所述至少一个可控反应气体入口。
XX. 方面XIX的设备,所述反应气体储箱包含元素氧、氮、碳、氢中的至少一种。
XXI. 方面I至XX中一项的设备,所述至少一个前体气体入口相对于处于处理位置中的所述基体载体上的基体居中并朝着所述基体排放。
XXII. 方面I至XXI中一项的设备,其中所述至少一个可控前体气体入口和所述至少一个可控反应气体入口相对于处于处理位置中的所述基体载体上的基体居中并且朝着所述基体排放。
XXIII. 方面I至XXII中一项的设备,包括在所述真空接受器中的至少一个基体装卸开口。
XXIV. 方面XXIII的设备,包括与所述至少一个基体装卸开口协作的双向基体装卸器。
XXV. 方面XXIII的设备,包括在所述真空接受器中的至少两个基体装卸开口、与所述至少两个基体装卸器开口中的一个协作的输入基体装卸器,以及与所述至少两个基体装卸器开口中的另一个协作的输出基体装卸器。
XXVI. 方面XXV的设备,其中所述输入基体装卸器和所述输出基体装卸器两者通常由基体传送器实现。
XXVII. 方面I至XXVI中一项的设备,包括计时器单元,该计时器单元可操作地至少连接到所述至少一个前体气体入口的控制阀布置,所述至少一个反应气体入口的控制阀布置,所述至少一个等离子体源,以及所述至少一个可控泵送端口。
XXVIII. 方面I至XXVII中一项的设备,其中所述联接区域是号角天线的输出区域。
XXIX. 一种制造带有由PEALD在其上沉积的层的基体的方法,该方法包括:
(0)在接受器中的基体载体上提供基体,并抽空接受器;
(1)将前体气体馈送到所述抽空的接受器中,且通过吸附使来自所述前体气体中的材料的分子层沉积在所述基体上;
(2)从所述接受器中泵送其余的前体气体;
(3)点燃并保持所述接受器中的等离子体,且使所述基体上沉积的分子层与反应气体进行等离子体增强反应,
(4)泵送所述接受器,以及
(5)从所述接受器中去除基体,
从而产生由电子回旋加速器共振(ECR)-UHF等离子体源点燃并保持的等离子体,该等离子体源构造成在所述真空接受器中,且通过提供所述基体载体的周向范围的每相等单位的一个等离子体源,且通过在不同位置处通过联接区域将所述一个等离子体源直接联接到所述真空接受器的内部空间,且通过全沿所述轨迹产生ECR磁场,产生沿在所述基体载体的周边周围的轨迹分布的等离子体。
XXX. 方面XXIX的方法借助于方面I至XXVIII中至少一项的设备执行。
XXXI. 方面XXIX或XXX的方法,其中步骤(1)至(3)在步骤(0)之后和步骤(5)之前重复至少一次。
XXXII. 方面XXXI的方法,其中通过在至少一些所述重复步骤(1)期间馈送不同的前体气体来执行步骤(1)的所述重复。
XXXIII. 方面XXXI或XXXII中一项的方法,其中步骤(3)的所述重复通过在至少一些所述重复步骤(3)期间馈送不同的反应气体来执行。
XXXIV. 方面XXXI至XXXIII中一项的方法,在不点燃等离子体的情况下执行所述重复步骤(3)中的至少一些。
XXXV. 方面XXIX至XXXIV中一项的方法,包括在所述步骤(0)之后,且在所述步骤(1)之前执行步骤(0a),在该步骤(0a)中,抽空所述接受器,并使基体的表面与反应气体反应。
XXXVI. 方面XXXV的方法,其中在所述步骤(0a)中点燃等离子体。
XXXVII. 方面XXXV或XXXVI中一项的方法,其中所述步骤(0a)中的所述反应气体不同于至少一个步骤(3)中的反应气体。
XXXVIII. 方面XXXV至XXXVII中一项的方法,其中在所述步骤(0a)中的所述反应气体和在至少一个步骤(3)中的所述反应气体是相等的。
XXXIX. 方面XXIX至XXXVIII中一项的方法,在步骤(1)中或在重复步骤(1)中的至少一个中的所述前体气体是TMA。
XL. 方面XXIX至XXXIX中一项的方法,其中所述反应气体包含元素氧、氮、碳、氢中的至少一种。
XLI. 方面XIX至XL中一项的方法,其中所述步骤(1)或重复步骤(1)中的至少一个在有效的时间跨度T1中执行:
Figure 306798DEST_PATH_IMAGE035
Figure 641965DEST_PATH_IMAGE036
XLII. 方面XIX至XLI中一项的方法,其中所述步骤(2)或重复步骤(2)中的至少一个在有效的时间跨度T2中执行:
Figure 370886DEST_PATH_IMAGE037
Figure 387384DEST_PATH_IMAGE038
XLIII. 方面XIX至XLII中一项的方法,其中所述步骤(3)或重复步骤(3)中的至少一个在有效的时间跨度T3中执行:
Figure 885361DEST_PATH_IMAGE039
Figure 391429DEST_PATH_IMAGE040
XLIV. 方面XIX至XLIII中一项的方法,其中所述步骤(4)或重复步骤(4)中的至少一个在有效的时间跨度T4中执行:
Figure 794597DEST_PATH_IMAGE041
Figure 677103DEST_PATH_IMAGE042
XLV. 方面XIX至XLIV中一项的方法,包括在所述步骤(0)之后和所述步骤(1)之前执行步骤(0a),在所述步骤(0a)中,使所述基体的表面与反应气体反应,所述步骤(0a)在有效的时间跨度T0a中执行:
Figure 29586DEST_PATH_IMAGE043
Figure 972135DEST_PATH_IMAGE044
XLVI. 方面XIX至XLV中一项的方法,包括在步骤(0)和步骤(1)之间和/或步骤(2)和步骤(3)之间建立从所述接受器中的处理空间到所述接受器中的泵送空间的较高气流阻力,并在步骤(1)和步骤(2)之间和/或在步骤(3)和步骤(4)之间建立从所述处理空间到所述泵送空间的较低气流阻力。
XLVII. 一种制造装置的方法,该装置包括通过根据方面XIX至XLVI中至少一项的方法的带有由PEALD在其上沉积的层的基体。
参考编号
1 真空接受器
3 基体载体
4 基体
4o 待PEALD处理的表面
TS 处理空间
TSC 处理空间隔室
PC 泵送隔室
5 UHF等离子体源
PLA 等离子体
7 基体装卸器布置
9 可控泵送端口
10 阀布置
11 泵送布置
13 可控前体气体入口
14 阀布置
15 可控反应气体入口
16 阀布置
17 前体储器布置
19 反应气体储箱布置
W 可能的基体旋转
L 轨迹
21 定时器单元
25 波导布置
26 馈送区域
27 联接区域
28 波导
30 UHF电源
32 狭缝
34 窗
36 永磁体布置
36o 一个极性区域(外部)
36i 另一极性区域(内部)
40,40a 受控压力级布置
44,44o,44i 基体装卸开口
46,46o,46i 基体装卸器
48 受控驱动器
52 叉臂
54 凹槽
56 表面
58 杆
62 杆
60 框架
A 轴线
Es 基体沿其位于基体载体3上的平面
Esym 中空波导28的对称平面
H 磁场
PL 装载、卸载位置
PT PEALD处理位置。

Claims (46)

1.一种等离子体增强原子层沉积(PEALD)设备,包括
•真空接受器;
•来自所述真空接受器的至少一个可控泵送端口;
•与所述接受器的内部连通的至少一个可控等离子体源;
•通向所述真空接受器的内部的至少一个可控前体气体入口;
•通向所述真空接受器的内部的至少一个可控反应气体入口;
•所述接受器中的基体载体;
其中,
•所述至少一个等离子体源为电子回旋加速器共振(ECR)-UHF等离子体源,且构造成在所述真空接受器中产生沿在所述基体载体的周边周围的轨迹分布的等离子体,且其中所述基体载体的周向范围的每相等单位的一个等离子体源在不同位置处通过联接区域直接联接到所述真空接受器的内部空间,且包括全沿所述轨迹分布的ECR永磁体布置。
2.根据权利要求1所述的设备,其特征在于,所述基体载体具有与所述单位相等的周向范围。
3.根据权利要求1或2中一项所述的设备,其特征在于,所述单位为至少40 cm或至少50cm或至少60 cm或至少100 cm。
4.根据权利要求1至3中一项所述的设备,其特征在于,所述基体载体限定基体平面,所述基体载体上的基体沿所述基体平面延伸,所述联接区域限定开口表面,其上的相应中心法线平行于所述基体平面。
5.根据权利要求1至4中一项所述的设备,其特征在于,在处理位置上具有基体的所述基体载体在所述真空接受器中限定处理空间,且其中对于所述处理空间的容积与待在所述基体载体上进行PEALD处理的所述基体的表面的顶视表面积之比
Figure 428173DEST_PATH_IMAGE001
有效的是:
Figure 204368DEST_PATH_IMAGE002
优选地
Figure 984105DEST_PATH_IMAGE003
6.根据权利要求1至5中一项所述的设备,其特征在于,在所述真空接受器中封闭处理空间的处理隔室通过可控压力级与包括所述至少一个受控泵送端口的所述真空接受器中的泵送隔室隔开。
7.根据权利要求6所述的设备,其特征在于,所述压力级是气体密封件。
8.根据权利要求6所述的设备,其特征在于,所述压力级是非接触式气流限制器。
9.根据权利要求1至8中一项所述的设备,其特征在于,所述基体载体可在加载/卸载位置和PEALD处理位置之间可控制地移动。
10.根据权利要求1至9中一项所述的设备,其特征在于,所述联接区域包括熔融石英窗,所述熔融石英窗相对于所述UHF电源密封所述真空接受器的内部。
11.根据权利要求1至10中一项所述的设备,其特征在于,所述基体载体上的基体具有待PEALD涂覆的延伸表面,所述延伸表面暴露于所述真空接受器中的处理空间,所述轨迹位于所述处理空间周围。
12.根据权利要求1至11中一项所述的设备,其特征在于,所述基体载体限定基体平面,所述基体载体上的基体沿该基体平面延伸,所述真空接受器具有垂直于所述基体平面的中心轴线。
13.根据权利要求1至12中一项所述的设备,其特征在于,所述UHF等离子体源是2.45GHz等离子体源。
14.根据权利要求1至13中一项所述的设备,其特征在于,所述基体载体限定基体平面,所述基体载体上的基体沿所述基体平面延伸,所述轨迹沿平行于所述基体平面的平面延伸。
15.根据权利要求1至14中一项所述的设备,其特征在于,所述设备包括等离子体点火器布置,所述等离子体点火器布置包括点火器闪光灯。
16.根据权利要求1至15中一项所述的设备,其特征在于,所述磁体布置作为一个不同的部分可从所述真空接受器中去除。
17.根据权利要求1至16中一项所述的设备,其特征在于,所述设备包括至少一个前体储器,所述至少一个前体储器包含包括金属的前体,且可操作地连接到所述至少一个可控前体气体入口。
18.根据权利要求17所述的设备,其特征在于,所述金属是铝。
19.根据权利要求1至18中一项所述的设备,其特征在于,所述设备包括至少一个反应气体储箱,所述反应气体储箱包含反应气体,且可操作地连接到所述至少一个可控反应气体入口。
20.根据权利要求19所述的设备,其特征在于,所述反应气体储箱包含元素氧、氮、碳、氢中的至少一种。
21.根据权利要求1至20中一项所述的设备,其特征在于,所述至少一个前体气体入口相对于处于处理位置中的所述基体载体上的基体居中并朝着所述基体排放。
22.根据权利要求1至21中一项所述的设备,其特征在于,所述至少一个可控前体气体入口和所述至少一个可控反应气体入口相对于处于处理位置中的所述基体载体上的基体居中并且朝着所述基体排放。
23.根据权利要求1至22中一项所述的设备,其特征在于,所述设备包括在所述真空接受器中的至少一个基体装卸开口。
24.根据权利要求23所述的设备,其特征在于,所述设备包括与所述至少一个基体装卸开口协作的双向基体装卸器。
25.根据权利要求23所述的设备,其特征在于,所述设备包括在所述真空接受器中的至少两个基体装卸开口、与所述至少两个基体装卸器开口中的一个协作的输入基体装卸器,以及与所述至少两个基体装卸器开口中的另一个协作的输出基体装卸器。
26.根据权利要求25所述的设备,其特征在于,所述输入基体装卸器和所述输出基体装卸器两者通常由基体传送器实现。
27.根据权利要求1至26中一项所述的设备,其特征在于,所述设备包括计时器单元,所述计时器单元可操作地至少连接到所述至少一个前体气体入口的控制阀布置、所述至少一个反应气体入口的控制阀布置、所述至少一个等离子体源,以及所述至少一个可控泵送端口。
28.一种制造带有由PEALD在其上沉积的层的基体的方法,所述方法包括:
(0)在接受器中的基体载体上提供基体;抽空所述接受器;
(1)将前体气体馈送到所述抽空的接受器中,且通过吸附使来自所述前体气体中的材料的分子层沉积在所述基体上;
(2)从所述接受器中泵送其余的前体气体;
(3)点燃并保持所述接受器中的等离子体,且使所述基体上沉积的分子层与反应气体进行等离子体增强反应,
(4)泵送所述接受器,以及
(5)从所述接受器中去除所述基体,从而产生由电子回旋加速器共振(ECR)-UHF等离子体源点燃并保持的所述等离子体,所述等离子体源构造成在所述真空接受器中,且通过提供所述基体载体的周向范围的每相等单位的一个等离子体源,且通过在不同位置处通过联接区域将所述一个等离子体源直接联接到所述真空接受器的内部空间,且通过全沿所述轨迹产生ECR磁场,产生沿在所述基体载体的周边周围的轨迹分布的等离子体。
29.根据权利要求28所述的方法,其特征在于,所述方法借助于根据权利要求1至28中至少一项所述的设备执行。
30.根据权利要求28或29所述的方法,其特征在于,步骤(1)至(4)在步骤(0)之后和步骤(5)之前重复至少一次。
31.根据权利要求30所述的方法,其特征在于,通过在至少一些所述重复步骤(1)期间馈送不同的前体气体来执行步骤(1)的所述重复。
32.根据权利要求30或31中一项所述的方法,其特征在于,步骤(3)的所述重复通过在至少一些所述重复步骤(3)期间馈送不同的反应气体来执行。
33.根据权利要求30至31中一项所述的方法,其特征在于,在不点燃等离子体的情况下执行所述重复步骤(3)中的至少一些。
34.根据权利要求28至33中一项所述的方法,其特征在于,所述方法包括在所述步骤(0)之后,且在所述步骤(1)之前执行步骤(0a),在所述步骤(0a)中,抽空所述接受器,并使所述基体的表面与反应气体反应。
35.根据权利要求34所述的方法,其特征在于,在所述步骤(0a)中点燃等离子体。
36.根据权利要求34或35中一项所述的方法,其特征在于,在所述步骤(0a)中的所述反应气体不同于至少一个步骤(3)中的所述反应气体。
37.根据权利要求34至36中一项所述的方法,其特征在于,在所述步骤(0a)中的所述反应气体和在至少一个步骤(3)中的所述反应气体是相等的。
38.根据权利要求28至37中一项所述的方法,其特征在于,在步骤(1)中或在重复步骤(1)中的至少一个中的所述前体气体是TMA。
39.根据权利要求28至38中一项所述的方法,其特征在于,所述反应气体包含元素氧、氮、碳、氢中的至少一种。
40.根据权利要求28至39中一项所述的方法,其特征在于,所述步骤(1)或重复步骤(1)中的至少一个在有效的时间跨度T1中执行:
Figure 379315DEST_PATH_IMAGE004
Figure 131370DEST_PATH_IMAGE005
41.根据权利要求28至40中一项所述的方法,其特征在于,所述步骤(2)或重复步骤(2)中的至少一个在有效的时间跨度T2中执行:
Figure 953833DEST_PATH_IMAGE006
Figure 220866DEST_PATH_IMAGE007
42.根据权利要求28至41中一项所述的方法,其特征在于,所述步骤(3)或重复步骤(3)中的至少一个在有效的时间跨度T3中执行:
Figure 685345DEST_PATH_IMAGE008
Figure 354224DEST_PATH_IMAGE009
43.根据权利要求28至42中一项所述的方法,其特征在于,所述步骤(4)或重复步骤(4)中的至少一个在有效的时间跨度T4中执行:
Figure 347588DEST_PATH_IMAGE010
Figure 101917DEST_PATH_IMAGE011
44.根据权利要求28至43中一项所述的方法,其特征在于,所述方法包括在所述步骤(0)之后和所述步骤(1)之前执行步骤(0a),在所述步骤(0a)中,使所述基体的表面与反应气体反应,所述步骤(0a)在有效的时间跨度T0a中执行:
Figure 700913DEST_PATH_IMAGE012
Figure 224298DEST_PATH_IMAGE013
45.根据权利要求28至44中一项所述的方法,其特征在于,所述方法包括在步骤(0)和步骤(1)之间和/或步骤(2)和步骤(3)之间建立从所述接受器中的处理空间到所述接受器中的泵送空间的较高气流阻力,并在步骤(1)和步骤(2)之间和/或在步骤(3)和步骤(4)之间建立从所述处理空间到所述泵送空间的较低气流阻力。
46.一种制造装置的方法,所述装置包括通过根据权利要求28至45中至少一项所述的方法的带有由PEALD在其上沉积的层的基体。
CN201980065060.2A 2018-10-02 2019-09-23 等离子体增强原子层沉积(peald)设备 Pending CN112771201A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH12052018 2018-10-02
CH01205/18 2018-10-02
CH16022018 2018-12-24
CH01602/18 2018-12-24
PCT/EP2019/075566 WO2020069901A1 (en) 2018-10-02 2019-09-23 Plasma enhanced atomic layer deposition (peald) apparatus

Publications (1)

Publication Number Publication Date
CN112771201A true CN112771201A (zh) 2021-05-07

Family

ID=68066792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980065060.2A Pending CN112771201A (zh) 2018-10-02 2019-09-23 等离子体增强原子层沉积(peald)设备

Country Status (7)

Country Link
US (1) US20210348274A1 (zh)
EP (1) EP3861147A1 (zh)
JP (1) JP2022504088A (zh)
KR (1) KR20210062700A (zh)
CN (1) CN112771201A (zh)
TW (1) TW202028522A (zh)
WO (1) WO2020069901A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536640A (ja) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp 半導体製造装置
JPH09306900A (ja) * 1996-03-01 1997-11-28 Canon Inc マイクロ波プラズマ処理装置およびプラズマ処理方法
US5985091A (en) * 1995-09-21 1999-11-16 Canon Kabushiki Kaisha Microwave plasma processing apparatus and microwave plasma processing method
US20020068458A1 (en) * 2000-12-06 2002-06-06 Chiang Tony P. Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber
CN101147248A (zh) * 2005-03-21 2008-03-19 东京毅力科创株式会社 等离子体增强原子层沉积系统和方法
US20090275210A1 (en) * 2008-05-02 2009-11-05 Sunil Shanker Combinatorial plasma enhanced deposition techniques
US20100255625A1 (en) * 2007-09-07 2010-10-07 Fujifilm Manufacturing Europe B.V. Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma
KR20110090838A (ko) * 2010-02-04 2011-08-10 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 실리콘 함유 막을 제조하는 방법
EP2363512A1 (en) * 2010-02-04 2011-09-07 Air Products And Chemicals, Inc. Methods to prepare silicon-containing films
WO2016186143A1 (ja) * 2015-05-20 2016-11-24 国立大学法人東北大学 プラズマ処理装置、プラズマ処理方法および半導体製造方法
CN106480429A (zh) * 2015-08-31 2017-03-08 超科技公司 具有旋转反应器管的等离子体增强型原子层沉积系统
CN108495950A (zh) * 2016-02-10 2018-09-04 倍耐克有限公司 用于原子层沉积的装置
CN109196619A (zh) * 2016-06-03 2019-01-11 瑞士艾发科技 等离子体蚀刻室和等离子体蚀刻的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038712A (en) * 1986-09-09 1991-08-13 Canon Kabushiki Kaisha Apparatus with layered microwave window used in microwave plasma chemical vapor deposition process
US4996077A (en) * 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
JPH07110991B2 (ja) * 1989-10-02 1995-11-29 株式会社日立製作所 プラズマ処理装置およびプラズマ処理方法
US5081398A (en) * 1989-10-20 1992-01-14 Board Of Trustees Operating Michigan State University Resonant radio frequency wave coupler apparatus using higher modes
DE4235914A1 (de) * 1992-10-23 1994-04-28 Juergen Prof Dr Engemann Vorrichtung zur Erzeugung von Mikrowellenplasmen
US5803975A (en) * 1996-03-01 1998-09-08 Canon Kabushiki Kaisha Microwave plasma processing apparatus and method therefor
JP2000277492A (ja) * 1999-03-26 2000-10-06 Hitachi Ltd プラズマ処理装置、プラズマ処理方法および半導体製造方法
US6652709B1 (en) * 1999-11-02 2003-11-25 Canon Kabushiki Kaisha Plasma processing apparatus having circular waveguide, and plasma processing method
US6710524B2 (en) * 2000-04-11 2004-03-23 Satis Vacuum Industries Vertrieb Ag Plasma source
JP4610126B2 (ja) * 2001-06-14 2011-01-12 株式会社神戸製鋼所 プラズマcvd装置
US7422636B2 (en) * 2005-03-25 2008-09-09 Tokyo Electron Limited Plasma enhanced atomic layer deposition system having reduced contamination
KR100877404B1 (ko) * 2005-08-10 2009-01-07 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치의 제어 방법, 플라즈마 처리 장치 및 기록 매체
JP6009513B2 (ja) * 2014-09-02 2016-10-19 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536640A (ja) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp 半導体製造装置
US5985091A (en) * 1995-09-21 1999-11-16 Canon Kabushiki Kaisha Microwave plasma processing apparatus and microwave plasma processing method
JPH09306900A (ja) * 1996-03-01 1997-11-28 Canon Inc マイクロ波プラズマ処理装置およびプラズマ処理方法
US20020068458A1 (en) * 2000-12-06 2002-06-06 Chiang Tony P. Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber
CN101147248A (zh) * 2005-03-21 2008-03-19 东京毅力科创株式会社 等离子体增强原子层沉积系统和方法
US20100255625A1 (en) * 2007-09-07 2010-10-07 Fujifilm Manufacturing Europe B.V. Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma
US20090275210A1 (en) * 2008-05-02 2009-11-05 Sunil Shanker Combinatorial plasma enhanced deposition techniques
KR20110090838A (ko) * 2010-02-04 2011-08-10 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 실리콘 함유 막을 제조하는 방법
EP2363512A1 (en) * 2010-02-04 2011-09-07 Air Products And Chemicals, Inc. Methods to prepare silicon-containing films
WO2016186143A1 (ja) * 2015-05-20 2016-11-24 国立大学法人東北大学 プラズマ処理装置、プラズマ処理方法および半導体製造方法
CN106480429A (zh) * 2015-08-31 2017-03-08 超科技公司 具有旋转反应器管的等离子体增强型原子层沉积系统
CN108495950A (zh) * 2016-02-10 2018-09-04 倍耐克有限公司 用于原子层沉积的装置
CN109196619A (zh) * 2016-06-03 2019-01-11 瑞士艾发科技 等离子体蚀刻室和等离子体蚀刻的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曹燕强等: ""等离子体增强原子层沉积原理与应用"", 《微纳电子技术》, vol. 49, no. 7, pages 484 *
桑利军: "ECR等离子体辅助原子层沉积Al2O3薄膜的研究及其参数诊断", 《中国优秀硕士学位论文全文数据库(工程科技I辑)》 *
桑利军: "ECR等离子体辅助原子层沉积Al2O3薄膜的研究及其参数诊断", 《中国优秀硕士学位论文全文数据库(工程科技I辑)》, 15 December 2011 (2011-12-15), pages 020 - 241 *

Also Published As

Publication number Publication date
US20210348274A1 (en) 2021-11-11
KR20210062700A (ko) 2021-05-31
EP3861147A1 (en) 2021-08-11
JP2022504088A (ja) 2022-01-13
WO2020069901A1 (en) 2020-04-09
TW202028522A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
US6835919B2 (en) Inductively coupled plasma system
US8187679B2 (en) Radical-enhanced atomic layer deposition system and method
KR101803768B1 (ko) 회전형 세미 배치 ald 장치 및 프로세스
CN100339505C (zh) 表面波激发等离子体cvd系统
KR102024983B1 (ko) 성막 방법
KR101111494B1 (ko) 원자층 성장 장치 및 원자층 성장 방법
KR100909750B1 (ko) 기판 처리 장치 및 반도체 디바이스의 제조 방법
KR101139220B1 (ko) 원자층 성장 장치 및 박막 형성 방법
KR20180057528A (ko) 성막 처리 방법 및 성막 처리 장치
KR20190016909A (ko) 실리콘 질화막의 성막 방법 및 성막 장치
US11519067B2 (en) Method for depositing a silicon nitride film and film deposition apparatus
KR102455355B1 (ko) 원격 플라즈마 산화에 대한 아르곤 추가
JPH08330281A (ja) 真空処理装置及びその真空処理装置における真空容器内面堆積膜の除去方法
KR20140006907A (ko) 실리콘 질화막의 성막 방법, 유기 전자 디바이스의 제조 방법 및 실리콘 질화막의 성막 장치
KR20030000711A (ko) 대칭형 유로블럭을 가지는 진공판
US20150167166A1 (en) Thin film deposition apparatus
CN112771201A (zh) 等离子体增强原子层沉积(peald)设备
KR20200027665A (ko) 플라즈마 증착 방법 및 플라즈마 증착 장치
KR20190016896A (ko) 실리콘 질화막의 성막 방법 및 성막 장치
JP4126229B2 (ja) プラズマ生成装置及び方法
JP2010177245A (ja) 基板処理装置
WO2023210392A1 (ja) プラズマ処理装置、プラズマ処理方法、およびリモートプラズマ源
CN116516316A (zh) 用于薄膜沉积的炉管、薄膜沉积方法及加工设备
JPH01261829A (ja) 有機金属気相エピタキシー用基板の前処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination