JP2022504088A - プラズマ支援原子層堆積(peald)装置 - Google Patents

プラズマ支援原子層堆積(peald)装置 Download PDF

Info

Publication number
JP2022504088A
JP2022504088A JP2021518113A JP2021518113A JP2022504088A JP 2022504088 A JP2022504088 A JP 2022504088A JP 2021518113 A JP2021518113 A JP 2021518113A JP 2021518113 A JP2021518113 A JP 2021518113A JP 2022504088 A JP2022504088 A JP 2022504088A
Authority
JP
Japan
Prior art keywords
substrate
base material
vacuum vessel
plasma
peald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021518113A
Other languages
English (en)
Inventor
ヨルク・パチェイダー
ハルトムート・ロアマン
ユルゲン・ヴァイヒャルト
フロリアン・ブリット
Original Assignee
エヴァテック・アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヴァテック・アーゲー filed Critical エヴァテック・アーゲー
Publication of JP2022504088A publication Critical patent/JP2022504088A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

Figure 2022504088000001
真空容器(1)内において、プラズマ支援原子層堆積法(PEALD)は、前駆体ガスが前駆体ガス入口部(13)から取り込まれ、単分子層が吸着によって基材(4)上に堆積されるという形で実行される。その後、反応ガスは、反応ガス入口部(15)を通して取り込まれ、基材(4)上の単分子層は反応を生じ、基材キャリア(3)およびしたがってこのキャリア上の基材(4)を囲む幾何学的軌跡(L)に沿って分布する生成されるUHFプラズマ(PLA)により助長される。

Description

本発明は、プラズマ支援原子層堆積(plasma enhanced atomic layer deposition)(PEALD)装置、および基材とPEALDにより堆積された層とを含むデバイスを製造する方法を対象とする。原子層堆積法により、分子層が吸着によって堆積される。
三次元的に構造化された非常に小さな(サブナノメートル以下の)構造物への大規模な工業的層堆積は、要求条件が非常に厳しい課題である。
この課題は、本発明により、プラズマ支援原子層堆積(PEALD)装置によって解決され、この装置は
・ 真空容器(vacuum recipient)と、
・ 真空容器からの少なくとも1つの制御可能なポンピングポート(pumping port)と、
・ 容器の内部と連通する少なくとも1つの制御可能なプラズマ源と、
・ 前記容器の内部への少なくとも1つの制御可能な前駆体ガス(precursor gas)入口部と、
・ 前記容器の内部への少なくとも1つの制御可能な反応ガス入口部と、
・ 前記容器内の基材キャリア(substrate carrier)とを備える。
少なくとも1つのプラズマ源は、UHFプラズマ源であり、基材キャリアの周全体にわたる軌跡に沿って分布し、真空容器内にプラズマを生成するように製作される。
本発明による装置は、PEALD全体の処理時間を短縮し、それによりスループットを高める。これは、もっぱら、装置が1つの共通の真空容器ですべてのPEALDステップを実行するように製作され、高効率の酸化をもたらすことによる。
次の説明を完全に理解できるように、われわれは、本発明によるPEALD堆積方法の概要を簡単に述べることにする。
処理されるべき基材の表面は、通常、最初に前処理される、すなわち、たとえば、酸素、窒素、炭素のうち少なくとも1つの元素を含み得る、少なくとも1つの反応ガスと反応させられる。これによって、その後の分子層堆積(ALD)に最適な堆積条件が形成される。この初期ステップ--実際には、その後のALD堆積のための最適な開始条件を提供する--は、これをプラズマ支援方式で実行することによって、したがって、さらには前述の制御可能なプラズマ源によって、著しく改善され、短縮される。
反応ガスの供給を停止し、制御可能なプラズマ源を無効化した後、次いで真空容器をポンピングすると、金属を含む前駆体ガスが真空容器に供給され、金属含有前駆体の単分子層が自己制限方式で基材の前処理された表面に吸着する。吸着は、それぞれの表面が吸着分子で飽和すると直ちに停止する。
残りの前駆体ガスを真空容器からポンピングした後、その結果得られる金属含有表面は、たとえば、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む反応ガスを使用して反応させられ、前述のプラズマ源のプラズマによって助長される。
吸着による分子層堆積とその後の反応のステップは、真空容器内で2回以上繰り返され得る。それによって、繰り返される反応ステップ、および/または初期反応ステップは、仮に実行されたとしても、等しいまたは異なる反応ガスを使用し得る。したがって、装置は、複数の制御可能な反応ガス入口部を備え得る。
同様に、複数の分子層が堆積される場合、これは異なる前駆体ガスを用いて行われ得る。したがって、装置は、複数の制御可能な前駆体ガス入口部を備え得る。
定義
われわれは、全体を通して、
0.3GHz≦f≦3GHz
が有効であるUHF(極超短波)周波数fの下で本明細書および請求項を理解する。
定義
われわれは、全体を通して、1つまたは複数のはっきり区別できる被加工物である、PEALD装置の基材キャリアによって保持されるべき、または基材キャリア上に保持されるべき「基材」の下で本明細書および請求項を理解する。同時にPEALDで処理されるそのような被加工物の全体は「基材」と名付けられる。基材は、単一の被加工物からなるか、複数の被加工物からなるかに関係なく、基材キャリア上に保持された後、通常、PEALD処理を受け、したがって真空容器内の処理空間に曝されるそのような基材の拡張表面全体について画成される。
本発明による装置の一実施形態において、制御可能なプラズマ源は、電子サイクロトロン共鳴(ECR)源である。これは、それに加えて、1つまたは複数の反応ステップの効率をさらに改善する。
本発明による装置の一実施形態において、プラズマ源は、多数のUHF電源を備え、各々、たとえば、真空容器の壁を通して、それぞれの結合領域を介して真空容器の内部空間に直接UHF結合される。したがって、実際には、1つのプラズマ源が、基材キャリアの周の範囲の等しい単位毎に真空容器の内部空間に異なる位置で結合領域を通して直接結合されており、それによって、ECRプラズマ源については、ECR永久磁石構成が、前述の軌跡全体に沿って分布する。
本発明による装置の一実施形態において、結合領域は、UHF電源に関して真空容器の内側を封止する溶融石英窓を備える。
本発明による装置の一実施形態において、プラズマ源は、軌跡全体に沿って分布する導波路構成を備え、基板の周全体に沿って分布する、真空容器内への1つまたは複数の結合領域を備え、少なくとも1つのUHF電源入力をさらに備える。
それによって、基材のそれぞれの表面に沿った反応効果の均一な分布が達成される。
本発明による装置の一実施形態において、基材キャリア上の基材は、PEALDコーティングされるべき拡張表面(extended surface)を真空容器内の処理空間に露出させており、前述の軌跡は処理空間の周りに配置されている。この空間内において、少なくとも1つの制御可能な反応ガス入口部、さらには少なくとも1つの制御可能な前駆体ガス入口部が設けられ、基材キャリア上の基材の表面がPEALDのために露出される。
本発明による装置の一実施形態において、導波路構成は複数の異なる導波路セグメントを備え、各々少なくとも1つのUHF電源入力を備える。それによって、基材に沿った電磁場の分布は、制御され得る。
本発明による装置の一実施形態において、導波路構成は、少なくとも1つの中空導波路によって形成され、結合領域の少なくとも一部は、少なくとも1つの中空導波路のスリットを備える。導波路構成が単一の導波路によって形成される場合、これらのスリットはこの導波路に沿って分布する。導波路構成が複数の異なる導波路セグメントを備える場合、前述のスリットの1つまたは複数は、導波路セグメントの各々に設けられる。
本発明による装置の1つの実施形態において、真空容器は中心軸を有し、中心軸の方向に互い違いに配置された前述の導波路構成の少なくとも2つを備える。
本発明による装置の先に述べた一実施形態において、少なくとも2つの導波路構成のうちの1つの導波路構成の少なくとも1つのUHF電源入力、および少なくとも2つの導波路構成のうちのさらに別の導波路構成の少なくとも1つの電源入力は、中心軸の方向で見て相互に角度を変位させて配置されている。これによって、基材キャリアの周全体にわたる軌跡に沿って結果として得られるプラズマ密度を均一化することが可能となる。
本発明による装置の先に述べた一実施形態において、基材キャリアは、基材キャリア上の基材が沿って延在する基材平面を画成し、基材平面に垂直な方向に互い違いに配置された前述の導波路構成を少なくとも2つ備える。
本発明による装置の先に述べた一実施形態において、少なくとも2つの導波路構成のうちの1つの導波路構成の少なくとも1つのUHF電源入力、および少なくとも2つの導波路構成のうちのさらに別の導波路構成の少なくとも1つの電源入力は、基材平面に向かう方向で見て相互に角度を変位させて配置されている。
本発明による装置の一実施形態において、真空容器は中心軸を有し、スリットの少なくともいくつかはそれぞれのスリット開口表面を画成し、その上の中心法線は中心軸の方を指している。処理空間から処理位置にある基材キャリアに向かって見たときに、真空容器の内壁は、通常、円軌跡、楕円軌跡、多角形軌跡、それによって特に正方形または二次曲線軌跡に沿って延在する。したがって、中心軸は明確に画成される。基材キャリアは、基材平面について画成し、それに沿って基材キャリア上の基材が延在する。基材キャリアは、通例、処理位置において、中心軸に関してセンタリングされ、基材平面は、前述の中心軸に対して垂直である。
したがって、本発明による装置の一実施形態において、基材キャリアは、基材キャリア上の基材が沿って延在する基材平面を画成し、中心軸は、基材平面に垂直である。
本発明による装置の一実施形態において、基材キャリアは、基材キャリア上の基材が沿って延在する、基材平面を画成する。前述のようなスリットの少なくともいくつかは、それぞれのスリット開口表面を画成し、その上の中心法線は基材平面に平行である。
本発明による装置の一実施形態において、導波路構成の中空導波路の断面積は、中心軸に垂直であり、および/または基材平面に平行である、対称平面または共通対称平面を有し、スリットの少なくともいくつかは、対称平面から、または共通対称平面からオフセットされる。
本発明による装置の先に述べた一実施形態において、前述のスリットのいくつかは、それぞれの対称平面からまたは共通対称平面から一方の側に、前記スリットのうちの他のスリットが他方の側に、オフセットされる。
本発明による装置の一実施形態において、先に述べたスリットは、それぞれの対称平面または共通対称平面の一方および他方の側に交互にオフセットされる。
本発明による装置の一実施形態において、導波路構成は、矩形の内側断面を有する中空導波路を備えるか、または中空導波路からなる。
本発明による装置の一実施形態において、導波路構成は、中空導波路を備えるか、または中空導波路からなり、中空導波路の内部は、真空容器の内部に関して真空封止されている。
本発明による装置の一実施形態において、前述のスリットは、真空容器の内部に関して真空封止される。
本発明による装置の一実施形態において、スリットは、溶融石英窓で真空容器の内部に関して真空封止される。
本発明による装置の一実施形態において、UHFプラズマ源は、2.45GHzプラズマ源である。
本発明による装置の一実施形態において、導波路構成は、直線的に延在する導波路セクションを備えるか、または直線的に延在する導波路セクションからなる。
本発明による装置の一実施形態において、導波路構成は、真空容器の外側に配置され、UHFは、真空容器の内側と結合領域を介して連通する。
本発明による装置の一実施形態において、基材キャリアは、基材キャリア上の基材が沿って延在する基材平面を画成し、前述の軌跡は基材平面に平行な平面に沿って延在する。
本発明による装置の一実施形態において、導波路構成は、1つの異なる部品として真空容器から取り外し可能である。
本発明による装置の一実施形態において、プラズマ源はECRプラズマ源であり、前述の軌跡全体に沿って分布する永久磁石構成を備える。
本発明による装置の一実施形態において、プラズマ源は、導波路構成に隣接し、それに沿った永久磁石構成を備える。
本発明による装置の一実施形態において、導波路構成は、少なくとも1つの中空導波路からなるか、またはそれを備える。永久磁石構成は、一方の磁気極性の外極領域と、他方の磁気極性の内極領域とを備える。外極領域は、少なくとも1つの中空導波路の中空内部空間と整列されて延在し、内極領域は、導波路構成から離れるが、結合領域に隣接して、延在する。
本発明による装置の一実施形態は、プラズマイグナイタ構成を備え、これはイグナイタフラッシュライトを備える。
本発明による装置の一実施形態において、磁石構成は、1つの異なる部品として真空容器から取り外し可能である。
本発明による装置の一実施形態は、金属を含む前駆体を収容し、少なくとも1つの制御可能な前駆体ガス入口部に動作可能に接続されている、少なくとも1つの前駆体貯槽を備える。複数の前駆体貯槽が設けられ、それぞれの制御可能な前駆体ガス入口部にそれぞれ動作可能に接続されている場合、これらの前駆体貯槽は、異なる前駆体を収容してもよい。
本発明による装置の一実施形態において、前述の金属はアルミニウムである。
本発明による装置の一実施形態は、少なくとも1つの制御可能な反応ガス入口部に動作可能に接続されている少なくとも1つの反応ガスタンクを備える。複数の反応ガス貯槽が設けられ、それぞれの制御可能な反応ガス入口部にそれぞれ動作可能に接続されている場合、これらの反応ガス貯槽は、異なる反応ガスを収容してもよい。
本発明による装置の一実施形態において、前述の反応ガスは、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む。
本発明による装置の一実施形態において、少なくとも1つの前駆体ガス入口部は、処理位置にある基材キャリア上の基材に関して中心に、基材の方へ、放出する。
本発明による装置の一実施形態において、少なくとも1つの制御可能な前駆体ガス入口部および少なくとも1つの制御可能な反応ガス入口部は共に処理位置にある基材キャリア上の基材に関して中心に、基材の方へ、放出する。
本発明による装置の一実施形態において、処理位置で基材を載せた基材キャリアは、真空容器内に処理区画を画成し、処理区画の容積と基材キャリア上でPEALD処理されるべき基材の上方視点表面積との比Φに対して有効な
8cm≦Φ≦80cm
好ましくは
10cm≦Φ≦20cmがある。
したがって、一例として、構造化された、または構造化されていない、200mmのウェハが処理される場合、上方視点表面積は10・πcmである。5リットルの処理区画は、比Φが
Figure 2022504088000002
になるという点で、上述の条件を満たす。基材の拡張表面上の前述の上方視点表面積は、前述の拡張表面が三次元構造であるか、曲がっているか、または平坦であるかには依存しないことに留意されたい。基材の範囲に関する処理区画の容積は非常に小さく、これは、ポンピングタイムスパン、分子層吸着タイムスパン、反応タイムスパンを改善し、高価な前駆体ガスを節減する。
本発明による装置の一実施形態において、基材キャリア上の基材が処理位置にあるときにはいつでも、真空容器内の処理空間を囲む処理区画は、制御可能な圧力ステージによって真空容器内のポンピング区画から分離される。処理区画は、最適な小ささの容積で作製されるものとしてよい。反応し、それぞれの分子層吸着が終了した後、圧力ステージが取り除かれるか、または開かれ、前者の処理区画の高速ポンピングが、前者の処理区画からポンピング区画およびその中の少なくとも1つの制御されるポンピングポートへの広く開かれた流れの連通を通して確立され得る。ポンピング区画は、少なくとも1つの大きな制御されるポンピングポートを収容する最適な大きさの構造に製作され得る。
本発明による装置の一実施形態において、圧力ステージはシールであり、一実施形態では、非接触の流れ制限である。後者の場合、圧力ステージを確立するときの基材の振動荷重は、前述のように、回避され得る。
本発明による装置の一実施形態において、基材キャリアは、ローディング/アンローディング位置とPEALD処理位置との間で制御可能に移動可能である。
本発明による装置の一実施形態は、基材キャリアに動作可能に結合されている制御可能に移動可能な基材ハンドラ構成を備える。
本発明による装置の一実施形態は、真空容器内に少なくとも1つの基材ハンドリング開口部を備える。
本発明による装置の1つの実施形態は、少なくとも1つの基材ハンドリング開口部と協働する双方向基材ハンドラを備える。
本発明による装置の一実施形態は、真空容器内に少なくとも2つの基材ハンドリング開口部と、少なくとも2つの基材ハンドリング開口部の一方と協働する基材投入ハンドラと、少なくとも2つの基材ハンドリング開口部の他方と協働する基材排出ハンドラとを備える。
本発明による装置の一実施形態において、基材投入ハンドラおよび基材排出ハンドラは共に、通常、基材コンベヤによって実現される。そのような基材コンベヤは、少なくとも2つの基材ハンドリング開口部のうちの1つを通して未処理基材をハンドリングして真空容器内に送り込み--したがって基材投入ハンドラとして機能し、それと同時に第2の基材ハンドリング開口部を通して処理済みの基材を真空容器から取り出す--したがって、基材排出ハンドラとして機能する。
本発明による装置の一実施形態において、タイマユニットとも呼ばれる、コンピュータのようなタイミングコントローラが、少なくとも、前記少なくとも1つの前駆体ガス入口部への制御弁構成、前記少なくとも1つの反応ガス入口部への制御弁構成、前記少なくとも1つのプラズマ源--反応空間内におけるプラズマ源効果を有効化/無効化するための--、および、少なくとも1つの制御可能なポンピングポート--真空容器へのポンピング効果を有効化/無効化するための--に動作可能に接続されている。
本発明による装置全体のタイミング制御は、たとえば、以下で述べる方法およびその変形形態を実施するために、タイミングユニットによって実行される。
本発明による装置の前述の任意の数の実施形態が、矛盾しない限り組み合わせられ得る。
本発明は、層がPEALDによって上に堆積された基材を製造する方法をさらに対象とし、この方法は
(0)容器内に基材を設け、
容器の中身を排出することと、
(1)前駆体ガスを排出された容器内に供給し、
吸着によって前駆体ガス中の材料からの分子層を基材上に堆積することと、
(2)容器から残っている前駆体ガスをポンピングで抜くことと、
(3)容器内のプラズマを点火し、基材上に堆積された分子層を反応ガスとプラズマ支援反応させることと、
(4)容器をポンピングすることと、
(5)容器から基材を取り出すこととを含む。
本発明による方法の一変形形態において、方法は、本発明による装置、またはその少なくとも1つの実施形態によって実行される。
本発明による方法の一変形形態において、ステップ(0)の後およびステップ(5)の前に、ステップ(1)から(4)が少なくとも1回繰り返される。それによって、複数の分子層が堆積され、反応する。
本発明による方法の一変形形態において、ステップ(1)の繰り返しは、繰り返されるステップ(1)の少なくとも一部において異なる前駆体ガスを供給することによって実行される。したがって、複数の分子層の少なくとも一部は、異なる材料のものであってよい。
本発明による方法の一変形形態において、ステップ(3)の繰り返しは、繰り返されるステップ(3)の少なくとも一部において異なる反応ガスを供給することによって実行される。したがって、吸着した分子層の少なくとも一部は、異なる反応を生じ得る。
本発明による方法の一変形形態において、繰り返されるステップ(3)の少なくともいくつかは、プラズマを点火することなく実行される。
本発明による方法の一変形形態は、ステップ(0)の後およびステップ(1)の前にステップ(0a)を実行することを含み、このステップ(0a)では、基材の表面が反応ガスと反応させられる。
分子層堆積法(ALD)では、ほとんどの場合に、前処理された堆積表面を必要とする。これは、ステップ(0)に従って容器内に設けられた基材が基材を容器内に送り込む前に実現されるようなすでに前処理された、すなわち反応を生じた表面をもたらすという点で実現され得るか、または、先に述べた変形形態により、反応ガス雰囲気中で反応させることによって初期の前処理ステップとして基材が中に用意された後に、排出された容器において実現される。
本発明による方法の一変形形態において、プラズマが、ステップ(0a)で点火される。
本発明による方法の一変形形態において、ステップ(0a)における反応ガスは、少なくとも1つのステップ(3)における反応ガスとは異なる。
本発明による方法の一変形形態において、ステップ(0a)における反応ガスおよび少なくとも1つのステップ(3)における反応ガスは同じである。
本発明による方法の一変形形態において、ステップ(1)における前駆体ガスまたは繰り返されるステップ(1)のうちの少なくとも1つのステップにおける前駆体ガスはTMAである。
本発明による方法の一変形形態において、1つまたは複数の反応ガスは、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む。
本発明による方法の一変形形態において、前記ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される。
本発明による方法の一変形形態において、ステップ(2)または繰り返されるステップ(2)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される。
本発明による方法の一変形形態において、ステップ(3)または繰り返されるステップ(3)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される。
本発明による方法の一変形形態において、ステップ(4)または繰り返されるステップ(4)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される。
本発明による方法の一変形形態は、ステップ(0)の後およびステップ(1)の前にステップ(0a)を実行することを含み、このステップ(0a)では、基材の表面が反応ガスと反応させられ、ステップ(0a)は、それによって、有効な
0.5秒≦T0a≦2秒
好ましくは
0a≒1秒
があるタイムスパンT0aで実行される。
本発明による方法の一変形形態は、ステップ(0)とステップ(1)との間、および/またはステップ(2)とステップ(3)との間で処理空間から真空容器内のポンピング空間へのより高いガス流抵抗を確立し、ステップ(1)とステップ(2)との間、および/またはステップ(3)とステップ(4)との間で処理空間からポンピング空間へのより低いガス流抵抗を確立することを含む。
本発明による方法の一変形形態は、基材の周全体にわたる軌跡に沿って分布するステップ(3)で点火されたプラズマを発生することを含む。
本発明による方法の任意の数の変形形態は、矛盾しない限り組み合わせられ得る。
本発明は、前述の本発明の方法、またはその少なくとも1つの変形形態により、層がPEALDによって上に堆積された基材を含むデバイスを製造する方法をさらに対象とする。
本発明の異なる態様およびそれらの組合せ、さらには今日実現されているような態様および組合せは、説明の最後に要約する形で記載されており、例の後続のより詳細な説明を読んだ後になおいっそうよく理解されるであろう。
次に、本発明は、当業者にとって必要である限り、図の助けを借りて、さらに例示されるものとする。
図の説明は次のとおりである。
本発明による方法を操作するのに適している、本発明による装置の主要な構造を、概略的に、また一部ブロック図で、表現する図である。 本発明による装置の実施形態におけるプラズマ源の一実施形態を概略的に、また簡略化して示す一部切欠斜視図である。 本発明による装置の実施形態のプラズマ源における複数の導波路の互い違いに並ぶ結合領域を概略的に、また簡略化して示す図である。 本発明による装置の実施形態のプラズマ源における複数の導波路の互い違いに並ぶUHF電源配置を概略的に、また簡略化して示す図である。 本発明の装置の実施形態の導波路構成を概略的に、また簡略化して示す断面上面図である。 単一の結合領域を有する図5の実施形態の導波路構成を示す斜視図である。 複数の結合領域を有する図4および図5の実施形態の導波路構成の一部を概略的に、また簡略化して示す図である。 本発明による装置のさらなる実施形態の導波路構成のさらなる実現形態を示す図である。 本発明による装置のさらなる実施形態における真空容器へのUHF給電を図8に類似する表現で概略的に、また簡略化して示す図である。 本発明による装置のさらなる実施形態における中空導波路を含む導波路構成の実現を概略的に、また簡略化して示す図である。 本発明による装置のさらなる実施形態における導波路構成の実現を図10に類似する表現で示す図である。 本発明による装置のさらなる実施形態の結合領域を通る断面を簡略化して、概略的に示す図である。 本発明による装置の実施形態における導波路構成に沿った結合スリットの定位を簡略化して、また概略的に示す図である。 本発明による装置の実施形態における湾曲した導波路構成の実現を概略的に、また簡略化して示す上面図である。 本発明による装置の実施形態のECRプラズマ源を概略的に、また簡略化して示す図である。 本発明による装置の実施形態における前駆体ガスおよび反応ガス入口部構成を概略的に、また簡略化して示す図である。 本発明による装置の実施形態におけるさらなる前駆体ガスおよび反応ガス入口部構成を概略的に、また簡略化して示す図である。 本発明による装置の実施形態におけるさらなる前駆体ガスおよび反応ガス入口部構成を概略的に、また簡略化して示す図である。 本発明による装置の実施形態におけるポンピング空間からの処理空間の制御された分離を概略的に示す、最も簡略化された、一般的な図である。 本発明による装置の実施形態におけるポンピング空間からの処理空間の制御された分離を概略的に示す、最も簡略化された、一般的な図である。 本発明による装置の実施形態において提供され得る基材ハンドラ構成をほとんど概略的に、また簡略化して示す図である。 本発明による装置の実施形態において提供され得る基材ハンドラ構成をほとんど概略的に、また簡略化して示す図である。 本発明による装置の実施形態において提供され得る基材ハンドラ構成をほとんど概略的に、また簡略化して示す図である。 本発明による装置の実施形態において提供され得る基材ハンドラ構成をほとんど概略的に、また簡略化して示す図である。 本発明による装置の実施形態において提供され得る基材ハンドラ構成をほとんど概略的に、また簡略化して示す図である。 前述のような実施形態を組み合わせた、本発明による装置の一実施形態を概略的に、また簡略化して示す図である。 本発明による装置の一実施形態、たとえば、図26の実施形態において基材ハンドラと基材キャリアとの協働を概略的に、または簡略化して示す斜視図である。 本発明による、また本発明による装置によって実行され得るような方法のフローチャートを示す図である。
図1により、本発明による装置は、真空容器1を備える。真空容器1内では、基材キャリア3が、少なくともPEALD処理中に、基材4を処理位置に保持し、PEALD処理されるべき表面は真空容器1内の処理空間TSに露出される。UHFプラズマ源5は、真空容器1の内部空間と動作可能に接続されており、図1に概略的に示されているように、基材キャリア3の周全体に沿って、すなわち基材キャリア3上でPEALD処理されるべき基材4の周に沿って延在する、破線で概略的に示されている、軌跡L全体に沿って分布するプラズマPLAを処理空間TS内で生成するように製作される。
プラズマPLAは、必ずしも軌跡L全体に沿って均一なプラズマ密度である必要はないが、軌跡L全体に沿って密度が変化していてよく、たとえば、周期的に密度が変化していてもよい。基材4に対するプラズマ効果の均一性を改善するために、Wで概略的に示されているように、基材4を回転させることすらあり得る。
基材は、真空容器1の壁内のそれぞれの1つまたは複数のハンドリング開口部(図1には示されていない)を通して制御可能な基材ハンドラ構成7を用いて基材キャリア3の有無にかかわらず処理位置への、または処理位置からのハンドリングが行われる。
真空容器1への制御可能なポンピングポート9は、制御弁構成10によって、または制御可能なポンピングポート9が動作可能に接続されているポンピング構成11の直接制御によって制御される。
制御可能な弁構成14によって制御可能な、制御可能な前駆体ガス入口部13、および制御可能な弁構成16によって制御可能な、制御可能な反応ガス入口部15は、真空容器1の処理空間TS内を放出先とし、前駆体貯槽構成17および反応ガスタンク構成19にそれぞれ接続可能である。
タイマユニット21、たとえば、コンピュータが、制御可能なポンピングポート9を介して、真空容器1をポンピングするタイミングを、プラズマ源5の動作を、制御可能な前駆体ガス入口部13を介して、前駆体ガスの流れを、制御可能な反応ガス入口部15を介して、反応ガスの流れを、基材キャリア3と協働する制御可能な基材ハンドラ構成7を介して基材ハンドリングを、制御する。
図2は、円筒形の真空容器1を概略的に、簡略化して示す一部切欠斜視図である。プラズマ源5は、真空容器1の外面に沿って、例示されているように、基材キャリア3の周上をループする1つまたは、図示されているように、複数の導波路構成25を備える。導波路構成25の各々は、真空容器1に沿ってループしている1つの結合領域、または図2に示されているように、それぞれのループ25に沿って分布する多数の結合領域27を備える。結合領域27において、UHF電力は、1つまたは複数の導波路構成ループ25から真空容器の処理空間TS内に結合される。
真空容器1は、円形、楕円形、多角形、それによって特に正方形または二次曲線軌跡に沿って延在する内部断面形状を有し得る。したがって、図2の方向Sで、真空容器1の頂部から見たときの、導波路構成25の1つまたは複数のループの形状である。導波路構成25のループの各々は、少なくとも1つのUHF電源(図2は示されていない)によって供給される。
導波路構成25の範囲Lに沿った結合領域27の軌跡は、軌跡Lに沿ったプラズマ密度の不均一な分布を引き起こし得る。2つまたはそれ以上の導波路構成25が設けられ、各々それぞれの軌跡Lに沿って分布している場合、導波路構成25の結合領域27は、図2の方向Sで見て、軌跡Lに沿って相互に変位してよい。これは、等しい形状の結合領域の変位dによって図3に概略的に表されている。
導波路構成25が軌跡Lに沿った領域XにおいてUHF電力を供給されたときに必ず、真空容器1に結合されている電力は、軌跡Lに沿って後続の結合領域27から後続の結合領域27に向かうにつれ減少する。2つまたはそれ以上の導波路構成25が設けられ、各々それぞれの軌跡Lに沿って分布している場合、それぞれの導波路構成25にUHF電力が供給される領域X1およびX2は、図2の方向Sで見て、また図4の概略図内のDによって述べたように軌跡Lに沿って相互に変位されてよい。図4では、軌跡Lの範囲に沿って導波路構成25のうちのそれぞれの構成によって真空容器1に送達されるUHF電力P1およびP2の傾向が定性的に示されている。見るとわかるように、一方の導波路構成25から真空容器1内に結合されたUHF電力の減衰は、他方の導波路構成25からのUHF電力によって補償される。
したがって、真空容器1に沿って一方が他方の上に置かれる少なくとも2つの導波路構成25の結合領域27および/またはUHF電源領域X,-D-の相互変位dを調整または選択することによって、軌跡Lに沿ったプラズマ密度の均一性が最適化され得る。たとえば図2の導波路構成25の少なくとも1つが図10の実施形態に従って製作される場合、2つの導波路構成25だけの変位を相対的に調整することによって結合領域および/またはUHF電源領域の相互位置を調整することが可能になることに留意されたい。
図5は、矩形断面の真空容器1に沿って、一例として、単一のループ状導波路28を備える、導波路構成25を、概略的に、また簡略化して示す断面上面図である。導波路28は、UHF電源30によって給電される。破線で示されているように、複数のUHF電源30が1つの導波路28に給電してよく、および/または1つもしくは複数のUHF電源が異なる給電領域もしくは配置26で導波路28に給電してよい。
図6に概略的に示されているように、結合領域27は、単一のループ状結合領域によって実現され得るか、または図7に示されているように、導波路構成25の範囲に沿って分布する、複数の、たとえば、多数の、結合領域によって実現され得る。
図8は、本発明による装置のさらなる実施形態の導波路構成25のさらなる実現形態を示している。ここで、導波路構成25は、複数の異なる導波路28を備え、各々少なくとも1つのUHF電源30によって給電される。
それによって、各単一の導波路28は、図6による実施形態の結合領域27と同様に、単一の連続した結合領域によって真空容器1の内部にUHF結合され得るか、または図7と同様に、複数の結合領域27によって、真空容器1の内部、実際にはその中の処理空間TSにUHF結合され得る。また、この実施形態では、複数のUHF電源30が導波路28の一部または全部に接続されてもよく、および/または1つのUHF電源30が複数の導波路28に接続されてもよく、および/または1つのUHF電源30が異なる給電位置26で導波路28の1つに接続されてもよい。図8による実施形態の極端な例では、別々の導波路28の範囲は実質的にゼロにまで縮小され、UHF電力は複数のUHF電力源30によって真空容器の処理空間TSに直接結合される。そのような実施形態は、図9に概略的に示されている。真空容器1の壁を通る結合領域は、参照番号27で図9に概略的に示されている。
したがって、この実施形態により、導波路28は設けられない。UHFプラズマ電源は、基材キャリア3に関して均等に分布する、すなわち、基材キャリア3の周方向の範囲の等しい単位L毎に1つのプラズマ電源30の周が設けられている。
基材キャリア3の周方向の範囲が前述の単位Lに等しい場合に、UHF電源30は1つだけ設けられるべきである。
これによって、単位Lは、少なくとも40cm、または少なくとも50cm、または少なくとも60cm、またはさらには少なくとも100cmになるように選択される。選択され得る単位Lが大きければ大きいほど、基材キャリアの周方向の範囲の所与の範囲に対して設けられるUHF電源の数は少なくなる。後で述べる永久磁石構成36は、基材キャリア3の周全体に沿って、すなわちプラズマが生成されるべき軌跡に沿って、延在しているか、または--設けられている場合に--分布していることに留意されたい。そのような永久磁石構成36を設けることにより、1つまたは複数のプラズマ源は、1つまたは複数の電子サイクロトロン共鳴(ECR)-UHFプラズマ源となる。
それによって、1つまたは複数の結合領域27は、UHFホーンアンテナの出力領域となり得る。
真空容器1の処理空間TSに結合されるべき必要なUHF電力、および印加されるべきUHF電力を考慮して、前述のような1つまたは複数の導波路構成25は、図10に概略的に示されているように、ほとんどが中空導波路28として実現される。図2から図9までのようなすべての実施形態は、中空導波路28を備えるか、または中空導波路28からなるそれぞれの導波路構成25で実現され得る。1つまたは複数の結合領域27は、1つまたは複数の中空導波路28の壁内の1つまたは複数の結合スリット32をそれぞれ備える。後で述べるように、これらのスリットは、中空導波路28が真空容器1内の真空とは異なる内圧で動作する場合に、低損失の誘電体窓、特に溶融石英窓で覆われ、たとえばOリングによって封止される。
図10の実施形態において、1つまたは複数の導波路28は、真空容器1の壁の一部を形成する。それによって、結合領域、特にスリット32は、真空容器1の壁を横切らない。図2を再び見ると、これは真空容器1の壁を通して設けられた、結合領域27、特にスリット32を考慮することなく、複数の導波路構成25を相互に変位させることを可能にすることがわかる。
処理空間TSに露出している導波路28の表面へのPEALD堆積を回避するために、これらの表面は、金のような貴金属の被覆によって覆われてよい。
このような被覆は、より一般的には、本発明による装置において、PEALD処理に曝されるがPEALD被覆されるべきではないすべての表面に施され得る。
図11は、中空導波路がPEALD処理に曝されず、1つまたは複数の結合スリット32が導波路28の壁、さらには真空容器1の壁を通過する一実施形態を、図10と同様の表現で示している。
図10および図11において、点線4は、基材キャリア3上の基材4のPEALD処理されるべき拡張表面の配置を示しており、これは真空容器1内の処理空間TSを限定していることに留意されたい。
ほとんどの場合において、真空容器1は、図2の方向Sによる上面図において、円、楕円、多角形、それによって特に正方形または四角形に沿って延在する壁によって内部空間が制限されるように製作される。これらすべての場合において、真空容器は中心軸Aを有している。
さらに、基材キャリア3は、通例、基材キャリア1上の基材が沿って延在する基材平面を画成する。そのような基材平面Eは、図1に示されている。ほとんどの場合、基材平面Eは、中心軸Aに垂直に延在する。
結合領域27およびそれによって1つまたは複数のスリット32も、今日実現されている実施形態において、スリット開口部の中心およびその上の法線Nが、軸Aに向かって半径方向に向けられ、および/または基材面Eに平行になるように、空間的に配向される。これは、図10および図11に概略的に示されている。
図12にさらに示されているように、1つまたは複数の中空導波路28から真空容器1内の処理空間TSへの1つまたは複数の結合スリット32は、たとえば、溶融石英の誘電体材料シール34によって封止して閉じられる。これは、導波路28を雰囲気中で動作させることを可能にするが、処理空間TSはPEALDに対する異なる条件により動作する。
図13に概略的に例示されているように、中空導波路28の断面領域は--図13に示されているようにそれが円形断面の導波路であっても正方形断面の導波路であっても--中心軸Aに垂直な、および/または基材面Eに平行な対称平面Esymまたは共通対称平面を有している。少なくとも1つのスリット32、または複数のスリット32のうちの少なくともいくつかは、対称平面Esymから、または共通対称平面からオフセットされている。
図13にさらに例示されているように、複数のスリット32のうちの少なくともいくつかは、対称平面Esymから、または共通対称平面から、一方の側に、スリット32のうちの他のスリットは他方の側にオフセットされている。
共通の対称平面Esymは、導波路構成25の導波路28が、中心軸Aに垂直および/または基材面Eに平行な単一の平面に沿って延在している場合に存在する。複数の対称平面Esymは、導波路構成25の導波路28が、中心軸Aに垂直および/または基材面Eに平行な異なる平面にそれぞれ沿って延在している場合に存在する。
さらに、また図13にも例示されているように、スリット32は、それぞれの対称平面Esymまたは共通対称平面の一方および他方の側に交互にオフセットされている。
前に述べたように、スリット32は、溶融石英のような誘電体材料のシール34によって封止して閉じられる。
図14に概略的に示されているように、真空容器1の断面形状が、湾曲している、たとえば円形であるときに必ず、それぞれ曲げられた導波路28、特に中空導波路を用いて導波路構成25を実現する代わりに、導波路構成25は、直線的に延在する導波路28を用いて湾曲形状を近似することによって実現され得る。それによって、図14に示されているように、直線導波路28のいくつかは、相互に接続されていてもよく、またいくつかは図8の実施形態と同様に分離されていてもよく、その結果、図14の実施形態において、4つの異なる導波路28が得られ、各々2つの直線的な連結導波路部分によって形成される。4つの異なる導波路28は、各々、異なるUHF電源30によってUHF給電される。
われわれは、ここまで、純粋にUHF電磁力に基づき、本発明の装置によるプラズマ源を用いてプラズマを発生することを提示し、説明した。それによって、低いイオンエネルギーに到達し、その結果、堆積された原子層の損傷率が低くなる。
本発明による装置の実施形態において、今日実現されているような実施形態でも、ECRプラズマが印加される。ECR UHFプラズマによって、反応ガスの非常に高い解離度と非常に高い反応確率に到達する。これは、まだ堆積されている原子層を酸化反応ガスで反応または酸化させるタイムスパンを著しく短縮し、それによって低イオンエネルギーを保つ。
これは、基材キャリア3の周に沿って、したがって導波路構成25にも沿って、永久磁石構成36を設けることによって実現される。
そのような永久磁石構成36およびその結果得られる磁界Hは、すべての図2、図5から図14において破線で示されている。ECRプラズマ源であるプラズマ源は、これまでに説明されたが、これから説明される予定の、すべての実施形態とを組み合わせて印加され得る。
図15は、本発明による装置の一実施形態のECRプラズマ源を概略的に、また簡略化して示す。永久磁石構成36は、「馬蹄」形磁石構成と言ってもよい。一方の磁気極性の外側領域36は導波路構成25と整列しているが、他方の磁気極性の内側領域36は、結合領域、図15の例では、中空導波路28内の封止被覆されている--34--スリット32に隣接する導波路構成25から真空容器1の壁を通して離れる方向に延在する。
図15による実施形態を見るとわかるように、この構造は、磁石構成36、さらには導波路構成25を--別の導波路28を備えていない場合に--保守および/または交換用のそれぞれの異なる部品として取り外すことを可能にする。
プラズマ源によって生成されたプラズマは、一実施形態では、フラッシュライト、たとえば、Xeフラッシュライトを用いて点火され、それぞれのUHF電源30を遮断するか、または継続的に動作しているUHF電源30と真空容器1内の処理空間TSとの間のそれぞれの動作している接続をオフにすることによって消滅する。
図1に関連して述べたように、本発明による装置は、前駆体貯槽構成17に接続可能であるか、または接続されている制御可能な前駆体ガス入口部13を備えている。前駆体貯槽構成17は、今日の実施されている実施形態において、TMA、したがって金属としてのアルミニウムを含む。前駆体貯槽構成は、1つまたは複数の前駆体貯槽を備え、次いで、異なる前駆体を収容する。
さらに、装置は、反応ガスタンク構成19に接続可能であるか、または接続されている制御可能な反応ガス入口部15を備えている。反応ガスは、たとえば、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含むガスであってもよい。今日の実施されている実施形態において、反応ガスは酸素である。
反応ガスタンク構成19は、1つまたは複数の反応ガスタンクを備えるものとしてよく、次いで異なる反応ガスを含む。
図16に概略的に示されているように、本発明による装置の一実施形態において、制御可能な前駆体ガス入口部17は、基材キャリア3に関して中心に来るように真空容器1に配置され、これは基材キャリア3上に保持されている基材4に対向している。それによって、基材4のPEALD処理されるべき拡張表面に沿った均一な前駆体ガス分布が達成される。そのような分布に関しては何らかの形であまり重要ではないが、制御される反応ガス入口部15は、中心の前駆体ガス入口部13の脇の可能な限り中心に配置されている。
前駆体ガスおよび反応ガスは、PEALD処理のために同時に処理空間TSに供給されることはないので、本発明による装置の一実施形態では、前駆体ガス入口部13および反応ガス入口部15は共に、真空容器1の中心に導かれる。図17の概略的に示され簡略化されている表現により、これは、両方のガスが共通の入口部13/15を通して真空容器1に供給されるという点で、または、図18により、たとえば反応ガスの入口部15が前駆体ガスの入口部13と同軸であるという点で、実現される。
前駆体ガス入口部および反応ガス入口部の実現形態は、前述の、さらに述べる予定である本発明による装置の任意の実施形態と組み合わされ得る。
本発明による装置を通じてPEALD処理された基材の高いスループットに関して、支配的な要因は処理空間TSの容積である。
本発明による装置では、前に述べたように、基材4が処理位置で載る基材キャリア3は、真空容器1内に処理空間TSを画成する。前述の装置の実施形態において、処理空間TSの容積と、基材キャリア1上に載るPEALD処理されるべき基材の表面の上方視点表面積との比Φに対して有効な
8cm≦Φ≦80cm
好ましくは
10cm≦Φ≦20cm
がある。
図19は、処理空間TSの非常に小さな容積および効率的なポンピングが達成される本発明による装置の実施形態のポンピング/処理構造全体を、最も簡略化して概略的に示している。
基材4および真空容器1の壁は、基材4の周りをループする制御された圧力ステージ構成40によって連結される。
制御された圧力ステージ構成40が、事実上無限の流動抵抗までの高い流動抵抗を確立するように制御入力C40にて制御されるときには必ず、小さな容積の処理空間TSに対する処理空間区画TCSが確立される。制御された圧力ステージの高い流動抵抗は、たとえば封止表面の機械的接触によって、またはたとえばラビリンスシールによる非接触によって、確立され得る。
制御された圧力ステージ40が低い流動抵抗を確立するように制御されるときには必ず、処理空間TSを含む真空容器1の効率的なポンピングが実行される。
処理空間区画TCSは、ポンピング区画PCとは独立して寸法を決められてよく、ポンピング区画PCは強力なポンピング機器のための空間および低い流動抵抗を確立するように大きく取られてよい。
図19による実施形態では、制御された圧力ステージ40は、基材キャリア1と相互作用するか、または基材4と直接相互作用するが、図20によれば、真空容器1は、真空容器1内の剛体横断壁42によって2つの区画TSCおよびPCに分離している。制御された圧力ステージ40aを用いて、処理空間区画TSCからポンピング区画PCへの流動抵抗が制御される。制御された圧力ステージ構成40は、必ずしも基材4または被加工物キャリア3を取り囲む必要はなく、その動作は、接触振動などによって基材に機械的な影響を与えることはほとんどない。
図19または図20に例示されているようなポンピング/処理構造は、前述の、またはまだ述べていない任意の実施形態と組み合わされ得る。
図21から図25は、本発明による装置の実施形態において提供され得るハンドラ構成7(図1)をほとんど概略的に、また簡略化して示している。図21により、投入/排出基材ハンドリング開口部44が設けられており、この開口部を通して、基材ハンドラ46が、未処理の基材4を真空容器1内に、また基材キャリア3上にローディングし、処理済み基材4を基材キャリア3および真空容器1から取り外す。基材ハンドラ46は、双方向の動作を行う。
図22によれば、図21による実施形態との違いとして、基材ハンドラ46は、基材キャリア3と一緒に処理されるべき基材4を真空容器1にローディングし、基材キャリア3と一緒に処理済み基材を真空容器1から取り出すが、共に基材ハンドリング開口部44を通る。ここでもまた、基材ハンドラ46は、双方向の動作を行う。
図23および図24により投入ハンドリング開口部44および排出ハンドリング開口部44が真空容器1内に設けられている。投入基材ハンドラ46は、未処理基材4を--図23により基材キャリア3なし、図24により基材キャリア3ありで--真空容器1にローディングするが、排出基材ハンドラ46は、処理済み基材を--図23により基材キャリア3なし、図24により被加工物キャリア3ありで--真空容器1から取り出す。基材ハンドラ46および46は、一方向の動作を行う。
すべてのハンドリング開口部44、44、44は、ロードロック(図示せず)を備え得る。
真空容器1内の基材4のローディング/アンローディング位置は、真空容器1内の基材4のPEALD処理位置と異なり得る。これは、図21から図24のすべての実施形態に対して有利である。
図25は、一例として、基材4のローディング/アンローディング位置が基材4のPEALD処理位置と異なる、図21による実施形態を示している。制御された駆動装置48によって、基材4を載せた基材キャリア3は、ローディング/アンローディング位置PLから処理位置PTに移動され、その逆も同様である。真空容器1に関する基材キャリア3の駆動される動きは、それによって、制御された圧力ステージ構成40(図19参照)において、処理位置PTにおける高いガス流動抵抗および基材キャリア3が処理位置PTから離れてすぐの低い流動抵抗を確立するために利用され得る。処理位置PTにおいて、処理空間区画TSCが確立される。
投入基材ハンドラ46および排出基材ハンドラ46は、コンベヤ(図示せず)、たとえば、ディスクまたはリング形状のコンベヤ、ドラムコンベヤなどによって、通常、実現されるものとしてよく、このコンベヤによって、未処理基材は真空容器1内に搬送され、PEALD処理された基材が真空容器1から取り出されることに留意されたい。
図21から図25によるハンドラ構成の実施形態は、前述の、そしてまだ述べていないすべての実施形態と組み合わされ得ることが、再度強調される。
図26は、前述のような実施形態を組み合わせた、本発明による装置の一実施形態を概略的に、また簡略化して示す。
真空容器1は、図21の実施形態と同様に投入/排出ハンドリング開口部44を有する。基材ハンドラ46は、基材4を基材キャリア3上に、また基材キャリア3から搬送する。矩形断面の導波路28を備える、導波路構成25は、図13の実施形態により、溶融石英窓-封止スリット32によって、真空容器1の処理空間TSと連通する。プラズマ源は、ECRプラズマ源として製作され、図15の実施形態により「馬蹄」形磁石ループとして形成された永久磁石構成36を備える。制御可能な前駆体ガス入口部13、さらには制御可能な反応ガス入口部15は、図16の実施形態により配置される。
図27に示されているように、投入/排出ハンドラ46はフォークとして実現されている。搬送されるべき基材は、2つまたはそれ以上のフォークアーム52の上に置かれる。フォークアーム52は、制御された直線的フォーク駆動装置(図示せず)を用いた水平方向の制御された動き-h-によって、基材キャリア3の表面56内の整列された溝54内に入る。フォークアーム52は、これによって、基材キャリア3の表面56の溝54から突出し、フォークアーム52上の基材4は、基材キャリア3に隣接するように移動されるときに表面56に触れることがない。溝54は、フォークアーム52の厚さよりも深い。したがって、基材が基材キャリア3の表面56に隣接して適切に整列された後、フォークは、制御された垂直駆動装置(図示せず)によって下げられ-v-、基材4は、基材キャリア3の表面56上にそっと堆積される。
基材が処理され、真空容器1から取り出されることになったら、フォークアーム52は、表面56上に置かれている基材に触れることなく、また溝54の壁に触れることなく、溝54内に入る。次いで、フォークアーム52は、上方に移動されて-v-処理済みの基材の裏面に接触し、基材を表面56から持ち上げ、基材を基材キャリア3との整列から外し-h-、真空容器1から取り出す。
基材キャリア3上に基材をローディングし、基材を基材キャリア3からアンローディングすることは、実際には図25の実施形態と同様に基材キャリア3の位置PLにおいて実行される。図26において、基材キャリア3のPL位置は、実線で描かれている。基材キャリア3は、ロッド駆動装置(図示せず)によって制御可能に駆動されるロッド58を用いて、破線で描かれている、ローディング/アンローディング位置PLと処理位置PTとの間で移動される。PEALD処理されるべき基材が載る基材キャリア3が位置PTに置かれた後、フレーム60は、駆動装置(図示せず)によって制御可能に駆動される、ロッド62を用いて持ち上げられ、処理空間TS、現在は処理空間区画TSCとポンピング区画PCとの間に高い流動抵抗を確立する。フレーム60のようなフレームを使用することは、図19の実施形態のような制御された圧力ステージ構成40を確立することを可能にし、それにより、基材は最小の機械的振動でのみローディングされる。これは、特に、基材キャリア側への圧力ステージ構成がたとえばラビリンスシールによって非接触方式で実現される場合である。
図28は、これまでに説明したように本発明による、また本発明による装置によって実行され得るような方法の流れ図を示している。
PEALD処理されるべき基材が、真空容器(真空容器1)にローディングされる。このステップを「(0)」と名付ける。基材がローディングされる前にすでに真空にされていなければ、ステップ(0)で、真空容器はポンピングにより中身の排出が行われる。
ステップ(1)において、前駆体ガスは真空容器(処理空間TSまたは処理区画TSC)に供給され、前駆体は基材の表面に吸着される。
その後のステップ(2)において、真空容器(処理空間または処理区画を含む)から排出が行われ、過剰な前駆体ガスを除去する。
ステップ(3)において、真空容器内でプラズマが点火され(ECR-UHFプラズマPLA)、ステップ(2)から結果として得られた堆積済み分子層は、反応ガスと反応し、プラズマ支援される。
ステップ(4)において、真空容器がポンピングされ、過剰な反応ガスが除去される。
ステップ(1)から(4)は、n回(n≧1)繰り返され、複数の反応した分子層を堆積させ得る。これによって、ステップ(1)において、異なる前駆体が使用され、および/またはステップ(3)において、異なる反応ガスが使用されて、特に、酸化物、窒化物、炭化物、または金属層を形成するものとしてよい。ステップ(5)において、処理された基材は、真空容器から取り出される。
ステップ(0)の後およびステップ(5)の前にステップ(1)から(4)が少なくとも1回繰り返される場合、ステップ(3)の一部はプラズマを点火することなく実行され得るか、または繰り返されるステップ(3)について異なるプラズマが印加されてよい。
多くの場合、TMAのような前駆体の満足のいく吸着は、前処理された表面でのみ達成される。したがって、前述の図28に注目すると、ステップ(0)でローディングされた基材は、ステップ(0)の上流プロセスにおいて、以前に施されている可能性のある、前処理された、たとえば酸化された表面を形成するであろう。
今日の実施されている方法では、ステップ(0)の後に、ステップ(0a)が実現され、このステップでは、真空容器の中身の排出が行われ、PEALD処理されるべき基材の表面は反応ガスと反応させられる。図28において、ステップ(0a)は破線で示されている。ステップ(0a)は、プラズマ支援なしで、または1つもしくは複数の堆積された単分子層の反応に使用されるプラズマ支援とは異なるプラズマ支援を用いて、または少なくとも1つもしくは複数の堆積された単分子層の反応に使用されるプラズマに等しいプラズマを用いて実行され得る。
さらにステップ(0a)において、反応は、1つまたは複数の単分子層を反応させるのと同じ反応ガスを用いて、または異なる反応ガスを用いて、実行され得る。
ステップ(0)、(0a)、(1)、(2)、(3)、(4)について、上でおよび図28に示されているようなタイムスパンT0a、T、T、T、T
・ 処理空間区画の容積:5リットル
・ 基材:200mmのウェハ
・ 2.45GHzのECR-UHFプラズマ
・ 前駆体ガス:TMA
・ 反応ガス:酸素
について評価されている。
本発明の異なる態様は、次のように要約され、それに加えて開示される。
態様
1.プラズマ支援原子層堆積(PEALD)装置であって、
・ 真空容器と、
・ 真空容器からの少なくとも1つの制御可能なポンピングポートと、
・ 前記容器の内部と連通する少なくとも1つの制御可能なプラズマ源と、
・ 前記真空容器の内部への少なくとも1つの制御可能な前駆体ガス入口部と、
・ 前記真空容器の内部への少なくとも1つの制御可能な反応ガス入口部と、
・ 前記容器内の基材キャリアとを備え、
前記少なくとも1つのプラズマ源は、UHFプラズマ源であり、前記基材キャリアの周全体にわたる軌跡に沿って分布し、前記真空容器内にプラズマを生成するように製作される
PEALD装置。
2.前記制御可能なプラズマ源は、ECR源である態様1に記載のPEALD装置。
3.前記プラズマ源は、それぞれの結合領域を介して前記真空容器の内部空間に各々直接UHF結合される多数のUHF電源を備える態様1または2に記載のPEALD装置。
4.前記結合領域はUHF電源に関して前記真空容器の内部を封止する溶融石英窓を備える態様3に記載のPEALD装置。
5.前記プラズマ源は、前記軌跡全体に沿って分布する導波路構成を備え、前記基材の前記周全体に沿って分布する前記真空容器内への1つまたは複数の結合領域を備え、少なくとも1つのUHF電源入力をさらに備える態様1または2のうちの少なくとも一項に記載のPEALD装置。
6.前記基材キャリア上の基材は、PEALDコーティングされるべき拡張表面が前記真空容器内の処理空間に露出され、前記軌跡は前記処理空間の周に配置されている態様1から5の一項に記載のPEALD装置。
7.前記導波路構成は、複数の異なる導波路セグメントを備え、各々少なくとも1つのUHF電源入力を備える態様5または6のうちの一項に記載のPEALD装置。
8.前記導波路構成は少なくとも1つの中空導波路によって形成され、前記結合領域の少なくともいくつかは前記少なくとも1つの中空導波路内のスリットを備える態様5から7の一項に記載のPEALD装置。
9.前記真空容器は、中心軸を有し、前記中心軸の方向に互い違いに配置されている前記導波路構成のうちの少なくとも2つを備える態様5から8の一項に記載のPEALD装置。
10.前記少なくとも2つの導波路構成のうちの1つの導波路構成の前記少なくとも1つのUHF電源入力および前記少なくとも2つの導波路構成のうちのさらなる導波路構成の前記少なくとも1つの電源入力は、前記中心軸の方向で見たときに、相互に角度を変位させて配置される態様9に記載のPEALD装置。
11.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記基材平面に垂直な方向に互い違いに配置されている前記導波路構成のうちの少なくとも2つを備える態様5から10の一項に記載のPEALD装置。
12.前記少なくとも2つの導波路構成のうちの1つの導波路構成の前記少なくとも1つのUHF電源入力および前記少なくとも2つの導波路構成のうちのさらなる導波路構成の前記少なくとも1つの電源入力は、前記基材平面に向かう方向で見たときに、相互に角度を変位させて配置される態様11に記載のPEALD装置。
13.前記真空容器は、中心軸を有し、前記スリットの少なくともいくつかはそれぞれのスリット開口部表面を画成し、その上の中心法線は前記中心軸の方を指している態様8から12の一項に記載のPEALD装置。
14.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記真空容器は前記基材平面に垂直な中心軸を有する態様1から13の一項に記載のPEALD装置。
15.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記スリットの少なくともいくつかはそれぞれのスリット開口部表面を画成し、それぞれの中心法線は前記基材平面に平行である態様8から14の少なくとも一項に記載のPEALD装置。
16.前記真空容器は、中心軸を有し、前記導波路構成の中空導波路の断面領域は、前記中心軸に垂直な、対称平面または共通対称平面を有し、前記少なくとも1つのスリットまたは前記スリットのうちの複数のスリットの少なくともいくつかは、前記対称平面から、または前記共通対称平面からオフセットされる態様8から15の少なくとも一項に記載のPEALD装置。
17.前記スリットのいくつかは、前記それぞれの対称平面から、または前記共通対称平面から、一方の側へ、前記スリットのうちの他のスリットは、他方の側へオフセットされる態様16に記載のPEALD装置。
18.前記スリットは、それぞれの対称平面または共通対称平面の一方および他方の側に交互にオフセットされる態様17に記載のPEALD装置。
19.前記導波路構成は矩形の内側断面を有する中空導波路を備えるか、または中空導波路からなる態様5から18の一項に記載のPEALD装置。
20.前記導波路構成は、中空導波路を備えるか、または中空導波路からなり、前記中空導波路の内部は前記真空容器の内部に関して真空封止されている態様5から19の一項に記載のPEALD装置。
21.前記スリットは、前記真空容器の内部に関して真空封止されている態様8から20の一項に記載のPEALD装置。
22.前記スリットは、溶融石英窓によって前記真空容器の内部に関して真空封止されている態様8から21の一項に記載のPEALD装置。
23.前記UHFプラズマ源は2.45GHzプラズマ源である態様1から22の一項に記載のPEALD装置。
24.前記導波路構成は、直線的に延在する導波路セクションを備えるか、または直線的に延在する導波路セクションからなる態様5から23の一項に記載のPEALD装置。
25.前記導波路構成は、前記真空容器の外側に配置され、前記真空容器の壁を通る結合領域を介して前記真空容器の内部と連通する態様5から24の一項に記載のPEALD装置。
26.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記軌跡は前記基材平面に平行な平面に沿って延在する態様1から25の一項に記載のPEALD装置。
27.前記導波路構成は、1つの異なる部品として前記真空容器から取り外し可能である態様5から26の一項に記載のPEALD装置。
28.前記ECRプラズマ源は前記軌跡全体に沿って分布する永久磁石構成を備える態様2から27の一項に記載のPEALD装置。
29.前記制御可能なプラズマ源は、電子サイクロトロン共鳴(ECR)源であり、前記導波路構成に隣接し、それに沿う永久磁石構成を備える態様5から28の一項に記載のPEALD装置。
30.前記導波路構成は、少なくとも1つの中空導波路を備えるか、または少なくとも1つの中空導波路からなり、前記永久磁石構成は一方の磁気極性の外極領域と他方の磁気極性の内極領域とを含み、前記外極領域は前記少なくとも1つの中空導波路の中空内部空間と整列して延在し、内部領域は前記導波路構成から遠く離れ、前記結合領域に隣接して延在する態様29に記載のPEALD装置。
31.イグナイタフラッシュライトを備えるプラズマイグナイタ構成を具備する態様1から30の一項に記載のPEALD装置。
32.前記磁石構成は、1つの異なる部品として前記真空容器から取り外し可能である態様28から31の一項に記載のPEALD装置。
33.金属を含む前駆体を収容し、前記少なくとも1つの制御可能な前駆体ガス入口部に動作可能に接続される、少なくとも1つの前駆体貯槽を具備する態様1から32の一項に記載のPEALD装置。
34.前記金属はアルミニウムである態様31に記載のPEALD装置。
35.反応ガスを収容し、前記少なくとも1つの制御可能な反応ガス入口部に動作可能に接続される、少なくとも1つの反応ガスタンクを備える態様1から34の一項に記載のPEALD装置。
36.前記反応ガスタンクは酸素、窒素、炭素、水素のうちの少なくとも1つの元素を収容する態様35に記載のPEALD装置。
37.前記少なくとも1つの前駆体ガス入口部は処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する態様1から36の一項に記載のPEALD装置。
38.前記少なくとも1つの制御可能な前駆体ガス入口部および前記少なくとも1つの制御可能な反応ガス入口部は共に、処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する態様1から37の一項に記載のPEALD装置。
39.処理位置で基材を載せた前記基材キャリアは、前記真空容器内に処理空間を画成し、前記処理空間の容積と前記基材キャリア上でPEALD処理されるべき前記基材の表面の上方視点表面積との比Φに対して有効な
8cm≦Φ≦80cm
好ましくは
10cm≦Φ≦20cmがある
態様1から38の一項に記載のPEALD装置。
40.前記真空容器内の処理空間を囲む処理区画は、制御可能な圧力ステージによって、前記少なくとも1つの制御されたポンピングポートを備えるポンピング区画から分離される態様1から39の一項に記載のPEALD装置。
41.前記圧力ステージは、ガスシールである態様40に記載のPEALD装置。
42.前記圧力ステージは、非接触ガス流制限部である態様40に記載のPEALD装置。
43.前記基材キャリアは、ローディング/アンローディング位置とPEALD処理位置との間で制御可能に移動可能である態様1から42の一項に記載のPEALD装置。
44.前記基材キャリアに動作可能に結合されている制御可能に移動可能な基材ハンドラ構成を備える態様1から43の一項に記載のPEALD装置。
45.前記真空容器内に少なくとも1つの基材ハンドリング開口部を備える態様1から44の一項に記載のPEALD装置。
46.前記少なくとも1つの基材ハンドリング開口部と協働する双方向基材ハンドラを備える態様45に記載のPEALD装置。
47.前記真空容器内の少なくとも2つの基材ハンドリング開口部と、前記少なくとも2つの基材ハンドラ開口部のうちの一方と協働する投入基材ハンドラと、前記少なくとも2つの基材ハンドラ開口部のうちの他方と協働する排出基材ハンドラとを備える態様1から46の一項に記載のPEALD装置。
48.前記投入基材ハンドラおよび前記排出基材ハンドラは共に、基材コンベヤによって、通常、実現される態様47に記載のPEALD装置。
49.前記少なくとも1つの前駆体ガス入口部への制御弁構成と、前記少なくとも1つの反応ガス入口部への制御弁構成と、前記少なくとも1つのプラズマ源と、前記少なくとも1つの制御可能なポンピングポートとに、少なくとも、動作可能に接続されているタイマユニットを備える態様1から48の一項に記載のPEALD装置。
50.層がPEALDによって上に堆積されている基材を製造する方法であって、
(0)容器内に基材を設け、
容器の中身を抜くことと、
(1)前駆体ガスを前記排出された容器内に供給し、吸着によって前記前駆体ガス中の材料からの分子層を前記基材上に堆積することと、
(2)前記容器から残っている前駆体ガスをポンピングで抜くことと、
(3)前記容器内のプラズマを点火し、前記基材上に堆積された分子層を反応ガスとプラズマ支援反応させることと、
(4)前記容器をポンピングすることと、
(5)前記容器から基材を取り出すこととを
含む方法。
51.態様1から49の少なくとも一項に記載の装置を用いて実行される態様50に記載の方法。
52.ステップ(1)から(4)は、ステップ(0)の後およびステップ(5)の前に少なくとも1回繰り返される態様50または51に記載の方法。
53.ステップ(1)の前記繰り返しは、前記繰り返されるステップ(1)の少なくともいくつかにおいて異なる前駆体ガスを供給することによって実行される態様52に記載の方法。
54.ステップ(3)の前記繰り返しは、前記繰り返されるステップ(3)の少なくともいくつかにおいて異なる反応ガスを供給することによって実行される態様52または53の一項に記載の方法。
55.前記繰り返されるステップ(3)の少なくともいくつかはプラズマを点火することなく実行される態様52から54の一項に記載の方法。
56.前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行することを含み、前記ステップ(0a)では、前記容器の中身が排出され、基材の表面は反応ガスと反応させられる態様50から55の一項に記載の方法。
57.プラズマは、前記ステップ(0a)において点火される態様56に記載の方法。
58.前記ステップ(0a)における前記反応ガスは、少なくとも1つのステップ(3)における反応ガスとは異なる態様56または57の一項に記載の方法。
59.前記ステップ(0a)における前記反応ガスおよび少なくとも1つのステップ(3)における反応ガスは同じである態様56から58の一項に記載の方法。
60.ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップにおける前記前駆体ガスはTMAである態様50から59の一項に記載の方法。
61.前記反応ガスは、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む態様50から60の一項に記載の方法。
62.前記ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される態様50から61の一項に記載の方法。
63.前記ステップ(2)または繰り返されるステップ(2)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される態様50から62の一項に記載の方法。
64.前記ステップ(3)または繰り返されるステップ(3)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される態様50から63の一項に記載の方法。
65.前記ステップ(4)または繰り返されるステップ(4)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
好ましくは
≒1秒
があるタイムスパンTで実行される態様50から64の一項に記載の方法。
66.前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行することを含み、前記ステップ(0a)では、前記基材の表面が反応ガスと反応させられ、前記ステップ(0a)は有効な
0.5秒≦T0a≦2秒
好ましくは
0a≒1秒
があるタイムスパンT0aで実行される態様50から65の一項に記載の方法。
67.ステップ(0)とステップ(1)との間、および/またはステップ(2)とステップ(3)との間で処理空間からポンピング空間へのより高いガス流動抵抗を確立し、ステップ(1)とステップ(2)との間、および/またはステップ(3)とステップ(4)との間で前記処理空間から前記ポンピング空間へのより低いガス流量抵抗を確立することを含む態様50から66の一項に記載の方法。
68.前記基材の周全体にわたる軌跡に沿って分布する前記ステップ(3)で点火された前記プラズマを発生することを含む態様50から67の一項に記載の方法。
69.態様50から68の少なくとも一項に記載の方法によって層がPEALDによって上に堆積された基材を含むデバイスを製造する方法。
それによって、特に次の態様が今日実施されている。
I.特に図9に関連して説明されているような、プラズマ支援原子層蒸着(PEALD)装置であって、
・ 真空容器と、
・ 真空容器からの少なくとも1つの制御可能なポンピングポートと、
・ 前記容器の内部と連通する少なくとも1つの制御可能なプラズマ源と、
・ 前記真空容器の内部への少なくとも1つの制御可能な前駆体ガス入口部と、
・ 前記真空容器の内部への少なくとも1つの制御可能な反応ガス入口部と、
・ 前記容器内の基材キャリアとを備え、
前記少なくとも1つのプラズマ源は、電子サイクロトロン共鳴(ECR)-UHFプラズマ源であり、前記基材キャリアの周全体にわたる軌跡に沿って分布し、前記真空容器内にプラズマを生成するように製作され、前記基材キャリアの周方向の範囲の等しい単位当たりの1つのプラズマ源は、異なる位置にある結合領域を通して前記真空容器の内部空間に直接結合され、前記軌跡全体に沿って分布するECR永久磁石構成を備えるプラズマ支援原子層蒸着(PEALD)装置。
II.前記基材キャリアは、前記単位に等しい周方向の範囲を有する態様Iに記載の装置。
III.前記単位は、少なくとも40cm、または少なくとも50cm、または少なくとも60cm、または少なくとも100cmである態様IまたはII 1の一項に記載の装置。
VI.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記結合領域は開口部表面を画成し、その上のそれぞれの中心法線は前記基材平面に平行である態様IからIII 1の一項に記載の装置。
V.処理位置で基材を載せた前記基材キャリアは、前記真空容器内に処理空間を画成し、前記処理空間の容積と前記基材キャリア上でPEALD処理されるべき前記基材の表面の上方視点表面積との比Φに対して有効な
8cm≦Φ≦80cm
好ましくは
10cm≦Φ≦20cmがある
態様IからIVの一項に記載の装置。
VI.前記真空容器内の処理空間を囲む処理区画は、制御可能な圧力ステージによって、前記少なくとも1つの制御されたポンピングポートを備える前記真空容器内のポンピング区画から分離される態様IからVの一項に記載の装置。
VII.前記圧力ステージは、ガスシールである態様VIに記載の装置。
VIII.前記圧力ステージは、非接触ガス流制限部である態様VIに記載の装置。
IX.前記基材キャリアは、ローディング/アンローディング位置とPEALD処理位置との間で制御可能に移動可能である態様IからVIIIの一項に記載の装置。
X.前記結合領域はUHF電源に関して前記真空容器の内部を封止する溶融石英窓を備える態様IからIXの一項に記載の装置。
XI.前記基材キャリア上の基材は、PEALDコーティングされるべき拡張表面が前記真空容器内の処理空間に露出され、前記軌跡は前記処理空間の周に配置されている態様IからXの一項に記載の装置。
XII.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記真空容器は前記基材平面に垂直な中心軸を有する態様IからXIの一項に記載の装置。
XIII.前記UHFプラズマ源は2.45GHzプラズマ源である態様IからXIIの一項に記載の装置。
XIV.前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記軌跡は前記基材平面に平行な平面に沿って延在する態様IからXIIIの一項に記載の装置。
XV.イグナイタフラッシュライトを備えるプラズマイグナイタ構成を具備する態様IからXIVの一項に記載の装置。
XVI.前記磁石構成は、1つの異なる部品として前記真空容器から取り外し可能である態様IからXVの一項に記載の装置。
XVII.金属を含む前駆体を収容し、前記少なくとも1つの制御可能な前駆体ガス入口部に動作可能に接続される、少なくとも1つの前駆体貯槽を具備する態様IからXVIの一項に記載の装置。
XVIII.前記金属はアルミニウムである態様XVIIに記載の装置。
XIX.反応ガスを収容し、前記少なくとも1つの制御可能な反応ガス入口部に動作可能に接続される、少なくとも1つの反応ガスタンクを備える態様IからXVIIIの一項に記載の装置。
XX.前記反応ガスタンクは酸素、窒素、炭素、水素のうちの少なくとも1つの元素を収容する態様XIXに記載の装置。
XXI.前記少なくとも1つの前駆体ガス入口部は処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する態様IからXXの一項に記載の装置。
XXII.前記少なくとも1つの制御可能な前駆体ガス入口部および前記少なくとも1つの制御可能な反応ガス入口部は共に、処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する態様IからXXIの一項に記載の装置。
XXIII.前記真空容器内に少なくとも1つの基材ハンドリング開口部を備える態様IからXXIIの一項に記載の装置。
XXIV.前記少なくとも1つの基材ハンドリング開口部と協働する双方向基材ハンドラを備える態様XXIIIに記載の装置。
XXV.前記真空容器内の少なくとも2つの基材ハンドリング開口部と、前記少なくとも2つの基材ハンドラ開口部のうちの一方と協働する投入基材ハンドラと、前記少なくとも2つの基材ハンドラ開口部のうちの他方と協働する排出基材ハンドラとを備える態様XXIIIに記載の装置。
XXVI.前記投入基材ハンドラおよび前記排出基材ハンドラは共に、基材コンベヤによって、通常、実現される態様XXVに記載の装置。
XXVII.前記少なくとも1つの前駆体ガス入口部に対する制御弁構成と、前記少なくとも1つの反応ガス入口部に対する制御弁構成と、前記少なくとも1つのプラズマ源と、前記少なくとも1つの制御可能なポンピングポートとに、少なくとも、動作可能に接続されているタイマユニットを備える態様IからXXVIの一項に記載の装置。
XXVIII.前記結合領域は、ホーンアンテナの出力領域である態様IからXXVIIの一項に記載の装置。
XXIX.層がPEALDによって上に堆積されている基材を製造する方法であって、
(0)基材キャリア上の基材を容器内に入れ、容器の中身を排出することと、
(1)前記排出された容器内に前駆体ガスを供給し、前記前駆体ガス中の物質から分子層を前記基材上に吸着によって堆積させることと、
(2)前記容器から残っている前駆体ガスをポンピングで抜くことと、
(3)前記容器内のプラズマを点火し維持して、前記基材上に堆積された分子層を反応ガスとプラズマ支援反応させることと、
(4)前記容器をポンピングすることと、
(5)基材を前記容器から取り出し、それによって、前記基材キャリアの周全体にわたる軌跡に沿って分布しているときに、前記真空容器内にプラズマを発生するように製作された電子サイクロトロン共鳴(ECR)-UHFプラズマ源によって、前記基材キャリアの周の範囲の等しい単位毎に1つのプラズマ源を設けることによって、また前記真空容器の内部空間に異なる位置にある結合領域を通して前記1つのプラズマ源を直接結合することによって、また前記軌跡全体に沿ってECR-磁界を発生させることによって、点火され維持される前記プラズマを発生させることとを含む方法。
XXX.態様IからXXVIIIの少なくとも一項に記載の装置を用いて実行される態様XXIXに記載の方法。
XXXI.ステップ(1)から(3)は、ステップ(0)の後およびステップ(5)の前に少なくとも1回繰り返される態様XXIXまたはXXXに記載の方法。
XXXII.ステップ(1)の前記繰り返しは、前記繰り返されるステップ(1)の少なくともいくつかにおいて異なる前駆体ガスを供給することによって実行される態様XXXIに記載の方法。
XXXIII.ステップ(3)の前記繰り返しは、前記繰り返されるステップ(3)の少なくともいくつかにおいて異なる反応ガスを供給することによって実行される態様XXXIまたはXXXIIの一項に記載の方法。
XXXIV.前記繰り返されるステップ(3)の少なくともいくつかはプラズマを点火することなく実行される態様XXXIからXXXIIIの一項に記載の方法。
XXXV.前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行することを含み、前記ステップ(0a)では、前記容器の中身が排出され、基材の表面は反応ガスと反応させられる態様XXIXからXXXIVの一項に記載の方法。
XXXVI.プラズマは、前記ステップ(0a)において点火される態様XXXVに記載の方法。
XXXVII.前記ステップ(0a)における前記反応ガスは、少なくとも1つのステップ(3)における反応ガスとは異なる態様XXXVまたはXXXVIの一項に記載の方法。
XXXVIII.前記ステップ(0a)における前記反応ガスおよび少なくとも1つのステップ(3)における反応ガスは同じである態様XXXVからXXXVIIの一項に記載の方法。
XXXIX.ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップにおける前記前駆体ガスはTMAである態様XXIXからXXXVIIIの一項に記載の方法。
XL.前記反応ガスは、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む態様XXIXからXXXIXの一項に記載の方法。
XLI.前記ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
または
≒1秒
があるタイムスパンTで実行される態様XIXからXLの一項に記載の方法。
XLII.前記ステップ(2)または繰り返されるステップ(2)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
または
≒1秒
があるタイムスパンTで実行される態様XIXからXLIの一項に記載の方法。
XLIII.前記ステップ(3)または繰り返されるステップ(3)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
または
≒1秒
があるタイムスパンTで実行される態様XIXからXLIIの一項に記載の方法。
XLIV.前記ステップ(4)または繰り返されるステップ(4)のうちの少なくとも1つのステップは、有効な
0.5秒≦T≦2秒
または
≒1秒
があるタイムスパンTで実行される態様XIXからXLIIIの一項に記載の方法。
XLV.前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行することを含み、前記ステップ(0a)では、前記基材の表面が反応ガスと反応させられ、前記ステップ(0a)は有効な
0.5秒≦T0a≦2秒
または
0a≒1秒
があるタイムスパンT0aで実行される態様XIXからXLIVの一項に記載の方法。
XLVI.ステップ(0)とステップ(1)との間、および/またはステップ(2)とステップ(3)との間で前記容器内の処理空間から前記容器内のポンピング空間へのより高いガス流動抵抗を確立し、ステップ(1)とステップ(2)との間、および/またはステップ(3)とステップ(4)との間で前記処理空間から前記ポンピング空間へのより低いガス流量抵抗を確立することを含む態様XIXからXLVの一項に記載の方法。
XLVII.態様XIXからXLVIの少なくとも一項に記載の方法によって層がPEALDによって上に堆積された基材を含むデバイスを製造する方法。
1 真空容器
3 基材キャリア
4 基材
PEALD処理されるべき表面
TS 処理空間
TSC 処理空間区画
PC ポンピング区画
5 UHFプラズマ源
PLA プラズマ
7 基材ハンドラ構成
9 制御可能なポンピングポート
10 弁構成
11 ポンピング構成
13 制御可能な前駆体ガス入口部
14 弁構成
15 制御可能な反応ガス入口部
16 弁構成
17 前駆体貯槽構成
19 反応ガスタンク構成
W 可能な基材回転
L 軌跡
21 タイマユニット
25 導波路構成
26 給電領域
27 結合領域
28 導波路
30 UHF電源
32 スリット
34 窓
36 永久磁石構成
36 一方の極性領域(外部)
36 他方の極性領域(内部)
40、40 制御された圧力ステージ構成
44、44、44 基材ハンドリング開口部
46、46、46 基材ハンドラ
48 制御された駆動装置
52 フォークアーム
54 溝
56 表面
58 ロッド
62 ロッド
60 フレーム
A 軸
基材が基材キャリア3に載る際に沿う平面
sym 中空導波路28の対称平面
H 磁界
PL ローディング、アンローディング位置
PT PEALD処理位置

Claims (46)

  1. プラズマ支援原子層堆積(PEALD)装置であって、
    ・ 真空容器と、
    ・ 前記真空容器からの少なくとも1つの制御可能なポンピングポートと、
    ・ 前記容器の内部と連通する少なくとも1つの制御可能なプラズマ源と、
    ・ 前記真空容器の前記内部への少なくとも1つの制御可能な前駆体ガス入口部と、
    ・ 前記真空容器の前記内部への少なくとも1つの制御可能な反応ガス入口部と、
    ・ 前記容器内の基材キャリアとを備え、
    ・ 前記少なくとも1つのプラズマ源は、電子サイクロトロン共鳴(ECR)-UHFプラズマ源であり、前記基材キャリアの前記周全体にわたる軌跡に沿って分布し、前記真空容器内にプラズマを生成するように製作され、前記基材キャリアの周方向の範囲の等しい単位当たりの1つのプラズマ源は、異なる位置にある結合領域を通して前記真空容器の前記内部空間に直接結合され、前記軌跡全体に沿って分布するECR永久磁石構成を備えるプラズマ支援原子層蒸着(PEALD)装置。
  2. 前記基材キャリアは、前記単位に等しい周方向の範囲を有する請求項1に記載の装置。
  3. 前記単位は、少なくとも40cm、または少なくとも50cm、または少なくとも60cm、または少なくとも100cmである請求項1または2のいずれか一項に記載の装置。
  4. 前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記結合領域は開口部表面を画成し、その上の前記それぞれの中心法線は前記基材平面に平行である請求項1から3のいずれか一項に記載の装置。
  5. 処理位置で基材を載せた前記基材キャリアは、前記真空容器内に処理空間を画成し、前記処理空間の容積と前記基材キャリア上でPEALD処理されるべき前記基材の表面の上方視点表面積との比Φに対して有効な
    8cm≦Φ≦80cm
    好ましくは
    10cm≦Φ≦20cmがある
    請求項1から4のいずれか一項に記載の装置。
  6. 前記真空容器内の処理空間を囲む処理区画は、制御可能な圧力ステージによって、前記少なくとも1つの制御されたポンピングポートを備える前記真空容器内のポンピング区画から分離される請求項1から5のいずれか一項に記載の装置。
  7. 前記圧力ステージは、ガスシールである請求項6に記載の装置。
  8. 前記圧力ステージは、非接触ガス流制限部である請求項6に記載の装置。
  9. 前記基材キャリアは、ローディング/アンローディング位置とPEALD処理位置との間で制御可能に移動可能である請求項1から8のいずれか一項に記載の装置。
  10. 前記結合領域は前記UHF電源に関して前記真空容器の前記内部を封止する溶融石英窓を備える請求項1から9のいずれか一項に記載の装置。
  11. 前記基材キャリア上の基材は、PEALDコーティングされるべき拡張表面が前記真空容器内の処理空間に露出され、前記軌跡は前記処理空間の周に配置されている請求項1から10のいずれか一項に記載の装置。
  12. 前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記真空容器は前記基材平面に垂直な中心軸を有する請求項1から11のいずれか一項に記載の装置。
  13. 前記UHFプラズマ源は2.45GHzプラズマ源である請求項1から12のいずれか一項に記載の装置。
  14. 前記基材キャリアは、前記基材キャリア上の基材が沿って延在する、基材平面を画成し、前記軌跡は前記基材平面に平行な平面に沿って延在する請求項1から13のいずれか一項に記載の装置。
  15. イグナイタフラッシュライトを備えるプラズマイグナイタ構成を具備する請求項1から14のいずれか一項に記載の装置。
  16. 前記磁石構成は、1つの異なる部品として前記真空容器から取り外し可能である請求項1から15のいずれか一項に記載の装置。
  17. 金属を含む前駆体を収容し、前記少なくとも1つの制御可能な前駆体ガス入口部に動作可能に接続される、少なくとも1つの前駆体貯槽を具備する請求項1から16のいずれか一項に記載の装置。
  18. 前記金属はアルミニウムである請求項17に記載の装置。
  19. 反応ガスを収容し、前記少なくとも1つの制御可能な反応ガス入口部に動作可能に接続される、少なくとも1つの反応ガスタンクを備える請求項1から18のいずれか一項に記載の装置。
  20. 前記反応ガスタンクは酸素、窒素、炭素、水素のうちの少なくとも1つの元素を収容する請求項19に記載の装置。
  21. 前記少なくとも1つの前駆体ガス入口部は処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する請求項1から20のいずれか一項に記載の装置。
  22. 前記少なくとも1つの制御可能な前駆体ガス入口部および前記少なくとも1つの制御可能な反応ガス入口部は共に、処理位置にある前記基材キャリア上の基材に関して中心に、前記基材の方へ、放出する請求項1から21のいずれか一項に記載の装置。
  23. 前記真空容器内に少なくとも1つの基材ハンドリング開口部を備える請求項1から22のいずれか一項に記載の装置。
  24. 前記少なくとも1つの基材ハンドリング開口部と協働する双方向基材ハンドラを備える請求項23に記載の装置。
  25. 前記真空容器内の少なくとも2つの基材ハンドリング開口部と、前記少なくとも2つの基材ハンドラ開口部のうちの一方と協働する投入基材ハンドラと、前記少なくとも2つの基材ハンドラ開口部のうちの他方と協働する排出基材ハンドラとを備える請求項23に記載の装置。
  26. 前記投入基材ハンドラおよび前記排出基材ハンドラは共に、基材コンベヤによって、通常、実現される請求項25に記載の装置。
  27. 前記少なくとも1つの前駆体ガス入口部に対する制御弁構成と、前記少なくとも1つの反応ガス入口部に対する制御弁構成と、前記少なくとも1つのプラズマ源と、前記少なくとも1つの制御可能なポンピングポートとに、少なくとも、動作可能に接続されているタイマユニットを備える請求項1から26のいずれか一項に記載の装置。
  28. 層がPEALDによって上に堆積されている基材を製造する方法であって、
    (0)基材キャリア上の基材を容器内に入れ、前記容器の中身を排出するステップと、
    (1)前記排出された容器内に前駆体ガスを供給し、前記前駆体ガス中の物質から分子層を前記基材上に吸着によって堆積させるステップと、
    (2)前記容器から残っている前駆体ガスをポンピングで抜くステップと、
    (3)前記容器内のプラズマを点火し維持して、前記基材上に前記堆積された分子層を反応ガスとプラズマ支援反応させるステップと、
    (4)前記容器をポンピングするステップと、
    (5)前記基材を前記容器から取り出し、それによって、前記基材キャリアの周全体にわたる軌跡に沿って分布しているときに、前記真空容器内にプラズマを発生するように製作された電子サイクロトロン共鳴(ECR)-UHFプラズマ源によって、前記基材キャリアの前記周の範囲の等しい単位毎に1つのプラズマ源を設けることによって、また前記真空容器の前記内部空間に異なる位置にある結合領域を通して前記1つのプラズマ源を直接結合することによって、また前記軌跡全体に沿ってECR-磁界を発生させることによって、点火され維持される前記プラズマを発生させるステップとを含む方法。
  29. 請求項1から28の少なくとも一項に記載の装置を用いて実行される請求項28に記載の方法。
  30. ステップ(1)から(4)は、ステップ(0)の後およびステップ(5)の前に少なくとも1回繰り返される請求項28または29に記載の方法。
  31. ステップ(1)の前記繰り返しは、前記繰り返されるステップ(1)の少なくともいくつかにおいて異なる前駆体ガスを供給することによって実行される請求項30に記載の方法。
  32. ステップ(3)の前記繰り返しは、前記繰り返されるステップ(3)の少なくともいくつかにおいて異なる反応ガスを供給することによって実行される請求項30または31のいずれか一項に記載の方法。
  33. 前記繰り返されるステップ(3)の少なくともいくつかはプラズマを点火することなく実行される請求項30から31のいずれか一項に記載の方法。
  34. 前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行するステップを含み、前記ステップ(0a)では、前記容器の中身が排出され、前記基材の前記表面は反応ガスと反応させられる請求項28から33のいずれか一項に記載の方法。
  35. プラズマは、前記ステップ(0a)において点火される請求項34に記載の方法。
  36. 前記ステップ(0a)における前記反応ガスは、少なくとも1つのステップ(3)における前記反応ガスとは異なる請求項34または35のいずれか一項に記載の方法。
  37. 前記ステップ(0a)における前記反応ガスおよび少なくとも1つのステップ(3)における前記反応ガスは同じである請求項34から36のいずれか一項に記載の方法。
  38. ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップにおける前記前駆体ガスはTMAである請求項28から37のいずれか一項に記載の方法。
  39. 前記反応ガスは、酸素、窒素、炭素、水素のうちの少なくとも1つの元素を含む請求項28から38のいずれか一項に記載の方法。
  40. 前記ステップ(1)または繰り返されるステップ(1)のうちの少なくとも1つのステップは、有効な
    0.5秒≦T≦2秒
    または
    ≒1秒
    があるタイムスパンTで実行される請求項28から39のいずれか一項に記載の方法。
  41. 前記ステップ(2)または繰り返されるステップ(2)のうちの少なくとも1つのステップは、有効な
    0.5秒≦T≦2秒
    または
    ≒1秒
    があるタイムスパンTで実行される請求項28から40のいずれか一項に記載の方法。
  42. 前記ステップ(3)または繰り返されるステップ(3)のうちの少なくとも1つのステップは、有効な
    0.5秒≦T≦2秒
    または
    ≒1秒
    があるタイムスパンTで実行される請求項28から41のいずれか一項に記載の方法。
  43. 前記ステップ(4)または繰り返されるステップ(4)のうちの少なくとも1つのステップは、有効な
    0.5秒≦T≦2秒
    または
    ≒1秒
    があるタイムスパンTで実行される請求項28から42のいずれか一項に記載の方法。
  44. 前記ステップ(0)の後および前記ステップ(1)の前にステップ(0a)を実行するステップを含み、前記ステップ(0a)では、前記基材の表面が反応ガスと反応させられ、前記ステップ(0a)は有効な
    0.5秒≦T0a≦2秒
    または
    0a≒1秒
    があるタイムスパンT0aで実行される請求項28から43のいずれか一項に記載の方法。
  45. ステップ(0)とステップ(1)との間、および/またはステップ(2)とステップ(3)との間で前記容器内の処理空間から前記容器内のポンピング空間へのより高いガス流動抵抗を確立し、ステップ(1)とステップ(2)との間、および/またはステップ(3)とステップ(4)との間で前記処理空間から前記ポンピング空間へのより低いガス流量抵抗を確立するステップを含む請求項28から44のいずれか一項に記載の方法。
  46. 請求項28から45の少なくとも一項に記載の方法によって層がPEALDによって上に堆積された基材を含むデバイスを製造する方法。
JP2021518113A 2018-10-02 2019-09-23 プラズマ支援原子層堆積(peald)装置 Pending JP2022504088A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH01205/18 2018-10-02
CH12052018 2018-10-02
CH01602/18 2018-12-24
CH16022018 2018-12-24
PCT/EP2019/075566 WO2020069901A1 (en) 2018-10-02 2019-09-23 Plasma enhanced atomic layer deposition (peald) apparatus

Publications (1)

Publication Number Publication Date
JP2022504088A true JP2022504088A (ja) 2022-01-13

Family

ID=68066792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021518113A Pending JP2022504088A (ja) 2018-10-02 2019-09-23 プラズマ支援原子層堆積(peald)装置

Country Status (7)

Country Link
US (1) US20210348274A1 (ja)
EP (1) EP3861147A1 (ja)
JP (1) JP2022504088A (ja)
KR (1) KR20210062700A (ja)
CN (1) CN112771201A (ja)
TW (1) TW202028522A (ja)
WO (1) WO2020069901A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536640A (ja) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp 半導体製造装置
JP2000277492A (ja) * 1999-03-26 2000-10-06 Hitachi Ltd プラズマ処理装置、プラズマ処理方法および半導体製造方法
JP2008538127A (ja) * 2005-03-21 2008-10-09 東京エレクトロン株式会社 プラズマ加速原子層成膜のシステムおよび方法
WO2016186143A1 (ja) * 2015-05-20 2016-11-24 国立大学法人東北大学 プラズマ処理装置、プラズマ処理方法および半導体製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038712A (en) * 1986-09-09 1991-08-13 Canon Kabushiki Kaisha Apparatus with layered microwave window used in microwave plasma chemical vapor deposition process
US4996077A (en) * 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
JPH07110991B2 (ja) * 1989-10-02 1995-11-29 株式会社日立製作所 プラズマ処理装置およびプラズマ処理方法
US5081398A (en) * 1989-10-20 1992-01-14 Board Of Trustees Operating Michigan State University Resonant radio frequency wave coupler apparatus using higher modes
DE4235914A1 (de) * 1992-10-23 1994-04-28 Juergen Prof Dr Engemann Vorrichtung zur Erzeugung von Mikrowellenplasmen
JPH0987851A (ja) * 1995-09-21 1997-03-31 Canon Inc マイクロ波プラズマ処理装置及び処理方法
JP3295336B2 (ja) * 1996-03-01 2002-06-24 キヤノン株式会社 マイクロ波プラズマ処理装置およびプラズマ処理方法
US5803975A (en) * 1996-03-01 1998-09-08 Canon Kabushiki Kaisha Microwave plasma processing apparatus and method therefor
US6652709B1 (en) * 1999-11-02 2003-11-25 Canon Kabushiki Kaisha Plasma processing apparatus having circular waveguide, and plasma processing method
US6710524B2 (en) * 2000-04-11 2004-03-23 Satis Vacuum Industries Vertrieb Ag Plasma source
US6949450B2 (en) * 2000-12-06 2005-09-27 Novellus Systems, Inc. Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
JP4610126B2 (ja) * 2001-06-14 2011-01-12 株式会社神戸製鋼所 プラズマcvd装置
US7422636B2 (en) * 2005-03-25 2008-09-09 Tokyo Electron Limited Plasma enhanced atomic layer deposition system having reduced contamination
KR100877404B1 (ko) * 2005-08-10 2009-01-07 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치의 제어 방법, 플라즈마 처리 장치 및 기록 매체
WO2009031886A2 (en) * 2007-09-07 2009-03-12 Fujifilm Manufacturing Europe B.V. Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma
US8129288B2 (en) * 2008-05-02 2012-03-06 Intermolecular, Inc. Combinatorial plasma enhanced deposition techniques
US8703625B2 (en) * 2010-02-04 2014-04-22 Air Products And Chemicals, Inc. Methods to prepare silicon-containing films
EP2363512A1 (en) * 2010-02-04 2011-09-07 Air Products And Chemicals, Inc. Methods to prepare silicon-containing films
JP6009513B2 (ja) * 2014-09-02 2016-10-19 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
SG10201606973YA (en) * 2015-08-31 2017-03-30 Ultratech Inc Plasma-enhanced atomic layer deposition system with rotary reactor tube
CN108495950A (zh) * 2016-02-10 2018-09-04 倍耐克有限公司 用于原子层沉积的装置
KR102401422B1 (ko) * 2016-06-03 2022-05-24 에바텍 아크티엔게젤샤프트 플라즈마 에칭 챔버 및 플라즈마 에칭 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536640A (ja) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp 半導体製造装置
JP2000277492A (ja) * 1999-03-26 2000-10-06 Hitachi Ltd プラズマ処理装置、プラズマ処理方法および半導体製造方法
JP2008538127A (ja) * 2005-03-21 2008-10-09 東京エレクトロン株式会社 プラズマ加速原子層成膜のシステムおよび方法
WO2016186143A1 (ja) * 2015-05-20 2016-11-24 国立大学法人東北大学 プラズマ処理装置、プラズマ処理方法および半導体製造方法

Also Published As

Publication number Publication date
TW202028522A (zh) 2020-08-01
US20210348274A1 (en) 2021-11-11
EP3861147A1 (en) 2021-08-11
CN112771201A (zh) 2021-05-07
WO2020069901A1 (en) 2020-04-09
KR20210062700A (ko) 2021-05-31

Similar Documents

Publication Publication Date Title
US8187679B2 (en) Radical-enhanced atomic layer deposition system and method
JP6134191B2 (ja) 回転型セミバッチald装置
US6835919B2 (en) Inductively coupled plasma system
KR101324367B1 (ko) 성막 장치, 성막 방법 및 컴퓨터 판독 가능 기억 매체
KR100275831B1 (ko) 진공처리시스템 및 그의 진공처리시스템에 있어서의 진공용기 내면 퇴적막의 제거방법
KR101813738B1 (ko) 플라즈마 처리 방법
KR101139220B1 (ko) 원자층 성장 장치 및 박막 형성 방법
US8607733B2 (en) Atomic layer deposition apparatus and atomic layer deposition method
JP2014201804A5 (ja)
KR20100027062A (ko) 활성화 가스 인젝터, 성막 장치 및 성막 방법
US11087959B2 (en) Techniques for a hybrid design for efficient and economical plasma enhanced atomic layer deposition (PEALD) and plasma enhanced chemical vapor deposition (PECVD)
KR20190110039A (ko) 성막 방법 및 성막 장치
US11898241B2 (en) Method for a treatment to deposit a barrier coating
KR101411171B1 (ko) 플라즈마 처리 장치
US20080127892A1 (en) Plasma Processing Apparatus with Scanning Injector and Plasma Processing Method
JP2022504088A (ja) プラズマ支援原子層堆積(peald)装置
JP4126229B2 (ja) プラズマ生成装置及び方法
WO2023210392A1 (ja) プラズマ処理装置、プラズマ処理方法、およびリモートプラズマ源
JP2010177245A (ja) 基板処理装置
KR20210000356A (ko) 기판 처리 장치 및 방법
KR20150028574A (ko) 적층형 원자층 증착 장치 및 방법
KR20030037092A (ko) 반도체 제조장치
KR20230100990A (ko) 플라즈마 처리 장치 및 이를 이용한 반도체 장치의 제조 방법
JP2000133597A (ja) 半導体製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240311