CN112517035A - 一种金属原子掺杂空心MXene量子点的制备及应用 - Google Patents

一种金属原子掺杂空心MXene量子点的制备及应用 Download PDF

Info

Publication number
CN112517035A
CN112517035A CN202011493962.7A CN202011493962A CN112517035A CN 112517035 A CN112517035 A CN 112517035A CN 202011493962 A CN202011493962 A CN 202011493962A CN 112517035 A CN112517035 A CN 112517035A
Authority
CN
China
Prior art keywords
mxene
metal atom
doped hollow
quantum dot
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011493962.7A
Other languages
English (en)
Inventor
郭亚莉
成永华
李晓甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN202011493962.7A priority Critical patent/CN112517035A/zh
Publication of CN112517035A publication Critical patent/CN112517035A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种金属原子掺杂空心MXene量子点的制备及应用,主要将其应用于光催化降解抗生素,属于纳米光催化材料领域。制备步骤:以MXene粉末作为金属掺杂的前体,快速注入Lewis酸乙醇溶液,经过陈化、离心,调整pH=9,进行溶剂热反应,合成金属掺杂的空心MXene量子点材料。本发明工艺简单,制备条件要求低,无能耗,粒径小,尺寸均一。金属原子掺杂空心MXene量子点材料能有效地扩大光吸收,增加电子密度,促进电荷分离和转移,促进抗生素的降解,使降解率达到98%,是降解抗生素的一种绿色高效的方法。

Description

一种金属原子掺杂空心MXene量子点的制备及应用
技术领域
本发明涉及纳米光催化材料,具体涉及一种金属原子掺杂空心MXene量子点的制备,以及所制备的金属原子掺杂空心MXene量子点材料用于降解抗生素。
背景技术
目前,由于大量化学污染物的排放,水抗生素污染已成为威胁人类公共卫生安全的严重环境问题。土霉素(OTC)是一种典型的四环素类抗生素,在农业和水产养殖中广泛应用。由于动物摄食后吸收有限,大量未消化的OTC通过粪便或尿液释放到环境中,排入水体中的OTC会通过抑制微器官的生长、诱导抗微生物基因的形成以及导致其他生态毒理学效应等方式对生态系统产生不利影响。因此,采用高效方便的方法去除水中残留OTC成为研究热点。
MXene即二维过渡金属碳化物、氮化物或碳氮化物,是由美国德雷塞尔大学(Drexel University)的Yury Gogotsi教授和Michel W. Barsoum教授等人在2011年研究发现的一种新型二维结构材料,它具有类似石墨烯的高比表面积、高电导率的特点,又具备组分及层厚灵活可调等优势,已在储能、吸附、传感器、导电填充剂等领域展现出巨大的潜力。
横向尺寸小于10 nm的MXene材料被称为MXene量子点(MQDs)。由于具有量子限域效应,MQDs往往保留了MXene的固有优势,同时又具有更加新颖的物理化学性质和荧光效应,使其在催化领域具有潜在的应用前景。空心MQDs作为光催化剂具有其独特优势,如较高的比表面积提供了更多的活性位点和更大的光接收面积、薄壳层减少了电荷载流子的传输距离,以及通过金属原子掺杂能够增强空心MQDs的光催化电子传输能力。因其工艺简单,制备条件要求低,无能耗,产率较高,粒径小,尺寸均一等优点在光催化领域具有重要的意义。
发明内容
本发明的目的在于提供一种金属原子掺杂空心MXene量子点的制备,以及将制备的金属原子掺杂空心MXene量子点材料用于降解水中的抗生素。
本发明的技术方案:
一种金属原子掺杂空心MXene量子点的制备及应用,步骤如下:(1)将一定量Ti3AlC2粉末分散到10 ml 48% HF溶液中进行刻蚀,之后对分散液多次离心洗涤至pH为5~6,干燥得到多层Ti3C2 MXene粉末;(2)惰性气体保护下,将得到的多层Ti3C2 MXene超声分散至5 ml乙醇中,并快速注入Lewis酸乙醇溶液中,陈化20 min,多次离心、洗涤;(3)将离心之后的溶液分散至25 ml乙醇中,并加入5 ml去离子水,用氨水调整溶液pH = 9,转至高压釜进行水热反应之后,用220 nm滤膜进行过滤,后通过透析得到金属原子掺杂空心MXene量子点。
一种金属原子掺杂空心MXene量子点的制备及应用,所述步骤(1)中,Ti3AlC2粉末为0.25 g;搅拌条件为室温下24 h;离心条件为3500 rpm 10 min;用去离子水洗涤分散液pH至5~6,干燥条件为80℃ 12 h。
一种金属原子掺杂空心MXene量子点的制备及应用,所述步骤(2)中,惰性气体为氮气或氩气;Lewis酸包括FeCl2 .4H2O、MnCl2 .4H2O和CuCl2 .2H2O等;Lewis酸乙醇溶液的浓度为20 ml 0.8 mg/ml。
一种金属原子掺杂空心MXene量子点的制备及应用,所述步骤(3)中,水热处理的条件为100℃ 6 h;在去离子水中透析48 h。
上述方法制备的金属原子掺杂空心MXene量子点材料应用于光催化降解水中的抗生素。
具体实施方式
以下实施例进一步阐述本发明的内容,但本发明并不局限于这些实施例。
实施例1
第一步:将0.25 g Ti3AlC2粉末分散至10 ml 48% HF溶液中,室温搅拌24 h进行刻蚀。然后将得到的分散液用去离子水几次反复离心洗涤,离心条件为3500 rpm 10 min,直到分散液的pH达到5~6,彻底去除残留HF和杂质,在80℃下干燥12 h得到多层Ti3C2 MXene粉末。
第二步:在氮气的保护下,将得到的多层Ti3C2 MXene超声分散至5 ml乙醇溶液中,并将其快速注入20 ml 0.8 mg/ml FeCl2 .4H2O乙醇溶液,陈化20 min,多次离心并用乙醇洗涤。
第三步:将离心之后的溶液分散至5 ml乙醇中,稀释至20 ml并加入5 ml去离子水,用氨水调整溶液pH = 9,转至高压釜,在100℃ 6 h条件下进行水热反应,用220 nm滤膜过滤,通过在去离子水中透析48 h得到金属原子掺杂空心MXene量子点。
第四步:将30 mg制得的金属原子掺杂空心MXene量子点光催化剂添加到100 ml20 mg/L OTC水溶液中,于暗处搅拌30 min,建立OTC在光催化剂表面的吸附-解吸平衡,随后将悬浮液在300 W氙气灯(PLS-SXE300/300UV,完美光)下照射进行光催化反应,使用滤光片滤去420 nm以下的光,在给定的照射时间间隔下,取3 ml样品离心,取其上清液,采用岛津UV-2700分光光度计,在353 nm波长处测定OTC水溶液的吸光度。
实施例2
如实例1所述,不同之处在于第二步中20 ml 0.8 mg/ml FeCl2 .4H2O乙醇溶液用20ml 0.8 mg/ml CuCl2 .2H2O乙醇溶液代替。
实施例3
如实例1所述,不同之处在于第二步中20 ml 0.8 mg/ml FeCl2 .4H2O乙醇溶液用20ml 0.8 mg/ml MnCl2 .4H2O乙醇溶液代替。
实施例4
如实例1所述,不同之处在于第二步中20 ml 0.8 mg/ml FeCl2 .4H2O乙醇溶液用25ml 0.8 mg/ml FeCl2 .4H2O乙醇溶液代替。
实施例5
如实例1所述,不同之处在于第三步中水热反应条件为100℃ 6 h用100℃ 8 h代替。
本发明制备了金属原子掺杂空心MXene量子点材料,并将其应用于光催化降解抗生素,与现有技术相比,本发明金属原子掺杂空心MXene量子点的制备方法简单,无需额外能源消耗,操作方便,粒径小,尺寸均一,量子产率高,在三种不同Lewis酸反应条件下,量子点效率在3.4%~11.5%之间,解决了现有空心MXene量子点制备方法因工艺和原料限制而无法规模化生产且荧光量子效率较低的问题。该金属原子掺杂空心MXene量子点材料可用作光催化剂降解抗生素,降解率达到98%,这为光催化降解抗生素提供了一种新的制备方法和思路,在纳米材料光催化领域具有重要的意义。

Claims (6)

1.在一种金属原子掺杂空心MXene量子点的制备及应用,其特征在于,步骤如下:(1)将一定量Ti3AlC2粉末分散到HF溶液中进行刻蚀,之后对分散液多次离心洗涤,干燥得到多层Ti3C2 MXene粉末;(2)惰性气体保护下,将得到的多层Ti3C2 MXene超声分散至5 ml乙醇中,并快速注入Lewis酸乙醇溶液中,陈化20 min,多次离心并用乙醇洗涤;(3)将离心之后的溶液分散至25 ml乙醇中,并加入5 ml去离子水,用氨水调整溶液pH = 9,进行水热反应,随后过滤,通过透析得到金属原子掺杂空心MXene量子点。
2.在根据权利要求1所述的一种金属原子掺杂空心MXene量子点的制备及应用,其特征在于,所述步骤(1)中,HF的量为10 ml 48%;搅拌条件为室温下24 h;离心条件为3500 rpm10 min;多次离心并用去离子水洗涤分散液pH至5~6,干燥条件为80℃ 12 h。
3.在根据权利要求1所述的一种金属原子掺杂空心MXene量子点的制备及应用,其特征在于,所述步骤(2)中,惰性气体为氮气或氩气;Lewis酸包括FeCl2 .4H2O、MnCl2 .4H2O和CuCl2 .2H2O等;Lewis酸乙醇溶液浓度为15~25 ml 0.8 mg/ml。
4.在根据权利要求1所述的一种金属原子掺杂空心MXene量子点的制备及应用,其特征在于,所述步骤(3)中,水热处理的条件为100℃ 6 h;用220 nm的滤膜过滤;在去离子水中透析48 h。
5.在如权利要求1、2、3或4所述方法制备金属原子掺杂空心MXene量子点材料。
6.在如权利要求5所述方法制备的金属原子掺杂空心MXene量子点材料应用于光催化降解抗生素。
CN202011493962.7A 2020-12-16 2020-12-16 一种金属原子掺杂空心MXene量子点的制备及应用 Pending CN112517035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011493962.7A CN112517035A (zh) 2020-12-16 2020-12-16 一种金属原子掺杂空心MXene量子点的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011493962.7A CN112517035A (zh) 2020-12-16 2020-12-16 一种金属原子掺杂空心MXene量子点的制备及应用

Publications (1)

Publication Number Publication Date
CN112517035A true CN112517035A (zh) 2021-03-19

Family

ID=75000879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011493962.7A Pending CN112517035A (zh) 2020-12-16 2020-12-16 一种金属原子掺杂空心MXene量子点的制备及应用

Country Status (1)

Country Link
CN (1) CN112517035A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023222143A1 (zh) * 2022-05-17 2023-11-23 南京大学 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2970907A1 (en) * 2013-03-14 2016-01-20 The Johns Hopkins University Nanoscale artificial antigen presenting cells
CN109046415A (zh) * 2018-09-10 2018-12-21 河海大学 一种Ti3C2-Co复合型过渡金属催化剂及其制备方法和应用
CN109225291A (zh) * 2018-09-10 2019-01-18 河海大学 一种Ti3C2-FeOOH复合型过渡金属催化剂及其制备方法和应用
CN109994719A (zh) * 2019-02-27 2019-07-09 北京化工大学 一种磷掺杂MXene材料及其制备方法
CN110064424A (zh) * 2019-04-11 2019-07-30 中国计量大学 一种卤氧化铋/碳化钛光催化复合材料及其制备方法
WO2020001709A1 (de) * 2018-06-28 2020-01-02 Universität Siegen Dotierte diamant-titandioxid-hybridelektrode
CN110655080A (zh) * 2019-10-25 2020-01-07 山东大学 一种具有选择性杀灭癌细胞功能的无氧化Ti3C2量子点及其制备方法与应用
CN110726707A (zh) * 2019-10-30 2020-01-24 南京医科大学 基于N-Ti3C2QDs与邻苯二胺氧化物的复合纳米探针及其比率荧光检测方法
KR20200095643A (ko) * 2019-01-31 2020-08-11 재단법인차세대융합기술연구원 맥세인 양자점 제조 방법
CN111974427A (zh) * 2020-08-31 2020-11-24 苏州大学 氧化钨纳米棒/碳化钛量子点/硫化铟纳米片z型异质结复合材料及其制备方法与应用
US20200368731A1 (en) * 2019-05-23 2020-11-26 Soochow University Titanium carbide nanosheet/layered indium sulfide heterojunction and application thereof in degrading and removing water pollutants

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2970907A1 (en) * 2013-03-14 2016-01-20 The Johns Hopkins University Nanoscale artificial antigen presenting cells
WO2020001709A1 (de) * 2018-06-28 2020-01-02 Universität Siegen Dotierte diamant-titandioxid-hybridelektrode
CN109046415A (zh) * 2018-09-10 2018-12-21 河海大学 一种Ti3C2-Co复合型过渡金属催化剂及其制备方法和应用
CN109225291A (zh) * 2018-09-10 2019-01-18 河海大学 一种Ti3C2-FeOOH复合型过渡金属催化剂及其制备方法和应用
KR20200095643A (ko) * 2019-01-31 2020-08-11 재단법인차세대융합기술연구원 맥세인 양자점 제조 방법
CN109994719A (zh) * 2019-02-27 2019-07-09 北京化工大学 一种磷掺杂MXene材料及其制备方法
CN110064424A (zh) * 2019-04-11 2019-07-30 中国计量大学 一种卤氧化铋/碳化钛光催化复合材料及其制备方法
US20200368731A1 (en) * 2019-05-23 2020-11-26 Soochow University Titanium carbide nanosheet/layered indium sulfide heterojunction and application thereof in degrading and removing water pollutants
CN110655080A (zh) * 2019-10-25 2020-01-07 山东大学 一种具有选择性杀灭癌细胞功能的无氧化Ti3C2量子点及其制备方法与应用
CN110726707A (zh) * 2019-10-30 2020-01-24 南京医科大学 基于N-Ti3C2QDs与邻苯二胺氧化物的复合纳米探针及其比率荧光检测方法
CN111974427A (zh) * 2020-08-31 2020-11-24 苏州大学 氧化钨纳米棒/碳化钛量子点/硫化铟纳米片z型异质结复合材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUOLI ZHANG ET AL.: ""2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B"", 《CERAMICS INTERNATIONAL》 *
RUI TANG ET AL.: ""Janus-Structured Co-Ti3C2 MXene Quantum Dots as a Schottky Catalyst for High-Performance Photoelectrochemical Water Oxidation"", 《ADV. FUNCT. MATER.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023222143A1 (zh) * 2022-05-17 2023-11-23 南京大学 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Adnan et al. Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review
Li et al. Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: high photocatalytic activity and low leaching toxicity
CN109603880B (zh) 中空管状氮化碳光催化剂及其制备方法和应用
Ni et al. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: Synthesis, efficacy and mechanism
Huang et al. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications
Zheng et al. Recent progress in visible light-doped ZnO photocatalyst for pollution control
Jingyu et al. In-situ growth of ZnO globular on g-C3N4 to fabrication binary heterojunctions and their photocatalytic degradation activity on tetracyclines
CN102580736B (zh) 一种石墨烯/钒酸银纳米复合可见光催化剂及其制备方法
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN112337459A (zh) 一种钨酸铋复合光催化剂的制备方法
CN111514882A (zh) 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
CN112264079A (zh) 构造金属氧化物纳米阵列/二维氮化碳的方法
Mehrabanpour et al. A comparative photocatalytic activity between PbS NPs and PbS-clinoptilolite towards Cefotaxime
CN113559910B (zh) 八面体氮化碳光催化材料的制备及去除水体中抗生素的应用
CN112517035A (zh) 一种金属原子掺杂空心MXene量子点的制备及应用
Ghasemlou et al. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy
CN114570402A (zh) 一种含碳缺陷和氧掺杂的氮化碳光催化材料的制备方法及去除水体中四环素的应用
CN113713802A (zh) 一种CoWO4/Bi2WO6复合声催化剂及其制备方法和应用
Wellia et al. Mesoporous Materials for Degradation of Textile Dyes
CN113145158A (zh) 剥离管状氮化碳光催化剂及其制备方法和应用
CN104150524A (zh) 一种氧化锌可见光催化剂的制备方法
CN110624574B (zh) 一种双Bi4O5I2光催化材料的制备方法及其降解MC-LR的应用
CN117299208A (zh) 一种苯乙炔铜/氧化锌复合光催化剂及其制备方法和应用
CN113578364B (zh) 一种分子印记光催化材料及其制备方法和应用
CN115672370A (zh) 一种用于可见光催化降解水中微污染物的管状氮化碳的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210319

WD01 Invention patent application deemed withdrawn after publication