WO2023222143A1 - 一种Fe2O3-MXenes复合催化剂及其制备方法与应用 - Google Patents

一种Fe2O3-MXenes复合催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2023222143A1
WO2023222143A1 PCT/CN2023/106272 CN2023106272W WO2023222143A1 WO 2023222143 A1 WO2023222143 A1 WO 2023222143A1 CN 2023106272 W CN2023106272 W CN 2023106272W WO 2023222143 A1 WO2023222143 A1 WO 2023222143A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxenes
composite catalyst
preparation
temperature
mof
Prior art date
Application number
PCT/CN2023/106272
Other languages
English (en)
French (fr)
Inventor
周庆
陈军霞
张子昂
李伟港
陈禹融
雷冲天
周伟伟
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2023222143A1 publication Critical patent/WO2023222143A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of water treatment, and more specifically, relates to a Fe 2 O 3 -MXenes composite catalyst and its preparation method and application.
  • Advanced oxidation technology is currently an important method for wastewater treatment. Its main principle is to use some strong active free radicals to oxidize and decompose organic pollutants in water, thereby decomposing macromolecular substances into non-toxic and low-toxic small molecule substances. Because of its high efficiency Degradation ability is widely used in antibiotic wastewater treatment. However, this method usually requires a large amount of energy input such as light and electricity to generate strong active free radicals, thereby causing a large amount of energy consumption.
  • nano-ferric oxide has attracted much attention due to its high natural abundance, low toxicity, strong economy, and excellent catalytic function.
  • problems in the application process of nano-ferric oxide such as it is difficult to recycle and reuse during use, and its easy aggregation in water and poor conductivity will reduce its catalytic performance.
  • Immobilizing nanocatalysts on substrates is an important way to solve the problem of easy aggregation of ferric oxide and enhance its application feasibility.
  • Substrate types include carbon nanotubes, biomass, etc.
  • MXenes a layered two-dimensional material obtained by peeling off the A layer of the ternary compound MAX phase through an etching process, is considered to be an excellent material due to its abundant active sites and huge specific surface area. matrix material.
  • the negatively charged surface of MXenes can adsorb positive metal ions, which makes it easy for Fe 2 O 3 to grow in situ on its surface.
  • MXenes after acid etching will have interlayer aggregation, which needs to be Intercalation is used to increase active sites to achieve tight binding with Fe 2 O 3 .
  • Chinese patent CN110591641A ( Application No .: 201910074792 . Intercalation is carried out, which will result in Fe 2 O 3 and MXenes not being tightly combined;
  • Chinese patent CN109904426A (Application No.: 201910160466.0) discloses a Fe 2 O 3 @MXene composite powder and its preparation method. Although intercalation is carried out, However, a highly toxic tetramethylammonium hydroxide solution is used. At the same time, the in-situ grown Fe 2 O 3 also has shortcomings such as a small specific surface area and relatively poor conductivity.
  • the present invention focuses on the above technical problems and strives to find a preparation method that can simultaneously enhance the stability and conductivity of Fe 2 O 3 and successfully apply it to the advanced sulfate oxidation to remove tetracycline wastewater.
  • the present invention provides a Fe 2 O 3 - MXenes composite catalyst and its preparation method and application; the Fe 2 O 3 -MXenes composite catalyst synthesized by intercalating MXenes and introducing MOF intermediates can effectively solve the above problems.
  • the preparation method of a Fe 2 O 3 -MXenes composite catalyst of the present invention includes: first using an intercalation agent to intercalate Ti 3 C 2 T x MXenes; and then combining the intercalated Ti 3 C 2 T x MXenes with Mixing reaction of iron ion salt and organic ligand.
  • the organic ligand can coordinate with Fe 3+ to form Fe-MOF.
  • the intermediate MOF-MXenes is obtained; finally, the intermediate MOF-MXenes is carbonized to obtain Fe 2 O 3 -MXenes composite catalyst.
  • the intercalation agent includes a strong alkali solution, and the strong alkali solution includes 4 mol/L to 6 mol/L hydroxide.
  • the present invention uses strong alkali to effectively intercalate MXenes, which improves the dispersion and specific surface area of MXenes, provides more points for the subsequent immobilization process, and effectively solves the problems of Fe 2 O 3 being easy to agglomerate in water and having low stability. .
  • the mass ratio of Fe 2 O 3 to Ti 3 C 2 T x MXenes is 8: (1-3).
  • the organic ligand includes one or more of fumaric acid, terephthalic acid, and 2-aminoterephthalic acid.
  • Some groups on the organic ligand in the present invention can form coordination bonds with Fe 3+ , and some groups can form hydrogen with -OH, -COOH and other groups on the surface of Ti 3 C 2 T x MXenes or on the interlayer surface. Bond, organically combine the Fe element with MXenes, so that the Fe element is distributed on the surface of MXenes or the interlayer surface. After carbonization, Fe 2 O 3 grows on the surface of MXenes or the interlayer surface, achieving a close combination of the two, and the organic ligands are carbonized. A carbon layer and water are formed.
  • the present invention uses metal organic framework material MOF as an intermediate and adopts annealing method to prepare Fe 2 O 3 -MXenes (carbon matrix porous material) to solve the problems of Fe 2 O 3 's poor conductivity and low catalytic activity.
  • the specific preparation steps are:
  • step (2) Take ferric chloride hexahydrate and the suspension in step (1) and stir at room temperature for 1h to 3h.
  • stir fumaric acid and deionized water at 30°C to 50°C for 1h to 3h, and then stir
  • the two stirred solutions are mixed, stirred evenly, and then transferred to a high-temperature reactor lined with polytetrafluoroethylene.
  • the hydrothermal reaction is carried out at 40°C to 60°C for 1h to 3h, then the temperature is raised to 60°C to 70°C and the reaction is continued for 8h to 12h. Obtain a precipitate;
  • step (3) Wash the precipitate obtained in step (2) alternately with deionized water and ethanol, and then dry it in a vacuum drying oven at 70°C to 90°C for 6h to 12h to obtain brown intermediate MOF-MXenes powder;
  • step (3) Place the brown intermediate MOF-MXenes powder obtained in step (3) into a tube furnace, set the heating rate to 3°C/min ⁇ 5°C/min under an inert gas atmosphere, and gradually increase the temperature to 140°C ⁇ 160°C, 240°C ⁇ 260°C, 340°C ⁇ 360°C and keep them at the corresponding temperatures for half an hour, then set the heating rate to 1°C/min ⁇ 3°C/min, continue to heat up to 440°C ⁇ 460°C and anneal for 1h. ⁇ 3h, after natural cooling down to 20°C ⁇ 30°C, a red powder is obtained, which is the Fe 2 O 3 -MXenes composite catalyst.
  • the preparation method of Ti 3 C 2 T x MXenes suspension in step (1) is:
  • step 2) Centrifuge the black solution obtained in step 1) at 3500 rpm for 5 minutes, pour off the supernatant and measure the pH, add deionized water to the precipitate and wash several times until the pH of the supernatant is greater than 5;
  • step 3 Transfer the supernatant after the last centrifugation in step 2) to an Erlenmeyer flask, add excess strong alkali solution, place it in a constant temperature shaker incubator and shake for 3 to 5 days, filter with suction, and collect the black solid. Vacuum dry at 80 degrees Celsius for 8 hours to obtain black powder;
  • step 4) Dissolve the powder collected in step 3) into deionized water, ultrasonicate, and prepare a suspension of 3 mg/mL to 15 mg/mL.
  • the volume ratio of deionized water and suspension used in step (2) is 1: (0.8 ⁇ 1.2); the molar ratio of ferric chloride hexahydrate and fumaric acid is 1: (0.8 ⁇ 1.2); hexahydrate
  • the ratio of ferric chloride to suspension is 10mmol/30mL; ferric chloride hexahydrate and suspension are stirred at 20°C ⁇ 30°C for 1h ⁇ 3h; fumaric acid and deionized water are stirred at 30°C ⁇ 50°C 1h ⁇ 3h; after transferring to the reactor, perform a hydrothermal reaction at 50°C for 2 hours, then raise the temperature to 65°C and continue the reaction for 10 hours.
  • the heating rate in step (4) is 4°C/min, and the temperature is sequentially raised to 150°C, 250°C, and 350°C and kept at the corresponding temperatures for half an hour; and then the temperature is continued to be increased to 450°C at 2°C/min. Anneal at 450°C for 2 hours.
  • a Fe 2 O 3 -MXenes composite catalyst of the present invention is prepared by the preparation method described in the present invention.
  • the application of a Fe 2 O 3 -MXenes composite catalyst of the present invention is to use the catalyst to degrade tetracycline in waste water.
  • the specific steps are:
  • step (2) Add 0.2mol/L to 10mol/L sulfate and/or permonosulfate solution to the solution in step (1), stir magnetically for 1min to 3min, and then start the reaction for 5min to 60min to achieve tetracycline in wastewater. removal.
  • the persulfate and/or permonosulfate is one or more mixtures of potassium monosulfate, sodium permonosulfate, sodium persulfate and potassium persulfate in any proportion.
  • the preparation method of a Fe 2 O 3 -MXenes composite catalyst of the present invention uses MOF as an intermediate and converts it into a more stable composite material of Fe 2 O 3 and porous carbon matrix through annealing, which not only retains The original MOF has a huge surface area, better electrical conductivity and higher catalytic activity.
  • the preparation method of a Fe 2 O 3 -MXenes composite catalyst of the present invention solves the problem of poor stability of MXenes and MOF and realizes the complementarity of the two. Due to the excellent electrical conductivity and reducibility of MXenes, the electron transfer between Fe(III) and Fe(II) is accelerated; compared with Fe 2 O3 prepared by ordinary methods, iron-based MOF-derived iron-carbon composite materials, that is, through The combination of Fe 2 O 3 nanoparticles obtained by pyrolysis and porous carbon matrix can better promote the interaction between the composite catalyst and tetracycline and promote electron transfer in the reaction system.
  • the application of a Fe 2 O 3 -MXenes composite catalyst of the present invention is applied to the persulfate activation and degradation tetracycline system, which can achieve complete removal in a short time; during the treatment process It can be carried out under normal temperature and pressure, and there is no need to adjust the pH of the system. The operation is simple and the actual processing cost is reduced.
  • Figure 1 is an SEM image of the composite catalyst prepared by the present invention using multi-layer Ti 3 C 2 T x MXenes without strong alkali intercalation.
  • Figure 2 is an SEM image of the composite catalyst prepared by the present invention using a single layer of Ti 3 C 2 T x MXenes intercalated with strong alkali.
  • Figure 3 is an XRD pattern of the Fe 2 O 3 -MXenes composite catalyst prepared in Example 1, Example 2, and Example 3 of the present invention.
  • Figure 4 shows the degradation effects of tetracycline wastewater in different systems.
  • This embodiment provides a Fe 2 O 3 -MXenes composite catalyst.
  • the mass ratio of Fe 2 O 3 and MXenes is 8:3.
  • the specific preparation method is as follows:
  • step (3) Evenly divide the black solution obtained in step (2) into two centrifuge tubes, centrifuge at 3500 rpm for 5 minutes with a high-speed centrifuge, pour off the supernatant and measure its pH, and add to the precipitate. Add deionized water and wash several times until the pH is greater than 5;
  • step (3) Transfer the supernatant after the last centrifugation in step (3) to a 250 ml Erlenmeyer flask, add an excess of 4 moles per liter of potassium hydroxide solution, and place it in a constant-temperature shaking incubator for 5 days. , use a circulating water multi-purpose vacuum pump to filter, collect the black solid, and vacuum dry it at 80 degrees Celsius for 8 hours;
  • step (4) Dissolve the powder collected in step (4) in deionized water, ultrasonicate, and prepare a suspension of 15 mg per ml;
  • step (6) Take 10 mmol of ferric chloride hexahydrate and 30 ml of the suspension collected in step (5) and stir at room temperature for 2 hours, 10 mmol of fumaric acid and 30 ml of deionized water at 40 degrees Celsius Stir for 2 hours at low temperature, mix the two solutions, stir evenly and then transfer to a high-temperature reactor lined with polytetrafluoroethylene, conduct a hydrothermal reaction at 50 degrees Celsius for 2 hours, then raise the temperature to 65 degrees Celsius and continue the reaction for 10 hours;
  • step (6) Wash the precipitate obtained in step (6) alternately with deionized water and ethanol, and then place it in a vacuum drying oven at 80 degrees Celsius overnight to obtain MOF-loaded Ti 3 C 2 T x MXenes, that is, the brown intermediate MOF- MXenes powder;
  • step (8) Place the brown powder obtained in step (7) into a tube furnace, set the heating rate to 4 degrees Celsius per minute under an inert gas atmosphere, and maintain it at this temperature when it is heated to 150 degrees Celsius, 250 degrees Celsius, and 350 degrees Celsius. For half an hour, set the heating rate to 2 degrees Celsius per minute, continue to raise the temperature to 450 degrees Celsius and anneal for 2 hours. After natural cooling to room temperature, a red powder is obtained, which is the Fe 2 O 3 -MXenes composite catalyst;
  • This embodiment also provides the application of a Fe 2 O 3 -MXenes composite catalyst, which is used to degrade tetracycline in wastewater, specifically as follows:
  • step 2) Add 10 mmol per liter of sodium persulfate solution to the solution in step 1), start the reaction with magnetic stirring, and the removal rate of tetracycline in 30 minutes at room temperature is 99.8%.
  • This embodiment provides a Fe 2 O 3 -MXenes composite catalyst.
  • the mass ratio of Fe 2 O 3 and MXenes is 8:2.
  • the specific preparation method is as follows:
  • step (3) Evenly divide the black solution obtained in step (2) into two centrifuge tubes, centrifuge at 3500 rpm for 5 minutes with a high-speed centrifuge, pour off the supernatant and measure its pH, and add to the precipitate. Add deionized water and wash several times until the pH is greater than 5;
  • step (3) Transfer the supernatant after the last centrifugation in step (3) to a 250 ml Erlenmeyer flask, add an excess of 6 moles per liter of potassium hydroxide solution, and place it in a constant-temperature shaking incubator for 3 days. , use a circulating water multi-purpose vacuum pump to filter, collect the black solid, and vacuum dry it at 80 degrees Celsius for 8 hours;
  • step (4) Dissolve the powder collected in step (4) in deionized water, ultrasonicate, and prepare a suspension of 6.67 mg per ml;
  • step (6) Take 10 mmol of ferric chloride hexahydrate and 30 ml of the suspension collected in step (5) and stir for 2 hours at room temperature. 10 mmol of fumaric acid and 30 mmol of deionized water are stirred at 40 Stir for 2 hours at 50 degrees Celsius, mix the two solutions, stir evenly and transfer to a high-temperature reactor lined with polytetrafluoroethylene, conduct a hydrothermal reaction at 50 degrees Celsius for 2 hours, then raise the temperature to 65 degrees Celsius and continue the reaction for 10 hours;
  • step (6) Wash the precipitate obtained in step (6) alternately with deionized water and ethanol, and then place it in a vacuum drying oven at 80 degrees Celsius overnight to obtain MOF-loaded Ti 3 C 2 T x MXenes, that is, the brown intermediate MOF- MXenes powder;
  • step (8) Place the brown powder obtained in step (7) into a tube furnace, set the heating rate to 4 degrees Celsius per minute under an inert gas atmosphere, and maintain it at this temperature when it is heated to 150 degrees Celsius, 250 degrees Celsius, and 350 degrees Celsius. For half an hour, set the heating rate to 2 degrees Celsius per minute, continue to raise the temperature to 450 degrees Celsius and anneal for 2 hours. After natural cooling to room temperature, a red powder is obtained, which is the Fe 2 O 3 -MXenes composite catalyst;
  • This embodiment also provides the application of a Fe 2 O 3 -MXenes composite catalyst, which is used to degrade tetracycline in wastewater, specifically as follows:
  • step 2) Add 1 mmol per liter of potassium peroxymonosulfate solution to the solution in step 1), start the reaction with magnetic stirring, and the removal rate of tetracycline in 15 minutes at room temperature is 96.5%.
  • This embodiment provides a Fe 2 O 3 -MXenes composite catalyst.
  • the mass ratio of Fe 2 O 3 and MXenes is 8:1.
  • the specific preparation method is as follows:
  • step (3) Evenly divide the black solution obtained in step (2) into two centrifuge tubes, centrifuge at 3500 rpm for 5 minutes with a high-speed centrifuge, pour off the supernatant and measure its pH, and add to the precipitate. Add deionized water and wash several times until the pH is greater than 5;
  • step (3) Transfer the supernatant after the last centrifugation in step (3) to a 250 ml Erlenmeyer flask, add an excess of 5 moles per liter of potassium hydroxide solution, and place it in a constant-temperature shaking incubator for 4 days. , use a circulating water multi-purpose vacuum pump to filter, collect the black solid, and vacuum dry it at 80 degrees Celsius for 8 hours;
  • step (4) Dissolve the powder collected in step (4) in deionized water, ultrasonicate, and prepare a suspension of 3 mg per ml;
  • step (6) Take 12 mmol of ferric chloride hexahydrate and 36 ml of the suspension collected in step (5) and stir at room temperature for 2 hours, 12 mmol of fumaric acid and 36 ml of deionized water at 40 degrees Celsius Stir for 2 hours at low temperature, mix the two solutions, stir evenly and then transfer to a high-temperature reactor lined with polytetrafluoroethylene, conduct a hydrothermal reaction at 50 degrees Celsius for 2 hours, then raise the temperature to 65 degrees Celsius and continue the reaction for 10 hours;
  • step (6) Wash the precipitate obtained in step (6) alternately with deionized water and ethanol, and then place it in a vacuum drying oven at 80 degrees Celsius overnight to obtain MOF-loaded Ti 3 C 2 T x MXenes, that is, the brown intermediate MOF- MXenes powder;
  • step (8) Place the brown powder obtained in step (7) into a tube furnace, set the heating rate to 4 degrees Celsius per minute under an inert gas atmosphere, and maintain it at this temperature when it is heated to 150 degrees Celsius, 250 degrees Celsius, and 350 degrees Celsius. For half an hour, set the heating rate to 2 degrees Celsius per minute, continue to raise the temperature to 450 degrees Celsius and anneal for 2 hours. After natural cooling to room temperature, a red powder is obtained, which is the Fe 2 O 3 -MXenes composite catalyst;
  • This embodiment also provides the application of a Fe 2 O 3 -MXenes composite catalyst, which is used to degrade tetracycline in wastewater, specifically as follows:
  • step 2) Add 0.4 mmol per liter of potassium persulfate solution to the solution in step 1), stir magnetically to start the reaction, and stir regularly. The removal rate of tetracycline at room temperature for 15 minutes was 97.5%.
  • the MOF in the present invention serves as an intermediate to grow Fe 2 O 3 and mainly forms a carbon layer and Fe 2 O 3 after carbonization
  • the catalyst prepared in Example 2 of the present invention has the best performance. Take 30 mg of the Fe 2 O 3 -MXenes composite catalyst prepared in Example 2 of the present invention and add it to 100 mL of tetracycline wastewater with a concentration of 40 mg per liter. 10 mmol sodium persulfate solution, react for 40 minutes.
  • Control group 1 Take 100 mL of tetracycline wastewater with a concentration of 40 mg per liter, without adding any catalyst or sodium persulfate solution. Everything else is the same as the experimental group;
  • Control group 2 Take 100 mL of tetracycline wastewater with a concentration of 40 mg per liter, without adding any catalyst, and everything else is the same as the experimental group;
  • Control group 3 Take 100 mL of tetracycline wastewater with a concentration of 40 mg per liter, without adding sodium persulfate solution, and the others are the same as the experimental group.
  • Example 1 of the present invention Take 30 mg of the Fe 2 O 3 -MXenes composite catalyst prepared in Example 1 of the present invention, add it to 100 mL of tetracycline wastewater with concentrations of 10, 20, 30, and 40 mg per liter, and add 0.4 mmol per liter of potassium peroxymonosulfate solution. , reacted for 30 minutes, and found that when the tetracycline concentrations were 10, 20, 30, and 40 mg per liter, the removal rates were 100%, 91.7%, 96.7%, and 97.1% respectively.
  • This comparative example provides a Fe 2 O 3 -MXenes composite catalyst.
  • the preparation method is basically the same as that in Example 2.
  • the main difference is that the strong base in step (4) is not used to intercalate Ti 3 C 2 T x MXenes. .
  • Fe 2 O 3 in Comparative Example 1 is mainly distributed in Ti 3 C 2 T x
  • the Fe 2 O 3 in Example 2 is not only distributed on both sides of Ti 3 C 2 T x MXenes, but also interspersed between the layers of Ti 3 C 2 T x MXenes.
  • a range of 1-50 should be understood to include a selection from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, Any number, combination of numbers, or subrange of 43, 44, 45, 46, 47, 48, 49, or 50, and all decimal values in between, for example, 1.1, 1.2, 1.3, 1.4, 1.5 , 1.6, 1.7, 1.8 and 1.9.
  • subranges consider specifically "nested subranges" that extend from any endpoint within the range.
  • nested subranges of the exemplary range 1-50 may include 1-10, 1-20, 1-30, and 1-40 in one direction, or 50-40, 50-30, 50 in another direction. -20 and 50-10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Fe2O3-MXenes复合催化剂及其制备方法与应用,属于水处理技术领域。它先使用插层剂将Ti3C2Tx MXenes插层;再将插层后的Ti3C2Tx MXenes与铁离子盐、有机配体混合反应,所述有机配体可与Fe3+配位形成Fe-MOF,混合反应后得到中间体MOF-MXenes;最后将中间体MOF-MXenes碳化,得到Fe2O3-MXenes复合催化剂。本发明改善了传统法制备的三氧化二铁易团聚、电子传递性能不佳、稳定性差的问题,可以很好地活化过硫酸盐降解废水中的四环素,具有效率高、使用价值高、催化剂易回收等优点,有很大的应用前景。

Description

一种Fe2O3-MXenes复合催化剂及其制备方法与应用 技术领域
本发明属于水处理技术领域,更具体地说,涉及一种Fe2O3-MXenes复合催化剂及其制备方法与应用。
背景技术
目前,大量的抗生素药物随着生活废水和工业废水的排放进入到各个自然和人工系统当中,造成了严重的水体污染与潜在的环境风险。高级氧化技术是目前针对废水处理的重要手段,其主要原理是利用一些强活性自由基将水中有机污染物氧化分解,以此将大分子物质分解为无毒低毒的小分子物质,因其高效降解能力在抗生素废水治理中得到广泛应用。然而该方法通常需要光、电等大量的能量输入来产生强活性自由基,进而造成大量能源消耗。
近年来,工程纳米材料凭借其在催化活性提升方面的独特性质(如快速电荷转移性能和高比表面积),逐渐在高级氧化领域占据了重要的位置。其中,纳米三氧化二铁由于天然丰度高、毒性低、经济性强、且同时具备优异的催化功能而备受瞩目。然而,纳米三氧化二铁在应用过程中也存在一定的问题,如在使用过程中难以回收再利用、以及在水中的易聚集性和导电性能差会降低其催化性能等。
将纳米催化剂固载于基质上是解决三氧化二铁易聚集性、增强其应用可行性的重要途径,基质类型包括碳纳米管、生物质等。近期的研究表明,由三元化合物MAX相经刻蚀过程剥离A层而得到的层状二维材料MXenes,由于其表面具有丰富的活性位点以及巨大的比表面积,被认为是一种优异的基质材料。MXenes表面带负电能够吸附正价金属离子,这使得Fe2O3很容易在其表面原位生长,但在制备过程中,通过酸蚀刻后的MXenes会有层间聚集的现象,需要对其进行插层来增加活性位点,以实现和Fe2O3紧密的结合。
中国专利CN110591641A(申请号:201910074792.X)公开了一种Fe2O3@MXene复合粉末及其制备方法,采用简单的水热法将Fe2O3负载在MXenes上,其制备过程没有对MXenes进行插层,这会导致Fe2O3和MXenes结合不够紧密;中国专利CN109904426A(申请号:201910160466.0)公开了一种Fe2O3@MXene复合粉末及其制备方法,尽管进行了插层,但却使用了毒性较大的四甲基氢氧化铵溶液,同时原位生长的Fe2O3还会存在比表面积较小、导电性相对较差等缺点。
为此,本发明正是围绕以上技术难题,力求寻找一种可以同时增强Fe2O3稳定性与导电性的制备方法,并将其成功应用到硫酸盐高级氧化去除四环素废水中。
发明内容
1.要解决的问题
针对现有技术中Fe2O3和MXenes结合较差,导致Fe2O3稳定性与导电性较差、比表面积较低、催化性能较低的问题,本发明提供一种Fe2O3-MXenes复合催化剂及其制备方法与应用;通过对MXenes插层后引入MOF中间体,进而合成的Fe2O3-MXenes复合催化剂能够有效解决上述问题。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的一种Fe2O3-MXenes复合催化剂的制备方法,其包括:先使用插层剂将Ti3C2Tx MXenes插层;再将插层后的Ti3C2Tx MXenes与铁离子盐、有机配体混合反应,所述有机配体可与Fe3+配位形成Fe-MOF,混合反应后得到中间体MOF-MXenes;最后将中间体MOF-MXenes碳化,得到Fe2O3-MXenes复合催化剂。
优选地,所述插层剂包括强碱溶液,所述强碱溶液中包括4mol/L~6mol/L的氢氧根。本发明采用强碱对MXenes进行有效插层,提升了MXenes的分散性与比表面积,为后续固载过程提供更多点位,有效解决Fe2O3在水中易团聚、稳定性不高的问题。
优选地,所述Fe2O3与Ti3C2Tx MXenes的质量比为8:(1~3)。
优选地,所述有机配体包括反丁烯二酸、对苯二甲酸、2-氨基对苯二甲酸其中一种或多种。本发明中的有机配体上部分基团可与Fe3+形成配位键,部分基团可与Ti3C2Tx MXenes表面的、或层间表面-OH、-COOH等基团形成氢键,将Fe元素与MXenes有机结合,使Fe元素分布在MXenes表面或层间表面,碳化后在MXenes表面或层间表面生长出Fe2O3,实现两者的紧密结合,而有机配体碳化形成炭层和水。因此,本发明以金属有机骨架材料MOF为中间体,选用退火的方式制备Fe2O3-MXenes(碳基质多孔材料),解决Fe2O3导电性能差、催化活性低的问题。
优选地,具体制备步骤为:
(1)制备Ti3C2Tx MXenes悬浮液;
(2)取六水合氯化铁和步骤(1)的悬浮液在常温下搅拌1h~3h,另外将反丁烯二酸和去离子水在30℃~50℃下搅拌1h~3h,再将两个搅拌后的溶液混合,搅拌均匀后转移至有聚四氟乙烯内衬的高温反应釜中,40℃~60℃下水热反应1h~3h后升温至60℃~70℃继续反应8h~12h得到沉淀物;
(3)将步骤(2)获得的沉淀物用去离子水和乙醇交替清洗,随后在70℃~90℃的真空干燥箱中干燥6h~12h,获得棕色的中间体MOF-MXenes粉末;
(4)将步骤(3)获得的棕色的中间体MOF-MXenes粉末置于管式炉中,在惰性气体氛围下设置升温速率为3℃/min~5℃/min,依次升温至140℃~160℃、240℃~260℃、340℃~360℃并分别在相应温度下保温半小时,再设置升温速率为1℃/min~3℃/min,继续升温至440℃~460℃下退火1h~3h,待自然冷却降至20℃~30℃,得到红色粉末,即为Fe2O3-MXenes复合催化剂。
优选地,步骤(1)中Ti3C2Tx MXenes悬浮液的制备方法为:
1)在聚四氟乙烯烧杯中,加入氟化锂和盐酸,搅拌形成均匀溶液后,缓慢加入MAX相Ti3AlC2,30℃~50℃下反应20h~28h得到黑色溶液;
2)将步骤1)所得的黑色溶液在3500转每分钟的转速下离心5分钟,倒掉上清液并测定pH,向沉淀中加入去离子水洗涤多次,直至上清液pH大于5;
3)将步骤2)中最后一次离心后的上清液转移到锥形瓶中,加入过量的强碱溶液,放置在恒温摇床培养箱中震荡3~5天,抽滤,收集黑色固体,80摄氏度真空干燥8小时得到黑色粉末;
4)将步骤3)收集到的粉末溶于去离子水中,超声,配置成3mg/mL~15mg/mL的悬浮液。
优选地,步骤(2)中所用去离子水和悬浮液体积比为1:(0.8~1.2);六水合氯化铁和反丁烯二酸摩尔比为1:(0.8~1.2);六水合氯化铁和悬浮液之比为10mmol/30mL;六水合氯化铁和悬浮液在20℃~30℃下搅拌1h~3h;反丁烯二酸和去离子水在30℃~50℃下搅拌1h~3h;转移至反应釜后先在50℃下水热反应2小时,再升温至65℃继续反应10小时。
优选地,步骤(4)中升温速率为4℃/min,依次升温至150℃、250℃、350℃并分别在相应温度下保温半小时;再以2℃/min继续升温至450℃,在450℃下退火2h。
本发明的一种Fe2O3-MXenes复合催化剂,所述催化剂由本发明中所述的制备方法制备得到。
本发明的一种Fe2O3-MXenes复合催化剂的应用,将该催化剂用于降解废水中的四环素,其具体步骤为:
(1)向浓度为10mg/L~50mg/L的四环素废水中投加0.1g/L~0.5g/L的Fe2O3-MXenes复合催化剂,超声2~3分钟;
(2)向步骤(1)的溶液中投加过0.2mol/L~10mol/L的硫酸盐和/或过一硫酸盐溶液,磁力搅拌1min~3min后开始反应5min~60min,实现废水中四环素的去除。所述过硫酸盐和/或过一硫酸盐为一硫酸钾、过一硫酸钠、过硫酸钠、过硫酸钾中的一种或多种按任意比例的混合物。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的一种Fe2O3-MXenes复合催化剂的制备方法,采用MOF作为中间体,通过退火使其转化为更稳定的Fe2O3和多孔碳基质的复合材料,不仅保留了原始MOF巨大的表面积,同时其导电性能更好,催化活性更高。
(2)本发明的一种Fe2O3-MXenes复合催化剂的制备方法,采用强碱插层后,MXenes不易团聚,比表面积更大,提供了更多位点以固定MOF和MOF碳化后生成的Fe2O3
(3)本发明的一种Fe2O3-MXenes复合催化剂的制备方法,解决了MXenes、MOF稳定性差的问题,实现了两者的互补。由于MXenes优异的导电性能和还原性,加快了Fe(Ⅲ)与Fe(Ⅱ)之间的电子传递;相比普通方法制备的Fe2O3,铁基MOF衍生的铁-碳复合材料,即通过热解得到的Fe2O3纳米颗粒和多孔碳基质的组合,可以更好促进复合催化剂和四环素之间的相互作用,并促进反应体系的电子转移。
(4)本发明的一种Fe2O3-MXenes复合催化剂的应用,将Fe2O3-MXenes复合催化剂应用于过硫酸盐活化降解四环素体系,能在短时间内实现完全去除;在处理过程中,常温常压下即可进行,也不需要调节体系pH,操作简单,减少了实际处理成本。
附图说明
图1为本发明使用未进行强碱插层的多层Ti3C2Tx MXenes制备的复合催化剂的SEM图。
图2为本发明使用强碱插层的单层Ti3C2Tx MXenes制备的复合催化剂的SEM图。
图3为本发明实施例1、实施例2、实施例3中制备的Fe2O3-MXenes复合催化剂的XRD图。
图4为不同体系中四环素废水的降解效果图。
具体实施方式
下文对本发明的示例性实施例的详细描述参考了附图,该附图形成描述的一部分,在该附图中作为示例示出了本发明可实施的示例性实施例,其中本发明的特征由附图标记标识。下文对本发明的实施例的更详细的描述并不用于限制所要求的本发明的范围,而仅仅为了进行举例说明且不限制对本发明的特点和特征的描述,以提出执行本发明的最佳方式,并足以使得本领域技术人员能够实施本发明。但是,应当理解,可在不脱离由所附权利要求限定的本发明的范围的情况下进行各种修改和变型。详细的描述和附图应仅被认为是说明性的,而不是限制性的,如果存在任何这样的修改和变型,那么它们都将落入在此描述的本发明的范围内。此外,背景技术旨在为了说明本技术的研发现状和意义,并不旨在限制本发明或本申请和本发明的应用领域。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合具体实施例对本发明进一步进行描述。
实施例1
本实施例提供一种Fe2O3-MXenes复合催化剂,Fe2O3和MXenes的质量比为8:3,其具体制备方法如下:
(1)在50毫升的聚四氟乙烯烧杯中,将1.6克氟化锂溶于20毫升12摩尔每升的盐酸溶液,在600转每分钟的转速下机械搅拌30分钟,得到澄清的溶液;
(2)称取1克MAX相Ti3AlC2粉末,缓慢多次加入到步骤(1)的烧杯中,待没有气泡产生后,将反应温度调至40摄氏度,设置转速为800转每分钟,持续搅拌24小时;
(3)将步骤(2)所得的黑色溶液均匀分至两个离心管中,用高速离心机在3500转每分钟的转速下离心5分钟,倒掉上清液并测定其pH,向沉淀中加入去离子水洗涤多次,直至pH大于5;
(4)将步骤(3)中最后一次离心后的上清液转移到250毫升的锥形瓶中,加入过量4摩尔每升的氢氧化钾溶液,放置在恒温摇床培养箱中震荡5天,用循环水式多用真空泵抽滤,收集黑色固体,80摄氏度真空干燥8小时;
(5)将步骤(4)收集到的粉末溶于去离子水中,超声,配置15毫克每毫升的悬浮液;
(6)取10毫摩尔的六水合氯化铁和30毫升步骤(5)收集的悬浮液在常温下搅拌2小时,10毫摩尔的反丁烯二酸和30毫升的去离子水在40摄氏度下搅拌2小时,将两个溶液混合,搅拌均匀后转移至有聚四氟乙烯内衬的高温反应釜中,50摄氏度下水热反应2小时后升温至65摄氏度继续反应10小时;
(7)将步骤(6)获得的沉淀物用去离子水和乙醇交替清洗,随后在80摄氏度真空干燥箱中过夜,获得负载MOF的Ti3C2Tx MXenes,即棕色的中间体MOF-MXenes粉末;
(8)将步骤(7)获得的棕色粉末置于管式炉中,在惰性气体氛围下设置升温速率为4摄氏度每分钟,升温至150摄氏度、250摄氏度、350摄氏度时分别在该温度下保持半小时,设置升温速率为2摄氏度每分钟,继续升温至450摄氏度下退火2小时,待自然冷却降至室温,得到红色粉末,即为Fe2O3-MXenes复合催化剂;
本实施例还提供一种Fe2O3-MXenes复合催化剂的应用,将该催化剂用于降解废水中的四环素,具体如下:
1)向100mL浓度为20毫克每升的四环素废水中投加30mg Fe2O3-MXenes复合催化剂, 超声2分钟;
2)向步骤1)的溶液中投加10毫摩尔每升的过硫酸钠溶液,磁力搅拌开始反应,常温下30分钟对四环素的去除率为99.8%。
实施例2
本实施例提供一种Fe2O3-MXenes复合催化剂,Fe2O3和MXenes的质量比为8:2,其具体制备方法如下:
(1)在50毫升的聚四氟乙烯烧杯中,将1.6克氟化锂溶于20毫升12摩尔每升的盐酸溶液,在600转每分钟的转速下机械搅拌30分钟,得到澄清的溶液;
(2)称取1克MAX相Ti3AlC2粉末,缓慢多次加入到步骤(1)的烧杯中,待没有气泡产生后,将反应温度调至40摄氏度,设置转速为800转每分钟,持续搅拌24小时;
(3)将步骤(2)所得的黑色溶液均匀分至两个离心管中,用高速离心机在3500转每分钟的转速下离心5分钟,倒掉上清液并测定其pH,向沉淀中加入去离子水洗涤多次,直至pH大于5;
(4)将步骤(3)中最后一次离心后的上清液转移到250毫升的锥形瓶中,加入过量6摩尔每升的氢氧化钾溶液,放置在恒温摇床培养箱中震荡3天,用循环水式多用真空泵抽滤,收集黑色固体,80摄氏度真空干燥8小时;
(5)将步骤(4)收集到的粉末溶于去离子水中,超声,配置6.67毫克每毫升的悬浮液;
(6)取10毫摩尔的六水合氯化铁和30毫升步骤(5)收集的悬浮液在常温下搅拌2小时,10毫摩尔的反丁烯二酸和30毫摩尔的去离子水在40摄氏度下搅拌2小时,将两个溶液混合,搅拌均匀后转移至有聚四氟乙烯内衬的高温反应釜中,50摄氏度下水热反应2小时后升温至65摄氏度继续反应10小时;
(7)将步骤(6)获得的沉淀物用去离子水和乙醇交替清洗,随后在80摄氏度真空干燥箱中过夜,获得负载MOF的Ti3C2Tx MXenes,即棕色的中间体MOF-MXenes粉末;
(8)将步骤(7)获得的棕色粉末置于管式炉中,在惰性气体氛围下设置升温速率为4摄氏度每分钟,升温至150摄氏度、250摄氏度、350摄氏度时分别在该温度下保持半小时,设置升温速率为2摄氏度每分钟,继续升温至450摄氏度下退火2小时,待自然冷却降至室温,得到红色粉末,即为Fe2O3-MXenes复合催化剂;
本实施例还提供一种Fe2O3-MXenes复合催化剂的应用,将该催化剂用于降解废水中的四环素,具体如下:
1)向100mL浓度为20毫克每升的四环素废水中投加30mg Fe2O3-MXenes复合催化剂,超声3分钟;
2)向步骤1)的溶液中投加1毫摩尔每升的过一硫酸钾溶液,磁力搅拌开始反应,常温下15分钟对四环素的去除率为96.5%。
实施例3
本实施例提供一种Fe2O3-MXenes复合催化剂,Fe2O3和MXenes的质量比为8:1,其具体制备方法如下:
(1)在50毫升的聚四氟乙烯烧杯中,将1.6克氟化锂溶于20毫升12摩尔每升的盐酸溶液,在600转每分钟的转速下机械搅拌30分钟,得到澄清的溶液;
(2)称取1克MAX相Ti3AlC2粉末,缓慢多次加入到步骤(1)的烧杯中,待没有气泡产生后,将反应温度调至40摄氏度,设置转速为800转每分钟,持续搅拌24小时;
(3)将步骤(2)所得的黑色溶液均匀分至两个离心管中,用高速离心机在3500转每分钟的转速下离心5分钟,倒掉上清液并测定其pH,向沉淀中加入去离子水洗涤多次,直至pH大于5;
(4)将步骤(3)中最后一次离心后的上清液转移到250毫升的锥形瓶中,加入过量5摩尔每升的氢氧化钾溶液,放置在恒温摇床培养箱中震荡4天,用循环水式多用真空泵抽滤,收集黑色固体,80摄氏度真空干燥8小时;
(5)将步骤(4)收集到的粉末溶于去离子水中,超声,配置3毫克每毫升的悬浮液;
(6)取12毫摩尔的六水合氯化铁和36毫升步骤(5)收集的悬浮液在常温下搅拌2小时,12毫摩尔的反丁烯二酸和36毫升的去离子水在40摄氏度下搅拌2小时,将两个溶液混合,搅拌均匀后转移至有聚四氟乙烯内衬的高温反应釜中,50摄氏度下水热反应2小时后升温至65摄氏度继续反应10小时;
(7)将步骤(6)获得的沉淀物用去离子水和乙醇交替清洗,随后在80摄氏度真空干燥箱中过夜,获得负载MOF的Ti3C2Tx MXenes,即棕色的中间体MOF-MXenes粉末;
(8)将步骤(7)获得的棕色粉末置于管式炉中,在惰性气体氛围下设置升温速率为4摄氏度每分钟,升温至150摄氏度、250摄氏度、350摄氏度时分别在该温度下保持半小时,设置升温速率为2摄氏度每分钟,继续升温至450摄氏度下退火2小时,待自然冷却降至室温,得到红色粉末,即为Fe2O3-MXenes复合催化剂;
本实施例还提供一种Fe2O3-MXenes复合催化剂的应用,将该催化剂用于降解废水中的四环素,具体如下:
1)向100ml浓度为40毫克每升的四环素废水中投加30mg Fe2O3-MXenes复合催化剂,超声3分钟;
2)向步骤1)的溶液中投加0.4毫摩尔每升的过一硫酸钾溶液,磁力搅拌开始反应,常 温下15分钟对四环素的去除率为97.5%。
由于本发明中的MOF是作为中间体起到生长Fe2O3的作用,其碳化后主要形成炭层和Fe2O3,因此在其他实施例中,还可以选择任意由C、H、O元素组成的、能与Fe3+配位的有机物,如对苯二甲酸、2-氨基对苯二甲酸等,本发明对此不作限定。
实施例4
考察在不同体系中四环素废水的降解效果。
实验组:本发明实施例2制得的催化剂性能最优,取30mg本发明实施例2中制得的Fe2O3-MXenes复合催化剂,添加到100mL浓度为40毫克每升的四环素废水,加入10毫摩尔过硫酸钠溶液,反应40分钟。
对照组1:取100mL浓度为40毫克每升的四环素废水,不添加任何催化剂,也不添加过硫酸钠溶液,其他均与实验组相同;
对照组2:取100mL浓度为40毫克每升的四环素废水,不添加任何催化剂,其他均与实验组相同;
对照组3:取100mL浓度为40毫克每升的四环素废水,不添加过硫酸钠溶液,其他均与实验组相同。
结果如图4所示,实验组在30分钟后对四环素的降解效率达到了99.8%,而对比组1、2、3的降解效率分别为2.98%、2.95%、4.71%,说明在整个体系中,催化剂和过硫酸盐的添加,是很缺一不可的。
实施例5
考察在实施例3制得的Fe2O3-MXenes复合催化剂在不同体系四环素废水的降解效果。
一、四环素浓度对降解效果的影响
取30mg本发明实施例1中制得的Fe2O3-MXenes复合催化剂,添加到100mL浓度为10、20、30、40毫克每升的四环素废水,加入0.4毫摩尔每升过一硫酸钾溶液,反应30分钟,结果发现,当四环素浓度为10、20、30、40毫克每升时,其去除率分别为100%、91.7%、96.7%、97.1%。
二、催化剂投加量对降解效果的影响
取10mg、20mg、30mg、40mg、50mg发明实施例1中制得的Fe2O3-MXenes复合催化剂,添加到100mL浓度为20毫克每升的四环素废水,加入1毫摩尔每升过一硫酸钾溶液,反应5分钟,结果发现,当催化剂投加量为10mg、20mg、30mg、40mg、50mg时,其去除率分别为91.5%、92.1%、88.9%、93.1%、100%。
三、过一硫酸钾溶液浓度对降解效果的影响
取30mg本发明实施例1中制得的Fe2O3-MXenes复合催化剂,添加到100mL浓度为20毫克每升的四环素废水,加入0.2、0.4、0.6、0.8、1毫摩尔每升过一硫酸钾溶液,反应15分钟,结果发现,当过一硫酸钾溶液浓度为0.2、0.4、0.6、0.8、1毫摩尔每升时,其去除率分别为75.9%、82.6%、92.4%、94.2%、96.2%。
对比例1
本对比例提供一种Fe2O3-MXenes复合催化剂,其制备方法与实施例2基本相同,主要区别在于:未使用(4)步骤中的强碱对Ti3C2Tx MXenes进行插层。
将对比例1和实施例2制得的Fe2O3-MXenes复合催化剂分别拍摄SEM,分别如图1和图2所示,对比例1的Fe2O3主要分布在Ti3C2Tx MXenes两面,而实施例2的Fe2O3不但分布在Ti3C2Tx MXenes两面,还穿插于Ti3C2Tx MXenes的层与层之间。这表明本发明采用强碱插层+制备MOF中间体的方式在Ti3C2Tx MXenes上生长Fe2O3,能够有效增大Ti3C2Tx MXenes和Fe2O3的接触面积,提高催化性能。
在上文中结合具体的示例性实施例详细描述了本发明。但是,应当理解,可在不脱离由所附权利要求限定的本发明的范围的情况下进行各种修改和变型。详细的描述和附图应仅被认为是说明性的,而不是限制性的,如果存在任何这样的修改和变型,那么它们都将落入在此描述的本发明的范围内。此外,背景技术旨在为了说明本技术的研发现状和意义,并不旨在限制本发明或本申请和本发明的应用领域。
更具体地,尽管在此已经描述了本发明的示例性实施例,但是本发明并不局限于这些实施例,而是包括本领域技术人员根据前面的详细描述可认识到的经过修改、省略、例如各个实施例之间的组合、适应性改变和/或替换的任何和全部实施例。权利要求中的限定可根据权利要求中使用的语言而进行广泛的解释,且不限于在前述详细描述中或在实施该申请期间描述的示例,这些示例应被认为是非排他性的。在任何方法或过程权利要求中列举的任何步骤可以以任何顺序执行并且不限于权利要求中提出的顺序。因此,本发明的范围应当仅由所附权利要求及其合法等同物来确定,而不是由上文给出的说明和示例来确定。
除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。质量、浓度、温度、时间、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,1-50的范围应理解为包括选自1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、 43、44、45、46、47、48、49或50的任何数字、数字的组合、或子范围、以及所有介于上述整数之间的小数值,例如,1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8和1.9。关于子范围,具体考虑从范围内的任意端点开始延伸的“嵌套的子范围”。例如,示例性范围1-50的嵌套子范围可以包括一个方向上的1-10、1-20、1-30和1-40,或在另一方向上的50-40、50-30、50-20和50-10。

Claims (10)

  1. 一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,包括:
    先使用插层剂将Ti3C2TxMXenes插层;
    再将插层后的Ti3C2TxMXenes与铁离子盐、有机配体混合反应,所述有机配体可与Fe3+配位形成Fe-MOF,混合反应后得到中间体MOF-MXenes;
    最后将中间体MOF-MXenes碳化,得到Fe2O3-MXenes复合催化剂。
  2. 根据权利要求1所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,所述插层剂包括强碱溶液,所述强碱溶液中包括4mol/L~6mol/L的氢氧根。
  3. 根据权利要求1所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,所述Fe2O3与Ti3C2TxMXenes的质量比为8:(1~3)。
  4. 根据权利要求1所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,所述有机配体包括反丁烯二酸、对苯二甲酸、2-氨基对苯二甲酸其中一种或多种。
  5. 根据权利要求1~4任一项所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,具体制备步骤为:
    (1)制备Ti3C2TxMXenes悬浮液;
    (2)取六水合氯化铁和步骤(1)的悬浮液在常温下搅拌1h~3h,另外将反丁烯二酸和去离子水在30℃~50℃下搅拌1h~3h,再将两个搅拌后的溶液混合,搅拌均匀后转移至有聚四氟乙烯内衬的高温反应釜中,40℃~60℃下水热反应1h~3h后升温至60℃~70℃继续反应8h~12h得到沉淀物;
    (3)将步骤(2)获得的沉淀物用去离子水和乙醇交替清洗,随后在70℃~90℃的真空干燥箱中干燥6h~12h,获得棕色的中间体MOF-MXenes粉末;
    (4)将步骤(3)获得的棕色的中间体MOF-MXenes粉末置于管式炉中,在惰性气体氛围下设置升温速率为3℃/min~5℃/min,依次升温至140℃~160℃、240℃~260℃、340℃~360℃并分别在相应温度下保温半小时,再设置升温速率为1℃/min~3℃/min,继续升温至440℃~460℃下退火1h~3h,待自然冷却降至20℃~30℃,得到红色粉末,即为Fe2O3-MXenes复合催化剂。
  6. 根据权利要求5所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,步骤(1)中Ti3C2TxMXenes悬浮液的制备方法为:
    1)在聚四氟乙烯烧杯中,加入氟化锂和盐酸,搅拌形成均匀溶液后,缓慢加入MAX相Ti3AlC2,30℃~50℃下反应20h~28h得到黑色溶液;
    2)将步骤1)所得的黑色溶液在3500转每分钟的转速下离心5分钟,倒掉上清液并测定pH,向沉淀中加入去离子水洗涤多次,直至上清液pH大于5;
    3)将步骤2)中最后一次离心后的上清液转移到锥形瓶中,加入过量的强碱溶液,放置在恒温摇床培养箱中震荡3~5天,抽滤,收集黑色固体,80摄氏度真空干燥8小时得到黑色粉末;
    4)将步骤3)收集到的粉末溶于去离子水中,超声,配置成3mg/mL~15mg/mL的悬浮液。
  7. 根据权利要求5所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,步骤(2)中所用去离子水和悬浮液体积比为1:(0.8~1.2);六水合氯化铁和反丁烯二酸摩尔比为1:(0.8~1.2);六水合氯化铁和悬浮液之比为10mmol/30mL;六水合氯化铁和悬浮液在20℃~30℃下搅拌1h~3h;反丁烯二酸和去离子水在30℃~50℃下搅拌1h~3h;转移至反应釜后先在50℃下水热反应2小时,再升温至65℃继续反应10小时。
  8. 根据权利要求5所述的一种Fe2O3-MXenes复合催化剂的制备方法,其特征在于,步骤(4)中升温速率为4℃/min,依次升温至150℃、250℃、350℃并分别在相应温度下保温半小时;再以2℃/min继续升温至450℃,在450℃下退火2h。
  9. 一种Fe2O3-MXenes复合催化剂,其特征在于,所述催化剂由权利要求1~8任一项所述的制备方法制备得到。
  10. 一种Fe2O3-MXenes复合催化剂的应用,将该催化剂用于降解废水中的四环素,其特征在于,具体步骤为:
    (1)向浓度为10mg/L~50mg/L的四环素废水中投加0.1g/L~0.5g/L的Fe2O3-MXenes复合催化剂,超声2~3分钟;
    (2)向步骤(1)的溶液中投加过0.2mol/L~10mol/L的硫酸盐和/或过一硫酸盐溶液,磁力搅拌1min~3min后开始反应5min~60min,实现废水中四环素的去除。
PCT/CN2023/106272 2022-05-17 2023-07-07 一种Fe2O3-MXenes复合催化剂及其制备方法与应用 WO2023222143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210539333.6 2022-05-17
CN202210539333.6A CN114700097B (zh) 2022-05-17 2022-05-17 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023222143A1 true WO2023222143A1 (zh) 2023-11-23

Family

ID=82176865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106272 WO2023222143A1 (zh) 2022-05-17 2023-07-07 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114700097B (zh)
WO (1) WO2023222143A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700097B (zh) * 2022-05-17 2023-01-06 南京大学 一种Fe2O3-MXenes复合催化剂及其制备方法与应用
CN115282964B (zh) * 2022-09-05 2023-05-23 华侨大学 一种类芬顿反应催化剂及其制备方法与应用
CN115430444A (zh) * 2022-09-29 2022-12-06 北京林业大学 一种MXenes/NZVI催化剂协同光活化过硫酸盐降解大环内酯抗生素废水的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038634A (zh) * 2019-05-07 2019-07-23 大连理工大学 一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂及其合成方法
CN112517035A (zh) * 2020-12-16 2021-03-19 兰州交通大学 一种金属原子掺杂空心MXene量子点的制备及应用
US20210283592A1 (en) * 2020-03-16 2021-09-16 Tongji University Synthesis strategy of supported transition metal carbides fenton-like catalysts and application thereof
CN114054059A (zh) * 2021-12-15 2022-02-18 陈雪文 利用磁性二维Mxene/CuFeO2催化剂活化过硫酸盐降解废水中磺胺甲恶唑的方法
CN114700097A (zh) * 2022-05-17 2022-07-05 南京大学 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854882A (zh) * 2016-03-31 2016-08-17 华南理工大学 一种磁性Co3O4-C纳米材料及其制法与作为催化剂活化过一硫酸盐应用于废水处理中
US11352271B2 (en) * 2019-06-26 2022-06-07 Central South University Method and device for sewage treatment
CN111659431A (zh) * 2020-05-09 2020-09-15 江苏大学 一种二维MXene/铁钴基复合催化材料的制备及其应用
CN112552801A (zh) * 2020-12-25 2021-03-26 南京大学 一种含Ti3C2TX(MXene)/聚苯胺的水性防腐涂料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038634A (zh) * 2019-05-07 2019-07-23 大连理工大学 一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂及其合成方法
US20210283592A1 (en) * 2020-03-16 2021-09-16 Tongji University Synthesis strategy of supported transition metal carbides fenton-like catalysts and application thereof
CN112517035A (zh) * 2020-12-16 2021-03-19 兰州交通大学 一种金属原子掺杂空心MXene量子点的制备及应用
CN114054059A (zh) * 2021-12-15 2022-02-18 陈雪文 利用磁性二维Mxene/CuFeO2催化剂活化过硫酸盐降解废水中磺胺甲恶唑的方法
CN114700097A (zh) * 2022-05-17 2022-07-05 南京大学 一种Fe2O3-MXenes复合催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114700097A (zh) 2022-07-05
CN114700097B (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2023222143A1 (zh) 一种Fe2O3-MXenes复合催化剂及其制备方法与应用
CN109647293B (zh) 一种锂离子电池正极材料金属氧化物包覆改性的系统及方法
CN113559911A (zh) 一种单原子催化剂及其制备方法和应用
CN108675431B (zh) 一种制备多孔碳包覆磁性纳米铁水处理复合材料的方法
CN102921443B (zh) 可见光响应的镍钛水滑石与石墨烯复合光催化剂及其制备方法
CN113477270B (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
CN105233850A (zh) 一种磁性纳米复合光催化材料及其制备方法
CN113058549B (zh) 一种碳纳米片复合材料及其制备方法和应用
CN113559912B (zh) 氮硫共掺杂石墨烯附载钴催化剂、及其制备方法及应用
CN111330648A (zh) 一种MIL-101(Fe)/g-C3N4复合可见光光催化剂及其制备方法和应用
Zhao et al. In-situ synthesis of MXene/ZnCo2O4 nanocomposite with enhanced catalytic activity on thermal decomposition of ammonium perchlorate
WO2023241152A1 (zh) 一种空心氮掺杂碳包裹二氧化钛光催化剂的制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Xie et al. Application of metal nitrides in catalysis and adsorption of pollutants in water
CN111097470A (zh) 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法
CN113293393A (zh) 一种钒酸铋/植酸钠/羟基氧化铁复合光电极及其制备方法和应用
CN111974460A (zh) 一种纳米Fe基化合物负载导电聚合物的制备方法
CN109616626B (zh) 一种碳包覆四氧化三铁纳米晶的低温宏量制备方法
CN113117697A (zh) 光催化剂及其制备方法、光解水制氢的方法
CN111215098B (zh) 硒化表面修饰二氧化钌纳米颗粒催化剂、制备方法及应用
CN112439403A (zh) 具柱撑结构的蒙脱石-二氧化钛-石墨烯复合光催化剂及制备方法
CN111977630A (zh) 一种金属-碳杂化材料及其制备方法
CN111151252A (zh) 一种TiO2-CoFe2O4磁性光催化剂的制备方法
Harito et al. Facet-controlled growth and soft-chemical exfoliation of two-dimensional titanium dioxide nanosheets
CN116060002B (zh) 石墨烯负载金属单原子复合材料、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807092

Country of ref document: EP

Kind code of ref document: A1