CN111097470A - 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法 - Google Patents

氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法 Download PDF

Info

Publication number
CN111097470A
CN111097470A CN201811247300.4A CN201811247300A CN111097470A CN 111097470 A CN111097470 A CN 111097470A CN 201811247300 A CN201811247300 A CN 201811247300A CN 111097470 A CN111097470 A CN 111097470A
Authority
CN
China
Prior art keywords
nitrogen
carbon layer
electrocatalyst
coated
alloy nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811247300.4A
Other languages
English (en)
Inventor
刘岗
甄超
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201811247300.4A priority Critical patent/CN111097470A/zh
Publication of CN111097470A publication Critical patent/CN111097470A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电催化领域,具体为一种氮掺杂石墨碳层包覆Fe‑Ni合金纳米方块电催化剂的制备方法。以(亚)铁氰化钠和二价金属镍盐为前驱体,通过化学方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6},通过保护气氛下高温热处理得到氮掺杂石墨碳层包覆Fe‑Ni合金纳米方块电催化剂。电催化剂的不同晶面具有不同原子和电子结构,可展现出迥异的电催化活性。本发明利用简单的化学方法和后续的热处理过程,可制备出具有特定晶面暴露的Fe‑Ni合金,为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体。且表面包覆有氮掺杂的石墨碳层可有效提高催化剂的导电性、催化活性和稳定性。

Description

氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备 方法
技术领域
本发明属于电催化领域,具体为一种氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法。
背景技术
电催化分解水制氢是减少环境污染及实现可再生清洁能源的重要途径,其中放氧反应为水分解反应过程的速控步骤。开发高效、稳定且廉价的放氧催化剂具有重要的科学价值和现实意义。Fe、Ni过渡金属及其化合物是广泛研究且具有应用前景的非贵金属基放氧催化剂材料,Fe-Ni合金是其中的典型代表。催化剂的表面原子/电子结构直接影响水分子在其表面的吸附形式和吸附能力。因此,贵金属的表面原子/电子结构直接影响电荷的表面转移过程,最终影响贵金属电催化剂的催化活性。
贵金属不同晶面的电催化活性已被广泛、深入研究,为高效电催化剂的设计提供有效依据。因非贵金属基电催化剂晶面可控制备难以实现,故针对于非贵金属基电催化剂不同晶面的催化活性研究鲜有报道。通过晶面选择性暴露调制金属氧化物表面原子/电子结构,可有效提高光生电荷的表面转移效率,其作为光催化剂具有高的光催化活性。因此,控制制备具有特定晶面暴露的Fe-Ni合金可为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体。
发明内容
本发明的目的在于提供一种氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,通过保护气氛下对普鲁士蓝衍生物{Na2FeNi(CN)6}高温热处理得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂。制备出具有特定晶面暴露的Fe-Ni合金,为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体。
本发明的技术方案是:
一种氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,以铁氰化钠或亚铁氰化钠和二价金属镍盐为前驱体,通过化学合成方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6},通过保护气氛下高温热处理,得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,二价金属镍盐为镍的可溶性盐NiSO4、NiCl2或Ni(NO3)2
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,化学合成方法采用各种湿化学方法:化学沉淀法、水热法或溶剂热法。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,化学合成方法中,将前驱体溶于水形成前驱液,前驱液中:铁氰化钠或亚铁氰化钠的摩尔浓度范围为1mM~1M,二价金属镍盐的摩尔浓度范围为1mM~1M。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,高温热处理的保护气氛为氮气或氩气。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,高温热处理的温度为700~1100℃。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,高温热处理的时间为0.5至5小时。
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,铁氰化钠或亚铁氰化钠和二价金属镍盐为前驱体,通过化学合成方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6}的主要化学反应如下:
Na4[Fe(CN)6]+Ni2+→Na2FeNi(CN)6↓+2Na+
或Na3[Fe(CN)6]+Ni2+→NaFeNi(CN)6↓+2Na+
所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的技术指标如下:石墨碳层中氮掺杂量为1~3at%,石墨碳层的厚度为1至20纳米。
本发明的设计思想是:
传统的贵金属催化剂的成本昂贵,开发廉价电催化材料是拓展实际应用的关键。理想的电催化材料需要有好的导电性和表面催化活性,其中氮掺杂的碳材料作为一种典型导电担载体被广泛研究。碳材料本身具有好的导电属性,而氮掺杂既可提供催化活性位点又可以作为其它催化剂的锚定位点,Fe、Ni过渡金属及其化合物是非贵金属电催化剂的典型代表。因此,氮掺杂石墨碳层包覆Fe-Ni合金纳米颗粒可作为有效的电催化剂材料,同时考虑晶面催化活性的差异,选择性暴露高催化活性晶面可进一步提升其催化活性。以普鲁士蓝衍生物{Na2FeNi(CN)6}为前驱体,利用其含有氰基(CN-)骨架和Fe、Ni元素,保护气氛下高温碳化可以一步实现氮掺杂石墨碳层包覆Fe-Ni合金纳米颗粒的制备。同时,利用碱金属Na+的作用调控颗粒的形貌,控制制备高活性晶面暴露的Fe-Ni合金纳米颗粒。
本发明的优点及有益效果在于:
1、本发明提供一种氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,制备出具有特定晶面暴露的Fe-Ni合金,为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体。
2、本发明通过保护气氛下高温热处理得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂,电催化剂的不同晶面具有不同原子和电子结构,可展现出迥异的电催化活性。
附图说明
图1:本发明实施例1中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的X射线衍射(XRD)图谱。图中,横坐标2theta为衍射角(degree),纵坐标intensity为强度(a.u.)。
图2:本发明实施例1中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的扫描电子显微镜(SEM)照片。
图3:本发明实施例1中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的透射电子显微镜(TEM)照片。
图4:本发明实施例1中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的能量色散谱(EDS)。图中,横坐标Position为(μm),纵坐标Counts为计数。
图5:本发明实施例1中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的电催化产氧活性;其中,x轴为相对于可逆氢电极施加的电压/V(vs RHE),y轴Currentdensity为产生的电流密度/mA·cm-2
图6:本发明实施例2中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的透射电子显微镜(TEM)照片。
图7:本发明实施例2中获得的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块样品的电催化产氧活性;其中,x轴为相对于可逆氢电极施加的电压/V(vs RHE),y轴Currentdensity为产生的电流密度/mA·cm-2
具体实施方式
在具体实施过程中,本发明氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,以(亚)铁氰化钠和二价金属镍盐为前驱体,通过化学方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6},通过保护气氛下高温热处理得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂。制备出具有特定晶面暴露的Fe-Ni合金,为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体,且表面包覆有氮掺杂的石墨碳层可有效提高催化剂的导电性、催化活性和稳定性。其中,具体的特征在于:
1、所述的金属镍盐包括NiSO4、NiCl2、Ni(NO3)2等各种镍的可溶性盐。
2、所述的化学合成方法包括各种湿化学方法,如:化学沉淀法、水(溶剂)热法等。
3、所述的化学合成的前驱液摩尔浓度范围为1mM~1M,优选范围为0.05~0.5M。
4、所述的热处理保护气氛为惰性气氛(如:氮气或氩气)。
5、所述的热处理温度为700~1100℃,优选范围为800~100℃。
6、所述的热处理时间为0.5至5小时,优选范围为1至2小时。
下面结合实施例及附图来更加详细描述本发明。
实施例1
本实施例中,将1.94g的Na4Fe(CN)6·10H2O和1.05g的NiSO4·6H2O分别溶于40ml的去离子水中,分别得到摩尔浓度为0.1M的Na4Fe(CN)6水溶液和NiSO4水溶液。将40ml摩尔浓度0.1M的Ni SO4水溶液逐滴加入摩尔浓度0.1M的Na4Fe(CN)6水溶液,产生绿色沉淀。离心收集后真空烘箱60℃干燥,得到Na2FeNi(CN)6粉体,其粒径30~60纳米。对Na2FeNi(CN)6粉体进行充分研磨后,转移至石英烧舟中,氩气气氛下在管式炉中900℃煅烧2小时,得到黑色粉体样品。
X射线衍射(XRD)分析表明生成FeNi合金,同时有石墨碳衍射峰出现(图1)。通过扫描电子显微镜(SEM)观察FeNi合金为纳米方块形貌(图2)。利用透射电子显微镜(TEM)观察发现FeNi合金纳米方块表面包有石墨碳层(图3)。能量色散谱(EDS)表征发现表面石墨碳层有氮元素掺杂,石墨碳层的厚度约为10纳米,氮元素掺杂量为1.83at%(图4)。最终证实得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块材料。在摩尔浓度1M的KOH电解液中对该材料进行电催化产氧测试,10mA·cm-2的电流是的过电势约为260mV(如图5)。
实施例2
本实施例中,将1.94g的Na4Fe(CN)6·10H2O和0.95g的Ni Cl2·6H2O分别溶于40ml的去离子水中,分别得到摩尔浓度为0.1M的Na4Fe(CN)6水溶液和NiCl2水溶液。将40ml摩尔浓度0.1M的NiCl2溶液逐滴加入摩尔浓度0.1M的Na4Fe(CN)6水溶液,产生绿色沉淀。离心收集后真空烘箱60℃干燥,得到Na2FeNi(CN)6粉体,其粒径为40~70纳米。对Na2FeNi(CN)6粉体进行充分研磨后,转移至石英烧舟中,氩气气氛下在管式炉中1000℃煅烧2小时,得到黑色粉体样品,利用透射电子显微镜(TEM)观察发现FeNi合金纳米方块表面包有石墨碳层(图6),表面石墨碳层有氮元素掺杂,石墨碳层的厚度约为10纳米,氮元素掺杂量为1.68at%。
在摩尔浓度1M的KOH电解液中对该材料进行电催化产氧测试,10mA·cm-2的电流是的过电势约为250mV(如图7)。
实施例结果表明,本发明利用简单的化学方法和后续的热处理过程,可制备出具有特定晶面暴露的Fe-Ni合金,为研究非贵金属基催化剂的表面结构与活性关系提供有效的载体。且表面包覆有氮掺杂的石墨碳层可有效提高催化剂的导电性、催化活性和稳定性。
以上实例仅为本发明中较佳结果,并不用于限制本发明,凡是在本发明原则基础上做的同等替换或修饰所获得的技术方案,均在本发明的保护范围之内。

Claims (9)

1.一种氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,以铁氰化钠或亚铁氰化钠和二价金属镍盐为前驱体,通过化学合成方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6},通过保护气氛下高温热处理,得到氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂。
2.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,二价金属镍盐为镍的可溶性盐NiSO4、NiCl2或Ni(NO3)2
3.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,化学合成方法采用各种湿化学方法:化学沉淀法、水热法或溶剂热法。
4.按照权利要求3所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,化学合成方法中,将前驱体溶于水形成前驱液,前驱液中:铁氰化钠或亚铁氰化钠的摩尔浓度范围为1mM~1M,二价金属镍盐的摩尔浓度范围为1mM~1M。
5.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,高温热处理的保护气氛为氮气或氩气。
6.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,高温热处理的温度为700~1100℃。
7.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,高温热处理的时间为0.5至5小时。
8.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,铁氰化钠或亚铁氰化钠和二价金属镍盐为前驱体,通过化学合成方法制备得到普鲁士蓝衍生物{Na2FeNi(CN)6}的主要化学反应如下:
Na4[Fe(CN)6]+Ni2+→Na2FeNi(CN)6↓+2Na+
或Na3[Fe(CN)6]+Ni2+→NaFeNi(CN)6↓+2Na+
9.按照权利要求1所述的氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法,其特征在于,氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的技术指标如下:石墨碳层中氮掺杂量为1~3at%,石墨碳层的厚度为1至20纳米。
CN201811247300.4A 2018-10-25 2018-10-25 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法 Pending CN111097470A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811247300.4A CN111097470A (zh) 2018-10-25 2018-10-25 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811247300.4A CN111097470A (zh) 2018-10-25 2018-10-25 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN111097470A true CN111097470A (zh) 2020-05-05

Family

ID=70417539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811247300.4A Pending CN111097470A (zh) 2018-10-25 2018-10-25 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111097470A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916861A (zh) * 2021-01-20 2021-06-08 昆明理工大学 Fe2Mo/NC二元合金纳米催化剂及其制备方法
CN116196964A (zh) * 2023-03-09 2023-06-02 太原工业学院 一种乙酰丙酸酯加氢催化剂及制备方法和应用
CN117123281A (zh) * 2023-08-03 2023-11-28 宁夏大学 一种碳包覆Fe-Ni合金的长效催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357443A (zh) * 2012-04-10 2013-10-23 中国科学院金属研究所 一种氧化钛涂层/泡沫碳化硅结构催化载体及其制备方法
WO2014055671A1 (en) * 2012-10-02 2014-04-10 The Board Of Trustees Of The Leland Stanford Junior University Microbial batteries with re-oxidizable solid-state electrodes for conversion of chemical potential energy into electrical energy
CN104190459A (zh) * 2014-07-29 2014-12-10 中国科学院合肥物质科学研究院 一种氮掺杂石墨烯包覆FeCo纳米晶的制备方法及其制得的产物的应用
CN106378449A (zh) * 2016-10-11 2017-02-08 中国科学技术大学 一种钌钴合金纳米颗粒、其制备方法和应用
CN108269987A (zh) * 2018-01-25 2018-07-10 湖北大学 一种含氮碳包覆双金属硫化物的钠离子电池负极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357443A (zh) * 2012-04-10 2013-10-23 中国科学院金属研究所 一种氧化钛涂层/泡沫碳化硅结构催化载体及其制备方法
WO2014055671A1 (en) * 2012-10-02 2014-04-10 The Board Of Trustees Of The Leland Stanford Junior University Microbial batteries with re-oxidizable solid-state electrodes for conversion of chemical potential energy into electrical energy
CN104190459A (zh) * 2014-07-29 2014-12-10 中国科学院合肥物质科学研究院 一种氮掺杂石墨烯包覆FeCo纳米晶的制备方法及其制得的产物的应用
CN106378449A (zh) * 2016-10-11 2017-02-08 中国科学技术大学 一种钌钴合金纳米颗粒、其制备方法和应用
CN108269987A (zh) * 2018-01-25 2018-07-10 湖北大学 一种含氮碳包覆双金属硫化物的钠离子电池负极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PINGWEI CAI ET AL.: ""FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery"", 《ELECTROCHIMICA ACTA》 *
苏建伟: ""基于类普鲁士蓝前驱体制备电催化剂及其在碱性电解水中的应用"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
黄克靖等: "《二维过渡金属二硫属化合物的电化学储能应用》", 30 September 2018, 冶金工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916861A (zh) * 2021-01-20 2021-06-08 昆明理工大学 Fe2Mo/NC二元合金纳米催化剂及其制备方法
CN116196964A (zh) * 2023-03-09 2023-06-02 太原工业学院 一种乙酰丙酸酯加氢催化剂及制备方法和应用
CN117123281A (zh) * 2023-08-03 2023-11-28 宁夏大学 一种碳包覆Fe-Ni合金的长效催化剂及其制备方法和应用
CN117123281B (zh) * 2023-08-03 2024-03-26 宁夏大学 一种碳包覆Fe-Ni合金的长效催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108906106B (zh) 一种FeNi/N-C高分散核壳结构催化剂及其制备方法
Liu et al. A facile preparation of CoFe 2 O 4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction
Chen et al. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review
Mandegarzad et al. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis
CN108611658B (zh) 一种一维多孔纳米复合材料及其制备方法和在电解水中的应用
Weng et al. Thermoelectrochemical formation of Fe/Fe 3 C@ hollow N-doped carbon in molten salts for enhanced catalysis
Lin et al. Perovskite nanoparticles@ N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
Yang et al. Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting
Chen et al. Ni and N co-doped MoCx as efficient electrocatalysts for hydrogen evolution reaction at all-pH values
Zhao et al. Pyrolysis derived helically nitrogen-doped carbon nanotubes with uniform cobalt for high performance oxygen reduction
Huang et al. Ni activated Mo2C nanoparticles supported on stereotaxically-constructed graphene for efficient overall water splitting
CN111097470A (zh) 氮掺杂石墨碳层包覆Fe-Ni合金纳米方块电催化剂的制备方法
US11732370B2 (en) Core-shell FE2P@c-FE3C electrocatalyst and preparation method and application thereof
Gao et al. Regulating the thickness of the carbon coating layer in iron/carbon heterostructures to enhance the catalytic performance for oxygen evolution reaction
Liu et al. Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting
Ashok et al. Highly efficient methanol oxidation reaction on durable Co9S8@ N, S-doped CNT catalyst for methanol fuel cell applications
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Li et al. Evaluation of A‐Site Ba2+‐Deficient Ba 1− xCo0. 4Fe0. 4Zr0. 1Y0. 1O 3− δ Oxides as Electrocatalysts for Efficient Hydrogen Evolution Reaction
He et al. Long-range interconnected nanoporous Co/Ni/C composites as bifunctional electrocatalysts for long-life rechargeable zinc-air batteries
Sreehari et al. A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications
Lim et al. Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction
CN111490256A (zh) 一种双功能钼掺杂硫化钴/氮碳阵列电极的制备方法
Fu et al. N-doped hollow carbon tubes derived N-HCTs@ NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
Li et al. CoFe2O4 nanoparticles@ N-doped carbon coupled with N-doped graphene toward efficient electrochemical water oxidation
Chen et al. In situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200505

WD01 Invention patent application deemed withdrawn after publication