CN111944129B - 一种高性能钠电池负极有机聚合物材料 - Google Patents

一种高性能钠电池负极有机聚合物材料 Download PDF

Info

Publication number
CN111944129B
CN111944129B CN202010861119.3A CN202010861119A CN111944129B CN 111944129 B CN111944129 B CN 111944129B CN 202010861119 A CN202010861119 A CN 202010861119A CN 111944129 B CN111944129 B CN 111944129B
Authority
CN
China
Prior art keywords
ptsa
reaction
polymer
electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010861119.3A
Other languages
English (en)
Other versions
CN111944129A (zh
Inventor
康红卫
陈水生
盛良全
张龙海
张朝峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyang Normal University
Original Assignee
Fuyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuyang Normal University filed Critical Fuyang Normal University
Priority to CN202010861119.3A priority Critical patent/CN111944129B/zh
Publication of CN111944129A publication Critical patent/CN111944129A/zh
Application granted granted Critical
Publication of CN111944129B publication Critical patent/CN111944129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种有机聚合物PTSA及其制备方法,由2‑氰基噻吩制备的TSA溶于硝基甲烷与二氯甲烷的混合溶液中,在氯化铁催化下合成聚合物PTSA,该聚合物易于合成,性能稳定,且具有良好的稳定性和导电性;本发明还公开了由聚合物PTSA、导电炭黑及聚偏氟乙烯PVDF制备的有机复合材料电极,该有机聚合物材料作为钠电池负极材料在0.1A g‑1电流充放电下,循环120圈,容量为705 mA h g‑1;在2A g‑1大电流充放电情况下,循环150圈,容量为618 mA h g‑1,是目前的钠电池负极材料研究中性能较好的材料之一,也为钠离子电池的工业化应用带来了更多的可能。

Description

一种高性能钠电池负极有机聚合物材料
技术领域
本发明属于钠电池技术领域,尤其涉及一种高性能钠电池负极有机聚合物材料。
背景技术
化石类能源的过度消耗带来的资源短缺及环境污染问题使得人们对清洁能源的需求越来越大。近几年来,离子电池受到的关注日益增加。然而就目前商业化的锂电池来说,锂离子的性能指标与实际应用要求还有很大差距,此外锂电池面临一个无法克服的问题,即锂元素地球丰度不高,地球分布不均,这也造成了数十年来锂电池居高不下的成本问题,因此,市场上的锂电池售价一般都很昂贵。为了克服这一问题,解决动力电池的价格问题,丰度大、价格低的钠便进入了人们的视线,钠电池也成为了目前的研究热点,同时也为解决动力电池售价昂贵的问题带来了希望。然而,钠元素比锂元素更为活泼,钠电池的安全性也成为更需要着重考虑的问题。
作为对电池安全性具有决定意义的负极,负极材料的种类对钠电池的稳定性、安全性同样有举足轻重的作用。有机聚合物材料,具有良好的导电性、极佳的电化学充放电活性及优良的空间网络结构,在充放电的同时能够安全地将钠元素锁在聚合物网络中,为提高钠电池的安全性和稳定性带来了希望。因此制备高容量、大电流充放电的钠电池材料是新能源体系近几年研究工作的重点问题,是解决目前新能源动力电池瓶颈问题的关键。
发明内容
鉴于上述行业背景,本发明的目的是针对现有技术的不足和钠离子电池发展的需要,提供一种高性能负极材料的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
一种聚合物PTSA,其结构如下:
Figure BDA0002648133080000011
所述聚合物PTSA是由2,4,6-三(2-噻吩基)-1,3,5-三嗪(TSA)在氯化铁的作用下,经过氧化偶联反应得到的;
一种聚合物PTSA的制备方法,包括如下步骤:
(1)2,4,6-三(2-噻吩基)-1,3,5-三嗪(TSA)单体的高效率合成:
将2-氰基噻吩溶于氯仿中,于一定温度下滴加三氟甲磺酸,反应结束后,倾掉上层溶液,固体用氨水调节pH至碱性,抽滤后水洗乙醇洗涤,干燥后得到纯品2,4,6-三(2-噻吩基)-1,3,5-三嗪,其反应式如下:
Figure BDA0002648133080000021
(2)聚2,4,6-三(2-噻吩基)-1,3,5-三嗪(PTSA)的合成:
将2,4,6-三(2-噻吩基)-1,3,5-三嗪(TSA)、氯化铁,硝基甲烷和二氯乙烷混合后加入溶剂热反应釜,于70-150摄氏度下反应10-24小时。反应完毕后冷至室温,进行抽滤,用乙醇、水洗涤,然后将固体置于2N的盐酸溶液中搅拌4-5小时后,再次抽滤,水洗、乙醇洗涤,然后于索氏提取器中用甲醇、二氯甲烷纯化,真空干燥后得到黑色固体,其反应式如下:
Figure BDA0002648133080000022
进一步地,步骤(1)所述反应结束后的操作具体为倾掉或抽掉反应后的全部或大部分溶液,并碱化瓶底的粘性固体;碱化瓶底的粘性固体时,采用氨水作为碱,并且用冰水浴、冰盐浴控制温度,维持温度在0-30摄氏度。
进一步地,步骤(2)所述氯化铁的量为反应底物的3-10当量。
进一步地,步骤(2)所述硝基甲烷为助剂,所述硝基甲烷与二氯乙烷的体积比为:1/10-1/50。
一种复合材料电极,所述电极的复合材料包括:50-80wt.%的PTSA、5-20wt.%的导电炭黑和5-20wt.%的PVDF;所述复合材料电极的制备方法,包括如下步骤:称取一定量的PTSA、导电炭黑及PVDF,加入活性物质质量30-40%的N-甲基吡咯烷酮(NMP)后,研磨30分钟使成为均匀的浆料,然后将该浆料涂在20μm厚的铜箔上,真空120℃干燥24h,并切成电极片。
进一步地,所述电极复合材料包括:60wt.%的PTSA、20wt.%的导电炭黑和20wt.%的PVDF。
与现有技术相比,本发明的有益效果是:
1.本发明中TSA的纯化处理过程仅需要水、乙醇洗涤即可得到高纯度的产物,原因在于产物在水中及乙醇中的溶解性低,而原料2-氰基噻吩、三氟甲磺酸及中间体在乙醇或水中的溶解度很高,利用产物与原料、中间体的溶解度区别即可提纯产品TSA。
2.本发明中的三嗪类化合物易于插入碱金属离子,是很好的电极材料。
3.本发明采用噻吩-三嗪类小分子,通过特定条件下的有机聚合反应,制备了共轭聚合物,充分利用噻吩/三嗪单元的良好电化学活性的同时,提高聚合物的稳定性和导电性,且材料易于合成,性能稳定。
4.本发明有机聚合物材料作为钠电池负极材料在0.1A g-1电流充放电下,循环120圈,容量为705mA h g-1;在2A g-1大电流充放电情况下,循环150圈,容量为618mA h g-1。在目前的钠电池负极材料的研究中,是性能最高的材料之一,为钠离子电池的工业化应用带来了希望。
附图说明
图1为本发明单体分子和聚合物材料PTSA的红外光谱(1a)和热重分析数据(1b)。
图2为本发明单体分子和聚合物材料的充放电性能数据。
图3为本发明聚合物PTSA和小分子TSA在2A g-1大电流下的充放电循环数据。
具体实施方式
下面结合附图及具体实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
小分子TSA的合成:
Figure BDA0002648133080000031
于三口瓶中,将2-氰基噻吩(2.0g,18.3mmol)溶于30ml干燥的氯仿中,冰水浴降温至0-5摄氏度,缓慢滴加三氟甲磺酸(5.5g,36.7mmol),滴入时间超过1小时,然后0-5摄氏度保温反应1小时,再于室温反应24小时。反应结束后小心倾掉大部分上层溶液,冰水浴降温,瓶底粘性固体和少量溶液的混合物用氨水调节pH至碱性(pH=8.0以上),抽滤所得到的黄色固体以大量水和少量乙醇洗涤,干燥后得到纯品2,4,6-三(2-噻吩基)-1,3,5-三嗪,收率85%。1H NMR(400MHz,CDCl3)δ8.28(d,J=3.6Hz,3H),7.62(d,J=4.9Hz,3H),7.25–7.15(m,3H).
实施例2
聚合物PTSA的合成:
Figure BDA0002648133080000041
在溶剂热合成釜中,加入FeCl3(1.6g,10.0mmol),1.0ml硝基甲烷,7.0ml 1,2-二氯乙烷后,再加入TSA(0.49g,1.5mmol)的10ml热1,2-二氯乙烷溶液,于120℃反应24小时。冷却后,抽滤,固体用大量乙醇/水洗涤,然后于20ml 2N的盐酸中搅拌4-5小时,再次抽滤并用水、乙醇洗涤,然后于索氏提取器中依次用甲醇和二氯甲烷提取纯化,真空干燥后得到黑色固体聚合物,416.2mg,收率:84.8%,IR.1471cm-1,1383cm-1,1086cm-1和812cm-1
实施例3
复合材料电极的制备与应用:
电极复合物的制备:称取60wt.%的PTSA,20wt.%的导电炭黑,20wt.%的PVDF,加入几滴N-甲基吡咯烷酮(NMP)后,研磨30分钟,然后该均匀的浆料涂在20μm厚的铜箔上,真空120℃干燥24h,并切成电极片。然后以钠片为对电极,采用GF/D滤膜,组装成CR2032电池。电解液采用1.0M NaCF3SO3的二甘醇二甲醚溶液,充放电测试范围为0.01-3.0V。
上述化合物与复合材料电极的性质表征(见附图与表1):
红外光谱使用Thermo Scientific Nicolet iS5傅立叶红外光谱仪,扫描范围为500-3500cm-1,见附图1(a);1471和1383cm-1处吸收可以归属于噻吩的伸缩振动,而1086cm-1和812cm-1对应于三嗪结构上的振动吸收。热重分析(TGA)在30~600℃的温度下通过热重分析进行,从附图1(b)可以看出,聚合物的热稳定性明显好于小分子材料。
附图2(A),聚合物电极的1-3圈循环伏安数据;附图2(B),为PTSA和单体TSA的倍率性能数据;附图2(C),不同倍率下对应的PTSA充放电图,附图2(D),为PTSA和单体TSA的0.1Ag-1的循环性能。从附图2中,可以看出聚合物材料的比容量大,在0.1A g-1的电流密度下充放电,循环120圈,容量能到705mAh g-1,并且倍率性能优良。
从附图3可以看出,在2A g-1大电流长时间从放电下,循环150圈,聚合物PTSA依旧保持高于618mAh g-1的容量,充分说明该聚合物作为电极材料具有极大的潜力。
表1本发明钠电池负极材料与已知钠电池负极材料[1-5]的性能对比
Figure BDA0002648133080000051
表1中的PPy-coated Sb2Se3材料、生物质纳米球材料、COF-TFPB-TAPT材料、硫杂沥青基炭材料及纯碳材料分别来自以下文献:
1.Fang,Y.J.,Yu,X.Y.Lou,X.W.(David)."Formation of Polypyrrole-CoatedSb2Se3Microclips with Enhanced Sodium-Storage Properties."Angewandte Chemie2018,130(31):10007-10011.
2.Ai,Y.,You,Y.,Wei,F.,Jiang,X.,Han,Z.,Cui,J.&Liu,S.Hollow Bio-derivedPolymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery.Nano-microLetters,2020,12(1):31.
3.Patra,B.C.,Das,S.K.,Ghosh,A.,Moitra,P.,Addicoat,M.,Mitra,S.,.&Pradhan,A.Covalent organic framework based microspheres as an anode materialfor rechargeable sodium batteries.Journal of Materials Chemistry A,2018,6(34),16655-16663.
4.贺摇磊,孙钰仁,王春雷,郭宏毅,郭永强,李摇晨,周摇颖,新型炭材料,2020,35(4):420-427.
5.Kang,J.,Kim,D.,Chae,S.A.,Saito,N.,Choi,S.,&Kim,K.H.Maximization ofsodium storage capacity of pure carbon material used in sodium-ionbatteries.Journal of Materials Chemistry,2019,7(27),16149-16160.
由表1数据可知,在0.1A g-1的电流密度下充放电,已知的钠电池比容量最高613mAh g-1,且循环次数只有80次。在2A g-1大电流充放电下,本发明的聚合物材料比容量能够达到705mAh g-1,高于已知的钠电池,而对比文献2,在0.2A g-1的电流密度下,循环50次,比容量才到180mAh g-1。通过对比,充分体现出了本材料PTSA的先进性,无论是从比容量还是从倍率性能上看,都远远超过目前已报道过的材料。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种聚合物PTSA的制备方法,其特征在于,包括如下步骤:
(1)2,4,6-三(2-噻吩基)-1,3,5-三嗪(TSA)单体的高效率合成:
将2-氰基噻吩溶于氯仿中,于一定温度下滴加三氟甲磺酸,反应结束后,倾掉上层溶液,固体用氨水调节pH至碱性,抽滤后水洗乙醇洗涤,干燥后得到纯品2,4,6-三(2-噻吩基)-1,3,5-三嗪,其反应式如下:
Figure FDA0004066587890000011
(2)聚2,4,6-三(2-噻吩基)-1,3,5-三嗪(PTSA)的合成:
将2,4,6-三(2-噻吩基)-1,3,5-三嗪(TSA)、氯化铁,硝基甲烷和二氯乙烷混合后加入溶剂热反应釜,于70-150摄氏度下反应10-24小时,反应完毕后冷至室温,进行抽滤,用乙醇、水洗涤,然后将固体置于2N的盐酸溶液中搅拌4-5小时后,再次抽滤,水洗、乙醇洗涤,然后于索氏提取器中用甲醇、二氯甲烷纯化,真空干燥后得到黑色固体,其反应式如下:
Figure FDA0004066587890000012
2.根据权利要求1所述的聚合物PTSA的制备方法,其特征在于:步骤(1)所述反应结束后的操作具体为倾掉或抽掉反应后的全部或大部分溶液,并碱化瓶底的粘性固体;碱化瓶底的粘性固体时,采用氨水作为碱,并且用冰水浴、冰盐浴控制温度,维持温度在0-30摄氏度。
3.根据权利要求1所述的聚合物PTSA的制备方法,其特征在于:步骤(2)所述氯化铁的量为反应底物的3-10当量。
4.根据权利要求1所述的聚合物PTSA的制备方法,其特征在于:步骤(2)所述硝基甲烷为助剂,所述硝基甲烷与二氯甲烷的体积比为:1/10-1/50。
5.一种根据权利要求1-4所述的聚合物PTSA制备复合材料电极的方法,其特征在于,所述电极的复合材料包括:50-80wt.%的PTSA、5-20wt.%的导电炭黑和5-20wt.%的PVDF;所述电极复合材料的制备包括如下步骤:称取一定量的PTSA、导电炭黑及PVDF,加入活性物质质量30-40%的N-甲基吡咯烷酮(NMP)后,研磨30分钟使成为均匀的浆料,然后将该浆料涂在20μm厚的铜箔上,真空120℃干燥24h,并切成电极片。
6.一种根据权利要求5所述的复合材料电极的制备方法,其特征在于,所述电极复合材料包括:60wt.%的PTSA、20wt.%的导电炭黑和20wt.%的PVDF。
CN202010861119.3A 2020-08-25 2020-08-25 一种高性能钠电池负极有机聚合物材料 Active CN111944129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010861119.3A CN111944129B (zh) 2020-08-25 2020-08-25 一种高性能钠电池负极有机聚合物材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010861119.3A CN111944129B (zh) 2020-08-25 2020-08-25 一种高性能钠电池负极有机聚合物材料

Publications (2)

Publication Number Publication Date
CN111944129A CN111944129A (zh) 2020-11-17
CN111944129B true CN111944129B (zh) 2023-03-21

Family

ID=73360428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010861119.3A Active CN111944129B (zh) 2020-08-25 2020-08-25 一种高性能钠电池负极有机聚合物材料

Country Status (1)

Country Link
CN (1) CN111944129B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417978A (zh) * 2022-09-21 2022-12-02 安徽大学 具有多孔结构聚(2,4,6-三(噻吩-2-基)-1,3,5-三嗪)的制备及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268690A (zh) * 2016-08-31 2017-01-04 北京化工大学 一种用于二氧化碳吸附与分离的骨架材料及其制备方法
WO2019107424A1 (ja) * 2017-11-29 2019-06-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717396A (zh) * 2009-11-27 2010-06-02 南京邮电大学 三嗪类光电功能材料及制备和应用方法
KR102061964B1 (ko) * 2018-03-08 2020-01-02 한국외국어대학교 연구산학협력단 트리아진 기반의 공유결합 유기 나노시트 및 이의 제조방법
CN108976415B (zh) * 2018-08-10 2021-02-02 黄河科技学院 一种有机聚合物、其合成方法及在制备超高性能锂电池负极上的应用
CN111454226B (zh) * 2020-05-22 2021-08-06 沅江华龙催化科技有限公司 一种芳香醛和碘化铵合成2,4,6-三取代1,3,5-三嗪化合物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268690A (zh) * 2016-08-31 2017-01-04 北京化工大学 一种用于二氧化碳吸附与分离的骨架材料及其制备方法
WO2019107424A1 (ja) * 2017-11-29 2019-06-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置

Also Published As

Publication number Publication date
CN111944129A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN101935398B (zh) 一种高导电的芳香聚合物离子液体隔膜材料及其制备方法
CN114883559A (zh) 一种萘醌-喹喔啉有机电极材料及其在水系锌离子电池中的应用
CN111944129B (zh) 一种高性能钠电池负极有机聚合物材料
CN109103429A (zh) 一种制备锂离子电池负极材料δ-MnO2/PPy的方法
CN105017171B (zh) 含苯并噁唑二胺共聚酰胺电解质的制备方法和应用
CN112271314B (zh) 一种基于四硫代富瓦烯二羧酸乙酯的液流电池正极电解液及其制备方法
CN108623787B (zh) 新型共轭微孔有机聚合物及其合成与应用
CN110590789B (zh) 富氮三苯胺衍生物共轭聚合物材料及其单体的制备和应用
CN111755735B (zh) 一种多孔有机化合物电解质及其制备方法和应用
CN114188542B (zh) 一种锌基mof负载二氧化钒纳米材料及其制备和应用
CN110563614A (zh) 一种胍盐离子液体及其制备方法和应用
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN113185695B (zh) 一种聚醚砜单离子聚合物和单离子凝胶聚合物电解质
CN115057478A (zh) 钠离子电池用硫酸根型聚阴离子正极材料及制备方法
CN111704717B (zh) 一种基于偶氮类聚酰亚胺的新型钠离子电池有机负极材料
CN114276357A (zh) 2,8,14-三硝基取代六氮杂萘单体和其偶氮基聚合物、制备方法及应用
CN108976393B (zh) 聚[1,3,5-三(4-二苯基氨基苯基)苯]有机微介孔聚合物材料及其制备和应用
CN112694613B (zh) 一种聚酰亚胺类材料及其制备方法与在碱金属离子电池中的应用
CN112279806B (zh) 一种有机电极材料及其制备方法和应用
CN117534089B (zh) 一种无添加剂制备高结晶Fe[Fe(CN)6]电极材料的方法及其应用
CN114455609B (zh) 循环稳定的低成本钠离子电池正极材料制备方法及应用
CN116655892A (zh) 一种交联聚合物有机电极材料及其制备方法与应用
CN118005642A (zh) 一种含多吩嗪线性结构脱盐有机物的制备方法及应用
CN116504970A (zh) 一种硬碳负极材料及其制备方法和应用
CN116253738A (zh) 多羰基六氮杂苯并菲衍生物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant