WO2019107424A1 - 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置 - Google Patents

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置 Download PDF

Info

Publication number
WO2019107424A1
WO2019107424A1 PCT/JP2018/043808 JP2018043808W WO2019107424A1 WO 2019107424 A1 WO2019107424 A1 WO 2019107424A1 JP 2018043808 W JP2018043808 W JP 2018043808W WO 2019107424 A1 WO2019107424 A1 WO 2019107424A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
organic
general formula
cathode
layer
Prior art date
Application number
PCT/JP2018/043808
Other languages
English (en)
French (fr)
Inventor
恵美子 御子柴
大津 信也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2019107424A1 publication Critical patent/WO2019107424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to an organic electroluminescent element, a material for organic electroluminescence, a display device, and a lighting device.
  • An organic electroluminescent element (hereinafter, also referred to as an organic EL element) has a configuration in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode. By applying an electric field thereto, an exciton (exciton) is generated by recombining the hole injected from the anode and the electron injected from the cathode in the light emitting layer.
  • the organic EL element is a light emitting element using light emission (fluorescence / phosphorescence) when the exciton is inactivated.
  • the organic EL element is an all solid element composed of a film of an organic material having a thickness of only about a submicron between the electrode and the electrode, and can emit light at a voltage of about several volts to several tens of volts . Therefore, it is expected to be used for the next generation flat display and lighting.
  • organic EL elements are expected to have improved performance.
  • various materials for organic electroluminescence hereinafter, also referred to as organic EL materials
  • Patent Document 1 and Patent Document 2 describe using a nitrogen-containing aromatic compound.
  • a compound capable of further improving the performance of the organic EL element for example, a compound capable of lowering the driving voltage or improving the stability at high temperature storage.
  • the present invention has been made in view of the above problems and circumstances, and an object of the present invention is to provide an organic electroluminescent device having improved driving voltage and stability at high temperature storage, and organic electroluminescent device used for the organic electroluminescent device. It is providing a material, a display apparatus, and an illuminating device.
  • An organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, wherein a structure represented by the following general formula (1) is provided between the light emitting layer and the cathode.
  • the organic electroluminescent element which has the said organic functional layer containing the compound to have.
  • W represents a 2 or 3 condensed ring represented by the general formula (2) or the general formula (3)
  • Y represents an oxygen atom or a sulfur atom
  • R 1 represents hydrogen
  • N represents an integer of 0 to 4.
  • l and m each represents an integer of 1 or more
  • L 1 represents a single bond, arylene or a heterocyclic ring, which is represented by the general formula (2)
  • X 1 to X 10 each represent N or CR 2 and each have two or more N in two or three condensed rings constituting the general formula (2) and the general formula (3). At least one of 1 to X 5 is N, and at least one of X 6 to X 10 is N.
  • An organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, wherein a structure represented by the following general formula (1a) is provided between the light emitting layer and the cathode.
  • An organic electroluminescent device comprising the organic functional layer containing a compound having the organic compound.
  • Xa to Xe each represent N or CRq, and any one is N.
  • Y represents an oxygen atom or a sulfur atom.
  • R 1 represents a hydrogen atom or a substituent.
  • n represents an integer of 0 to 4.
  • m represents an integer of 1 or more L 1 represents a single bond, arylene or a heterocycle Rq represents a hydrogen atom or a substituent
  • Xa to Xh are N or CR, and at least one of Xa to Xd is N.
  • y represents an integer of 0 or 1.
  • R represents a hydrogen atom or a substituent.
  • L 1 is a simple bond or a benzene ring, a biphenyl ring, a naphthyl ring, a terphenyl ring, an anthracene ring, a triphenylene ring, a fluorene ring, a pyridine ring, a pyrazine ring, a triazine ring, a pyrimidine ring, a thiophene ring, benzo
  • the organic electroluminescent device according to any one of 1 to 3 above, which represents a divalent linking group containing a thiophene ring, an indole ring, an imidazole ring, a benzimidazole ring, a pyrazole ring or a triazole ring.
  • the organic electroluminescent device according to 1 or 3 above which has a layer containing a compound having a structure represented by the general formula (1) and an electron injecting material as the organic functional layer.
  • the organic electroluminescent device according to 2 above which has a layer containing a compound having a structure represented by the general formula (1a) and an electron injecting material as the organic functional layer.
  • W represents a 2 or 3 condensed ring represented by the general formula (2) or the general formula (3)
  • Y represents an oxygen atom or a sulfur atom
  • R 1 represents hydrogen
  • N represents an integer of 0 to 4.
  • l and m each represents an integer of 1 or more
  • L 1 represents a single bond, arylene or a heterocyclic ring, which is represented by the general formula (2)
  • X 1 to X 10 each represent N or CR 2 and each have two or more N in two or three condensed rings constituting the general formula (2) and the general formula (3). At least one of 1 to X 5 is N, and at least one of X 6 to X 10 is N.
  • the display apparatus which comprises the organic electroluminescent element as described in any one of said 1 to 11.
  • a lighting device comprising the organic electroluminescent device according to any one of the items 1 to 11.
  • an organic electroluminescent device having improved driving voltage and stability at high temperature storage, and an organic electroluminescent material used for the organic electroluminescent device. Further, it is possible to provide a display device and a lighting device with improved driving voltage and high temperature storage stability.
  • a schematic view showing an example of a display composed of organic EL elements Schematic diagram of display part
  • a Pixel schematic Schematic of passive matrix full color display Schematic of lighting device
  • the organic electroluminescent device is an organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following general formula It is characterized by having the said organic functional layer containing the compound which has a structure represented by (1).
  • This feature is a technical feature common to the inventions according to claims 1 and 3 to 9.
  • the organic electroluminescent device is an organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following is formed between the light emitting layer and the cathode: It is characterized by having the organic functional layer containing a compound having a structure represented by the general formula (1a). This feature is a technical feature common to the inventions claimed in claims 2, 4 to 7, 10, and 11.
  • W in the general formula (1) is any one of the general formulas (4) to (8).
  • L 1 is a simple bond or a benzene ring, biphenyl ring, naphthyl ring, terphenyl ring, anthracene ring, triphenylene ring, fluorene ring, pyridine ring, pyrazine ring, triazine ring, pyrimidine ring, thiophene ring It is preferable from the viewpoint of the effect expression of the present invention to represent a divalent linking group containing a benzothiophene ring, an indole ring, an imidazole ring, a benzimidazole ring, a pyrazole ring or a triazole ring.
  • the said cathode has silver as a main component, and the said organic functional layer be provided adjacent to the said cathode, since the film quality of a cathode can be improved.
  • the thickness of the said cathode is 15 nm or less from a viewpoint of improving light transmittance.
  • the light transmittance of the cathode is preferably 50% or more, and the sheet resistance of the cathode is preferably 25 ⁇ / sq or less from the viewpoint of the effects of the present invention.
  • having a layer containing a compound having a structure represented by the general formula (1) or the general formula (1a) and an electron injecting material as the organic functional layer further enhances the interaction between molecules. Because it is preferable.
  • organic functional layer containing a compound having a structure represented by the general formula (1) or the general formula (1a), an electron injection layer containing an electron injection material, and the cathode are sequentially laminated. Is preferred because the interaction between molecules becomes stronger.
  • the material for organic electroluminescence of the present invention is characterized by containing a compound having a structure represented by the above general formula (1).
  • the display device of the present invention comprises the organic electroluminescent device of the present invention.
  • a lighting device of the present invention comprises the organic electroluminescent device of the present invention.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following general formula is provided between the light emitting layer and the cathode: It has the said organic functional layer containing the compound which has a structure represented by (1).
  • W represents a 2- or 3-ring fused ring represented by the general formula (2) or the general formula (3).
  • Y represents an oxygen atom or a sulfur atom.
  • Y is preferably an oxygen atom.
  • R 1 represents a hydrogen atom or a substituent.
  • n represents an integer of 0 to 4;
  • l and m represent an integer of 1 or more.
  • L 1 represents a single bond, arylene or heterocycle. L 1 is preferably arylene. L 1 may also form a fused ring.
  • X 1 to X 10 are N or CR 2 and N is respectively contained in two or three condensed rings constituting the general formula (2) and the general formula (3) Have two or more. At least one of X 1 to X 5 is N, and at least one of X 6 to X 10 is N. At least one of X 2 and X 3 , X 3 and X 4 , and X 4 and X 5 form a ring, and X 6 and X 7 , X 7 and X 8 , X 8 and X 9 , and X At least one of 9 and X 10 forms a ring.
  • R 2 represents a hydrogen atom or a substituent.
  • W in the general formula (1) is any one of the following general formulas (4) to (8).
  • Xa to Xh are N or CR, and at least one of Xa to Xd is N.
  • y represents an integer of 0 or 1.
  • R represents a hydrogen atom or a substituent.
  • the substituent used in the general formulas (1) to (8) is not limited, and for example, an alkyl group (for example, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group etc.), an aryl group Examples thereof include phenyl group and the like), heteroaryl group (for example, pyridyl group, carbazolyl group and the like), halogen atom (for example, fluorine atom and the like), cyano group or fluorinated alkyl group.
  • an alkyl group for example, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group etc.
  • an aryl group examples thereof include phenyl group and the like), heteroaryl group (for example, pyridyl group, carbazolyl group and the like), halogen atom (for example, fluorine atom and the like), cyano group or fluorinated alkyl group
  • L 1 is, for example, a simple bond or a benzene ring, biphenyl ring, naphthyl ring, terphenyl ring, anthracene ring, triphenylene ring, fluorene ring, pyridine ring, pyrazine ring, triazine ring And a divalent linking group containing a pyrimidine ring, a thiophene ring, a benzothiophene ring, an indole ring, an imidazole ring, a benzimidazole ring, a pyrazole ring or a triazole ring.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following general formula is provided between the light emitting layer and the cathode: It has the said organic functional layer containing the compound which has a structure represented by (1a).
  • Xa to Xe each represent N or CRq, and any one is N.
  • L 1 , Y, R 1 , n and m are as defined in the general formula (1).
  • L 1 , Y, R 1 , n and m are the same as the items described in the general formula (1).
  • Rq represents a hydrogen atom or a substituent. Examples of the substituent represented by Rq include aryl and heteroaryl, and examples of the aryl include benzene ring, biphenyl ring, naphthyl ring, terphenyl ring, anthracene ring, triphenylene ring, fluorene ring and the like.
  • heteroaryl examples include pyridine ring, pyrazine ring, triazine ring, pyrimidine ring, thiophene ring, benzothiophene ring, indole ring, imidazole ring, benzimidazole ring, pyrazole ring, triazole ring, dibenzofuran ring, azadibenzofuran ring, dibenzothiophene ring , Azadibenzothiophene ring, carboline ring and the like.
  • azadibensofuran was added to 200 ml of 4 bottles of colben and purged with nitrogen.
  • 34 ml of dehydrated THF was added and cooled to -78.degree.
  • 6.45 ml of n-butyllithium hexane solution (1.55 M) was slowly injected and allowed to react for 1 hour with cooling.
  • 1.86 g of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was slowly injected into the reaction solution, and the mixture was further stirred for 1 hour.
  • the material for organic electroluminescence of the present invention is characterized by containing a compound having a structure represented by the above-mentioned general formula (1).
  • the general formula (1) is as described above.
  • the material for organic electroluminescence may contain the compound which has a structure represented by above-described General formula (1a).
  • the general formula (1a) is as described above.
  • the order of LUMO becomes deeper by introducing two or more condensed rings of two or more nitrogen atoms.
  • the electron injection property from an electrode can be improved. Therefore, the drive voltage can be lowered, and the light emission efficiency can be improved and the device life can be extended.
  • the compound of the present invention has a non-contrast structure and can suppress crystallinity. Thereby, the stability at the time of high temperature storage can be improved. Therefore, the durability can be improved.
  • the plurality of nitrogen-containing heterocycles interact with silver, the diffusion distance of silver atoms is reduced, and aggregation of silver can be suppressed. Thereby, it is also possible to achieve a uniform film of the silver-based electrode. Further, since the compound of the present invention can suppress crystallinity, it can be easily laminated at the time of film formation, and the smoothness can be improved.
  • the light emitting layer unit may have a non-light emitting intermediate layer between a plurality of light emitting layers, and may have a multi-photon unit structure in which the intermediate layer is a charge generation layer.
  • the charge generating layer ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2, TiN, ZrN , HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2, CuGaO 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 and RuO 2 , bilayer films such as Au / Bi 2 O 3 , and SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60
  • the organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is characterized in being located between the anode and the cathode.
  • the organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer.
  • the light emitting layer may be single or plural.
  • the electron injection layer contains a compound having a structure represented by the general formula (1) or the general formula (1a).
  • the organic functional layer containing the compound having the structure represented by the general formula (1) or the general formula (1a), the electron injection layer containing the electron injection material, and the cathode may be laminated in this order. preferable.
  • the light emitting layer used in the present invention is a layer in which electrons and holes injected from the electrode or the electron transporting layer and the hole transporting layer recombine to emit light, and the light emitting portion is in the layer of the light emitting layer. Or the interface between the light emitting layer and the adjacent layer.
  • the total sum of the layer thickness of the light emitting layer is not particularly limited, it is possible to prevent the uniformity of the film, the application of unnecessary high voltage at the time of light emission, and the stability improvement of the light emission color with respect to the driving current. Preferably, it is adjusted in the range of 2 nm to 5 ⁇ m.
  • the total thickness of the light emitting layer is more preferably adjusted to a range of 2 to 200 nm, particularly preferably to a range of 5 to 100 nm.
  • the light emitting layer can be formed, for example, by a vacuum evaporation method, a wet method, or the like, using a light emitting dopant or a host compound described later.
  • the wet method is also referred to as wet process, for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir Bloget (Langmuir Blodgett method) etc. can be mentioned.
  • the light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (phosphorescent light emitting dopant, fluorescent light emitting dopant, etc.) compound and a host compound.
  • Luminescent dopant a luminescent dopant, a dopant compound, and it may only be mentioned a dopant
  • a phosphorescent dopant also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound or the like
  • a fluorescent dopant also referred to as a fluorescent dopant, a fluorescent compound or a fluorescent compound
  • the phosphorescent dopant is a compound in which light emission from an excitation triplet is observed, and specifically, a compound which emits phosphorescence at room temperature (25 ° C.).
  • the phosphorescent dopant is defined as a compound having a phosphorescent quantum yield of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the above-mentioned phosphorescence quantum yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectrum II of Fourth Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in solution can be measured using various solvents. However, for the phosphorescent dopant used in the present invention, the above-mentioned phosphorescent quantum yield (0.01 or more) may be achieved in any of the solvents.
  • the phosphorescent dopant There are two kinds of light emission of the phosphorescent dopant as a principle.
  • the carrier trap type is that the phosphorescent dopant is the carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, the condition is that the energy of the excited state of the phosphorescent dopant is lower than the energy of the excited state of the host compound.
  • Fluorescent dopant As the fluorescent dopant, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrilium dyes, Examples thereof include perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors and the like, and compounds having high fluorescence quantum yield represented by laser dyes.
  • the light emitting dopant used in the present invention may be used in combination of a plurality of types of compounds, and may be used in combination of phosphorescent dopants having different structures or in combination of a phosphorescent dopant and a fluorescent dopant.
  • a light emitting dopant although a conventionally known compound described in WO 2013/061850 can be suitably used, the present invention is not limited thereto.
  • the host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio of 20% or more in the layer and a room temperature (The phosphorescence quantum yield of phosphorescence emission at 25 ° C.) is defined as a compound less than 0.1. Preferably, the phosphorescence quantum yield is less than 0.01. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.
  • the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used.
  • a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative or an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (here And diazacarbazole derivatives include those in which at least one carbon atom of a hydrocarbon ring constituting a carboline ring of a carboline derivative is substituted with a nitrogen atom.
  • a known host compound which can be used in the present invention a compound having a hole transporting ability and an electron transporting ability and preventing a long wavelength of light emission and having a high Tg (glass transition temperature) is preferable.
  • conventionally known host compounds may be used alone or in combination of two or more. By using a plurality of host compounds, charge transfer can be adjusted, and the efficiency of the organic EL element can be increased. Moreover, it becomes possible to mix different light emission by using two or more types of conventionally known compounds, and thereby, it is possible to obtain any light emission color.
  • the host compound used in the present invention may be a low molecular weight compound or a high molecular weight compound having a repeating unit, or a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable host compound). Good. Moreover, as a host compound used for this invention, you may use 1 type or multiple types of such a compound.
  • Specific examples of known host compounds include the compounds described in the following documents. JP-A-2001-257076, JP-A-2002-308855, JP-A-2001-313179, JP-A-2002-319491, JP-A-2001-357977, JP-A-2002-334786, JP-A 2002-8860, Nos. 2002-335787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, and the like. 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, and the like.
  • cathode As the cathode, a material having a small work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material may be used. Specific examples of such electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a large work function value from the viewpoint of electron injectability and oxidation resistance eg, a magnesium / silver mixture, Magnesium / aluminium mixtures, magnesium / indium mixtures, aluminum / aluminium oxide (Al 2 O 3 ) mixtures, lithium / aluminium mixtures, aluminum etc. are preferred.
  • the cathode is particularly preferably composed mainly of silver.
  • the alloy containing silver as a main component include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn) and the like.
  • the “main component” in the present invention represents that the content in the film or layer is 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more. .
  • the cathode using an alloy containing silver as a main component may be divided into a plurality of layers and stacked as necessary.
  • the film thickness of the cathode is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the film thickness is preferably 15 nm or less, and more preferably 12 nm or less.
  • the film thickness is preferably 4 nm or more. That is, when using an alloy containing silver as a main component, the film thickness is more preferably in the range of 4 to 12 nm.
  • the organic functional layer containing the compound which has a structure represented by General formula (1) or General formula (1a) is preferably adjacent to the cathode, and the cathode is formed on the organic functional layer.
  • the organic functional layer may be formed on the cathode.
  • the cathode may be formed on the organic functional layer, the organic functional layer may be further formed on the cathode, and the cathode may be sandwiched by two organic functional layers.
  • the silver atom constituting the cathode is represented by the general formula (1) or the general formula (1a) contained in the metal affinity layer Interact with compounds having the following structure.
  • the diffusion distance of silver atoms on the surface of the organic functional layer can be reduced, and silver aggregation (migration) at specific points can be suppressed.
  • a silver atom forms a two-dimensional nucleus on the surface of the organic functional layer having an atom having an affinity with the silver atom, and forms a two-dimensional single crystal layer centered on that It becomes film-formed by film growth of Frank-van der Merwe (FM type).
  • the silver atoms attached on the surface of the organic functional layer diffuse and combine while being bonded to form a three-dimensional nucleus and grow in a three-dimensional island shape (Volumer -It is considered that film formation in the form of an island is facilitated by film growth in the Weber: VW type).
  • the compound having the structure represented by the general formula (1) or the general formula (1a) contained in the organic functional layer suppresses island growth and promotes layer growth. It is guessed. Therefore, a cathode having a uniform film thickness can be obtained although the film thickness is thin. As a result, it is possible to obtain a transparent electrode in which the conductivity is ensured while maintaining the light transmittance by the thin film thickness.
  • the silver atom constituting the cathode interacts with the atom having an affinity to the silver atom contained in the organic functional layer, and the mobility is suppressed. it is conceivable that.
  • irregular reflection can be suppressed by improving the surface smoothness of the cathode, and the light transmittance can be improved. It is presumed that such interaction can suppress the change in film quality of the cathode to physical stimulation such as heat and temperature, and improve the durability.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering, in addition to an alloy containing silver as a main component, as well as a general electrode material.
  • the sheet resistance value as the cathode is preferably several hundreds ⁇ / sq ( ⁇ / ⁇ ) or less, more preferably 50 ⁇ / sq or less And particularly preferably 25 ⁇ / sq or less.
  • the lower limit is not particularly defined, but can be, for example, 1 ⁇ / sq or more.
  • the light transmittance of the cathode is preferably 30% or more, more preferably 50% or more. More preferably, it is 70% or more.
  • the upper limit is not particularly defined, but can be, for example, 95% or less.
  • a transparent or semitransparent cathode can be manufactured by manufacturing the above-mentioned metal to a film thickness of 1 to 20 nm on the cathode and then forming thereon the conductive transparent material mentioned in the explanation of the anode to be described later. . By applying this, it is possible to produce an element in which both the anode and the cathode are transparent.
  • the electron transporting layer is made of a material having a function of transporting electrons, and as described above, it is also preferable to contain a compound having a structure represented by General Formula (1) or General Formula (1a).
  • the electron injection layer and the hole blocking layer are also included in the electron transport layer.
  • the electron transporting layer can be provided with a single layer or a plurality of layers.
  • an electron injecting and transporting layer may be provided which also contains a material contained in the electron injecting layer described later.
  • the electron transport layer has only to have a function of transferring electrons injected from the cathode to the light emitting layer, and as a constituent material of the electron transport layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
  • electron transport materials examples include nitro-substituted fluorene derivatives, diphenyl quinone derivatives, thiopyran dioxide derivatives, polycyclic aromatic hydrocarbons such as naphthalene perylene, etc.
  • Derivatives having a ring structure in which at least one is substituted by a nitrogen atom, hexaazatriphenylene derivatives and the like can be mentioned.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted by a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material. It is also possible to use a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal free or metal phthalocyanine or those whose terminal is substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
  • Inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the electron transporting layer is preferably formed by thinning the electron transporting material by, for example, a vacuum evaporation method, a wet method, or the like.
  • the wet method is also referred to as wet process, for example, spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir Bloget (Langmuir Blodgett method) etc. can be mentioned.
  • the layer thickness of the electron transport layer is not particularly limited, but usually about 5 to 5000 nm, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure comprising one or more of the above materials.
  • n-type dopants such as metal complexes and metal compounds such as metal halides may be doped and used.
  • the compounds described in WO 2013/061850 can be suitably used as an example of the conventionally known electron transport material preferably used for forming the electron transport layer of the organic EL device of the present invention, but the present invention It is not limited to.
  • Electron injection layer (cathode buffer layer), hole injection layer >>
  • the injection layer is optionally provided, and may be an electron injection layer and a hole injection layer, and may be present between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer .
  • the injection layer is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer is described in detail in Chapter 2, "Electrode Material” (pages 123 to 166), "Organic EL element and its industrialization front (November 30, 1998 issued by NTS Co., Ltd.)".
  • anode buffer layer hole injection layer
  • specific examples of the anode buffer layer include phthalocyanine buffer layers represented by copper phthalocyanine, hexaazatriphenylene derivative buffer layers as described in JP-A-2003-519432 and JP-A-2006-135145.
  • the details of the cathode buffer layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Specific examples of the cathode buffer layer include metal buffer layers represented by strontium and aluminum, alkali metal compound buffer layers represented by lithium fluoride and potassium fluoride, magnesium fluoride and cesium fluoride. Alkaline earth metal compound buffer layers, oxide buffer layers represented by aluminum oxide, and the like can be mentioned.
  • the buffer layer (injection layer) is preferably a very thin film, and although depending on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • ⁇ blocking layer hole blocking layer, electron blocking layer
  • the blocking layer is provided as needed in addition to the basic constituent layer of the organic compound thin film as described above. For example, they are described in JP-A-11-204258, JP-A-11-204359, and page 237 of "Organic EL element and its industrialization front line (November 30, 1998 issued by NTS)". There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having an extremely small ability to transport holes while having a function of transporting electrons.
  • the hole blocking layer can improve the recombination probability of the electron and the hole by blocking the hole while transporting the electron.
  • the configuration of the electron transport layer described above can be used as a hole blocking layer, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the carbazole derivative, the carboline derivative, and the diazacarbazole derivative mentioned as the host compound described above herein, a diazacarbazole derivative means that one of carbon atoms constituting a carboline ring is a nitrogen atom
  • a diazacarbazole derivative means that one of carbon atoms constituting a carboline ring is a nitrogen atom
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having an extremely small ability to transport electrons while having a function of transporting holes.
  • the electron blocking layer can improve the recombination probability of the electron and the hole by blocking the electron while transporting the hole.
  • the constitution of the hole transport layer described later can be used as the electron blocking layer as needed.
  • the layer thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers. Also, azatriphenylene derivatives as described in JP-A-2003-519432 and JP-A-2006-135145 can be similarly used as a hole transport material.
  • a porphyrin compound an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p
  • a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain.
  • Inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J.-A. Huang et. al. It is also possible to use so-called p-type hole transport materials as described in the literature (Applied Physics Letters 80 (2002), p. 139). In the present invention, these materials are preferably used because a light emitting element with higher efficiency can be obtained.
  • the hole transport layer may be formed by thinning the above hole transport material by a known method such as vacuum evaporation, spin coating, casting, printing including inkjet, LB, etc. it can.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a high p-type hole transport layer doped with an impurity examples thereof are disclosed in JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175, J. Appl. Phys. , 95, 5773 (2004) and the like.
  • anode As an anode in an organic EL element, one having a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is preferably used.
  • an electrode material include metals such as Au, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 -ZnO) which can be used to form a transparent conductive film may be used.
  • the anode may form a thin film of such an electrode material by a method such as vapor deposition or sputtering, and may form a pattern of a desired shape by a photolithography method. Alternatively, when the pattern accuracy is not required to a great extent (about 100 ⁇ m or more), the pattern may be formed through a mask having a desired shape during deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the sheet resistance value as the anode is preferably several hundreds ⁇ / sq or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the support substrate (hereinafter, also referred to as a base, a substrate, a base, a support, etc.) that can be used for the organic EL element of the present invention is not particularly limited in kind of glass, plastic, etc. Or may be opaque. When light is taken out from the supporting substrate side, the supporting substrate is preferably transparent. Glass, quartz, and a transparent resin film can be mentioned as a transparent support substrate used preferably. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate (for example, CAP), cellulose acetate phthalate, cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Polyether imide, polyether ketone imide, polyamide, fluorocarbon resin, nylon, polymethyl methacrylate, acrylic or polyarylates, cycloolefin resins such as Arton (trade name: JSR)
  • the hybrid film is a gas having a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) of 0.01 g / m 2 ⁇ 24 h or less, which is measured by a method according to JIS K 7129-1992. It is preferably a barrier film.
  • the oxygen permeability measured by the method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and the water vapor permeability is 1 ⁇ 10 ⁇ 5 It is preferable that it is a high gas barrier film of g / m 2 ⁇ 24 h or less.
  • any material having a function to suppress the entry of substances causing deterioration of the device such as water and oxygen may be used, and for example, silicon oxide, silicon dioxide, silicon nitride and the like can be used.
  • the method of forming the gas barrier layer is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma treatment A legal method, plasma CVD method, laser CVD method, thermal CVD method, coating method, etc. can be used.
  • the atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • metal plates such as aluminum and stainless steel, a film, an opaque resin substrate, a ceramic board, etc. are mentioned, for example.
  • the external extraction yield at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum yield (%) the number of photons emitted to the outside of the organic EL element / the number of electrons flowed to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter
  • a color conversion filter may be used in combination to convert the color emitted from the organic EL element into multiple colors using a phosphor.
  • ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • a method of manufacturing a device comprising anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode
  • a thin film made of a desired electrode material for example, a material for an anode, is formed on a suitable substrate to a thickness of 1 ⁇ m or less, preferably 10 to 200 nm, to prepare an anode.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.
  • the thin film can be formed, for example, by a vacuum evaporation method, a wet method (also referred to as a wet process), or the like.
  • a wet method there are spin coating method, casting method, die coating method, blade coating method, roll coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method and the like.
  • a method with high roll-to-roll system suitability such as die coating method, roll coating method, ink jet method, spray coating method is preferable from the viewpoint of being able to form a precise thin film and high productivity.
  • different film formation methods may be applied to each layer.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon to a film thickness of 1 ⁇ m or less, preferably 50 to 200 nm, and a cathode is provided to obtain a desired organic EL device.
  • a cathode is also possible to produce the cathode, the cathode buffer layer, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer and the anode in the reverse order.
  • the hole injection layer to the cathode may be taken out halfway and subjected to a different film forming method. At that time, it is preferable to carry out the work in a dry inert gas atmosphere.
  • the sealing member may be disposed so as to cover the display region of the organic EL element, and may be a concave plate or a flat plate. Also, the transparency and the electrical insulation are not particularly limited.
  • a glass plate, a polymer plate / film, a metal plate / film, etc. may be mentioned.
  • the glass plate include soda lime glass, glass containing barium and strontium, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like.
  • a polymer board what was formed from a polycarbonate, an acryl, a polyethylene terephthalate, polyether sulfide, a polysulfone etc. can be mentioned.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability of 1 ⁇ 10 -3 mL / m 2 ⁇ 24 h ⁇ atm or less measured by the method according to JIS K 7126-1987, and it is measured by the method according to JIS K 7129-1992
  • the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • a sand blast process, a chemical etching process, etc. are used to process a sealing member into a concave shape.
  • the adhesive include photocurable and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers, methacrylic acid oligomers, and moisture curable adhesives such as 2-cyanoacrylic acid ester. be able to.
  • heat and chemical curing types such as epoxy type can be mentioned.
  • examples thereof include hot melt type polyamides, polyesters and polyolefins.
  • a cation curing type UV curable epoxy resin adhesive there can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively hardened from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the adhesive.
  • the application of the adhesive to the sealing portion may use a commercially available dispenser or may be printed as screen printing.
  • the electrode and the organic functional layer on the outside of the electrode facing the supporting substrate with the organic functional layer interposed therebetween, and to form an inorganic or organic layer in contact with the supporting substrate to form a sealing film.
  • a material for forming the film any material having a function of suppressing entry of substances causing deterioration of the element, such as moisture and oxygen, may be used.
  • silicon oxide, silicon dioxide, silicon nitride or the like may be used. it can.
  • an inert gas such as nitrogen or argon or an inert liquid such as fluorocarbon or silicon oil may be injected in the gas phase or liquid phase.
  • an inert gas such as nitrogen or argon or an inert liquid such as fluorocarbon or silicon oil
  • a vacuum it is also possible to use a vacuum.
  • a hygroscopic compound can also be enclosed inside.
  • metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide etc.
  • sulfates eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid
  • Barium, magnesium perchlorate and the like an anhydrous salt is suitably used.
  • a protective film or a protective plate may be provided on the outer side of the sealing film or the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween in order to enhance the mechanical strength of the element.
  • the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the above-mentioned sealing can be used, but a polymer film is used because it is lightweight and thin. It is preferable to use
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and can only extract about 15 to 20% of the light generated in the light emitting layer Is generally said. This is because light incident on the interface (the interface between the transparent substrate and air) at an angle ⁇ equal to or greater than the critical angle causes total reflection and can not be extracted outside the element. In addition, the light is totally reflected between the transparent electrode or the light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the lateral direction of the device.
  • refractive index higher than that of air
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of a transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Patent No. 4774435), focusing on the substrate Method of improving efficiency by imparting conductivity (Japanese Patent Laid-Open No. 63-314795), method of forming a reflective surface on the side of an element etc. (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • the method of forming can be suitably used.
  • the present invention can obtain an element further excellent in high luminance or durability by combining these means.
  • the low refractive index layer When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light emitted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium decreases.
  • the low refractive index layer include airgel, porous silica, magnesium fluoride, fluorine-based polymer and the like. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Moreover, it is more preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because when the thickness of the low refractive index medium becomes about the wavelength of light and the electromagnetic wave exuded by evanescent penetrates into the substrate, the effect of the low refractive index layer is weakened.
  • the method of introducing a diffraction grating in an interface or any medium that causes total reflection is characterized in that the effect of improving the light extraction efficiency is high.
  • This method utilizes the property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • a light which can not go out due to total reflection between layers, etc. is introduced into any layer or medium (in the transparent substrate or in the transparent electrode). To diffract the light and to extract the light out.
  • the introduced diffraction grating have a two-dimensional periodic refractive index. This is because light emitted in the light emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution in only one direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution into a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • produces is desirable.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of diffraction gratings is preferably two-dimensionally repeated, such as square lattice, triangular lattice, honeycomb lattice, etc.
  • the organic EL device of the present invention is processed to provide, for example, a microlens array structure on the light extraction side of the substrate, or by combining with a so-called light collecting sheet, to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • the brightness in the specific direction can be increased.
  • the microlens array square pyramids whose sides are 30 ⁇ m and whose apex angle is 90 degrees are two-dimensionally arranged on the light extraction side of the substrate.
  • the side is preferably 10 to 100 ⁇ m. When it becomes smaller than this, the effect of diffraction will generate
  • a condensing sheet it is possible to use what is commercialized, for example by LED back light of a liquid crystal display.
  • a brightness increasing film (BEF) manufactured by Sumitomo 3M Ltd. can be used.
  • the shape of the prism sheet may be, for example, a ⁇ -shaped stripe having an apex angle of 90 ° and a pitch of 50 ⁇ m formed on the substrate, or the apex angle having a rounded shape, and the pitch being randomly changed. It may have a shape other than the above.
  • a diffusion film (light up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device, a display device, a display, and various light emitting devices.
  • a light emitting device for example, a lighting device (home lighting, car interior lighting), a back light for a clock or liquid crystal, a billboard advertisement, a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, light
  • the light source of a sensor etc. are mentioned, it does not limit to this. In particular, it can be effectively used as a backlight of a liquid crystal display device or a light source for illumination.
  • patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, or the electrode and the light emitting layer may be patterned.
  • the entire device layer may be patterned, and a conventionally known method can be used in the fabrication of the device.
  • the luminescent color of the organic EL device of the present invention and the compound according to the present invention can be determined by the spectral radiance shown in FIG. 7.16 on page 108 of “New color science handbook” (edited by The Color Science Society of Japan, The University of Tokyo Press 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the organic EL element of the present invention can also be used in a display device.
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device may be monochrome or multicolor, but here, a multicolor display will be described.
  • a shadow mask is provided only when forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method or the like.
  • the method is not particularly limited, but preferred are the vapor deposition method, the inkjet method, the spin coating method, and the printing method.
  • the configuration of the organic EL element included in the display device is selected from the above-described examples of the configuration of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown to one aspect of manufacture of the organic EL element of said invention.
  • the multicolor display device can be used as a display device, a display, and various light emission sources.
  • a display device and a display full color display can be performed by using three types of organic EL elements emitting blue, red and green.
  • a display device and a display a television, a personal computer, a mobile device, an AV apparatus, a teletext display, information display in a car, etc. may be mentioned.
  • a driving method in the case of using it as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • Lighting sources for home use interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, light sources for optical sensors, etc. Although it mentions, this invention is not limited to these.
  • FIG. 1 is a schematic view showing an example of a display composed of an organic EL element. It is a schematic diagram of displays, such as a mobile telephone etc., which display image information by light emission of an organic EL element, for example.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that scans the display unit A based on image information, and a wiring unit C that electrically connects the display unit A and the control unit B.
  • the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scan signal and an image data signal to each of the plurality of pixels based on image information from the outside. Then, the pixels for each scanning line sequentially emit light according to the image data signal according to the scanning signal to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic view of an active matrix display device.
  • the display portion A has a wiring portion C including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 2 shows the case where the light emitted from the pixel 3 (emission light L) is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid and are connected to the pixels 3 at orthogonal positions (details are shown) Not).
  • the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data.
  • FIG. 3 is a schematic diagram showing a circuit of a pixel.
  • the pixel includes the organic EL element 10, the switching transistor 11, the driving transistor 12, the capacitor 13 and the like.
  • a full color display can be performed by using red, green and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels and arranging them side by side on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. Then, when a scanning signal is applied from the controller B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on. Then, the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the drive transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and from the power supply line 7 to the organic EL element 10 according to the potential of the image data signal applied to the gate. A current is supplied.
  • the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the potential of the charged image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on. Then, the light emission of the organic EL element 10 continues until the application of the next scanning signal is performed.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is obtained by providing the switching transistor 11 and the drive transistor 12 which are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3 It is carried out.
  • Such a light emission method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by multi-value image data signals having a plurality of gradation potentials, or even if a predetermined light emission amount is turned on or off by a binary image data signal Good.
  • the potential of the capacitor 13 may be held until the application of the next scanning signal or may be discharged immediately before the next scanning signal is applied.
  • the present invention is not limited to the above-described active matrix method, and may be passive matrix light emission driving in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixels 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the organic EL element of the present invention By using the organic EL element of the present invention, a display device with improved luminous efficiency was obtained.
  • the organic EL element of the present invention can also be used in a lighting device.
  • the lighting device of the present invention comprises the organic EL element of the present invention.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of using the organic EL element having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited. Moreover, you may use for the said application by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp such as illumination or exposure light source, a projection device of a type which projects an image, or a type of which a still image or a moving image is directly viewed. You may use as a display apparatus (display).
  • a driving method in the case of using as a display device for moving image reproduction may be either a passive matrix method or an active matrix method.
  • a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
  • white light emission can be obtained by causing a plurality of light emitting colors to simultaneously emit light and mixing colors.
  • a combination of a plurality of light emission colors one containing three light emission maximum wavelengths of three primary colors of red, green and blue may be included, or two light emission utilizing complementary relationships of blue and yellow, blue green and orange It may be one containing a maximum wavelength.
  • a mask may be provided only when forming a light emitting layer, a hole transporting layer, an electron transporting layer and the like, and may be simply disposed differently depending on the mask. Since other layers are common, patterning of a mask or the like is unnecessary, and an electrode film can be formed on one surface by, for example, a vapor deposition method, a cast method, a spin coat method, an ink jet method, or a printing method. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the element itself is white light emitting.
  • the non-light emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate with a thickness of 300 ⁇ m is used as a sealing substrate.
  • An epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied to the periphery as a sealing material, and this is superimposed on the cathode and brought into close contact with the transparent support substrate.
  • UV light is irradiated from the glass substrate side, it is made to harden, and it seals, and can form an illuminating device as shown in FIG.5 and FIG.6.
  • FIG. 5 shows a schematic view of a lighting device, and the organic EL element (organic EL element 101 in the lighting device) of the present invention is covered with a glass cover 102 (note that the sealing operation with the glass cover is It was carried out in a glove box (under an atmosphere of high purity nitrogen gas with a purity of 99.999% or more) under a nitrogen atmosphere without bringing the organic EL element 101 in the device into contact with the air.
  • FIG. 6 shows a cross-sectional view of the lighting device, and in FIG. 6, 105 indicates a cathode, 106 indicates an organic functional layer, and 107 indicates a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water collecting agent 109 is provided.
  • Example 1 (Preparation of organic EL element) ⁇ Production of Organic EL Element 1-1> ITO (indium tin oxide) was formed into a film of 150 nm in thickness as an anode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol. It was then dried with dry nitrogen gas and UV ozone cleaning was performed for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.
  • ITO indium tin oxide
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an optimum amount for element fabrication.
  • the deposition crucible used was made of a material for resistance heating made of molybdenum or tungsten. After reducing the pressure to a vacuum of 1 ⁇ 10 ⁇ 4 Pa, the crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile) was heated while being supplied with electricity. And it vapor-deposited on the ITO transparent electrode by vapor-deposition rate of 0.1 nm / sec, and formed the positive hole injection layer with a layer thickness of 10 nm.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer of CBP 4,4'-Bis (carbazol-9-yl) biphenyl) as a host compound and Ir (ppy) 3 as a light-emitting dopant are deposited at a deposition rate of 0.1 nm / 90% and 10%, respectively. It co-evaporated in second and formed the light emitting layer with a layer thickness of 30 nm.
  • the deposition rate is 0.1 nm / sec so that the compound 1 (electron transport layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transport layer (2)) become 50% and 50% volume%, respectively.
  • the co-evaporation was performed to form an electron transport layer having a layer thickness of 30 nm.
  • aluminum 100 nm was vapor deposited to form a cathode.
  • the non-light emitting surface side of the device was covered with a can-like glass case under an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring was installed to fabricate an organic EL device 1-1.
  • Organic EL elements 1-2 to 1- are manufactured in the same manner as the organic EL element 1-1 except that the compounds to be contained in the electron transport layers (1) and (2) and the electron injection layer are changed as shown in Table 1. 39 was produced. In Table 1, "-" indicates that the component is not contained.
  • Example 2 (Preparation of transparent electrode) ⁇ Production of Transparent Electrode 2-1>
  • the deposition crucible containing the comparative 2 compound is energized and heated, and deposition is performed at a deposition rate of 0.1 nm / sec.
  • Cathode base layer was formed.
  • silver was vapor deposited at a vapor deposition rate of 0.1 nm / sec to form a cathode having a film thickness of 8 nm, and used as a transparent electrode 2-1.
  • Transparent electrodes 2-2 to 2-8 were produced in the same manner as for transparent electrode 2-1 except that the film thickness of the compound used for the organic functional layer and the cathode were changed as shown in Table 2.
  • Example 3 (Preparation of organic EL element) ⁇ Production of Organic EL Element 3-1> A film of ITO (indium tin oxide) is formed as an anode to a thickness of 150 nm on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, and after patterning, a transparent substrate provided with this ITO transparent electrode After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation system.
  • ITO indium tin oxide
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an optimum amount for element fabrication.
  • the deposition crucible used was made of a material for resistance heating made of molybdenum or tungsten. After reducing the pressure to 1 ⁇ 10 -4 Pa, the crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is heated by energization. It vapor-deposited on the ITO transparent electrode at a speed
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer of CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec so as to have a volume percentage of 90% and 10%, respectively, to form a light emitting layer with a layer thickness of 30 nm.
  • the third comparative compound and KF were co-deposited at a deposition rate of 0.1 nm / sec so as to have a volume% of 85% and 15%, respectively, to form an electron transport layer with a layer thickness of 30 nm.
  • silver was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a film thickness of 15 nm.
  • the non-light emitting surface side of the device was covered with a can-like glass case under an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to fabricate an organic EL device 3-1.
  • Organic EL elements 3-2 to 3- 3 in the same manner as the organic EL element 3-1 except that the compound of the electron transport layer, the ratio of silver to magnesium of the cathode, and the film thickness of the cathode are changed as shown in Table 3. 28 was produced.
  • the electron transport layer contains 15% of KF, but in Table 3, the notation of KF is omitted.
  • Example 4 (Preparation of organic EL element) ⁇ Production of Organic EL Element 4-1> ITO (indium tin oxide) was formed into a film of 150 nm in thickness as an anode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol. It was then dried with dry nitrogen gas and UV ozone cleaning was performed for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus.
  • ITO indium tin oxide
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an optimum amount for element fabrication.
  • the deposition crucible used was made of a material for resistance heating made of molybdenum or tungsten. After reducing the pressure to a vacuum of 1 ⁇ 10 ⁇ 4 Pa, the crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile) was heated while being supplied with electricity. And it vapor-deposited on the ITO transparent electrode by vapor-deposition rate of 0.1 nm / sec, and formed the positive hole injection layer with a layer thickness of 10 nm.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer of CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec so as to have a volume percentage of 90% and 10%, respectively, to form a light emitting layer with a layer thickness of 30 nm.
  • Alq 3 was deposited at a deposition rate of 0.1 nm / sec as an electron transport layer to form an electron transport layer with a layer thickness of 30 nm.
  • the compound of Comparative 4 and LiQ were co-deposited at a deposition rate of 0.1 nm / sec so as to have 50% and 50% volume%, respectively, to form an electron injection layer having a layer thickness of 2 nm.
  • silver and magnesium were co-deposited at a deposition rate of 0.1 nm / sec and 0.01 nm / sec, respectively, to form a cathode having a film thickness of 8 nm.
  • the non-light emitting surface side of the device was covered with a can-like glass case under an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring was installed to fabricate an organic EL device 4-1.
  • Organic EL elements 4-2 to 4-23 in the same manner as the organic EL element 4-1 except that the compound of the electron injection layer, the ratio of silver to magnesium of the cathode, and the film thickness of the cathode are changed as shown in Table 4. 23 was produced.
  • 50% of LiQ is contained in the electron injection layer, but in Table 4, the notation of LiQ is omitted.
  • the organic EL element of the present invention is lower in relative drive voltage than the organic EL element of the comparative example and small in change in relative drive voltage under high temperature storage, so it is excellent in stability at high temperature storage and durable. It turned out to be excellent.
  • Reference Signs List 1 display 3 pixel 5 scanning line 6 data line 7 power supply line 10 organic EL element 11 switching transistor 12 driving transistor 13 capacitor 101 organic EL element 102 in illumination device glass cover 105 cathode 106 organic functional layer 107 glass substrate 108 with transparent electrode nitrogen Gas 109 Water-capturing agent A Display part B Control part C Wiring part L Luminescent light

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の課題は、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置を提供することである。 本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有する。

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、発光する化合物を含有する発光層を、陰極と陽極とで挟んだ構成を有する。これに、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させる。有機EL素子は、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極と電極の間を厚さが僅かサブミクロン程度である有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能である。そのため、次世代の平面ディスプレイや照明への利用が期待されている。
 近年、有機EL素子は、性能の向上が期待されている。そして、有機EL素子の性能の向上のため、種々の有機エレクトロルミネッセンス用材料(以下、有機EL材料ともいう。)が開発されている。例えば、特許文献1及び特許文献2には、窒素含有芳香族化合物を用いることが記載されている。しかしながら、更に有機EL素子の性能を向上させることができる化合物、例えば、駆動電圧を低くしたり、高温保存時の安定性を向上させたりすることができる化合物が求められている。
米国特許出願公開第2015/0207082号明細書 特許第6152053号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置を提供することである。
 本発明に係る上記課題は、以下の手段により解決される。
 1.陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有する有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、Wは、一般式(2)又は一般式(3)で表される2又は3縮環を表す。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。l、mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。一般式(2)、(3)中、X~X10は、N又はCRであり、一般式(2)及び一般式(3)を構成する2又は3縮環中に、それぞれNを2つ以上有する。X~Xのうち少なくとも1つはNであり、X~X10のうち少なくとも1つはNである。XとX、XとX、及び、XとXで少なくとも1つは環を形成し、XとX、XとX、XとX、及び、XとX10で少なくとも1つは環を形成する。Rは、水素原子又は置換基を表す。)
 2.陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層を有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
(一般式(1a)中、Xa~Xeは、N又はCRqを表し、いずれか1つがNである。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。Rqは、水素原子又は置換基を表す。)
 3.前記一般式(1)のWが、下記一般式(4)~(8)のいずれか1つである前記1に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
(一般式(4)中、Xa~Xhは、N又はCRであり、Xa~Xdのうち少なくとも1つはNである。yは、0又は1の整数を表す。一般式(4)~(8)中、Rは、水素原子又は置換基を表す。)
 4.前記Lが、単なる結合手であるか、ベンゼン環、ビフェニル環、ナフチル環、ターフェニル環、アントラセン環、トリフェニレン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環を含む二価の連結基を表す前記1から前記3のいずれか一つに記載の有機エレクトロルミネッセンス素子。
 5.前記陰極が、銀を主成分としており、前記有機機能層が、前記陰極に隣接して設けられている前記1から前記4のいずれか一つに記載の有機エレクトロルミネッセンス素子。
 6.前記陰極の厚さが、15nm以下である前記1から前記5のいずれか一つに記載の有機エレクトロルミネッセンス素子。
 7.前記陰極の光透過率が、50%以上であり、かつ前記陰極のシート抵抗値が、25Ω/sq以下である前記1から前記6のいずれか一つに記載の有機エレクトロルミネッセンス素子。
 8.前記有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有する前記1又は前記3に記載の有機エレクトロルミネッセンス素子。
 9.前記一般式(1)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている前記1、前記3、前記8のいずれか一つに記載の有機エレクトロルミネッセンス素子。
 10.前記有機機能層として、前記一般式(1a)で表される構造を有する化合物及び電子注入材料を含有する層を有する前記2に記載の有機エレクトロルミネッセンス素子。
 11.前記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている前記2又は前記10に記載の有機エレクトロルミネッセンス素子。
 12.下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、Wは、一般式(2)又は一般式(3)で表される2又は3縮環を表す。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。l、mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。一般式(2)、(3)中、X~X10は、N又はCRであり、一般式(2)及び一般式(3)を構成する2又は3縮環中に、それぞれNを2つ以上有する。X~Xのうち少なくとも1つはNであり、X~X10のうち少なくとも1つはNである。XとX、XとX、及び、XとXで少なくとも1つは環を形成し、XとX、XとX、XとX、及び、XとX10で少なくとも1つは環を形成する。Rは、水素原子又は置換基を表す。)
 13.前記1から前記11のいずれか一つに記載の有機エレクトロルミネッセンス素子を具備する表示装置。
 14.前記1から前記11のいずれか一つに記載の有機エレクトロルミネッセンス素子を具備する照明装置。
 本発明によれば、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子及び当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料を提供することができる。また、駆動電圧及び高温保存時の安定性が改善された表示装置及び照明装置を提供することができる。
有機EL素子から構成される表示装置の一例を示した模式図 表示部Aの模式図 画素の回路図 パッシブマトリクス方式フルカラー表示装置の模式図 照明装置の概略図 照明装置の模式図
 本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有することを特徴とする。この特徴は、請求項1、請求項3から請求項9までの請求項に係る発明に共通する技術的特徴である。
 また、本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層を有することを特徴とする。この特徴は、請求項2、請求項4から請求項7、請求項10、請求項11の請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、前記一般式(1)のWが、前記一般式(4)~(8)のいずれか1つであることが、本発明の効果発現の観点から好ましい。
 また、前記Lが、単なる結合手であるか、ベンゼン環、ビフェニル環、ナフチル環、ターフェニル環、アントラセン環、トリフェニレン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環を含む二価の連結基を表すことが、本発明の効果発現の観点から好ましい。
 また、前記陰極が、銀を主成分としており、前記有機機能層が、前記陰極に隣接して設けられていることが、陰極の膜質を向上させることができるため好ましい。
 また、前記陰極の厚さが、15nm以下であることが、光透過率を向上させる観点から好ましい。
 また、前記陰極の光透過率が、50%以上であり、かつ前記陰極のシート抵抗値が、25Ω/sq以下であることが、本発明の効果発現の観点から好ましい。
 また、前記有機機能層として、前記一般式(1)又は前記一般式(1a)で表される構造を有する化合物及び電子注入材料を含有する層を有することが、分子間の相互作用がより強まるため好ましい。
 また、前記一般式(1)又は前記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されていることが、分子間の相互作用がより強まるため好ましい。
 本発明の有機エレクトロルミネッセンス用材料は、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする。
 本発明の表示装置は、本発明の有機エレクトロルミネッセンス素子を具備することを特徴とする。
 本発明の照明装置は、本発明の有機エレクトロルミネッセンス素子を具備することを特徴とする。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
《一般式(1)で表される構造を有する化合物》
 本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有するものである。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、Wは、一般式(2)又は一般式(3)で表される2又は3縮環を表す。Yは、酸素原子又は硫黄原子を表す。Yは、好ましくは酸素原子である。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。l、mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。Lは、好ましくはアリーレンである。また、Lは、縮合環を形成していてもよい。
 一般式(2)、(3)中、X~X10は、N又はCRであり、一般式(2)及び一般式(3)を構成する2又は3縮環中に、それぞれNを2つ以上有する。X~Xのうち少なくとも1つはNであり、X~X10のうち少なくとも1つはNである。XとX、XとX、及び、XとXで少なくとも1つは環を形成し、XとX、XとX、XとX、及び、XとX10で少なくとも1つは環を形成する。Rは、水素原子又は置換基を表す。
 一般式(1)のWが、下記一般式(4)~(8)のいずれか1つであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(4)中、Xa~Xhは、N又はCRであり、Xa~Xdのうち少なくとも1つはNである。yは、0又は1の整数を表す。一般式(4)~(8)中、Rは、水素原子又は置換基を表す。
 一般式(1)~(8)で用いられる置換基としては、限定されるものではなく、例えば、アルキル基(例えば、メチル基、エチル基、トリフルオロメチル基、イソプロピル基等)、アリール基(例えば、フェニル基等)、ヘテロアリール基(例えば、ピリジル基、カルバゾリル基等)、ハロゲン原子(例えば、フッ素原子等)、シアノ基、若しくはフッ化アルキル基が挙げられ、後述する例示化合物で使用されているものも好ましい。
 一般式(1)において、Lは、例えば、単なる結合手であるか、ベンゼン環、ビフェニル環、ナフチル環、ターフェニル環、アントラセン環、トリフェニレン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環を含む二価の連結基を表すものである。
 なお、Lの具体例を以下に示すが、一例であってこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
《一般式(1a)で表される構造を有する化合物》
 本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層を有するものである。
Figure JPOXMLDOC01-appb-C000012
 一般式(1a)中、Xa~Xeは、N又はCRqを表し、いづれか1つがNである。L、Y、R、n、mは、一般式(1)と同義である。L、Y、R、n、mについては、一般式(1)で説明した事項と同様である。Rqは、水素原子又は置換基を表す。
 Rqで表される置換基としては、アリール、ヘテロアリールが挙げられ、アリールとしては、ベンゼン環、ビフェニル環、ナフチル環、ターフェニル環、アントラセン環、トリフェニレン環、フルオレン環、等が挙げられる。ヘテロアリールとしては、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環、トリアゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、アザジベンゾチオフェン環、カルボリン環、等が挙げられる。
 一般式(1a)中の下記一般式(1a-1)において、総N原子を2つ以上導入することで、銀との相互作用が向上して、銀原子の拡散距離が減少し、銀の凝集を抑制することができる。
Figure JPOXMLDOC01-appb-C000013
《一般式(1)で表される構造を有する化合物の合成例》
<合成例1>
Figure JPOXMLDOC01-appb-C000014
 化合物(1-1)2.0g、3,5-ジブロモフェニルボロン酸2.79g、炭酸カリウム1.7g、THF90ml、純水10mlを200mlの4頭コルベンに投入して、窒素ガスを流入しながら室温で30分撹拌した。次に、テトラキス(トリフェニルホスフィン)パラジウム(0)0.48gを投入して、撹拌しながら11時間加熱還流した。反応終了後、室温まで冷却して、ろ過し、水洗いして乾燥した。次に、得られた粗結晶をメタノール30mlで懸濁撹拌して、ろ過、乾燥し、化合物(1-2)を2.5g(収率68%)得た。
 次に、アザジベンソフラン1.7gを200mlの4頭コルベンに入れ、窒素置換した。次に、脱水THF34mlを投入して、-78℃に冷却した。次に、n-ブチルリチウムヘキサン溶液(1.55M)6.45mlをゆっくり注入して、冷却したまま1時間反応させた。次に、その反応液に2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン1.86gをゆっくり注入して、更に1時間撹拌した。反応終了後、化合物(1-2)2.0g、炭酸カリウム4.14g、純水5ml、THF43mlを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.575g、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.41gを投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、ろ過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却して、ろ過、乾燥して、2.0gの固体を得た。得られた固体を昇華精製して、化合物(1)1.3g(収率46%)を得た。構造はH-NMRにより確認した。
<合成例2>
Figure JPOXMLDOC01-appb-C000015
 化合物(2-1)4.0g、1,3-ジブロモ-5-ヨードベンゼン9.3g、炭酸カリウム5.3g、銅4.9g、DMAC60mlを200mlの4頭コルベンに投入して、窒素ガスを流入して室温で30分撹拌した。その後、110℃に昇温して16時間反応させた。反応終了後、室温に冷却して純水を加えて、酢酸エチルで抽出し、得られた有機層の溶媒を減圧除去した。残渣を薄層クロマトグラフィーで精製して、化合物(2-2)2.7g(収率26%)の固体を得た。
 次に、アザジベンソフラン3.6gを500mlの4頭コルベンに入れ、窒素置換した。次に、脱水THF70mlを投入して、-78℃に冷却した。次に、n-ブチルリチウムヘキサン溶液(1.55M)13.6mlをゆっくり注入して、冷却したまま1時間反応させた。次に、その反応液に2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン3.93gをゆっくり注入して、更に1時間撹拌した。反応終了後、化合物(2-2)2.7g、炭酸カリウム5.9g、純水10ml、THF80mlを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.97g、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.69gを投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、ろ過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却して、ろ過、乾燥して、2.96gの固体を得た。得られた固体を昇華精製して、化合物(2)2.2g(収率57%)を得た。構造はH-NMRにより確認した。
《一般式(1a)で表される構造を有する化合物の合成例》
Figure JPOXMLDOC01-appb-C000016
 化合物(68-1)1g、1,4-ベンゼンジボロン酸ビス(ピナコール)0.23g、テトラキス(トルフェニルホスフィン)パラジウム0.16g、炭酸カリウム1.12g、1,2-ジメトキシエタン55ml、純水5mlを100mlの4頭コルベンに入れ、窒素置換して、30分室温で攪拌した。次いで、加熱還流して、6時間反応させた。反応終了後、室温に冷却して、ろ過、乾燥して、0.8gの固体を得た。得られた固体を昇華精製して、化合物(68)0.71g(収率71%)を得た。構造はH-NMRにより確認した。
《一般式(1)又は一般式(1a)で表される構造を有する化合物の具体例》
 一般式(1)又は一般式(1a)で表される構造を有する化合物の具体例を以下に示す。これらの化合物は一例であって、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 また、本発明の有機エレクトロルミネッセンス用材料は、前記した一般式(1)で表される構造を有する化合物を含有することを特徴とする。一般式(1)については、前記説明したとおりである。
 また、有機エレクトロルミネッセンス用材料は、前記した一般式(1a)で表される構造を有する化合物を含有したものであってもよい。一般式(1a)については、前記説明したとおりである。
 本発明によれば、一般式(1)で表される構造を有する化合物において、窒素原子2つ以上の2又は3縮環を導入することで、LUMOの順位が深くなる。これにより、電極からの電子注入性を向上させることができる。そのため、駆動電圧を低くすることができ、また、発光効率を向上させるとともに素子寿命も延ばすことができる。また、本発明の化合物は非対照な構造であり、結晶性を抑制することができる。これにより、高温保存時の安定性を向上させることができる。そのため、耐久性を向上させることができる。
 また、複数の窒素含有ヘテロ環は、銀との相互作用があり、銀原子の拡散距離が減少し、銀の凝集を抑制することができる。それにより銀を主成分とした電極の均一膜を達成することもできる。また、本発明化合物は結晶性を抑制することができるため、膜形成時に積層しやすく平滑性を向上させることができる。
《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。本発明の有機EL素子において、陽極と陰極との間に挟持される各種有機機能層の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/発光層ユニット/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 更に、発光層ユニットは複数の発光層の間に非発光性の中間層を有していてもよく、該中間層が電荷発生層であるようなマルチフォトンユニット構成であってもよい。この場合、電荷発生層としては、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン類、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられる。
 本発明の有機EL素子における発光層としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
《有機機能層》
 本発明の有機EL素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する。すなわち、本発明に係る有機機能層は、陽極と陰極の間に位置することを特徴とする。
 本発明の有機EL素子は、複数の有機機能層を有し、当該有機機能層は、発光層を含んでいる。発光層は一つであっても複数であってもよい。
 また、有機機能層として、前記一般式(1)又は前記一般式(1a)で表される構造を有する化合物及び電子注入材料を含有する層を有することが好ましい。すなわち、電子注入層に一般式(1)又は前記一般式(1a)で表される構造を有する化合物が含まれていることも好ましい。
 また、一般式(1)又は前記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されていることも好ましい。
《発光層》
 本発明に用いる発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の層厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加することを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整される。発光層の層厚の総和は、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。
 発光層の作製には、後述する発光ドーパントやホスト化合物を用いて、例えば、真空蒸着法、湿式法等により成膜して形成することができる。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。
 本発明の有機EL素子の発光層には、発光性ドーパント(リン光発光性ドーパントや蛍光発光性ドーパント等)化合物と、ホスト化合物とを含有することが好ましい。
(1)発光性ドーパント
 発光性ドーパント(発光ドーパント、ドーパント化合物、単にドーパントともいう。)について説明する。
 発光性ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物、蛍光発光性化合物ともいう。)を用いることができる。
(1.1)リン光ドーパント
 リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物である。リン光ドーパントは、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。しかし、本発明で用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては2種挙げられる。一つはエネルギー移動型である。エネルギー移動型は、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るものである。もう一つはキャリアトラップ型である。キャリアトラップ型は、リン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというものである。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
(1.2)蛍光ドーパント
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
 [従来公知のドーパントとの併用]
 また、本発明に用いられる発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
 ここで、発光ドーパントとして、従来公知の国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。
 [ホスト化合物]
 本発明に用いることができるホスト化合物(発光ホスト、発光ホスト化合物ともいう。)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
 本発明に用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
 本発明に用いることができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
 また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよい。また、本発明に用いられるホスト化合物としては、このような化合物を1種又は複数種用いても良い。
 公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等である。
《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものも用いられる。このような電極物質の具体例としては、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、特に、銀を主成分として構成されていることが好ましい。銀を主成分とする合金は、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)などが挙げられる。
 なお、本発明における「主成分」とは、膜又は層中の50質量%以上含有されていることを表し、好ましくは80質量%以上、更に好ましくは90質量%以上含有されていることを表す。
 銀を主成分とする合金を用いる陰極は、必要に応じて複数の層に分けて積層された構成であってもよい。
 陰極の膜厚は、通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。銀を主成分とする合金を用いる場合は、膜厚が、15nm以下であることが好ましく、12nm以下であることがより好ましい。また、銀を主成分とする合金を用いる場合は、膜厚が、4nm以上であることが好ましい。すなわち、銀を主成分とする合金を用いる場合は、膜厚が、4~12nmの範囲内であることがより好ましい。膜厚が当該範囲内であることにより、膜が吸収又は反射する光の成分をより低減することができ、光透過率をより維持することができ、かつ層の導電性もより確保できる。
 前述のとおり、陰極が銀を主成分とする場合、一般式(1)又は一般式(1a)で表される構造を有する化合物を含有する有機機能層に隣接することが好ましい。
 一般式(1)又は一般式(1a)で表される構造を有する化合物を含有する有機機能層は、陰極に隣接していることが好ましく、当該有機機能層上に陰極を形成する場合であっても、陰極上に当該有機機能層を形成してもよい。更には、有機機能層上に陰極を形成し、更に当該陰極上に有機機能層を形成し、陰極を2層の有機機能層で挟持する構成であってもよい。
 有機機能層の上部に、銀を主成分とする陰極を成膜する際、陰極を構成する銀原子が金属親和性層に含有されている一般式(1)又は一般式(1a)で表される構造を有する化合物と相互作用する。これにより、有機機能層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集(マイグレーション)を抑制することができる。
 すなわち、銀原子は、まず銀原子と親和性のある原子を有する有機機能層表面上で二次元的な核を形成し、それを中心に二次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。
 なお、一般的には、有機機能層表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により、島状に成膜しやすいと考えられる。
 しかし、本発明においては、有機機能層に含有されている一般式(1)又は一般式(1a)で表される構造を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
 したがって、薄い膜厚でありながらも均一な膜厚の陰極が得られるようになる。その結果、その薄い膜厚により光透過性を保ちつつも、導電性が確保された透明電極とすることができる。
 また、陰極の上部に有機機能層を成膜した場合、陰極を構成する銀原子が有機機能層に含有されている銀原子と親和性のある原子と相互作用し、運動性が抑制されるものと考えられる。これによって、陰極の表面平滑性が良化することで乱反射を抑制することができ、光透過率を向上することが可能である。
 このような相互作用によって、熱や温度といった物理刺激に対する陰極の膜質変化が抑制され、耐久性を向上させることができたものと推測している。
 陰極は、銀を主成分とする合金の他、一般的な電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより、作製することができる。また、駆動電圧をより低くし、発光効率、素子寿命等をより向上させる観点から、陰極としてのシート抵抗値は数百Ω/sq(Ω/□)以下が好ましく、50Ω/sq以下がより好ましく、特に25Ω/sq以下であることが好ましい。下限については特に規定されるものではないが、例えば、1Ω/sq以上とすることができる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。陰極の光透過率は、30%以上であることが好ましく、50%以上であることがより好ましい。更に好ましくは70%以上である。上限については特に規定されるものではないが、例えば、95%以下とすることができる。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、前述のとおり、一般式(1)又は一般式(1a)で表される構造を有する化合物を含有することも好ましい。広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。更に、後述する電子注入層に含まれる材料も含有する電子注入輸送層を設けてもよい。
 電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては、従来公知の化合物の中から任意のものを選択し併用することも可能である。
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の多環芳香族炭化水素、複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、又は、該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体、ヘキサアザトリフェニレン誘導体等が挙げられる。
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
 これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
 また、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法等により、薄膜化することで形成することが好ましい。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。
 電子輸送層の層厚については特に制限はないが、通常は5~5000nm程度、好ましくは5~200nmである。この電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
 また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。
 本発明の有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の電子輸送材料の一例として、国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。
《注入層:電子注入層(陰極バッファー層)、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層のことである。注入層は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。陽極バッファー層としては、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体バッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。陰極バッファー層としては、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化カリウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウム、フッ化セシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記のごとく有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなる。正孔阻止層は、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものをいう。)を含有することが好ましい。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなる。電子阻止層は、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の層厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。
《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
 正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 又は、導電性有機化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、光透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗値は数百Ω/sq以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等のフィルムを挙げることができる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよい。ハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m・24h以下のガスバリアー性フィルムであることが好ましい。更には、ハイブリッド被膜は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。
 ガスバリアー層を形成する材料としては、水分や酸素等の素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。しかし、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し収率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子収率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
《有機EL素子の作製方法》
 有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
 まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように形成させ、陽極を作製する。
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。
 薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等により成膜して形成することができる。
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等がある。しかし、湿式法としては、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・to・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。
 本発明に用いられる発光ドーパント等の有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
 また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等から形成されたものを挙げることができる。
 金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/m・24h以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機機能層を挟み支持基板と対向する側の電極の外側に当該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、当該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 更に、当該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
 有機機能層を挟み支持基板と対向する側の前記封止膜、又は前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、又は保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないことが一般的にいわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないためである。また、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができる。しかし、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が一次の回折や二次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用したものである。この方法は、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、又はいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。
 プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《用途》
 本発明の有機EL素子は、電子デバイス、表示装置、ディスプレイ、各種発光装置として用いることができる。発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよい。素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図7.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
《表示装置》
 本発明の有機EL素子は、表示装置に用いることもできる。
 本発明の表示装置は、本発明の有機EL素子を具備する。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送る。そして、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2はアクティブマトリクス方式による表示装置の模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図2においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。図3は画素の回路を示した概略図である。
 画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンする。そして、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれる。そして、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子がなく、製造コストの低減が計れる。
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。
《照明装置》
 本発明の有機EL素子は、照明装置に用いることもできる。
 本発明の照明装置は、本発明の有機EL素子を具備する。
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 [照明装置の一態様]
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いる。周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させる。そして、ガラス基板側からUV光を照射して、硬化させて、封止し、図5及び図6に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機機能層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り、「質量部」又は「質量%」を表す。
[実施例1]
(有機EL素子の作製)
 <有機EL素子1-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。ホスト化合物としてCBP(4,4′-Bis(carbazol-9-yl)biphenyl)、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
 その後、比較1化合物(電子輸送層(1))とLiQ(8-hydroxyquinolinato lithium)(電子輸送層(2))をそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。
 更に、LiQを膜厚2nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。
Figure JPOXMLDOC01-appb-C000030
 <有機EL素子1-2~1-39の作製>
 電子輸送層(1)、(2)及び電子注入層に含有させる化合物等を表1に示すように変えた以外は有機EL素子1-1と同様の方法で有機EL素子1-2~1-39を作製した。
 なお、表1中、「-」は、成分を含有していないことを示す。
(評価)
(1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子1-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子1-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子1-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子1-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(3)色ずれ
 作製した各有機EL素子について、初期の発光スペクトルを測定して、CIE色度座標のx値及びy値を求めた。更に、駆動後(輝度が50%となった時の)発光スペクトルから、x値及びy値を求めた。この初期と駆動後のx値及びy値の差を、色度座標上の距離から求めて、有機EL素子1-1の素子の距離を100として相対値で示した。
 得られた数値が小さいほど、好ましい結果であることを表す。
Figure JPOXMLDOC01-appb-T000031
[実施例2]
(透明電極の作製)
 <透明電極2-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、比較2化合物の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、層厚25nmの有機機能層(陰極下地層)を形成した。
 次いで、銀を蒸着速度0.1nm/秒で蒸着し、膜厚8nmの陰極を形成し、透明電極2-1とした。
Figure JPOXMLDOC01-appb-C000032
 <透明電極2-2~2-8の作製>
 有機機能層に使用した化合物及び陰極の膜厚を表2に示すように変えた以外は透明電極2-1と同様の方法で透明電極2-2~2-8を作製した。
(評価)
(1)光透過率(%)
 作製した2-1~2-8の各透明電極について、光透過率を測定した。
 光透過率の測定は、分光光度計(日立ハイテクサイエンス製U-3300)を用いて、試料と同じ機材をベースラインとして行った。
(2)シート抵抗値
 作製した2-1~2-8の各透明電極について、シート抵抗値を測定した。
 シート抵抗値の測定は、抵抗率計(三菱化学アナリテック製MCP-T610)を用いて、4端子4探針法低電流印加方式で行った。
Figure JPOXMLDOC01-appb-T000033
[実施例3]
(有機EL素子の作製)
 <有機EL素子3-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
 ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
 その後、比較3化合物とKFをそれぞれ85%、15%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。
 この後、銀を蒸着速度0.1nm/秒で蒸着し、膜厚15nmの陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-1を作製した。
Figure JPOXMLDOC01-appb-C000034
 <有機EL素子3-2~3-28の作製>
 電子輸送層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表3に示すように変えた以外は有機EL素子3-1と同様にして有機EL素子3-2~3-28を作製した。
 なお、有機EL素子3-1~3-28において、電子輸送層にはKFが15%含まれるが、表3中、KFの表記は省略している。
(評価)
 (1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子3-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子3-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子3-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子3-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
Figure JPOXMLDOC01-appb-T000035
[実施例4]
(有機EL素子の作製)
 <有機EL素子4-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
 ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
 その後、電子輸送層として、Alqを蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
 その後、比較4化合物とLiQをそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚2nmの電子注入層を形成した。
 この後、銀とマグネシウムをそれぞれ、蒸着速度0.1nm/秒、0.01nm/秒で共蒸着し、膜厚8nmの陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子4-1を作製した。
Figure JPOXMLDOC01-appb-C000036
 <有機EL素子4-2~4-23の作製>
 電子注入層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表4に示すように変えた以外は有機EL素子4-1と同様にして有機EL素子4-2~4-23を作製した。
 なお、有機EL素子4-1~4-23において、電子注入層にはLiQが50%含まれるが、表4中、LiQの表記は省略している。
(評価)
(1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子4-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子4-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子4-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子4-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
Figure JPOXMLDOC01-appb-T000037
 以上より、本発明の有機EL素子は、比較例の有機EL素子よりも相対駆動電圧が低く、高温保存下での相対駆動電圧変化も小さいことから高温保存時の安定性に優れ、耐久性に優れていることがわかった。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機機能層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部
L 発光光

Claims (14)

  1.  陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、
     前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有する有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Wは、一般式(2)又は一般式(3)で表される2又は3縮環を表す。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。l、mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。一般式(2)、(3)中、X~X10は、N又はCRであり、一般式(2)及び一般式(3)を構成する2又は3縮環中に、それぞれNを2つ以上有する。X~Xのうち少なくとも1つはNであり、X~X10のうち少なくとも1つはNである。XとX、XとX、及び、XとXで少なくとも1つは環を形成し、XとX、XとX、XとX、及び、XとX10で少なくとも1つは環を形成する。Rは、水素原子又は置換基を表す。)
  2.  陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、
     前記発光層と前記陰極の間に、下記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層を有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1a)中、Xa~Xeは、N又はCRqを表し、いずれか1つがNである。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。Rqは、水素原子又は置換基を表す。)
  3.  前記一般式(1)のWが、下記一般式(4)~(8)のいずれか1つである請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(4)中、Xa~Xhは、N又はCRであり、Xa~Xdのうち少なくとも1つはNである。yは、0又は1の整数を表す。一般式(4)~(8)中、Rは、水素原子又は置換基を表す。)
  4.  前記Lが、単なる結合手であるか、ベンゼン環、ビフェニル環、ナフチル環、ターフェニル環、アントラセン環、トリフェニレン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環を含む二価の連結基を表す請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5.  前記陰極が、銀を主成分としており、
     前記有機機能層が、前記陰極に隣接して設けられている請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6.  前記陰極の厚さが、15nm以下である請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7.  前記陰極の光透過率が、50%以上であり、かつ
     前記陰極のシート抵抗値が、25Ω/sq以下である請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有する請求項1又は請求項3に記載の有機エレクトロルミネッセンス素子。
  9.  前記一般式(1)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている請求項1、請求項3、請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10.  前記有機機能層として、前記一般式(1a)で表される構造を有する化合物及び電子注入材料を含有する層を有する請求項2に記載の有機エレクトロルミネッセンス素子。
  11.  前記一般式(1a)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている請求項2又は請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)中、Wは、一般式(2)又は一般式(3)で表される2又は3縮環を表す。Yは、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。nは、0~4の整数を表す。l、mは、1以上の整数を表す。Lは、単結合、アリーレン又はヘテロ環を表す。一般式(2)、(3)中、X~X10は、N又はCRであり、一般式(2)及び一般式(3)を構成する2又は3縮環中に、それぞれNを2つ以上有する。X~Xのうち少なくとも1つはNであり、X~X10のうち少なくとも1つはNである。XとX、XとX、又は、XとXで少なくとも1つは環を形成し、XとX、XとX、XとX、又は、XとX10で少なくとも1つは環を形成する。Rは、水素原子又は置換基を表す。)
  13.  請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する表示装置。
  14.  請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する照明装置。
PCT/JP2018/043808 2017-11-29 2018-11-28 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置 WO2019107424A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-229568 2017-11-29
JP2017229568 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019107424A1 true WO2019107424A1 (ja) 2019-06-06

Family

ID=66665053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043808 WO2019107424A1 (ja) 2017-11-29 2018-11-28 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置

Country Status (1)

Country Link
WO (1) WO2019107424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944129A (zh) * 2020-08-25 2020-11-17 阜阳师范大学 一种高性能钠电池负极有机聚合物材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073356A1 (ja) * 2011-11-17 2013-05-23 コニカミノルタ株式会社 透明電極、および電子デバイス
WO2014065073A1 (ja) * 2012-10-22 2014-05-01 コニカミノルタ株式会社 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
US20150207082A1 (en) * 2014-01-23 2015-07-23 Universal Display Corporation Organic materials for oleds
JP2017123460A (ja) * 2016-01-06 2017-07-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2018079459A1 (ja) * 2016-10-25 2018-05-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073356A1 (ja) * 2011-11-17 2013-05-23 コニカミノルタ株式会社 透明電極、および電子デバイス
WO2014065073A1 (ja) * 2012-10-22 2014-05-01 コニカミノルタ株式会社 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
US20150207082A1 (en) * 2014-01-23 2015-07-23 Universal Display Corporation Organic materials for oleds
JP2017123460A (ja) * 2016-01-06 2017-07-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2018079459A1 (ja) * 2016-10-25 2018-05-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944129A (zh) * 2020-08-25 2020-11-17 阜阳师范大学 一种高性能钠电池负极有机聚合物材料
CN111944129B (zh) * 2020-08-25 2023-03-21 阜阳师范大学 一种高性能钠电池负极有机聚合物材料

Similar Documents

Publication Publication Date Title
JP5810529B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6428267B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP7107223B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
JP2010045281A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6146415B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015213119A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2016056562A1 (ja) イリジウム錯体、有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6187214B2 (ja) 金属錯体、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016175068A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2015046452A1 (ja) イリジウム錯体、イリジウム錯体の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6020473B2 (ja) イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP7173145B2 (ja) 薄膜、電子デバイス、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
JP6020466B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2019107424A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
JP7029404B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
WO2020012686A1 (ja) 有機エレクトロルミネッセンス素子
JP5532563B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2019176384A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
WO2013161468A1 (ja) 有機エレクトロルミネッセンス素子
WO2013137162A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5673746B2 (ja) 有機エレクトロルミネッセンス素子
JP5359441B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP