CN111819303B - 使用溅射蚀刻以中止厚膜中结晶发生的pvd二氧化钛形成 - Google Patents

使用溅射蚀刻以中止厚膜中结晶发生的pvd二氧化钛形成 Download PDF

Info

Publication number
CN111819303B
CN111819303B CN201980017350.XA CN201980017350A CN111819303B CN 111819303 B CN111819303 B CN 111819303B CN 201980017350 A CN201980017350 A CN 201980017350A CN 111819303 B CN111819303 B CN 111819303B
Authority
CN
China
Prior art keywords
ceramic layer
substrate
pvd
ceramic
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980017350.XA
Other languages
English (en)
Other versions
CN111819303A (zh
Inventor
卡尔·阿姆斯特朗
傅晋欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN111819303A publication Critical patent/CN111819303A/zh
Application granted granted Critical
Publication of CN111819303B publication Critical patent/CN111819303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2633Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

在此所述的实施方式提供形成非晶或纳米结晶陶瓷膜的方法。方法包括使用物理气相沉积(PVD)工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断PVD工艺;溅射蚀刻陶瓷层达预定的时段;和重复使用PVD工艺沉积该陶瓷层的步骤、中断PVD工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。

Description

使用溅射蚀刻以中止厚膜中结晶发生的PVD二氧化钛形成
技术领域
本公开内容的实施方式一般地涉及形成陶瓷膜。尤其是,本公开内容的实施方式涉及形成非晶或纳米结晶的方法。
背景技术
诸如二氧化钛(TiO2)的陶瓷膜用于形成诸如波导、彩色过滤器及二维透镜的光学装置。这些装置的功能受到形成具有非常精细细节的准确形状的能力的影响。
在沉积例如具有大于的厚度的二氧化钛(TiO2)的厚陶瓷膜期间,膜的结构从非晶或纳米结晶结构移动成结晶结构。大型的结晶结构不良地影响将陶瓷膜图案化以达成平滑结构的能力,因为图案化的侧壁、厚陶瓷膜具有过大的粗糙度。当前方法包括在膜生长期间使用较低的基板温度,以阻止结晶形成的开始。然而,较低的基板温度仅短暂地抑制结晶形成,且大于/>的陶瓷膜将展现大型的结晶形成。
因此,本领域中需要形成厚的、非晶或纳米结晶陶瓷膜的改良的方法。
发明内容
在一个实施方式中,提供一种方法。方法包括使用物理气相沉积(PVD)工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断PVD工艺;溅射蚀刻陶瓷层达预定的时段;和重复使用PVD操作沉积该陶瓷层的步骤、中断PVD工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。
在另一实施方式中,提供一种方法。方法包括将基板引入物理气相沉积(PVD)腔室,且使用PVD工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断PVD工艺,且将基板从PVD腔室移除;将基板引入溅射蚀刻腔室,且溅射蚀刻陶瓷层达预定的时段;和重复使用PVD工艺沉积陶瓷层的步骤、中断PVD工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。
在又一实施方式中,提供一种方法。方法包括将基板引入物理气相沉积(PVD)腔室。PVD腔室具有由腔室主体界定的处理空间。处理空间包括靶和可操作以支撑基板的底座。靶连接至靶开关,当靶开关接合(engaged)时会将靶连接至DC电源,DC电源可操作以提供脉冲DC功率至靶。底座连接至底座开关,当底座开关接合时会将底座连接至脉冲射频(RF)电源,RF电源可操作以提供RF功率至底座。使用PVD工艺在基板上沉积陶瓷层。PVD工艺包括提供溅射气体的第一流及反应气流至处理空间,且将靶连接至DC电源。当陶瓷层具有预定的层厚度时,中断PVD工艺。在PVD腔室中,溅射蚀刻陶瓷达预定的时段。溅射蚀刻包括提供溅射气体的第二流至处理空间,且将底座连接至RF电源。重复使用PVD工艺沉积陶瓷层的步骤、中断PVD工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。
附图说明
以上简要概述本公开内容的上述详述特征可以被详细理解的方式、以及本公开内容的更特定描述,可通过参照实施方式来获得,某些实施方式绘示在随附图式中。然而,应注意所附图式仅是对实施方式的说明,因而不应视为对本发明的范围的限制,且可允许其他等同有效的实施方式。
图1为根据实施方式的图示了用于形成非晶或纳米结晶陶瓷膜的方法的操作的流程图。
图2A-2C为根据实施方式的在形成非晶或纳米结晶陶瓷膜的方法期间基板的截面示意图。
图3A为根据实施方式的物理气相沉积(PVD)腔室的截面示意图。
图3B为根据实施方式的溅射蚀刻腔室的截面示意图。
图3C为根据实施方式的PVD腔室的截面示意图。
为了促进理解,已尽可能地使用相同的附图标号标示图式中共通的相同元件。考虑到,一个实施方式的元件及特征在没有进一步描述下可有益地并入其他实施方式中。
具体实施方式
在此所述的实施方式为形成非晶或纳米结晶陶瓷膜的方法。方法包括使用物理气相沉积(PVD)工艺在基板上沉积陶瓷层;当陶瓷层具有预定的层厚度时中断PVD工艺;溅射蚀刻陶瓷层达预定的时段;和重复使用PVD工艺沉积该陶瓷层的步骤、中断PVD工艺的步骤及溅射蚀刻陶瓷层的步骤,直到形成具有预定的膜厚度的陶瓷膜。
图1为图示了用于形成如图2A-2C中所示的非晶或纳米结晶陶瓷膜200的方法100的操作的流程图。可利用例如从位于美国加州圣克拉拉市的应用材料公司购得的Endura溅射系统的自动化、多重腔室的物理气相沉积(PVD)系统,来执行方法100,用于形成非晶或纳米结晶陶瓷膜200。
在操作101之前,基板201可引入负载锁定腔室中的高真空条件,且转换至用于基板制备步骤的腔室以从基板201解吸出水。基板201可为硅晶片或包含玻璃、石英或在光学装置形成中使用的其他材料的晶片。在可与在此所述的其他实施方式结合的一个实施方式中,晶片制备步骤包括在辐射加热腔室中除气。在可与在此所述的其他实施方式结合的另一实施方式中,晶片制备步骤包括在溅射蚀刻腔室中溅射蚀刻。
于操作101处,使用PVD工艺在基板上沉积第一陶瓷层202a。在可与在此所述的其他实施方式结合的一个实施方式中,PVD工.艺为溅射沉积工艺。将基板201引入PVD腔室,且利用诸如氩气(Ar)的溅射气体以及诸如氧气(O2)的反应气体的等离子体沉积第一陶瓷层202a,而用氩离子轰击负偏压的靶来溅射靶材料的原子,此后用靶材料的层涂布基板。沉积的靶材料与反应气体反应以形成陶瓷层。第一陶瓷层202a可包括二氧化钛(TiO2)、五氧化二钽(Ta2O5)或氧化铝(III)(Al2O3)材料。在可与在此所述的其他实施方式结合的一个实施方式中,溅射气体包括Ar,反应气体包括O2,且靶材料包括钛(Ti),以形成TiO2层。
根据可与此处所述的其他实施方式结合的一个实施方式,PVD工艺在PVD腔室300A中执行。应理解在此所述的PVD腔室300A为示例性PVD腔室,且包括来自其他制造商的PVD腔室的其他PVD腔室可使用或修改以完成本公开内容的方面。如图3A中所示,PVD腔室300A的截面示意图,PVD腔室300A包括由腔室主体301界定的处理空间302。处理空间302具有靶310及可操作以支撑基板201的底座304。底座304由连接至抬升系统(未示出)的杆306而耦接至且可移动地布置于处理空间302中,抬升系统在升高的处理位置及降低的位置之间移动底座304,降低的位置促进基板201通过腔室主体301的开口308而传送进出PVD腔室300A。
靶310连接至电源312,例如DC电源、RF电源、AC电源、脉冲DC电源、及脉冲RF电源。例如质量流控制(MFC)装置的溅射气体流控制器31 8布置于溅射气源314与处理空间302之间,以控制从溅射气源314至处理空间302的溅射气流。例如MFC装置的反应气体流控制器320布置于反应气体源316与处理空间302之间,以控制从反应气源316至处理空间302的反应气流。在可与在此所述的其他实施方式结合的一个实施方式中,Ar的流率为约20sccm至约100sccm,且O2的流率为约20sccm至约100sccm。控制器303耦接至PVD腔室300A,且配置成在处理期间控制PVD腔室300A的数个方面。在操作101处,靶310经由提供脉冲DC功率的脉冲DC电源而负偏压。应理解尽管图1及图3A的讨论参考脉冲DC功率,考虑将由以上提及的其他电源执行操作101,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,脉冲DC功率具有约100千赫兹(kHz)的频率,约50%至约90%的工作周期,例如70%,及约1千瓦(kW)至约10kW的功率级。在可与在此所述的其他实施方式结合的另一实施方式中,提供脉冲DC功率约100秒至约300秒。
根据可与在此所述的其他实施方式结合的另一实施方式,PVD工艺在物理气相沉积(PVD)腔室300C中执行。应理解在此所述的PVD腔室300C为示例性PVD腔室,且包括来自其他制造商的PVD腔室的其他PVD腔室可使用或修改以完成本公开内容的方面。如图3C中所示,PVD腔室300C的截面示意图,PVD腔室300C包括由腔室主体301界定的处理空间302、底座304、杆306、开口308、布置于溅射气源314与处理空间302之间的溅射气体流控制器318、布置于反应气源316与处理空间302之间的反应气体流控制器320。在可与在此所述的其他实施方式结合的一个实施方式中,Ar的流率为约20sccm至约100sccm,且O2的流率为约20sccm至约100sccm。当靶310连接至电源312时,靶310连接至靶开关326,例如DC电源、RF电源、AC电源、脉冲DC电源、及脉冲RF电源。举例而言,在图3C中,靶310连接至脉冲DC电源。在操作101处,靶310经由提供脉冲DC功率的电源312而负偏压。应理解尽管图1及图3C的讨论参考脉冲DC功率,考虑将由以上提及的其他电源执行操作101,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,脉冲DC功率具有约100kHz的频率,约50%至约90%的工作周期,例如70%,及约1kW至约10kW的功率级(powerlevel)。在可与在此所述的其他实施方式结合的另一实施方式中,提供脉冲DC功率约100秒至约300秒。
底座304连接至底座开关330,当接合时,底座开关将底座304连接至电源324,例如DC电源、RF电源、AC电源、脉冲DC电源、及脉冲RF电源。在操作103处,如在此进一步说明,底座304经由提供RF功率的电源324而负偏压。应理解尽管图1及图3C的讨论参考RF功率,考虑将由以上提及的其他电源执行操作103,而理解可发生适当的调整以适应不同的电源。PVD腔室300C可操作以独立偏压靶310及底座304,允许操作101-104在相同的PVD腔室300C中执行。控制器307耦接至PVD腔室300C,且配置成控制PVD腔室300C的数个方面,例如在处理期间连接靶开关326及连接底座开关330。
在操作102处,当第一陶瓷层202a具有预定的层厚度203时中断PVD工艺。预定的层厚度203对应至小于发生大型结晶形成的点的厚度。在可与在此所述的其他实施方式结合的一个实施方式中,第一陶瓷层202a为TiO2层,且发生大型结晶形成的点为约因此,预定的层厚度203为小于/>例如约/>PVD工艺的中断使得陶瓷层停止生长。在可与在此所述的其他实施方式结合的一个实施方式中,当PVD工艺中断时,基板201从PVD腔室300A移除,且引入在此进一步详细说明的溅射蚀刻腔室300B。为了抑制大型结晶形成的开始,独立于PVD工艺而执行溅射蚀刻工艺。
在操作103处,执行溅射蚀刻工艺达预定的时段。为了抑制大型结晶形成的开始,独立于PVD工艺而执行溅射蚀刻处理。尽管可在PVD工艺期间偏压基板201以形成较平滑层,但大型结晶形成的开始不会被抑制。溅射蚀刻工艺为利用诸如Ar的溅射气体的等离子体来用氩离子轰击负偏压的基板201,而破坏第一陶瓷层202a且分裂形成于第一陶瓷层202a上的大型结晶成核位点。然而,可能不存在大型结晶成核位点,因为对应于大型结晶成核位点的点的预定的层厚度203可能不存在。预定的时段相对应于破坏第一陶瓷层202a且分裂可能已经形成在第一陶瓷层202a上的大型结晶成核位点所需的时段。在可与在此所述的其他实施方式结合的一个实施方式中,溅射蚀刻工艺对TiO2层执行约5秒至约25秒,且仅移除数埃的陶瓷层。
根据可与在此所述的其他实施方式结合的一个实施方式,溅射蚀刻工艺在溅射蚀刻腔室300B中执行。应理解在此所述的溅射蚀刻腔室300B为示例性溅射蚀刻腔室,且包括来自其他制造商的溅射蚀刻腔室的其他溅射蚀刻腔室可使用或修改以完成本公开内容的方面。如图3B中所示,溅射蚀刻腔室300B的截面示意图,溅射蚀刻腔室300B包括由腔室主体301界定的处理空间302、底座304、杆306及开口308。底座304连接至电源322,例如DC电源、RF电源、AC电源、脉冲DC电源、及脉冲RF电源。在可与在此所述的其他实施方式结合的一个实施方式中,电源322为RF电源,且溅射蚀刻腔室300B包括通过匹配电路332耦接至RF电源334的多个线圈336。在操作103处,底座304经由提供第一RF功率的RF电源而负偏压,且第二RF功率被提供至多个线圈336。应理解尽管图1及图3B的讨论参考RF功率,考虑将由以上提及的其他电源执行操作103,而理解可发生适当的调整以适应不同的电源。在可与在此所述的其他实施方式结合的一个实施方式中,第一RF功率具有约13.56兆赫兹(MHz)的第一频率,及约50瓦(W)至约300W的第一功率。第二RF功率具有约400兆赫兹kHz的第二频率,及约50瓦(W)至约300W的第二功率。在可与在此所述的其他实施方式结合的另一实施方式中,提供第一RF功率及第二RF功率达约100秒至约300秒。在操作103处,布置于溅射气源314之间的溅射气体流控制器318提供从溅射气源314至处理空间302的溅射气流。在可与在此所述的其他实施方式结合的一个实施方式中,Ar的流率为约20sccm至约100sccm。控制器305耦接至溅射蚀刻腔室300B,且配置成在处理期间控制溅射蚀刻腔室300B的数个方面。
在操作104处,重复使用PVD工艺沉积陶瓷层、中断PVD工艺及溅射蚀刻工艺,以形成多个陶瓷层202a、202b、202c、202d、202e、......、202n,直到形成取决于装置的类型而具有预定的膜厚度204的非晶或纳米结晶陶瓷膜200。在可与在此所述的其他实施方式结合的一个实施方式中,使用PVD工艺沉积TiO2层,于约的预定的层厚度中断PVD工.艺,且执行溅射蚀刻工艺达约15秒的预定的时段。使用PVD工艺沉积TiO2层、中断PVD工艺及溅射蚀刻处理重复5次,直到形成具有约/>的厚度的TiO2膜。
综上所述,在此说明形成厚的、非晶或纳米结晶陶瓷膜的改良的方法。独立于PVD工艺而执行溅射蚀刻工艺的利用通过破坏陶瓷层且分裂形成于陶瓷层上的大型结晶成核位点来抑制大型结晶形成的开始。重复使用PVD工艺沉积陶瓷层、中断PVD工艺及溅射蚀刻允许形成厚的、非晶或纳米结晶陶瓷膜而不具有大型结晶形成。不具有大型结晶形成的、非晶或纳米结晶陶瓷膜可图案化,以便形成具有平滑侧壁的准确形状,并且可经定制以具有高折射率及低吸收率,而在诸如波导、彩色过滤器及二维透镜的光学装置中使用。
尽管前述指向本公开内容的实施例,但是在不背离本发明的基本范围的情况下可设计本公开内容的其他及进一步实施例,且本发明的范围由随附的权利要求书来确定。

Claims (18)

1.一种方法,包含以下步骤:
使用物理气相沉积(PVD)工艺在基板上沉积陶瓷层,所述陶瓷层布置于所述基板的整个表面之上;
当所述陶瓷层具有预定的层厚度时中断所述PVD工艺,所述预定的层厚度对应于小于发生大型结晶形成的点的厚度,所述预定的厚度在所述基板的整个表面之上实质上相同;
溅射蚀刻所述陶瓷层达预定的时段,所述预定的时段对应于破坏所述陶瓷层且分裂形成在所述陶瓷层上的大型结晶成核位点所需的时段,溅射蚀刻的所述步骤移除在所述基板的整个表面之上的所述陶瓷层的一部分;和
重复使用所述PVD工艺沉积所述陶瓷层的所述步骤、中断所述PVD工艺的所述步骤及溅射蚀刻所述陶瓷层的所述步骤,直到形成在所述基板的整个表面之上实质上相同的预定的膜厚度的非晶或纳米结晶陶瓷膜,
其中所述陶瓷层及所述陶瓷膜包含TiO2、五氧化二钽(Ta2O5)或氧化铝(III)(Al2O3)材料。
2.如权利要求1所述的方法,其中使用所述PVD工艺沉积所述陶瓷层的所述步骤进一步包含以下步骤:将所述基板引入PVD腔室中。
3.如权利要求2所述的方法,其中中断所述PVD工艺的所述步骤进一步包含以下步骤:从所述PVD腔室移除所述基板。
4.如权利要求3所述的方法,其中溅射蚀刻所述陶瓷层的所述步骤进一步包含以下步骤:将所述基板引入溅射蚀刻腔室。
5.如权利要求4所述的方法,进一步包含以下至少一个步骤:
在辐射加热腔室中对所述基板除气;和
在初始引入所述基板至所述PVD腔室之前,于所述溅射蚀刻腔室中溅射蚀刻所述基板。
6.如权利要求1所述的方法,其中所述陶瓷层及所述陶瓷膜基本上由二氧化钛(TiO2)材料组成。
7.如权利要求6所述的方法,其中所述预定的层厚度小于500埃
8.如权利要求7所述的方法,其中所述预定的层厚度为
9.如权利要求8所述的方法,其中所述预定的时段为5秒至25秒。
10.如权利要求1所述的方法,其中使用所述PVD工艺沉积所述陶瓷层的所述步骤、中断所述PVD工艺的所述步骤、及溅射蚀刻所述陶瓷层的所述步骤直到形成具有所述预定的膜厚度的所述陶瓷膜,是在相同的PVD腔室中执行。
11.一种方法,包含以下步骤:
将基板引入物理气相沉积(PVD)腔室,且使用PVD工艺在所述基板上沉积陶瓷层,所述陶瓷层布置于所述基板的整个表面之上;
当所述陶瓷层具有预定的层厚度时中断所述PVD工艺,且将所述基板从所述PVD腔室移除,所述预定的层厚度对应于小于发生大型结晶形成的点的厚度,所述预定的厚度在所述基板的整个表面之上实质上相同;
将所述基板引入溅射蚀刻腔室,且溅射蚀刻所述陶瓷层达预定的时段,所述预定的时段对应于破坏所述陶瓷层且分裂形成在所述陶瓷层上的大型结晶成核位点所需的时段,溅射蚀刻的所述步骤移除在所述基板的整个表面之上的所述陶瓷层的一部分;和
重复使用所述PVD工艺沉积所述陶瓷层的所述步骤、中断所述PVD工艺的所述步骤及溅射蚀刻所述陶瓷层的所述步骤,直到形成在所述基板的整个表面之上实质上相同的预定的膜厚度的非晶或纳米结晶陶瓷膜,
其中所述陶瓷层及所述陶瓷膜包含TiO2、五氧化二钽(Ta2O5)或氧化铝(III)(Al2O3)材料。
12.如权利要求11所述的方法,进一步包含以下至少一个步骤:
在辐射加热腔室中对所述基板除气;和
在初始引入所述基板至所述PVD腔室之前,于所述溅射蚀刻腔室中溅射蚀刻所述基板。
13.如权利要求11所述的方法,其中所述陶瓷层及所述陶瓷膜基本上由二氧化钛(TiO2)材料组成。
14.如权利要求12所述的方法,其中所述预定的层厚度小于500埃
15.如权利要求11所述的方法,其中所述预定的时段为5秒至25秒。
16.一种方法,包含以下步骤:
将基板引入物理气相沉积(PVD)腔室,所述PVD腔室包含由腔室主体界定的处理空间,所述处理空间具有:
靶,所述靶连接至靶开关,当所述靶开关接合时会将所述靶连接至DC电源,所述DC电源可操作以提供脉冲DC功率至所述靶;和
底座,可操作以支撑所述基板,所述底座连接至底座开关,当所述底座开关接合时会将所述底座连接至脉冲射频(RF)电源,所述RF电源可操作以提供RF功率至所述底座;
使用PVD工艺在所述基板上沉积陶瓷层,所述陶瓷层布置于所述基板的整个表面之上,所述PVD工艺包含:
提供溅射气体的第一流及反应气体流至所述处理空间;和
将所述靶连接至所述DC电源;
当所述陶瓷层具有预定的层厚度时,中断所述PVD工艺,所述预定的层厚度对应于小于发生大型结晶形成的点的厚度,所述预定的厚度在所述基板的整个表面之上实质上相同;
于所述PVD腔室中溅射蚀刻所述陶瓷达预定的时段,所述预定的时段对应于破坏所述陶瓷层且分裂形成在所述陶瓷层上的大型结晶成核位点所需的时段,溅射蚀刻的所述步骤移除在所述基板的整个表面之上的所述陶瓷层的一部分,所述溅射蚀刻包含以下步骤:
提供溅射气体的第二流至所述处理空间;和
将所述底座连接至所述RF电源;和
重复使用所述PVD工艺沉积所述陶瓷层的所述步骤、中断所述PVD工艺的所述步骤及溅射蚀刻所述陶瓷层的所述步骤,直到形成在所述基板的整个表面之上实质上相同的预定的膜厚度的非晶或纳米结晶陶瓷膜,
其中所述陶瓷层及所述陶瓷膜包含TiO2、五氧化二钽(Ta2O5)或氧化铝(III)(Al2O3)材料。
17.如权利要求16所述的方法,其中:
所述溅射气体包含氩气(Ar);
所述反应气体包含氧气(O2);
所述靶的靶材料包含钛(Ti);和
所述陶瓷层及所述陶瓷膜基本上由TiO2材料组成。
18.如权利要求16所述的方法,其中溅射蚀刻的所述步骤移除小于的所述陶瓷层。
CN201980017350.XA 2018-02-19 2019-01-28 使用溅射蚀刻以中止厚膜中结晶发生的pvd二氧化钛形成 Active CN111819303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862632339P 2018-02-19 2018-02-19
US62/632,339 2018-02-19
PCT/US2019/015416 WO2019160674A1 (en) 2018-02-19 2019-01-28 Pvd titanium dioxide formation using sputter etch to halt onset of crystalinity in thick films

Publications (2)

Publication Number Publication Date
CN111819303A CN111819303A (zh) 2020-10-23
CN111819303B true CN111819303B (zh) 2023-12-08

Family

ID=67617623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980017350.XA Active CN111819303B (zh) 2018-02-19 2019-01-28 使用溅射蚀刻以中止厚膜中结晶发生的pvd二氧化钛形成

Country Status (7)

Country Link
US (1) US11008647B2 (zh)
EP (1) EP3755823A4 (zh)
JP (2) JP7177161B6 (zh)
KR (1) KR102551020B1 (zh)
CN (1) CN111819303B (zh)
TW (1) TWI796438B (zh)
WO (1) WO2019160674A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552097A (zh) * 2001-05-04 2004-12-01 ���������ƴ���ʽ���� 具有连续沉积和蚀刻的电离pvd
WO2006061964A1 (ja) * 2004-12-08 2006-06-15 Asahi Glass Company, Limited 導電膜付き基体およびその製造方法
TW200811300A (en) * 2006-08-18 2008-03-01 Wen-Jun Zhou A treatment method of metalization of metal or ceramic substrate
JP2011068927A (ja) * 2009-09-24 2011-04-07 Shimadzu Corp SiC膜の形成方法
JP2011105974A (ja) * 2009-11-13 2011-06-02 Asahi Kasei Corp スパッタリング膜の成膜方法
CN102295263A (zh) * 2010-06-25 2011-12-28 国际商业机器公司 平面腔体微机电系统及相关结构、制造和设计结构的方法
JP2013234380A (ja) * 2012-04-11 2013-11-21 Fujikura Ltd 反応性dcスパッタ装置および成膜方法
CN104205021A (zh) * 2012-03-30 2014-12-10 应用材料公司 用于触控屏幕面板的透明体的制造方法及系统
CN104630741A (zh) * 2013-11-07 2015-05-20 Spts科技有限公司 二氧化硅的沉积

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206614A (ja) * 1990-01-08 1991-09-10 Mitsubishi Electric Corp 半導体製造装置
JP3055242B2 (ja) * 1991-09-19 2000-06-26 日本電気株式会社 半導体装置およびその製造方法
JPH07331429A (ja) * 1994-06-03 1995-12-19 Sony Corp 薄膜形成方法
JPH10247308A (ja) * 1997-03-03 1998-09-14 Fuji Elelctrochem Co Ltd 薄膜磁気ヘッドのギャップ層形成方法
US5861086A (en) * 1997-03-10 1999-01-19 Applied Materials, Inc. Method and apparatus for sputter etch conditioning a ceramic body
JP4158248B2 (ja) 1998-11-27 2008-10-01 ソニー株式会社 電子装置の製造方法
US6100200A (en) * 1998-12-21 2000-08-08 Advanced Technology Materials, Inc. Sputtering process for the conformal deposition of a metallization or insulating layer
JP2000208442A (ja) 1999-01-19 2000-07-28 Seiko Epson Corp 半導体装置の製造方法
JP3373181B2 (ja) * 1999-09-17 2003-02-04 ティーディーケイ株式会社 薄膜磁気ヘッドおよびその製造方法
US7744735B2 (en) * 2001-05-04 2010-06-29 Tokyo Electron Limited Ionized PVD with sequential deposition and etching
JP4695297B2 (ja) * 2001-06-26 2011-06-08 キヤノンアネルバ株式会社 薄膜形成装置及びロードロックチャンバー
US7901545B2 (en) * 2004-03-26 2011-03-08 Tokyo Electron Limited Ionized physical vapor deposition (iPVD) process
JP2005008902A (ja) 2003-06-16 2005-01-13 Seiko Epson Corp 成膜装置、成膜方法および半導体装置の製造方法
JP2006117995A (ja) 2004-10-21 2006-05-11 Alps Electric Co Ltd スパッタ装置
JP4686668B2 (ja) * 2005-07-04 2011-05-25 立山マシン株式会社 プラズマ処理方法と装置
JP4789841B2 (ja) * 2007-03-28 2011-10-12 株式会社アルバック 金属とチタン酸化物の混合膜の成膜方法及び同膜の成膜装置
US7695994B2 (en) 2007-04-24 2010-04-13 Micron Technology, Inc. Material sidewall deposition method
KR101436564B1 (ko) 2008-05-07 2014-09-02 한국에이에스엠지니텍 주식회사 비정질 실리콘 박막 형성 방법
US20110005920A1 (en) * 2009-07-13 2011-01-13 Seagate Technology Llc Low Temperature Deposition of Amorphous Thin Films
US8592294B2 (en) * 2010-02-22 2013-11-26 Asm International N.V. High temperature atomic layer deposition of dielectric oxides
KR101366838B1 (ko) * 2010-07-13 2014-02-27 (주)에스엔텍 인라인 스퍼터링 시스템
WO2012099975A2 (en) * 2011-01-18 2012-07-26 Applied Materials, Inc. Electrochromic tungsten oxide film deposition
JP3180557U (ja) 2012-10-01 2012-12-27 大亜真空株式会社 薄膜作製装置
WO2014058452A1 (en) * 2012-10-12 2014-04-17 Lawrence Livermore National Security, Llc Planarization of optical substrates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552097A (zh) * 2001-05-04 2004-12-01 ���������ƴ���ʽ���� 具有连续沉积和蚀刻的电离pvd
WO2006061964A1 (ja) * 2004-12-08 2006-06-15 Asahi Glass Company, Limited 導電膜付き基体およびその製造方法
TW200811300A (en) * 2006-08-18 2008-03-01 Wen-Jun Zhou A treatment method of metalization of metal or ceramic substrate
JP2011068927A (ja) * 2009-09-24 2011-04-07 Shimadzu Corp SiC膜の形成方法
JP2011105974A (ja) * 2009-11-13 2011-06-02 Asahi Kasei Corp スパッタリング膜の成膜方法
CN102295263A (zh) * 2010-06-25 2011-12-28 国际商业机器公司 平面腔体微机电系统及相关结构、制造和设计结构的方法
CN104205021A (zh) * 2012-03-30 2014-12-10 应用材料公司 用于触控屏幕面板的透明体的制造方法及系统
JP2015518596A (ja) * 2012-03-30 2015-07-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated タッチスクリーンパネル製作方法およびシステムで使用される透明体
JP2013234380A (ja) * 2012-04-11 2013-11-21 Fujikura Ltd 反応性dcスパッタ装置および成膜方法
CN104630741A (zh) * 2013-11-07 2015-05-20 Spts科技有限公司 二氧化硅的沉积

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Donald Mattox.9.2.2 Nucleation.《Handbook of Physical Vapor Deposition (PVD) Processing》.2010, *
Mahmood Aliofkhazraei.Chapter 2: Size Dependency in Nanostructures.《Nanocoatings size effect in nanostructure films》.2011, *

Also Published As

Publication number Publication date
WO2019160674A1 (en) 2019-08-22
EP3755823A1 (en) 2020-12-30
TW202231897A (zh) 2022-08-16
JP7487267B2 (ja) 2024-05-20
JP2022176987A (ja) 2022-11-30
US11008647B2 (en) 2021-05-18
KR20200110814A (ko) 2020-09-25
TWI796438B (zh) 2023-03-21
US20190256967A1 (en) 2019-08-22
TW201936959A (zh) 2019-09-16
JP2021515095A (ja) 2021-06-17
CN111819303A (zh) 2020-10-23
JP7177161B6 (ja) 2022-12-16
EP3755823A4 (en) 2021-11-03
KR102551020B1 (ko) 2023-07-05
JP7177161B2 (ja) 2022-11-22

Similar Documents

Publication Publication Date Title
KR101962317B1 (ko) 저 k 유전체 필름들 및 다른 유전체 필름들을 식각하기 위한 프로세스 챔버
JP5238704B2 (ja) ハフニウム含有材料を乾式エッチングする方法およびシステム
US20090246385A1 (en) Control of crystal orientation and stress in sputter deposited thin films
TWI804477B (zh) 透過物理氣相沉積沉積非晶矽層或碳氧化矽層的方法
TWI667501B (zh) 光波分離結構與形成光波分離結構的方法
US20190051768A1 (en) Method for graded anti-reflective coatings by physical vapor deposition
KR20170006278A (ko) 에칭 방법
KR20160088817A (ko) 에칭 방법
TW201635371A (zh) 蝕刻方法(三)
TW201705265A (zh) 蝕刻方法
JP7316379B2 (ja) 裏側物理的気相堆積の方法及び装置
KR20160088819A (ko) 에칭 방법
US11170998B2 (en) Method and apparatus for depositing a metal containing layer on a substrate
CN111819303B (zh) 使用溅射蚀刻以中止厚膜中结晶发生的pvd二氧化钛形成
KR20220097483A (ko) 재료 표면 거칠기를 감소시키기 위한 방법들
TWI845907B (zh) 使用濺射蝕刻以中止厚膜中結晶發生的pvd二氧化鈦形成
Felmetsger Sputter technique for deposition of AlN, ScAlN, and Bragg reflector thin films in mass production
CN111286696B (zh) 半导体硬掩膜薄膜制备方法
TW202218203A (zh) 用於壓電應用的沉積方法及設備
US20230333309A1 (en) Optical devices having barrier layers to facilitate reduced hardmask diffusion and/or hardmask residue, and related methods
KR100399763B1 (ko) 스퍼터링증착법을 이용한 산화아연막의 제조방법
JP7488147B2 (ja) ハードマスク及びハードマスクの製造方法
Soltani et al. Growth, characterization and processing of VO 2 thin films for micro-switching devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant