CN1116329C - 物理性质有改进的模制聚氨酯泡沫塑料 - Google Patents

物理性质有改进的模制聚氨酯泡沫塑料 Download PDF

Info

Publication number
CN1116329C
CN1116329C CN96198782A CN96198782A CN1116329C CN 1116329 C CN1116329 C CN 1116329C CN 96198782 A CN96198782 A CN 96198782A CN 96198782 A CN96198782 A CN 96198782A CN 1116329 C CN1116329 C CN 1116329C
Authority
CN
China
Prior art keywords
unsaturation
degree
less
polyoxy
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN96198782A
Other languages
English (en)
Other versions
CN1203608A (zh
Inventor
A·M·索姆普森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyondell Chemical Technology LP
Original Assignee
Arco Chemical Technology LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24263402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1116329(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arco Chemical Technology LP filed Critical Arco Chemical Technology LP
Publication of CN1203608A publication Critical patent/CN1203608A/zh
Application granted granted Critical
Publication of CN1116329C publication Critical patent/CN1116329C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/485Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/914Polyurethane cellular product formed from a polyol which has been derived from at least two 1,2 epoxides as reactants

Abstract

由低不饱和度的聚氧亚烷基聚醚多元醇制备的异氰酸酯端接的预聚合物适用于生产有极好物理性质的聚氨酯模制泡沫塑料。优选的是,泡沫塑料是全水发泡的,并很好加工。值得注意的是,该泡沫塑料同时提高了拉伸强度和伸长率,以及有极好的湿变形性和其他性质。

Description

物理性质有改进的模制聚氨酯泡沫塑料
技术领域
本发明涉及用预聚合物法制备的模制软聚氨酯泡沫塑料。更具体地说,本发明涉及由过量的二异氰酸酯或多异氰酸酯与不饱和度小于0.03毫当量不饱和度/克(meq/g)多元醇的多元醇或多元醇组分反应得到的异氰酸酯端接的预聚合物制得的模制软聚氨酯泡沫塑料。该模制泡沫塑料除了有极好的加工范围外,还有改进的物理性质。该泡沫塑料优选是全水发泡的。
背景技术
高回弹性(HR)聚氨酯泡沫塑料块料现在是大吨位的商业产品。HR泡沫塑料块料通常是全水发泡的,可用预聚合物法或一步法技术制备。但是,泡沫塑料块料虽然很适合这样一些应用,如地毯衬底和家具的平减震材料,但它不适合需要异形部件的某些应用,如汽车座位。对于这样的应用来说,通常使用模制聚氨酯泡沫塑料。在模制泡沫塑料中,将形成泡沫塑料的各组分混合,并注入一闭模中,可将闭模加热到150-300℃(热模制)或30-70℃(冷模制)。将多料流的混合物送入混合头的方法称为“一步法”。
因为模制泡沫塑料不能象泡沫塑料块料那样无限制起发,所以各自的配方是十分不同的。甚至用不同的配方,模制泡沫塑料的加工也要比泡沫塑料块料的加工困难得多,常常产生高的边角料率。模制泡沫塑料与泡沫塑料块料的另一差别是,前者在完全固化前必需用人工或用辊或类似的设备机械破碎。另一方面,泡沫塑料可通过US4579700中公开的定时压力释放(TPR),定时部分压力释放(TPPR)或TPR与US4717518中公开的机械破碎的组合方法就地“破碎”。上述TPR的专利已全世界转让。
预聚合物技术比一步法技术有一些优点。由预聚合物技术制得的泡沫塑料由于使用比一步法泡沫塑料要少的反应性化学料流,所以与加工有关的变化较小。在预聚合物泡沫塑料中,聚合物的结构也更加可控。而且,预聚合物技术的应用使泡沫塑料制造商可减少各组分的贮量。虽然在聚氨酯泡沫塑料技术方法的早期工作集中在预聚合物技术上,但目前大部分软泡沫塑料仍用一步法技术生产。就模制泡沫塑料来说,实际上所有的体系都是一步法。预聚合物技术在模制泡沫塑料中不能广泛应用的原因与模制法与块料法的性质有关。
例如,在大家熟悉的聚氨酯专题论文中:“聚氨酯:化学和技术”,J.H.Sanders和K.C.Frisch,科学互联出版社N.Y.,99页,作者指出甚至一步法技术也难用于模制泡沫塑料以及完全令人满意的预聚合物体系完全没有得到。不仅是上述的边角料率高,特别是考虑到表面缺陷,而且在预聚合物制得的模制泡沫塑料中固化期特别长。一步法技术由于降低了边角料率,使材料用量减少,劳动力费用下降以及不需很长的固化期。
R.E.Knox在“基于弹性氨基甲酸乙酯发泡体的预聚物模塑”,橡胶世界,1959年2月,第685-692页中用资料证明了与预聚合物模制泡沫塑料有关的某些缺陷,特别是表面缺陷。所提及的有助于消除表面缺陷的方法是用表面活性剂刷涂或喷涂模表面。但是,这一方法涉及新增步骤,从而使制造费用增加。
为了克服通过预聚合物制得的模制聚氨酯泡沫塑料有关的问题所作的各种努力通常集中在调整这样一些变量上,如催化剂类型、催化剂用量、催化剂组合、交联剂的类型和数量、异氰酸酯组分的异构体含量、聚醚多元醇共混物等。但是,虽然有时也可制得个别成功的体系,但这些体系在加工范围以及在易于适应在物理性质如密度、泡沫塑料柔软性等方面所需的变化以及缺乏柔软性方面仍需改进。未提出预聚合物组分性质方面的基本变化。
涉及上述的配方调整类型的一个例子在US5070114中公开,其中用含有2%(重量)2,4′-(MDI)异构体的亚甲基二苯基二异氰酸酯(MDI)共混物得到的异氰酸酯端接的预聚合物来制备水发泡的模制聚氨酯泡沫塑料。但是,未例举模制泡沫塑料,只生产了自由起发泡沫塑料。
在“在不使用CFC生产软嵌段泡沫体和TDI-基于冷固化-模塑的发泡体”,32届聚氨酯技术销售年会,1989年10月1-4日,G.F.Lunardon等人中,由分开的料流提供的甲苯二异氰酸酯为基础的预聚合物和有高环氧乙烷含量的特殊聚醚多元醇来制备超软模制泡沫塑料。有高含量末端氧亚乙基的聚醚多元醇由于有与高伯羟基含量(即通常大于70%(摩尔))有关的高反应性,通常用于一步法模制泡沫塑料。但是,在潮湿环境中,显著数量的高环氧乙烷含量的多元醇可能对许多物理性质有不希望的影响。生成的泡沫塑料有相当低的回弹性和高的压缩变形。
用于聚氨酯泡沫塑料生产的聚氧亚烷基聚醚多元醇通常使用环氧丙烷或环氧丙烷和环氧乙烷的混合物作为氧化烯,通过有2-8官能度的引发剂的碱催化烷氧基化来制备。对于需要高伯羟基含量即大于70%(摩尔)的一步法模制聚氨酯泡沫塑料来说,通过在烷氧基化的最后阶段,单独使用环氧乙烷的方法,用聚氧亚乙基残基使多元醇封端。这样的多元醇的使用常在潮湿环境中出现一些问题,在那里吸水使聚氨酯塑化。
在用碱催化制备聚氧亚丙基聚醚多元醇的过程中,环氧丙烷竞争性重排生成烯丙醇使反应混合物中有不饱和的一元醇,它本身是单官能的引发剂分子。其结果是不断使官能度下降,不断生成更低分子量的聚氧亚烷基一元醇。因此,碱催化的多元醇的当量重被限制到约2000道尔顿(Da)。甚至在适中的当量重下,聚氧亚丙基二醇的官能度也可能从名义或理论官能度的2下降到1.5-1.7或更小范围内。产物可含有多达40-45%(摩尔)或更多一元醇,一元醇部分还有宽的分子量分布。
在60年代,开发了用于烯氧化聚合的双金属氰化物络合物催化剂(DMC催化剂)。但是,由于与简单的碱性催化剂相比,DMC催化剂的价格有相当大的提高,以及有限的聚合速率,从而使这样的催化剂未广泛应用,尽管它能生产低不饱和度和低一元醇含量的聚氧亚烷基多元醇。非化学计量的金属氰化物络合物催化剂,如在US5100997、4477589、5158922和5248833中公开的,与第一代的DMC催化剂相比有高的聚合速率,在约2000Da当量重范围的多元醇中有低的不饱和度,即0.015-0.018meq/g。但是,考虑到催化剂的价格,所需催化剂的数量仍相当高。但是,最近本发明的代理人已开发了高效的双金属氰化物络合催化剂,它不仅可使用比以前低得多的数量,而且还得到有极低不饱和度的聚氧亚烷基多元醇,即0.002-0.007meq/g。这样的多元醇的测量官能度接近名义引发剂官能度。而且,这些多元醇有很窄的分子量分布,如多分散性(Mw/Mn)通常小于约1.2反映出的那样。适合的制备方法在EP-A-0654302和EP-A-0700949中公开。上述专利在这里作为参考并入。
但是,就聚氧亚乙基封端的多元醇来说,双金属氰化物催化剂有一些缺点。已发现,用环氧乙烯中止DMC催化制备的烯化氧的聚合不是得到高伯羟基含量的氧亚乙基封端的多元醇,而是得到据认为含有相当数量均聚聚氧乙烯的复杂产物。因此,用双金属氰化物催化剂制备环氧乙烷封端的聚醚需要用碱如氢氧化钾改性双金属氰化物催化剂以及需要在常规的碱催化的烷氧基化中不断加入环氧乙烷。这样使多元醇制备方法的费用和复杂性显著增加。
虽然许多好处可归于使用DMC催化制得的聚氧亚烷基多元醇,但这样的醇不能替代传统催化制得的多元醇,原因还不完全清楚,但至少主要是由于一元醇含量、实际的官能度和分子量分布的差别,这些差别得到不同的聚合物微结构。
例如,R.E.Bolin等在“氨基甲酸乙酯泡沫分子结构的性质”,化学工程数据杂志,第4卷,第3号,1959年7月第261-265页中所述,更高分子量多元醇的使用使交联聚氨酯结构中分支点之间的分子量增加,从而使拉伸伸长率增加,而拉伸强度下降。同时,压缩强度也下降,得到更软更可延伸的泡沫塑料。因此,使用可通过DMC催化的烷氧基化制得的更高当量重的多元醇将得到更软更可延伸的泡沫塑料。但是,R.L.Mascioli在“用于新的高分子量多醇的氨基甲酸乙酯应用”,32届聚氨酯技术/销售年会,1989年10月1-4日,第139-142页中指出,在典型的软泡沫塑料配方中,双金属氰化物络合物催化制得的低不饱和度10000Da三元醇的替代,得到刚性的和硬性的泡沫塑料产物,而不是更软的更可延伸的泡沫塑料。J.W.Reish等在“具有优异物理性质的聚氨酯密封剂和浇铸弹性体”33届聚氨酯技术销售年会,1990年9月30日-10月3日,第368页中指出,低不饱和度聚醚多元醇对传统的碱催化制得的更高不饱和度的多元醇的替代,使这样的多元醇制备的弹性体有高的硬度。虽然并不针对本领域,通常在降低硬度为目的场合下,弹性体的这一高硬度可减少这种多元醇在聚氨酯泡沫塑料中的用量。而且,正如本发明人在下面公开的,在一步法模制聚氨酯泡沫塑料配方中,用DMC催化制得的有类似官能度(2.3)的二元醇/三元醇共混物替代传统催化制得的测量官能度为2.2的三元醇使整个泡沫塑料瘪泡。
发明内容
希望将一种适合制备有可接受的加工时间和范围的模制聚氨酯泡沫塑料的预聚合物组合物提供给聚氨酯泡沫塑料工业。还希望提供能得到改进物理性质的模制泡沫塑料产物的泡沫塑料配方。还希望提供能利用双金属氰化物催化制得的聚氧亚烷基多元醇的独特性质而又不需要高的伯羟基含量的预聚合物泡沫塑料配方。
现在令人吃惊地发现,预聚合物为基础的模制聚氨酯泡沫塑料可由基于低不饱和度的聚氧亚烷基多醇的异氰酸酯端接的预聚合物来制备。而且,还令人吃惊地发现,不仅这些预聚合物得到宽的加工范围和短的固化期,而且如此制备的模制聚氨酯泡沫塑料实际上在所有的范畴都有优良的物理性质,包括大大改进的50%湿压缩变形(湿变形)。很难在不牺性其他性质的条件下提高泡沫塑料几乎所有物理性质。
为此,本发明提供了一种制备模制聚氨酯泡沫塑料的方法,该方法包括在闭模中将含有以下组分的生成泡沫塑料的反应混合物,任选地在有效数量的一种或多种促进a)与b)反应的催化剂、对泡孔稳定有效量的一种或多种表面活性剂以及一定数量足以使泡沫塑料密度为16至64kg/m3的发泡剂存在下,反应:a)一种主要含异氰酸酯端接的预聚合物的异氰酸酯组分,按所述异氰酸酯端接的预聚合物的重量计,预聚合物含有5至35重量%NCO基,所述的异氰酸酯端接的预聚合物通过化学计量过量的一种或多种二异氰酸酯或多异氰酸酯与含有双金属氰化物络合物催化剂制备的聚氧亚烷基聚醚多元醇部分的多元醇组分反应来制备,所述聚氧亚烷基聚醚多元醇部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有小于0.03meq不饱和度,数均当量重量为1500至5000;b)一种或多种异氰酸酯反应组分,异氰酸酯指数为70-130。
优选地,在本发明的方法中,所述的二异氰酸酯或多异氰酸酯选自甲苯二异氰酸酯、亚甲基二亚苯基二异氰酸酯或其混合物;所述的多元醇组分其平均不饱和度小于0.02meq/g,和包括主要部分为一种或多种聚氧亚丙基/聚氧亚乙基聚醚多元醇和/或聚合物改性的聚氧亚丙基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.01meq/g,伯羟基含量小于50摩尔%;其中所述的异氰酸酯反应组分含有水作为唯一的发泡剂,按泡沫塑料的重量计,还含有小于5重量%的链烷醇胺交联剂。
在本发明中,用以下步骤制备所述的预聚合物泡沫塑料:将本发明的预聚合物配方与水和任选的辅助发泡剂和添加剂一起送入闭模中;使各反应组分发泡;回收模制的发泡的聚氨酯产物。反应组分的异氰酸酯指数优选为70-130、更优选90-110、最优选约100。术语“闭模”指一种防止泡沫塑料不限制起发的模。这样的模可在聚氨酯反应组分注入模腔以后在关闭条件合模;或者可打开模子,将反应组分计量倒入,然后再将模子关闭。大多数这样的模子有一个或多个放气口,它们可用来监测反应的进程。正如熟悉本专业的技术人员认为的,这样的模子为闭模。
本发明的预聚合物用传统的预聚合物技术制备,使用过量的二异氰酸酯或多异氰酸酯或其混合物,但使用测量不饱和度小于0.03、优选小于0.02、最优选小于0.01meq/g的多元醇组分作为多元醇组分,测量不饱和度用ASTM D-2849-69,“Testing ofUrethane Foam Polyol Raw Materials”测量。用于制备预聚合物的多元醇组分可如下文所述完全含聚氧亚烷基聚醚多元醇、聚氧亚烷基聚醚多元醇与聚合物改性的聚氧亚烷基聚醚多元醇的混合物,或含有少量其他羟基官能度的多元醇,如聚酯二醇、氨基端接的聚氧亚烷基聚醚多元醇,以及其他异氰酸酯反应的多元醇。
聚氧亚烷基聚醚多元醇指由连位烯氧化加成聚合得到的多元醇。完全由非连位环状氧化物如氧杂环丁烷和四氢呋喃制得的多元醇不是这里规定的聚氧亚烷基聚醚多元醇,虽然这样的多元醇也可含在该多元醇组分中。多元醇组分的“测量不饱和度”仅是多元醇组分的聚氧亚烷基聚醚多元醇部分的测量值或测量值的重量平均值。
预聚合物多元醇组分的聚氧亚烷基聚醚多元醇优选由适合的引发剂分子或其混合物的双金属氰化物络合物催化烷氧基化来制备。适合的引发剂分子的非限制性例子是2-8个官能度的引发剂,如水、乙二醇、丙二醇、二乙二醇、二丙二醇、氢醌、双酚A、新戊二醇、环己二醇、环己烷二甲醇、2,2,4-三甲基-1,5-戊二醇、甘油、三羟甲基丙烷、季戊四醇、二季戊四醇、α-甲基-葡糖苷、山梨醇、甘露糖醇、蔗糖、含羟甲基的苯酚/甲醛缩合物等。
优选的名义引发剂官能度为2-6、优选2-4、最优选2-3。特别是当使用金属环烷酸盐或其他产生低不饱和度的催化剂时,也可使用含氨基的引发剂,如各种甲苯二胺异构体,乙二胺,丙二胺,四[2-羟乙基-和2-羟丙基-]乙二胺,链烷醇胺如三乙醇胺、二乙醇胺和单乙醇胺,苯胺,亚甲基二苯胺,二亚乙基三胺等。因此,虽然用DMC催化作用来生产聚氧亚烷基聚醚多元醇是优选的,但也可使用其他能生产低不饱和度多元醇的催化剂。也可使用引发剂分子共混物以及由单一引发剂或多种引发剂分别制备的聚氧亚烷基聚醚多元醇的共混物。用于制备本发明的异氰酸酯端接的预聚合物的多元醇组分的优选总官能度为约2.3至约4、更优选约2.5至3.5。
适合地,本发明的方法可以是如下的方法,其中大多数所述的多元醇组分含有一种或多种高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇,该聚醚多元醇的名义官能度为2-8,按所述的高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇的重量计,平均伯羟基含量小于70%(摩尔),其中希望的是所述平均伯羟基含量小于50%(摩尔)。
本发明的方法可以是如下的方法,其中大多数所述的多元醇组分含有一种或多种聚氧亚烷基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.015meq/g,每一种有至少一个含无规氧亚乙基和氧亚丙基部分的末端嵌段,且每一种的伯羟基含量小于50%(摩尔)。
本发明的方法可以是如下的方法,其中少量所述的多元醇组分含有聚氧亚乙基封端的聚氧亚丙基/聚氧亚乙基聚醚多元醇,以致所述的聚氧亚丙基/聚氧亚乙基聚醚多元醇的伯羟基含量大于50%(摩尔)。
希望的是,本发明的方法可以是如下的方法,其中大多数所述的多元醇组分含有一种或多种高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇和/或聚合物改性的高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.01meq/g,名义官能度为2-8,数均当量重量为800至5000Da,伯羟基含量小于50%(摩尔)。
适合地,本发明的方法可以是如下的方法,其中所述的一种或多种聚氧亚烷基多元醇一起的平均不饱和度小于0.03meq/g;希望的是,这样一种方法,其中至少一部分所述的一种或多种聚氧亚烷基多元醇的伯羟基含量大于70%(摩尔);例如其中所述的伯羟基含量为70%(摩尔)或更大的聚氧亚烷基多元醇含有聚氧亚丙基/聚氧亚乙基末端嵌段。
根据本发明的另一方面,提供了一种聚氨酯模制泡沫塑料,其特征在于它由本文中描述的本发明的方法制备,适合的泡沫塑料是其中湿变形小于15%,优选小于10%。
因为低分子量引发剂,特别是那些有连位羟基的低分子量引发剂在DMC催化剂催化烷氧基化时可能产生不希望的相当长的诱导期和/或较低的烷氧基化速率,所以由上述引发剂或其他引发剂制得的聚氧亚烷基低聚物可优选使用,而不是使用单体的低分子量引发剂本身。例如,当量重为100-1000Da、优选100-600Da的低聚聚氧亚烷基多元醇引发剂是优选的。这样的低聚聚氧亚烷基多元醇引发剂可用各自单体的低分子量引发剂的传统的碱催化烷氧基化来制备,随后除去碱性催化剂残渣或用中和的方法使碱催化剂失活,用吸附剂如硅酸镁处理,随后过滤,用离子交换脱除等。制备低聚聚氧亚烷基多元醇引发剂的其他方法也是适用的。
引发剂分子的烷氧基化用一种或多种高碳烯化氧,任选与环氧乙烷混合来进行。高碳烯化氧指有3个或3个以上碳原子的烯化氧,例如环氧丙烷,1,2-和2,3-环氧丁烷、C5-C18α-烯化氧、表氯醇等。优选的是环氧丙烷和环氧丁烷,前者是最优选的。环氧乙烷与一种或多种高碳烯化氧的混合物的使用得到基本上无规的共聚物。在烷氧基化过程中,可改变高碳烯化氧与环氧乙烷的比例,以便生产含全部高碳烯化氧得到的残基嵌段和/或一个或多个高碳烯化氧/环氧乙烯残基嵌段的多嵌段多元醇。当使用DMC催化作用时,应避免只用环氧乙烷的聚合。
聚氧亚烷基多元醇优选含有0-25、更优选5-25、最优选5-20%(重量)以无规形式或作为封端形式存在的氧亚乙基残基。正如上面说明的,无规氧亚乙基残基可通过在DMC催化剂或其他产生低不饱和度的催化剂存在下,在烷氧基化过程中,与高碳烯化氧一起简单地加入环氧乙烷来引入。为了制备聚氧亚乙基封端的多元醇,必需用不同于DMC催化剂的催化剂,优选但不限于碱性催化剂,如钠或钾的氢氧化物或烷氧化物来进行烷氧基化。
当氧亚烷基封端的聚氧亚烷基多元醇是希望的,以及用DMC催化剂进行环氧丙烷或环氧丙烷/环氧乙烷混合物聚合时,如果需要,可在引入传统的烷氧基化催化剂以前除去DMC催化剂或催化剂残渣,但优选在不除去DMC催化剂的条件下简单地加入碱性催化剂。碱性催化剂使DMC催化剂失活,用氧亚乙基残基封端,制得其伯羟基含量至多100%(摩尔)的聚氧亚烷基聚醚多元醇。但是,伯羟基含量优选为0至约70、更优选0-50、最优选0-30%(摩尔)。最令人吃惊的是,由高碳烯化氧和环氧乙烷混合物DMC催化聚合制备的,没有封端以及伯羟基含量小于50%(摩尔)、优选小于30%(摩尔)的聚氧亚烷基聚醚多元醇适用于制备模制聚氨酯泡沫塑料,在没有单独的氧亚乙基封端步骤下制备多元醇。
不管制备方法如何,无论封端与否的聚氧亚烷基聚醚多元醇的重均测量不饱和度都小于0.03、优选小于0.02、更优选小于0.01meq/g,如用ASTM D-2849-69测量的。如果这里规定的多元醇组分的聚氧亚烷基聚醚多元醇部分的重均不饱和度不小于0.03meq/g,那么就不能制得有所需性质的泡沫塑料。
聚合物改性的多元醇用于多元醇组分时,它们最优由以前描述的低不饱和度聚氧亚烷基多元醇制备。优选的聚合物改性的多元醇通过以前称为“基础”或“载体”的多元醇的聚氧亚烷基多元醇的一种或多种乙烯基单体原位聚合来制备。优选的乙烯基单体是丙烯腈和苯乙烯,虽然也可使用其他单体,如各种丙烯酸酯、甲基丙烯酸酯以及其他乙烯基单体。对于熟悉本专业的技术人员来说,原位聚合的方法是大家熟悉的,例如US3383351、3953393和4119586公开的,它们在这里作为参考并入。当测量或计算多元醇组分的聚氧亚烷基聚醚多元醇部分的平均不饱和度时,包括聚氧亚烷基聚醚基础或载体多元醇。
除了上述的含聚乙烯基聚合物的聚合物改性的多元醇外,聚合物多元醇还可通过加入细研磨的聚合物颗粒或原位降低较大颗粒的尺寸形成适合的分散液来制备。也可使用通过异氰酸酯与各种氨基官能的、羟基官能的或氨基/羟基官能的单体反应形成所谓的PUD(聚脲分散液)多元醇、PID(多异氰酸酯分散液)多元醇、PIPA(异氰酸酯与链烷醇胺的反应产物)、PHD多元醇等制备的分散液。所有这些多元醇都在文献中有很好的描述。PHD和PIPA多元醇是商业产品。
多元醇组分的平均当量重应为1000-5000、优选1500-5000、最优选1500-3000Da。在这里以道尔顿(Da)表示的当量重和分子量指数均重量,除非另加说明。多元醇组分的平均羟基数可为10-80、更优选10-56、最优选15-35。
多元醇组分可含有单一的聚氧亚烷基多元醇、聚氧亚烷基多元醇共混物、单一的聚氧亚烷基聚合物改性的多元醇或聚氧亚烷基多元醇和聚合物改性的聚氧亚烷基多元醇的共混物。多元醇组分还可含有羟基官能的聚酯、氨基官能的聚氧亚烷基多元醇等。多元醇组分的聚氧亚烷基多元醇无论是传统的(未聚合物改性的)或是聚合物改性的多元醇,都优选用催化剂来制备,以致使不饱和度降低。但是,可使用通过碱性催化作用或其他得到不饱和度大于0.03meq/g的催化作用方法制得的聚氧亚烷基多元醇或聚合物改性的聚氧亚烷基多元醇,条件是多元醇组分的聚氧亚烷基聚醚多元醇的总不饱和度小于以前规定的限制,即小于0.03meq/g、更优选小于0.01meq/g。
用于制备本发明的异氰酸酯端接的预聚合物的异氰酸酯组分包括已知的芳族和脂族二异氰酸酯和多异氰酸酯,例如2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯及其混合物(TDIs)、2,2′-、2,4′-和4,4′-亚甲基二亚苯基二异氰酸酯及其混合物(MDIs)、聚亚甲基聚亚苯基多异氰酸酯(PMDIs)、1,6-己烷二异氰酸酯、异佛尔酮二异氰酸酯以及这些异氰酸酯的混合物。也可使用其他异氰酸酯。通过二异氰酸酯或多异氰酸酯与异氰酸酯反应的单体或低聚物或与它们本身反应制备的所谓的改性异氰酸酯也是适用的。其例子是通过二异氰酸酯或多异氰酸酯或其混合物与一种或多种二元醇、三元醇、低聚聚氧亚烷基二元醇或多元醇或其混合物反应制备的尿烷改性的异氰酸酯;通过异氰酸酯与二胺或氨基端接的聚氧亚烷基聚醚低聚物反应制备的脲改性的异氰酸酯;以及通过异氰酸酯或改性的异氰酸酯与其本身在适合的催化剂存在下反应制备的碳化二亚胺、多异氰脲酸酯、脲酮亚胺(uretonimine)、脲基甲酸酯和二氮丁酮改性的异氰酸酯。这样的异氰酸酯和改性的异氰酸酯是很好的商业产品。特别优选的二异氰酸酯和/或多异氰酸酯包括TDIs、MDIs、PMDIs及其混合物,特别是TDIs和MDIs的混合物,后者优选主要含4,4′-异构体。
本发明的预聚合物用传统的方法,通过多元醇组分与异氰酸酯组分在尿烷助催化剂存在下或没有尿烷助催化剂下反应来制备,例如在聚氨酯手册,昆特欧尔泰,汉莎出版社,慕尼黑1985,聚氨酯:化学和技术,J.H.Saunders和K.C.Frisch,科学互联出版社,纽约,1963和在US5070114中描述的,它们在这里作为参考并入。制备异氰酸酯端接的预聚合物的连续法和间歇法在“氨基甲酸乙酯发泡体预聚物的连续处理”,J.R.Wall,化学工程进展,V.57,No.10,第48-51页;Sanders,op.cit.,第2部分,第38-43页;US5278274;欧州专利申请书EPO480588A2;和加拿大专利No.2088521中描述。
本发明预聚合物的游离异氰酸酯(NCO)基含量为5-35、优选6-25、最优选8-20%(重量)。
异氰酸酯端接的预聚合物含有模制聚氨酯泡沫塑料体系的A组分(生成异氰酸的组分)。本发明模制聚氨酯泡沫塑料体系的B组分(树脂组分)使用异氰酸酯反应组分、发泡剂、表面活性剂以及其他添加剂和辅助剂,例如链增长剂、交联剂、催化剂、染料、颜料、填充剂等。在另一替代物中,一种或多种B组分可包括在A组分中。
催化剂通常是需要的。催化剂可选自传统的尿烷助催化剂,如锡催化剂如二乙酸二丁基锡、二月桂酸二丁基锡、辛酸亚锡等;胺催化剂如NIAXA-1、二亚乙基三胺、1,4-二氮杂双环[2.2、2]辛烷等。也可使用金属催化剂和胺催化剂的混合物。胺催化剂是优选的。熟悉本专业的技术人员很容易确定催化剂的用量,按泡沫塑料的重量计,例如催化剂的用量可为0.1-5%(重量)。
适合的链增长剂包括各种亚烷基二醇和分子量至多约300Da的低聚聚氧亚烷基二醇,例如乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、二乙二醇、二丙二醇、三丙二醇等。可调节链增长剂的用量,以便使泡沫塑料有必需的加工性质或物理性质。优选的是,只用最少量的链增长剂,例如按泡沫塑料的重量计,小于10、优选小于5%(重量)。氨基官能的链增长剂如MOCA、甲苯二胺和受阻芳族胺也是适用的。
适合的交联剂包括多羟基官能的单体化合物如甘油,但优选链烷醇胺,如单乙醇胺、二乙醇胺(DEOA)和三乙醇胺(TEOA)。如链增长剂的情况一样,交联剂使用时,优选使用最少的数量,例如按泡沫塑料的总重计,小于10、优选小于5%(重量)。链增长剂和交联剂都使用时,优选将它们溶于作为发泡剂的水中。
泡孔稳定表面活性剂通常是需要的。适合的泡孔稳定表面活性剂包括熟悉本专业的技术人员所熟悉的各种有机聚硅氧烷和聚氧亚烷基有机聚硅氧烷。适合的表面活性剂包括Air Products提供的DC5043和OSi,Inc。提供的Y-10515。另外的表面活性剂由威克硅氧烷,安德利安,密歇根州和戈尔德史密特股份公司,德国提供。也可使用表面活性剂的组合物,例如由Union CarbideCorporation提供的Tergitol 15-S-9和DC5043的共混物。表面活性剂的用量应为有效避免泡沫塑料瘪泡的数量,它很容易由熟悉本专业的技术人员确定。按泡沫塑料的重量计,0.1至约5、优选0.5至2%(重量)的数量可能是适合的。
B组分还可含有聚氧亚烷基多元醇和/或聚合物改性的聚氧亚烷基多元醇,其中多元醇的分子量为约300Da或更高,优选当量重为500-5000、更优选1000-3000。与预聚合物相比,总的多元醇的至多约50%(重量)、优选至多25%(重量)含在B组分中,因为含在预聚合物中的多元醇不必反应,已经结合在预聚合物中。更优选的是,预聚合物含有超过90%的多元醇,特别是实际上全部为多元醇。由于相同的原因,对于任何B组分多元醇来说,高的伯羟基含量不是必要的。但是,B组分多元醇可优选含有大于50、更优选大于70%(摩尔)伯羟基。优选没有另外的聚氧亚烷基多元醇含在B组分配方中。
B组分含有一种或多种化学类型和/或物理类型发泡剂。优选的发泡剂为水,它与异氰酸酯反应生成脲链,同时释放出二氧化碳气体。也可单独使用或与水一起使用物理发泡剂。另外的发泡剂的非限制性例子包括低碳烷烃,如丁烷、异丁烷、戊烷、环戊烷、己烷等;氯氟碳(CFCs),如一氯三氟甲烷,二氯二氟甲烷等;氢氯氟碳(HCFCs),如一氟二氯甲烷和一氯二氟甲烷;全氟化的C3-C8脂族的和环脂族的烃类(PFCs)以及基本上氟化的类似物(HPFCs);氯化的烃类,二氯甲烷;液态CO2等。由于环境问题,最好避免使用CFC’s。如上所述,优选的发泡剂为水,它最优选单独用作发泡剂。也可加入起沫剂,如CO2、N2和空气。
这样来选择发泡剂的用量,以便得到的泡沫塑料密度为约16kg/m3(1.0lb/ft3)或更小至64kg/m3(4.0lb/ft3)或更大、更优选16kg/m3(1.0lb/ft3)至48kg/m3(3.0lb/ft3)、最优选约19kg/m3(1.2lb/ft3)至约45kg/m3(2.8lb/ft3)。特别优选每100份总的多元醇组分的水用量为1.0至7.0、优选2.0至约6.0份。
用低压或高压混合头,按传统的方法使A组分和B组分混合,并送入任选并优选保持在常温以上的模子中。模温可保持在适用于热模制或冷模制的温度下。模可关闭,将生成泡沫塑料的组分送入适合的进料口,或者可打开模子,在加入泡沫塑料配方后关闭。泡沫塑料经固化、脱模、定时压力释放和/或破碎,按传统的方式固化。令人吃惊地发现,不仅本发明的泡沫塑料配方很好加工,而且与由类似的体系得到的传统泡沫塑料相比,泡沫塑料有优良的质量。而且,这些结果可由各种多元醇得到,与生产模制泡沫塑料通常所需的伯羟基含量无关。
实施例
已一般地描述了本发明,可参考某些具体的实施例进一步了解本发明,这些实施例在这里仅用于说明,不打算用来限制本发明,除非另加说明。
对比例1和2
两种表1所示的“一步法”配方,一种在B组分中含有低一元醇含量的多元醇,第二种含有传统的EO封端的、KOH催化制得的多元醇,它有高得多的不饱和度,但有类似的多元醇官能度。正如可看出的,低伯羟基含量的低不饱和度的多元醇不能生产出典型HR泡沫塑料。
                      表1泡沫塑料组成:低不饱和度基础多元醇                     74传统的多元醇                                    74聚合物多元醇                             26     26水                            4.1         4.1DEOA                          1.2         1.2Niax A-107                    0.20        0.20Niax A-33                     0.40        0.40OSi Y-10515                   1.00        1.00TDI                           100指数     100指数多元醇性质
羟基数(mg KOH/g)          28          28
多元醇官能度              2.3         2.2
环氧乙烷含量(%(重量))    15          15
伯羟基含量(%(摩尔))      22          75
多元醇不饱和度(meq/g)     0.003       0.070泡沫塑料性质:
                          低不饱和度  传统不饱和度模制部件密度(lb/ft3)kg/m3              (1.8)29回弹率(%)                                 6925%IFD(lbs)kg                完全        (24)1150%IFD(lbs)kg                瘪泡        (44)2065%IFD(lbs)kg                            (68)31拉伸强度(psi)kg/m2                       (22)1500断裂伸长(psi)kg/m2                       (186)131000撕裂强度(lb/in)kg/m                       (1.55)2875%干压缩变形(%)                        750%湿态老化压缩变形(%)                  1850%湿压缩变形(%)                        32
对比例1和2说明,仅DMC催化制得的低一元醇含量的低不饱和度多元醇替代传统的聚氨酯模制多元醇(高伯羟基含量),尽管有相同的总氧亚乙基含量,但得到这样一种泡沫塑料体系,其中在一步法模制泡沫塑料中泡沫塑料完全瘪泡。
实施例1和对比例3
用有类似总官能度的低不饱和度和传统不饱和度(高不饱和度、高一元醇含量)聚醚多元醇,用预聚合物法生产模制泡沫塑料。将两种低一元醇含量、低不饱和度多元醇(一为三元醇,一为二元醇)共混,制成一种基础多元醇组合物,其实际的官能度类似于对比多元醇。注意,实际的或测量的官能度为实际多元醇官能度的测量值,不是“名义”官能度,或多元醇原料(starter)的官能度,正如通常报道的。这些实施例比较了完全为低一元醇含量或传统含量的泡沫塑料(即基础多元醇和聚合物多元醇是低不饱和度的或传统不饱和度的)。每种泡沫塑料的聚合物固体含量是相同的,聚合物多元醇含量的差别是固体含量归一的结果(低不饱和度聚合物多元醇为43%(重量)固体,传统聚合物多元醇为38%(重量)固体)。
下面的结果表明,当使用由低不饱和度多元醇制备的预聚合物时,在坚固性、拉伸强度、伸长率、撕裂强度、干压缩变形、湿态老化压缩变形、湿变形和耐用性参数:蠕变、负荷损失和高度损失方面有明显地和令人吃惊地改进。在几篇论文中讨论了动态性质的测试,包括“新的动态挠曲耐久性试验1”,K.D.Cavender,33届聚氨酯技术销售年会,1990年9月30日-10月3日,第282-288页;“有效时间发泡体行为试验”,K.D.Cavender,34届聚氨酯技术/销售年会,1992年10月21日-24,第260-265页;和“用于自动座椅泡沫的有效时间试验”,SAE国际会议与展览,论文号930634,1993。
                       表2 预聚合物                     低不饱和度          传统多元醇
                             多元醇低不饱和度基础多元醇1(OH=28)   73                     -传统基础多元醇2(OH=28)            -            70Arcol 25804                        4            4低不饱和度聚合物多元醇3            23           -传统聚合物多元醇5                  -            26TDI/MDI(80/20)                      42           42聚合物固体含量                      ~10%       ~10%基础多元醇官能度                    ~2.3        ~2.2基础多元醇不饱和度(meq/g)           0.003        0.07泡沫塑料组成低不饱和度预聚合物(上述的)          100          -传统聚合物(上述的)                  -            100水                                  2.5          2.5OSi Niax A-1催化剂                  0.25         0.25表面活性剂共混物(Tergitol 15-S-9/DC5043)            1.1          1.1泡沫塑料性质模制部件密度(lb/ft3)kg/m3        (2.3)37      (2.3)37回弹性(%)                          61           6225%IFD(lbs)kg                      (38)17       (33)1550%IFD(lbs)kg                      (62)28       (59)2765%IFD(lbs)kg                      (84)38       (83)38拉伸强度(psi)kg/m2                 (20.2)14200  (14.7)10300断裂伸长(psi)kg/m2                 (178)125000  (135)95000撕裂强度(lb/in)kg/m                 (2.20)40     (1.91)3450%干压缩变形(%)                  4.5           8.475%干压缩变形(%)                  3.1           6.850%湿态老化压缩变形(%)          8.0        11.150%湿压缩变形(%)                9.0        24.1动态疲劳性质蠕变,%                          8.0        9.2负荷损失,%                      15.6       21.8高度损失,%                      1.4        2.4
1由混合二元醇/三元醇DMC催化烷氧基化制备的含有15%(重
量)氧亚乙基残基的聚氧亚丙基/聚氧亚乙基多元醇,不饱和
度为约0.005meq/g伯羟基含量为约30%和官能度为2.3。
2一种碱(KOH)催化的聚氧亚丙基/聚氧亚乙基多元醇,不饱和
度为0.07meq/g,测量官能度为2.2,含有15%(重量)氧亚乙
基残基作为封端。
3一种聚合物改性的多元醇,含有43重量%的分子量为6000
聚氧亚丙基/聚氧亚乙基原位聚合的37/63丙烯腈/苯乙烯固
体,含有15%无规氧亚乙基残基的DMC催化的低不饱和度多元
醇。
4一种泡孔扩孔多元醇,传统催化的,有75%氧亚乙基和25%
氧亚丙基残基共进料(无规的),羟基数为40。
5类似低不饱和度聚合物改性多元醇的聚合物改性的多元醇,
但含有38%固体,基础多元醇不饱和度为约0.04meq/g。
实施例1和对比例3说明与传统的碱催化制得的多元醇得到的预聚合物相比,当使用基于低不饱和度多元醇的预聚合物时,泡沫塑料的物理性质得到意想不到和令人吃惊的提高。由用于预聚合物制备的聚合物改性的多元醇提供的两种泡沫塑料配方有相同的固体含量。值得注意的是,25%IFD提高,拉伸强度(提高37%)和断裂伸长率(提高32%)都有相当大的改进。先有技术指出,可预计后两种性质之一的改进会使另一性质下降。撕裂强度也提高,或许最值得注意的改进是干压缩变形和湿态老化压缩变形,特别是湿变形性能,后者有67%的改进!在暴露到热的潮湿环境的地方,如在美国南部和热带地区的环境中,在模制座位例如汽车座位中湿变形是特别重要的。
除了上面讨论的静态性质外,本发明的泡沫塑料还在动态疲劳性质方面有明显的改进,如抗蠕变、负荷损失和高度损失,并证明还有很好的复合材料耐用性。
实施例2
由以下组分反应制备的异氰酸酯端接的预聚合物来制备模制泡沫塑料:73份甘油开始的聚氧亚丙基多元醇(不饱和度为0.003meq/g,含15%(重量)无规氧亚乙基部分和伯羟基含量为30%);23份聚合物多元醇(有43%丙烯腈/苯乙烯(37/63)固体作为分散相,在其羟基数为35和氧亚乙基含量为19%的传统催化的基础多元醇中);4份ARCOL2580聚醚多元醇(一种传统催化的羟基数为40的75%氧亚乙基/25%氧亚丙基无规多元醇);42份80/20TDI/MDI共混物。预聚合物与3.5份水、1.0份二乙醇胺、0.25份NIAXR A-1胺催化剂和1.0份Air Products DC 5043硅酮表面活性剂反应。泡沫塑料试验结果如入。泡沫塑料结果:模制部件密度(lb/ft3)kg/m3          (2.3)37回弹性(%)                            6625%IFD(lbs)kg                        (31)1450%IFD(lbs)kg                        (53)2465%IFD(lbs)kg                        (77)35拉伸强度(psi)kg/m2                   (16.9)11900断裂伸长(psi)kg/m2                   (125)88000撕裂强度(lb/in)kg/m                   (1.52)2750%干压缩变形(%)                    5.875%干压缩变形(%)                    5.350%湿态老化压缩变形(%)              8.550%湿压缩变形(%)                       11.0
实施例4和对比例6
按类似实施例1公开的方法,将使用低不饱和度多元醇和类似官能度的碱催化的多元醇的另一些预聚合物配方用来生产模制泡沫塑料。配方和泡沫塑料的物理性质列入下表4。
                              表4 预聚合物组成                            低不饱和度    传统多元醇
                                      多元醇低不饱和度,28 OH三元醇1                36.5低不饱和度,28 OH二元醇2                36.5传统多元醇,28OH三元醇3                                73Arcol 2580(40 OH多元醇)                  4              4聚合物多元醇4                           23             2380/20 TDI/MDI异氰酸酯共混物              42             42基础多元醇官能度                         ~2.5          ~2.5泡沫塑料配方低不饱和度多元醇                         100传统多元醇预聚合物                                      100水                                       2.5            2.5OSi Niax A-1催化剂                       0.18           0.18表面活性剂共混物(UCC                     0.35           0.35Tergitol15-S-9/DC5043)泡沫塑料性质模制密度(lb/ft3)kg/m3                 (2.3)37        (2.3)37表面活性剂共混物(UCC                     0.35           0.35Tergitol15-S-9/DC 5043)泡沫塑料性质模制密度(lb/ft3)kg/m3           (2.3)37          (2.3)3725%IFD(lbs)kg                     (37)17           (37)1765%IFD(lbs)kg                     (84)38           (82)37拉伸强度(psi)kg/m2                (20.2)14000      (18.0)12600伸长率(%)                         178              161撕裂强度(lb/in)kg/m                (2.20)39         (1.89)3450%压缩变形(%)                   4.5              7.675%压缩变形(%)                   3.1              6.350%湿态压缩变形(%)               8.0              11.250%湿变形(%)                     9.0              30.3
1一种聚氧丙烯/聚氧乙烯,DMC催化制备的丙氧基化的甘油低
聚物开始的无规共聚物,含15%(重量)氧亚乙烯残基,伯羟基
含量为30%(摩尔),不饱和度为0.005meq/g。
2一种聚氧丙烯/聚氧乙烯,DMC催化剂备的丙氧基化的乙二醇
低聚物开始的无规共聚物,含15%(重量)氧亚乙基残基,伯羟
基含量为30%(摩尔),不饱和度为0.005meq/g。
3一种碱催化的(KOH)甘油开始的聚氧亚丙基/聚氧亚乙基三
醇,不饱和度为0.07meq/g,官能度为2.2,含有15%(重量)
氧亚乙基残基作为封端。
4聚合物改性的多元醇,含43%固体,基础多元醇的不饱和度
为约0.04meq/g。
可以看出,与以前的实施例一致,当模制泡沫塑料由低不饱和度多元醇得到的预聚合物制备时,泡沫塑料的性质有相当大的改进。
通过对本发明全面地描述,对于熟悉本专业的普通技术人员来说,在不违背这里所述的本发明的实质或范围的条件下,可对本发明作许多变化和改进是显而易见的。

Claims (26)

1.一种制备模制聚氨酯泡沫塑料的方法,该方法包括在闭模中将含有以下组分的生成泡沫塑料的反应混合物,任选地在有效数量的一种或多种促进a)与b)反应的催化剂、对泡孔稳定有效量的一种或多种表面活性剂以及一定数量足以使泡沫塑料密度为16至64kg/m3的发泡剂存在下,反应:
a)一种主要含异氰酸酯端接的预聚合物的异氰酸酯组分,按所述异氰酸酯端接的预聚合物的重量计,预聚合物含有5至35重量%NCO基,所述的异氰酸酯端接的预聚合物通过化学计量过量的一种或多种二异氰酸酯或多异氰酸酯与含有由双金属氰化物络合物催化剂制备的聚氧亚烷基聚醚多元醇部分的多元醇组分反应来制备,所述聚氧亚烷基聚醚多元醇部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有小于0.03meq不饱和度,数均当量重量为1500至5000;
b)一种或多种异氰酸酯反应组分,异氰酸酯指数为70-130。
2.根据权利要求1的方法,其特征在于所述多元醇组分的所述聚氧亚烷基聚醚部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有0.02meq不饱和度。
3.根据权利要求1的方法,其特征在于所述多元醇组分的所述聚氧亚烷基聚醚多元醇部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有0.01meq不饱和度。
4.根据权利要求1的方法,其特征在于,大多数所述的多元醇组分含有一种或多种高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇,其名义官能度为2-8,按所述的高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇的重量计,平均伯羟基含量小于70摩尔%。
5.根据权利要求4的方法,其特征在于,按所述的聚氧亚烷基/聚氧亚乙基聚醚多元醇计,平均伯羟基含量小于50摩尔%。
6.根据权利要求1的方法,其特征在于,大多数所述的多元醇组分含有一种或多种聚氧亚丙基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.015meq/g,每一种有至少一个含无规氧亚乙基和氧亚丙基部分的末端嵌段,每一个的伯羟基含量小于50摩尔%。
7.根据权利要求1的方法,其特征在于,少量所述的多元醇组分含有聚氧亚乙基封端的聚氧亚丙基/聚氧亚乙基聚醚多元醇,以致所述的聚氧亚丙基/聚氧亚乙基聚醚多元醇的伯羟基含量大于50摩尔%。
8.根据权利要求1的方法,其特征在于,所述的多元醇组分含有聚合物改性的多元醇。
9.根据权利要求1的方法,其特征在于,大多数所述的多元醇组分含有一种或多种高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇和/或聚合物改性的高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.01meq/g,名义官能度为2-8,数均当量重量为800至5000Da,伯羟基含量小于50摩尔%。
10.根据权利要求9的方法,其特征在于,所述的一种或多种高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇和/或聚合物改性的高碳聚氧亚烷基/聚氧亚乙基聚醚多元醇中至少一种的数均当量重量为1500至3000Da。
11.根据权利要求1的方法,其特征在于,所述的异氰酸酯反应组分含有一种或多种聚氧亚烷基多元醇。
12.根据权利要求11的方法,其特征在于,所述的一种或多种聚氧亚烷基多元醇一起的平均不饱和度小于0.03meq/g。
13.根据权利要求11或12的方法,其特征在于,至少一部分所述的一种或多种聚氧亚烷基多元醇的伯羟基含量大于70摩尔%。
14.根据权利要求13的方法,其特征在于,所述的伯羟基含量为70摩尔%或更大的聚氧亚烷基多元醇含有这样一种聚氧亚丙基/聚氧亚乙基聚醚多元醇,它含有至少一种聚氧亚乙基末端嵌段。
15.根据权利要求1的方法,其特征在于,所述的异氰酸酯反应组分含有还作为反应发泡剂的水。
16.根据权利要求15的方法,其特征在于,水为唯一的发泡剂。
17.根据权利要求1的方法,其特征在于,所述的异氰酸酯反应组分含有链增长剂和/或交联剂。
18.根据权利要求17的方法,其特征在于,按所述的泡沫塑料的重量计,所述的链增长剂或交联剂小于5重量%。
19.根据权利要求17或18的方法,其特征在于,所述的交联剂选自链烷醇胺类。
20.根据权利要求19的方法,其特征在于,所述的交联剂选自二乙醇胺或三乙醇胺。
21.根据权利要求1的方法,其特征在于,所述的二异氰酸酯或多异氰酸酯选自甲苯二异氰酸酯、亚甲基二亚苯基二异氰酸酯或其混合物;所述的多元醇组分其平均不饱和度小于0.02meq/g,和包括主要部分为一种或多种聚氧亚丙基/聚氧亚乙基聚醚多元醇和/或聚合物改性的聚氧亚丙基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.01meq/g,伯羟基含量小于50摩尔%;其中所述的异氰酸酯反应组分含有水作为唯一的发泡剂,按泡沫塑料的重量计,还含有小于5重量%的链烷醇胺交联剂。
22.一种聚氨酯模制泡沫塑料,其特征在于它是由如下方法制备的,该方法包括在闭模中将含有以下组分的生成泡沫塑料的反应混合物,任选地在有效数量的一种或多种促进a)与b)反应的催化剂、对泡孔稳定有效量的一种或多种表面活性剂以及一定数量足以使泡沫塑料密度为16至64kg/m3的发泡剂存在下,反应:
a)一种主要含异氰酸酯端接的预聚合物的异氰酸酯组分,按所述异氰酸酯端接的预聚合物的重量计,预聚合物含有5至35重量%NCO基,所述的异氰酸酯端接的预聚合物通过化学计量过量的一种或多种二异氰酸酯或多异氰酸酯与含有由双金属氰化物络合物催化剂制备的聚氧亚烷基聚醚多元醇部分的多元醇组分反应来制备,所述聚氧亚烷基聚醚多元醇部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有小于0.03meq不饱和度,数均当量重量为1500至5000;
b)一种或多种异氰酸酯反应组分,异氰酸酯指数为70-130。
23.根据权利要求22的泡沫塑料,其特征在于所述多元醇组分的所述聚氧亚烷基聚醚部分的不饱和度为每克聚氧亚烷基聚醚多元醇部分有0.02meq不饱和度。
24.根据权利要求22的泡沫塑料,其特征在于,所述的二异氰酸酯或多异氰酸酯选自甲苯二异氰酸酯、亚甲基二亚苯基二异氰酸酯或其混合物;所述的多元醇组分其平均不饱和度小于0.02meq/g,和包括主要部分为一种或多种聚氧亚丙基/聚氧亚乙基聚醚多元醇和/或聚合物改性的聚氧亚丙基/聚氧亚乙基聚醚多元醇,每一种的不饱和度小于0.01meq/g,伯羟基含量小于50摩尔%;其中所述的异氰酸酯反应组分含有水作为唯一的发泡剂,按泡沫塑料的重量计,还含有小于5重量%的链烷醇胺交联剂。
25.根据权利要求22的泡沫塑料,其特征在于,湿变形小于15%。
26.根据权利要求22的泡沫塑料,其特征在于,湿变形小于10%。
CN96198782A 1995-12-04 1996-11-15 物理性质有改进的模制聚氨酯泡沫塑料 Expired - Lifetime CN1116329C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/566,559 US5700847A (en) 1995-12-04 1995-12-04 Molded polyurethane foam with enhanced physical properties
US08/566,559 1995-12-04

Publications (2)

Publication Number Publication Date
CN1203608A CN1203608A (zh) 1998-12-30
CN1116329C true CN1116329C (zh) 2003-07-30

Family

ID=24263402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96198782A Expired - Lifetime CN1116329C (zh) 1995-12-04 1996-11-15 物理性质有改进的模制聚氨酯泡沫塑料

Country Status (16)

Country Link
US (1) US5700847A (zh)
EP (1) EP0865457B1 (zh)
JP (1) JP3920343B2 (zh)
KR (1) KR100453458B1 (zh)
CN (1) CN1116329C (zh)
AR (1) AR004855A1 (zh)
AU (1) AU725631B2 (zh)
BR (1) BR9611866A (zh)
CZ (1) CZ296423B6 (zh)
DE (1) DE69620629T2 (zh)
ES (1) ES2175154T3 (zh)
MX (1) MX9804254A (zh)
PL (1) PL187122B1 (zh)
RU (1) RU2167890C2 (zh)
TW (1) TW387911B (zh)
WO (1) WO1997020875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459349A (zh) * 2014-03-26 2017-02-22 路博润高级材料公司 聚氨酯泡沫体及其制造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668191A (en) 1995-12-21 1997-09-16 Arco Chemical Technology, L.P. One-shot cold molded flexible polyurethane foam from low primary hydroxyl polyols and process for the preparation thereof
US6066683A (en) * 1998-04-03 2000-05-23 Lyondell Chemical Worldwide, Inc. Molded and slab polyurethane foam prepared from double metal cyanide complex-catalyzed polyoxyalkylene polyols and polyols suitable for the preparation thereof
TWI262930B (en) * 1999-02-10 2006-10-01 Mitsui Chemicals Inc High-durability flexible polyurethane cold molded foam and process for producing the same
DE19918727A1 (de) * 1999-04-24 2000-10-26 Bayer Ag Langkettige Polyetherpolyole mit hohem Anteil primärer OH-Gruppen
DE19928156A1 (de) * 1999-06-19 2000-12-28 Bayer Ag Aus Polyetherpolyolen hergestellte Polyurethan-Weichschäume
CA2396845C (en) * 2000-02-14 2009-04-14 Huntsman International Llc Process for preparing a flexible polyurethane foam
DE60120390T2 (de) 2000-04-14 2007-05-16 Asahi Glass Co., Ltd. Verfahren zur herstellung von flexiblem polyurethanschaum
US6344494B1 (en) 2000-05-24 2002-02-05 Basf Corporation Use of low unsaturated polyether polyols in slabstock foam applications
EP1174453A1 (en) * 2000-07-17 2002-01-23 Huntsman International Llc Process for preparing a flexible polyurethane foam
EP1234843A1 (en) * 2001-02-26 2002-08-28 Huntsman International Llc Process for preparing a flexible polyurethane foam
RU2188072C1 (ru) * 2001-07-04 2002-08-27 Закрытое акционерное общество "Блокформ" Полиуретановый сорбент углеводородов и способ очистки водных сред и твердых поверхностей от углеводородных загрязнений с его использованием
KR100873594B1 (ko) * 2001-07-18 2008-12-11 아사히 가라스 가부시키가이샤 폴리올 및 폴리머 분산 폴리올의 제조방법
US7094811B2 (en) * 2002-10-03 2006-08-22 Bayer Corporation Energy absorbing flexible foams produced in part with a double metal cyanide catalyzed polyol
US7005552B2 (en) 2003-11-03 2006-02-28 Bayer Materialscience Llc Single reactor synthesis of KOH-capped polyols based on DMC-synthesized intermediates
US20050101681A1 (en) * 2003-11-07 2005-05-12 Kaushiva Bryan D. Molded polyurethane foam with property enhancements for improved comfort and greater durability
US20090143495A1 (en) * 2005-08-12 2009-06-04 Katsuhisa Nozawa Composition for Polyurethane Foam, Polyurethane Foam Obtained From the Composition, and Use Thereof
CN101238161B (zh) * 2005-08-12 2011-07-06 三井化学株式会社 聚氨酯泡沫体用组合物、由该组合物得到的聚氨酯泡沫体及其用途
DE102006003033A1 (de) * 2006-01-20 2007-08-02 Bayer Materialscience Ag Schotterkörper sowie Verfahren zur Herstellung von Schotterkörpern
US20070293594A1 (en) * 2006-06-15 2007-12-20 Ladislau Heisler Viscoelastic polyurethane foam and process for its manufacture
EP2038324B1 (en) * 2006-06-30 2012-04-11 Huntsman International LLC Novel tennis ball
CN101631810B (zh) * 2006-12-29 2013-07-24 江森自控科技公司 聚氨酯泡沫组成、产品及方法
MX2010004701A (es) * 2007-11-14 2010-05-20 Basf Se Poliuretano espumado con propiedades de resistencia a la flexion mejoradas.
CA2742723C (en) 2008-11-07 2013-04-09 Asahi Kasei Construction Materials Corporation Expandable phenolic resin composition, phenolic resin foam, and method for producing the phenolic resin foam
WO2010105966A1 (de) * 2009-03-17 2010-09-23 Basf Se POLYURETHANFORMKÖRPER MIT VERBESSERTER WEITERREIßFESTIGKEIT UND VERBESSERTEM DAUERBIEGEVERHALTEN
DE102009045027A1 (de) * 2009-09-25 2011-03-31 Henkel Ag & Co. Kgaa Monomerarme Polyurethanschäume
WO2013004008A1 (en) * 2011-07-05 2013-01-10 Basf Se Filled elastomer comprising polyurethane
KR20180066102A (ko) * 2015-10-08 2018-06-18 다우 글로벌 테크놀로지스 엘엘씨 주로 2차 하이드록실 기를 갖는 높은 작용가, 높은 당량의 폴리올을 사용하여 제조된 고탄력성 폴리우레탄 발포체
KR20220059949A (ko) * 2019-09-03 2022-05-10 다우 글로벌 테크놀로지스 엘엘씨 폼 제형
CN110627991B (zh) * 2019-09-30 2021-09-24 长华化学科技股份有限公司 低密度高性能高回弹聚氨酯泡沫塑料及其制备方法和应用
CN117881714A (zh) * 2021-08-11 2024-04-12 国际壳牌研究有限公司 用于制备高回弹性聚氨酯泡沫的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369487A2 (en) * 1988-11-18 1990-05-23 The Dow Chemical Company Process for the preparation of polyether polyols with reduced unsaturation
EP0403313A2 (en) * 1989-06-16 1990-12-19 The Dow Chemical Company Flexible polyurethane foams prepared using low unsaturation polyether polyols and a process for preparing the same
WO1995010562A1 (en) * 1993-10-11 1995-04-20 Imperial Chemical Industries Plc Recycling of flexible foam

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948691A (en) * 1951-05-10 1960-08-09 Mobay Chemical Corp High molecular weight polyether urethane polymers
NL301225A (zh) * 1954-11-16
US3042631A (en) * 1956-08-03 1962-07-03 Simoniz Co Polyurethane prepolymer and expanded product prepared therefrom
DE3066568D1 (en) * 1979-07-11 1984-03-22 Ici Plc Prepolymers, polyisocyanate compositions prepared therefrom and their use in the preparation of polyurethane foams
AU551979B2 (en) * 1982-03-31 1986-05-15 Shell Internationale Research Maatschappij B.V. Epoxy polymerisation catalysts
US4579700A (en) * 1983-11-07 1986-04-01 Union Carbide Corporation Novel process for making flexible polyurethane cellular products including a novel cell opening technique
US4717518A (en) * 1985-09-20 1988-01-05 Union Carbide Corporation Novel process for making polyurethane products which require reduced crushing in preventing said products from substantially shrinking or changing dimensionally upon cooling
JPH03244620A (ja) * 1990-02-23 1991-10-31 Asahi Glass Co Ltd ポリウレタンフォームの製造方法
US5300535A (en) * 1988-10-25 1994-04-05 Asahi Glass Company Ltd. Method for producing polyurethane flexible foam
WO1990004613A1 (en) * 1988-10-25 1990-05-03 Asahi Glass Company Ltd. Elastic polyurethane foam and process for its production
US5114619A (en) * 1989-07-14 1992-05-19 The Dow Chemical Company Production of polyether polyols with reduced unsaturation
US5070125A (en) * 1988-11-18 1991-12-03 The Dow Chemical Company Production of polyether polyols with reduced unsaturation
GB8908490D0 (en) * 1989-04-14 1989-06-01 Ici Plc Prepolymers
US5100997A (en) * 1990-05-29 1992-03-31 Olin Corporation Preparation of elastomers using high molecular weight polyols or polyamines, said polyols prepared using a double metal cyanide complex catalyst
ES2116278T3 (es) * 1990-10-12 1998-07-16 Ici Plc Proceso continuo para la produccion de prepolimeros de poliuretano conteniendo isocianato.
DE4202972A1 (de) * 1992-02-03 1993-08-05 Bayer Ag Verfahren zur kontinuierlichen herstellung von polyurethan- und polyurethanharnstoff-praepolymeren
US5158922A (en) * 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5248833A (en) * 1992-09-22 1993-09-28 Arco Chemical Technology, L.P. Process for purifying polyols made with double metal cyanide catalysts
US5470813A (en) * 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
EP0677543B2 (en) * 1994-04-12 2006-11-15 Mitsui Chemicals, Inc. Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams
US5482908A (en) * 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5563221A (en) * 1995-06-21 1996-10-08 Arco Chemical Technology, L.P. Process for making ethylene oxide-capped polyols from double metal cyanide-catalyzed polyols
US5545601A (en) * 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5648447A (en) * 1995-12-22 1997-07-15 Arco Chemical Technology, L.P. Elastomeric polyurethanes with improved properties based on crystallizable polyols in combination with low monol polyoxpropylene polyols
US5605939A (en) * 1996-01-26 1997-02-25 Arco Chemical Technology, L.P. Poly(oxypropylene/oxyethylene) random polyols useful in preparing flexible high resilience foam with reduced tendencies toward shrinkage and foam prepared therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369487A2 (en) * 1988-11-18 1990-05-23 The Dow Chemical Company Process for the preparation of polyether polyols with reduced unsaturation
EP0403313A2 (en) * 1989-06-16 1990-12-19 The Dow Chemical Company Flexible polyurethane foams prepared using low unsaturation polyether polyols and a process for preparing the same
WO1995010562A1 (en) * 1993-10-11 1995-04-20 Imperial Chemical Industries Plc Recycling of flexible foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459349A (zh) * 2014-03-26 2017-02-22 路博润高级材料公司 聚氨酯泡沫体及其制造方法

Also Published As

Publication number Publication date
KR19990067501A (ko) 1999-08-25
MX9804254A (es) 1998-09-30
DE69620629D1 (de) 2002-05-16
CZ172098A3 (cs) 1998-10-14
PL187122B1 (pl) 2004-05-31
BR9611866A (pt) 1999-05-18
WO1997020875A1 (en) 1997-06-12
EP0865457A1 (en) 1998-09-23
AU725631B2 (en) 2000-10-19
JP3920343B2 (ja) 2007-05-30
CZ296423B6 (cs) 2006-03-15
PL327056A1 (en) 1998-11-23
AU7737396A (en) 1997-06-27
RU2167890C2 (ru) 2001-05-27
US5700847A (en) 1997-12-23
TW387911B (en) 2000-04-21
KR100453458B1 (ko) 2005-04-08
JP2000501753A (ja) 2000-02-15
DE69620629T2 (de) 2002-10-02
EP0865457B1 (en) 2002-04-10
AR004855A1 (es) 1999-03-10
ES2175154T3 (es) 2002-11-16
CN1203608A (zh) 1998-12-30

Similar Documents

Publication Publication Date Title
CN1116329C (zh) 物理性质有改进的模制聚氨酯泡沫塑料
CN1310992C (zh) 物理性质改进的聚氨酯弹性体及其生产方法
CN1080275C (zh) 改进脱模、湿强度和水吸附性的聚亚胺酯高弹体以及适于其制备的不混浊的多元醇
CN1156507C (zh) 改进湿强度和脱模时间的聚氨酯高弹体以及适于其制备的聚氧亚烷基多元醇
EP0769510B1 (en) Very low density molded polyurethane foams via isocyanate-terminated prepolymers
CN1517375A (zh) 用于降低高支撑柔性泡沫的压破力的试剂
CN1079805C (zh) 具有改进湿变定性能的泡沫的制造方法
CN1491968A (zh) 软质聚氨酯泡沫材料及其制造方法
CN1105131C (zh) 加工性及性能均改善的微孔弹性体
EP0692507A1 (en) Flexible open-cell polyurethane foam
JPH06256454A (ja) 軟質フォームの製造方法
JP2001525465A (ja) 向上した物理的特性を有する、ポリウレタンおよびポリウレタン/ウレア熱硬化および湿分硬化エラストマー
JP2001329042A (ja) 高反発高振動吸収性軟質ポリウレタンフォームの製造方法
JP5151461B2 (ja) 軟質ポリウレタンフォームの製造方法およびその用途
JP4182733B2 (ja) 軟質ポリウレタンフォームおよびその製造方法
JPH07330850A (ja) 軟質ポリウレタンフォームの製造方法
MXPA96002357A (en) Polyurethane elastomeros that exhibit improved properties of decommunity, resistance in raw and absorption of water, and polyols that do not present turbidity and are adequate for the preparation of estoselastome
MXPA96002358A (en) Polyurethane elastomers that have improved properties of raw strength and dismolling time, and polioxylycylene polyols suitable for the preparation of these elastomes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030730

EXPY Termination of patent right or utility model