CN110997194A - 用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法 - Google Patents

用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法 Download PDF

Info

Publication number
CN110997194A
CN110997194A CN201880039585.4A CN201880039585A CN110997194A CN 110997194 A CN110997194 A CN 110997194A CN 201880039585 A CN201880039585 A CN 201880039585A CN 110997194 A CN110997194 A CN 110997194A
Authority
CN
China
Prior art keywords
metal halide
salt
halide salt
sintering
encapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880039585.4A
Other languages
English (en)
Other versions
CN110997194B (zh
Inventor
A.达什
J.冈萨雷斯
R.瓦森
O.吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of CN110997194A publication Critical patent/CN110997194A/zh
Application granted granted Critical
Publication of CN110997194B publication Critical patent/CN110997194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1266Container manufacturing by coating or sealing the surface of the preformed article, e.g. by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/244Leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/05Boride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及用于烧结金属和/或非氧化物部件的方法。按照本发明,首先将包含金属和/或非‑氧化物部件的相应坯体包封在金属卤化物盐(NZ)中,然后经气密性压制,并接着在金属卤化物盐(NZ)中加热以烧结。该任选通过粉末‑冶金方法制备的坯体还可在室温下包封于金属卤化物盐中和经气密性压制。在第一个实施方案中,将如此包封的坯体直接送入熔盐浴中。或者是首先将该用金属卤化物盐包封的坯体埋入多孔性盐浴中,并将其一同加热直到其至少达该盐的熔融温度。通常不应超过1400ºC的最高温度。经冷却后,可将该盐溶于例如水、水溶液或短‑链醇中。该经烧结的部件可取出。有利的是,该方法可在空气存在下进行。

Description

用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法
本发明涉及材料的烧结,特别是涉及其初始状态为粉末的易氧化材料如金属或非氧化物陶瓷的烧结。
现有技术
术语烧结通常意指一种用于制备或改变材料的方法,在此方法中,将细颗粒的陶瓷材料或金属材料加热,部分也在高压下进行。但是,由于最大烧结温度设定为低于主部件的熔融温度,所以通常保持工件的外形。在烧结时,该初始材料的颗粒变密实并由此填满孔隙空间。这通常导致收缩。
烧结期间的热处理使作用是:由在前一工艺步骤中-例如借助挤压-成形的细颗粒或粗颗粒坯体产生固态的工件。该坯体通过烧结步骤获而得在各类应用中所必需的所希望有的最终特性,如硬度、强度或导热性。
已知非氧化物材料的合成步骤以及烧结步骤通常均在保护气氛或真空中进行,以便防止在有氧存在下该材料的氧化。因此,必然要求对必须被保护以避免不必要氧化的易氧化材料的处理通常在氩、氮的保护气氛中或真空中进行。
同样还己知,氧化物和碳化物陶瓷粉末的合成途径是通过盐熔体进行的。甚至在此方法中,经常要设置保护气氛或真空,这就使这种合成的成本增加。
粉末冶金是一种总是由初始粉末开始用于小尺寸的和非普通几何结构的已知制备工艺。对此,金属材料以及陶瓷材料都是适用的。在所有制备步骤中,该烧结工艺通常是最耗能的步骤。就这点而言,该烧结步骤对该所制备的材料的以后的特性是决定性的和关键性的,因为该金属和/或非氧化物陶瓷的烧结伴随有该材料的不可避免的氧化。
通常,用于金属和非氧化物陶瓷的烧结步骤是在封闭的保护气氛和/或真空中进行。但因为甚至在低于1 mbar的好的真空中也存在氧分压形式的氧,所以其不可避免地导致待烧结材料的氧化。这又影响该烧结过程,并导致第二氧化物相,结果导致该材料的不太好的密实。
保护气氛的必要性是基于:随温度不断升高而强烈增加上述材料的氧化速度,并由此形成进一步的氧化物相,直到该初始材料完全转变成相应的氧化物。
因此,通常在烧结步骤中使用保护气氛,例如纯氢气或氢和氩的混合物,其仅具有非常低的氧分压。但也不可排除在烧结工艺的某个部位混入残余的氧,并且因为粉末状材料,特别是细颗粒金属粉末众所周知地会出现如氧化皮(Zunder),所以在这点上总会在待烧结的材料表面上导致一种氧化现象。
因此,在保护气氛下的该烧结步骤总是需要连续流和气密性的炉子,其将烧结室与环境气氛隔开。因此该通常不可更新或再循环的恒定的气体流以并非不显著的程度增加该烧结材料的制备成本。此外,气密性炉也是一个不应低估的成本因素。
其它可用的压力-辅助烧结工艺,如热压制、热等压压制或火焰辅助等离子体烧结优选均可在真空下进行。但相应的真空设备和其运行也是非常昂贵的。
任务及方案
本发明的任务是提供另一种烧结工艺,其用于制备密实的易氧化材料,如金属或非氧化物陶瓷,该工艺与目前的方法相比成本上有利得多,并且其中特别是对烧结易氧化材料可不使用保护气体或真空。
本发明的任务是通过一种具有主权利要求特征的用于烧结易氧化材料的方法完成的。该方法的有利方案由从属权利要求得出。
发明主题
在本发明范围中已发现:在密实(烧结)易氧化材料,特别是金属或非氧化物陶瓷部件时可不使用迄今常用的保护气氛或不在真空中实施,同时该易氧化材料不会发生氧化。
对此,在本发明方法中,该通常经粉末-冶金方法合成的金属或非氧化物陶瓷部件(坯体)在有空气或氧存在下与至少一种金属卤盐一起加热,直到超过该金属卤盐的熔点,以使该待烧结部件处于盐熔体(熔体池)中,该熔体有效地阻止任何氧供给该金属或非氧化物陶瓷部件。
对于该粉末状初始材料的成形有多种方法,如基质压制、挤压或还有加成制造,如3D-打印。一旦该粉末状部件通过使用压力达得一定强度,则也称之为坯体。
根据本发明,该待烧结的坯体要埋入其中的金属卤盐在高于其熔融温度的较高温下形成盐熔体,并在此还作为避开所存在的氧的介质起作用。对此,该盐熔体形成不可渗透的熔体池,该熔体池对氧的各种溶解度几乎为零。由此,可有效地阻止所存在的含氧气氛中的氧溶入熔体池中,并可靠地防止向易氧化坯体扩散。在这一点上,该熔体在待烧结的易氧化部件(坯体)和围绕它的含氧气氛之间起一种氧化屏障的作用。
在直到达到该熔点期间,是借助于向坯体预先提供气密性的金属卤盐包封来阻止氧和易氧化坯体的接触,在直到达到该金属卤盐浴的熔融温度前,该包封有效地防止氧供给坯体。
对此,对于这种金属卤盐浴,可使用例如其熔点低于该待烧结材料烧结温度的所有水溶性的碱金属盐或碱土金属盐。这里,特别是钠或钾的氯化物或溴化物是特别有利的,这是由于其低的熔点和在水中的高溶解度。在此,为在烧结后以简单的方法将经烧结的部件从围绕它的金属卤盐中分离出,在水中的所述溶解度是决定性的。
所使用的金属卤盐(NZ)是具有N和Z的盐或该相应金属卤盐的混合物,其中N = 组(Li、Na、K、Rb、Cs、Mg、Be、Ca、Ba) 中的至少一种元素和Z = 组(F、Cl、Br、I) 中的至少一种元素。
按本发明,将作为坯体的该供烧结部件埋入至少一种合适的金属卤盐中或用该金属卤盐将其包封。而且在另一方法步骤中,要确保涉及该坯体的盐状包封一方面是完整的,并且另一方面该包封是密实的并由此是不渗透氧的。
在该包封中经压制的盐的理论密度通常大于90 %,有利地甚至大于95 %。那么,该经压制的盐虽然总还有一些单个的孔,但这些孔是非穿透性的,因此对于埋入其中的芯块(Pellet)来说,其总体上是一种严密的气密性密封件。
该待烧结部件的包封和该围绕该坯体的金属卤盐的密实例如可经单轴向压制或也可经该待烧结部件在压模中经等压压制来实现,该压模的直径大于该待烧结的部件的直径。该方法步骤在中等温度至200 ºC下进行,特别有利地在室温下进行。该压制特别是在10MPA和1000 MPA之间的压力下进行。对本发明方法重要的是,该盐包封要完全包住该待烧结部件(坯件)。
卤盐可密实到坯体理论密度的大于95 %的坯体密度。这种现象基于在室温时在一定压力条件下卤盐的延展性。该坯体具有小的孔隙率,但这种孔隙率涉及封闭的孔,以致于在本发明中认为所述包封是气密性的。
用氦和空气对在相同压力和温度条件下经压制的KBr-片所作的渗入性测量得出的渗透值为1.4x10-7 hPa•dm3•s-1,就本发明而言,其可被称为是气密性的。
在此,KBr已证明是特别适用的金属卤盐,因为其在室温下可被非常好地压制,并由此显示出非常好的密封性。此外,还有NaCl,甚至掺杂有一些水时,在室温下也可非常好地,即几乎是气密性地,围绕待烧结的部件被压制。
该待烧结部件的、具有至少一种金属卤盐的气密性包封在加热直到熔融的期间(其中该围绕的金属卤盐浴仍还有一定的孔隙率)在该盐熔体中在所存在的含氧气氛和该待烧结坯体的反应性部件之间起到附加屏障作用。对于该坯体的严密密封而言,该经压制的金属卤盐的高密度是特别重要的。在本发明的第一个实施方案中,在合适的容器如熔融坩堝中,将以至少一种金属卤盐包住的坯体现在置于金属卤盐床中,特别是完全埋入其中。为此所用的金属卤盐可以与已用于该待烧结部件的包封的金属卤盐相同。但这不是强制必需的。
在本发明范围中,置于金属卤盐床中意指该坯体这时完全由这种金属卤盐所包住。这时,该金属卤盐床初始具有一定的孔隙率,该孔隙率在完全熔融时才消失。
将具有盐浴的熔融坩埚和用盐压制过的部件一起加热。这例如可在带电阻加热的炉中进行。在该加热步骤中不使用附加的压力。在此,该加热进行直到至少300 ºC或直到该所用金属卤盐的熔融温度。如果使用了多种不同的金属卤盐,则该加热进行至少直到该金属卤盐混合物熔融并形成液态的盐熔体的温度。接着可继续加热该熔融坩埚直到对于该部件烧结所需的温度。但通常不超过1400 ºC的最高温度,因为否则会出现该所用的金属卤盐或所用的金属卤盐混合物以并非不显著的程度汽化的危险。必需确保该盐熔体在任何情况下均完全包住该待烧结部件,以确保阻止氧的供入。
在这种不同于目前现有技术的方法步骤中,有利的是不必特别设置惰性气氛。因此,该方法也可在空气中实施。
在该方法步骤中,该待烧结部件的密实包封起到使部件与氧隔绝的作用,否则在多孔的金属卤盐堆料中,在直到盐熔融的加热过程中氧可导致待烧结部件的不希望有的氧化。
加热步骤后,再使熔融坩埚冷却,并将内含物(在冷盐浴中的经烧结的坯体)放入液体中,优选放入水浴中,这时该盐在液体中至少部分溶解,而该经烧结的部件留下。作为液体,除纯水外还可考虑用水性溶液或短链醇类,只要该所用的盐足可以溶入其中。
在此方法步骤中,盐浴中的盐和包封的盐均至少部分溶于液体中,以致于可取出该经绕结的部件。对此,任选地可加热该液体,特别是水,以改善该盐的溶解度。
这时,该液体的用量决定该存在的盐是否不仅是部分地而且例如是完全地溶于其中。但这里决定性因素仅是该经绕结部件可从凝固的盐浴中取出。任选地,接着该部件可用液体洗涤以达再次分离。
在本发明的另一实施方案中,首先将金属卤盐在合适的容器如熔融坩埚中加热直到该金属卤盐熔融。类似于前一实施例,该待烧结部件首先用金属卤盐完全包封,并经气密性压制,接着直接放入或浸入该盐熔体中。随后可如在第一实施方案中一样,按用于烧结该部件所需的温度继续升高该金属卤盐浴的温度,例如升高到800 ºC。但在该方法步骤中,也不应超过1400 ºC的最高温度。
接着进行冷却,并类似于第一实施方案,使金属卤盐至少部分溶于液体中,以致于可取出该经烧结的部件。
在本发明方法的略加改变方案中,平行于该上述方法步骤,任选地将至少一种硅酸盐,优选如硅酸钠、硅酸钾或硅酸锂(Na2SiO3、K2SiO3或Li2SiO3)同样在另外的熔融甘坩埚中加热。有利地的是,该步骤在加热具有坯体的卤熔体浴的同一炉中进行,以致于该熔融的硅酸盐和具有待烧结坯体的盐熔体具有相同温度。
在高于所用硅酸盐熔融温度的温度时,即对于熔点Tm =1088 ºC的硅酸钠例如是约1100 ºC时,将该熔融的硅酸盐小心地施加到具有该坯体的盐浴的表面上,最简单的情况下是浇到该盐浴的表面上。因为盐浴中所熔融的金属卤盐和该熔融的硅酸盐之间的密度差和因为该相互间的不溶性,该熔融的硅酸盐浮在该熔融的金属卤盐上。因此,该漂浮的硅酸盐有利地防止盐浴中该熔融的金属卤盐的不希望有的汽化。以此方法可使该部件的烧结温度在需要时提高到甚至超过1400 ºC,直到最大1600 ºC,同时不会导致盐浴中金属卤盐的明显损失。
接着进行冷却,并类似于第一实施方案,使金属卤盐和优选该所用的硅酸盐都溶于液体中,以致于可取出该目前经烧结的部件。
再次确认,本发明方法不是描述由相应的金属和/或易氧化初始材料合成部件,而仅包括之前例如通过粉末冶金方法已制备的部件(坯体)的密实步骤(烧结)。这里,该方法可应用于所有包含金属如Al、Cu或钛、合金或陶瓷材料的已知坯体,这些坯体在烧结时迄今通常需要保护气氛。
本发明方法的范围依据所使用的盐仅通过最高温度为约1400 ºC给出,因为高于此温度通常会导致该盐的大量汽化,并出现该盐熔体池不再确保该待烧结坯体的完全包封的危险。由此,所有在该温度和低于该温度下可烧结的材料通常均可用于烧结。
但是,只要使用足够多的金属卤盐,任选地也可采用一种烧结温度,即在该温度下可容许所用的盐在此期间至少部分汽化。仅必须确保该待烧结的坯体在该较高温度期间完全由熔融的金属卤盐所包封和保持包封状态。
对需达约1600 ºC的较高烧结温度的部件,另外可采用具有液态硅酸盐盖层的实施方案。
本发明有利地防止了高成本,此高成本迄今是在烧结步骤中由于使用保护气体而对炉气氛进行必要的昂贵监控产生的,并且因此也可对易氧化部件,特别是对金属和/或非氧化物陶瓷提供一种成本有利的工业规模的烧结工艺。
特别描述部分
下面按多个实施例更详细地阐述本发明,但不应对宽的保护范围构成限制。
为按本发明制备经烧结的金属,首先将金属粉末压制成坯体,该坯体接着按本发明用金属卤盐包封,并且有利地对烧结过程也可在有空气或氧存在下进行相应地加热。
实施例1
Al-粉末(Alfa Aesar,~40 µm)在500MPa下经单轴向压制,并接着在300 MPa下经等压压制成直径为8 mm和高为3 mm的圆柱体(芯块)。
该圆柱形坯体用KBr (Alfa Aesar)包封,在此,形成的该金属卤盐的层厚通常为1-10 mm,优选2-4 mm。对此,将该坯体放入直径比坯体直径大的(如直径为20 mm)充填有KBr的坩埚中,用KBr覆盖,并接着在200 MPa下经再压制。该如此用KBr所包封的坯体在300MPa压力下再经冷等压压制。在此,该包封所具有的密度相应于98 % 的理论密度。接着,将该经包封的坯体以5 ºC/ min的加热速率加热直到600 ºC,并在600 ºC下在其中保持约1小时。例如可在通常的炉中进行。
经冷却后,可通过使包围该部件的金属卤盐溶于水中或另选地通过从凝固的盐包封中将部件拆出而得到该经烧结的铝-部件。
该经烧结的部件的密度为92 % 的理论密度。该相应值通过应用阿基米德原理获得。
实施例2
Cu-粉末(Alfa Aesar,~40 µm)在500MPa下经单轴向压制,并接着在300 MPa下经等压压制成直径为8 mm和高为3 mm的圆柱体(坯体)。
该圆柱形坯体用KBr (Alfa Aesar)包封,在此,形成的该金属卤盐的层厚通常为1-10 mm,优选2-4 mm。对此,将该坯体放入直径比坯体直径大的充填有KBr的坩埚中,用KBr覆盖,并接着在200 MPa下经再压制。该如此用KBr所包封的坯体在300 MPa压力下再经冷等压压制。
接着,将该经包封的坯体以5 ºC/ min的加热速率加热直到900 ºC,并在900 ºC下在其中保持约1小时。
经冷却后,可通过将包围该部件的金属卤盐溶于超声波浴的水中而得到该经烧结的铜-部件。
该经烧结的部件的密度为70 % 的理论密度。该相应值通过应用阿基米德原理获得。
实施例3
Ti-粉末(Alfa Aesar,~40 µm)在500MPa下经单轴向压制,并接着在300 MPa下经等压压制成直径为8 mm和高为3 mm的圆柱体(坯体)。
该圆柱形坯体用KBr (Alfa Aesar)包封,在此,形成的该金属卤盐的层厚通常为1-10 mm,优选2-4 mm。对此,将该坯体放入直径比坯体直径大的充填有KBr的坩埚中,用KBr覆盖,并接着在200 MPa下经再压制。该如此用KBr所包封的坯体在300 MPa压力下再经冷等压压制。
将该圆柱形坯体置于包含有足够多KBr的KBr-床(Alfa Aesar)中,以致于在加热时形成熔体池,其中该坯体完全由熔融的盐所包围。
具有坯体的该盐床以5 ºC/ min的加热速率加热直到1200 ºC,并在1200 ºC下在其中保持约1小时。
经冷却后,可通过将包围该部件的金属卤盐溶于超声波浴的水中而得到该经烧结的钛-部件。
该经烧结的部件的密度为94 % 的理论密度。该相应值通过应用阿基米德原理获得。
实施例4
Ti3SiC2-粉末(Alfa Aesar,~40 µm)在200MPa下经单轴向压制成直径为8 mm的圆柱形坯体。
该圆柱形坯体用KBr (Alfa Aesar)包封,在此,形成的该金属卤盐的层厚通常为1-10 mm,优选2-4 mm。对此,将该坯体放入直径比坯体直径大的充填有KBr的坩埚中,用KBr覆盖,并接着在200 MPa下经再压制。该如此用KBr所包封的坯体在300 MPa压力下再经冷等压压制。
接着,将该坯体埋入在铝-熔融坩埚中的含有足够多KBr的KBr-盐床(Alfa Aesar)中,以致于在加热时形成熔体池,其中该坯体完全由熔融的盐所包围。
具有坯体的该盐床以5 ºC/ min的加热速率从室温加热直到1250 ºC,并在1250ºC下在其中保持约1小时。
经冷却后,将该经烧结的部件与该经冷却的盐一起放入水中,其中围绕该经烧结部件的盐溶解。
该经烧结的部件的密度为75 % 的理论密度。该相应值通过应用阿基米德原理获得。
为了按阿基米德原理进行密度测定,应用流体静力学天平。首先在空气中测定要测定其密度的该物体的质量,然后进行重新称量,在该称量中测定该浸入水中的物体的重力。该两次称量的差值相应于施加在该物体上的浮力,并同时相应于所排挤出的水的重力。因为水的密度为1.0 g/cm3,所以可测定所排挤出的水的体积,并由此测出该物体的体积。
然后将此与理论密度相比较,对于陶瓷和金属而言该理论密度可通过晶体结构由相应于晶格常数的晶胞的质量和其体积计算出。
图1中,对各种金属卤盐记录了固态相、液态相和气态相的状态与温度的关系,这因此使适用于本发明合成的工艺范围的选择成为可能。
此外,对作为金属卤化物-盐(图2a和2b)的具有KBr的Ti体系进行了热研究(英文为Differential Scanning Calorimetry, DSC)和热重力研究,其阐明了在空气中烧结时该金属卤化物-盐KBr的屏蔽作用。
该热分析(DSC)是在空气中在有和无KBr包封的试样上进行的(图2a),以证实由于该KBr-包封的气密性作用所产生的防止氧化。无包封的试样表明强烈的氧化和明显的质量增加,而附有包封的试样仅有少量氧化。该氧化在包封情况下明显较小,并且在达到KBr熔点后该氧化终止。

Claims (11)

1.用于烧结金属和/或非氧化物部件的方法,其特征在于,
- 包含至少一种金属和/或非氧化物粉末的坯体,用金属卤盐完全包封并进行气密性压制,并接着
- 与金属卤盐一起加热直到烧结温度。
2.权利要求1的方法,其中,该压制以单轴向或冷-等压方式进行。
3.权利要求1-2之一的方法,其中,该压制和该包封在最高达200 ºC的温度下进行,有利地在室温下进行。
4.权利要求1-3之一的方法,其中,该加热至少达到高于所用金属卤盐熔融的温度。
5.权利要求1-4之一的方法,其中,该加热直到最高1400 ºC的温度,优选直到1200 ºC。
6.权利要求1-5之一的方法,其中,使用至少一种金属卤盐(NZ)或其混合物,其中N =组(Li、Na、K、Rb、Cs、Mg、Be、Ca、Ba) 中的至少一种元素和Z = 组(F、Cl、Br、I) 中的至少一种元素。
7.权利要求1-6之一的方法,其中,该加热在氧存在下进行。
8.权利要求6-7之一的方法,其中,该金属卤盐经冷却后至少部分溶于液体中,以致于可取出该经烧结的部件。
9.上述权利要求8的方法,其中,将该金属卤盐溶于水或水溶液或短-链醇中。
10.权利要求1-9之一的方法,其中,将该用金属卤盐包封的和经压制的坯体直接送入熔融的金属卤盐浴中。
11.权利要求1-9之一的方法,其中,将该用金属卤盐包封的和经压制的坯体首先置于金属卤盐浴中,并接着一同加热到高于该金属卤盐熔融温度的温度。
CN201880039585.4A 2017-07-13 2018-06-08 用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法 Active CN110997194B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017006659.0A DE102017006659A1 (de) 2017-07-13 2017-07-13 Verfahren zum Sintern von Metallen, nicht oxidischen Keramiken und anderen oxidationsempfindlichen Materialien
DE102017006659.0 2017-07-13
PCT/DE2018/000179 WO2019011359A1 (de) 2017-07-13 2018-06-08 Verfahren zum sintern von metallen, nicht oxidischen keramiken und anderen oxidationsempfindlichen materialien

Publications (2)

Publication Number Publication Date
CN110997194A true CN110997194A (zh) 2020-04-10
CN110997194B CN110997194B (zh) 2022-04-26

Family

ID=63012770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880039585.4A Active CN110997194B (zh) 2017-07-13 2018-06-08 用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法

Country Status (7)

Country Link
US (1) US11065686B2 (zh)
EP (1) EP3651921B1 (zh)
JP (1) JP7045402B2 (zh)
CN (1) CN110997194B (zh)
DE (1) DE102017006659A1 (zh)
ES (1) ES2892401T3 (zh)
WO (1) WO2019011359A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE702877C (de) * 1940-02-02 1941-02-19 Anhaltische Studiengesellschaf Verfahren zur Herstellung auch bei hohen Temperaturen gasdichter Werkstuecke aus keramischen Werkstoffen, insbesondere aus Siliciumcarbid
GB1405749A (en) * 1971-06-22 1975-09-10 Davy Int Ltd Extrusion of powder billets
CN1088862A (zh) * 1992-12-21 1994-07-06 金属铸造技术有限公司 压实制品的方法和设备
US5445787A (en) * 1993-11-02 1995-08-29 Friedman; Ira Method of extruding refractory metals and alloys and an extruded product made thereby
CN1789203A (zh) * 2005-12-27 2006-06-21 武汉理工大学 一种多元无机复合陶瓷均匀粉体合成方法
CN101121968A (zh) * 2007-09-13 2008-02-13 上海大学 一种制备La2Mg17储氢合金的新方法
CN101280399A (zh) * 2007-04-03 2008-10-08 中国石油大学(北京) 一种碳化钛增强镍钛记忆合金复合材料及其制备方法
CN101798635A (zh) * 2010-04-21 2010-08-11 上海交通大学 镁合金熔炼的锆复合饼及其制备方法
JP2012255185A (ja) * 2011-06-08 2012-12-27 Sumitomo Electric Ind Ltd アルミニウム多孔体の製造方法及び製造装置
CN103680805A (zh) * 2012-09-12 2014-03-26 Lg电子株式会社 具有盐的铁氧体磁体及其制造方法
CN104203409A (zh) * 2012-04-16 2014-12-10 道康宁公司 用于制备钯金属间化合物的工艺及该化合物制备有机卤硅烷的用途
CN104254905A (zh) * 2012-02-27 2014-12-31 于利奇研究中心有限公司 用于制造单晶金属-半导体-复合的方法
CN106350703A (zh) * 2015-07-16 2017-01-25 东北大学 一种用电解原铝液熔盐热还原制备铝钙合金的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108652A (en) * 1976-08-17 1978-08-22 Nippon Tungsten Co., Ltd. Method for producing a sintered body of high density
JPS605807A (ja) * 1983-06-24 1985-01-12 Sumitomo Metal Ind Ltd 金属粉末成形体の焼結方法
JPH0463202A (ja) * 1990-07-02 1992-02-28 Daido Steel Co Ltd ステンレス焼結体の製造方法
JPH058212A (ja) * 1991-07-02 1993-01-19 Nkk Corp 粉末成形体の副次的脱脂方法
JPH07266090A (ja) * 1994-03-31 1995-10-17 Ngk Insulators Ltd 粉末成形体の等方加圧成形方法
DE10034506C1 (de) * 2000-07-15 2002-03-07 Schott Glas Verfahren zum Herstellen von Kühlkanälen in betrieblich thermisch belasteten Formgebungswerkzeugen und zugehöriges Formgebungswerkzeug
DE102005033073B3 (de) 2005-07-15 2006-10-19 Gkn Sinter Metals Gmbh Verfahren zur Zulegierung von Aluminium zu Bauteilen
DE102017006658A1 (de) 2017-07-13 2019-01-17 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von nicht oxidischen, keramischen Pulvern

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE702877C (de) * 1940-02-02 1941-02-19 Anhaltische Studiengesellschaf Verfahren zur Herstellung auch bei hohen Temperaturen gasdichter Werkstuecke aus keramischen Werkstoffen, insbesondere aus Siliciumcarbid
GB1405749A (en) * 1971-06-22 1975-09-10 Davy Int Ltd Extrusion of powder billets
CN1088862A (zh) * 1992-12-21 1994-07-06 金属铸造技术有限公司 压实制品的方法和设备
US5445787A (en) * 1993-11-02 1995-08-29 Friedman; Ira Method of extruding refractory metals and alloys and an extruded product made thereby
CN1789203A (zh) * 2005-12-27 2006-06-21 武汉理工大学 一种多元无机复合陶瓷均匀粉体合成方法
CN101280399A (zh) * 2007-04-03 2008-10-08 中国石油大学(北京) 一种碳化钛增强镍钛记忆合金复合材料及其制备方法
CN101121968A (zh) * 2007-09-13 2008-02-13 上海大学 一种制备La2Mg17储氢合金的新方法
CN101798635A (zh) * 2010-04-21 2010-08-11 上海交通大学 镁合金熔炼的锆复合饼及其制备方法
JP2012255185A (ja) * 2011-06-08 2012-12-27 Sumitomo Electric Ind Ltd アルミニウム多孔体の製造方法及び製造装置
CN104254905A (zh) * 2012-02-27 2014-12-31 于利奇研究中心有限公司 用于制造单晶金属-半导体-复合的方法
CN104203409A (zh) * 2012-04-16 2014-12-10 道康宁公司 用于制备钯金属间化合物的工艺及该化合物制备有机卤硅烷的用途
CN103680805A (zh) * 2012-09-12 2014-03-26 Lg电子株式会社 具有盐的铁氧体磁体及其制造方法
CN106350703A (zh) * 2015-07-16 2017-01-25 东北大学 一种用电解原铝液熔盐热还原制备铝钙合金的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, CHANG-HYUN等: "Sintering and Microstructure of BaTiO3 Nano Particles Synthesized by Molten Salt Method", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *
RUISONG YANG等: "Molten salt synthesis of Mo2C powder using a mechanically milled powder", 《MATERIALS LETTERS》 *

Also Published As

Publication number Publication date
JP2020527191A (ja) 2020-09-03
WO2019011359A1 (de) 2019-01-17
EP3651921B1 (de) 2021-07-28
CN110997194B (zh) 2022-04-26
ES2892401T3 (es) 2022-02-04
US11065686B2 (en) 2021-07-20
DE102017006659A1 (de) 2019-01-17
JP7045402B2 (ja) 2022-03-31
US20200171575A1 (en) 2020-06-04
EP3651921A1 (de) 2020-05-20

Similar Documents

Publication Publication Date Title
Dash et al. Molten salt shielded synthesis of oxidation prone materials in air
US7419926B2 (en) Sintered bodies based on niobium suboxide
KR102588091B1 (ko) 비산화 세라믹 분말 제조 방법
FI93224B (fi) Menetelmä keraamisten/metallisten lämmönvarastointivälineiden tuottamiseksi ja lämmönvarastointiväline
JP3256217B2 (ja) 自己発生真空プロセスによる金属マトリックス複合体の製造方法
JP2505217B2 (ja) セラミック複合材料の製造方法
JP5969998B2 (ja) 酸化環境において2000℃を超える高温で部品を使用する方法
JP5406727B2 (ja) 粉末冶金法による高い固相線温度を有する耐火セラミックス材料の製造方法
JP2011089161A (ja) 複合材料
CN110997194B (zh) 用于烧结金属、非氧化物陶瓷和其它易氧化材料的方法
PL167044B1 (pl) Sposób wytwarzania korpusu makrokompozytowego PL PL
US4952353A (en) Hot isostatic pressing
WO2016158345A1 (ja) 円筒型スパッタリングターゲットの製造方法
KR0183973B1 (ko) 다층 복합체의 제조 방법
US11858863B2 (en) Method for fabricating perfectly wetting surfaces
KR101894446B1 (ko) 소결체의 제조방법
JPH0653899B2 (ja) 真空バルブ用接点素子の製造方法
JPS5819409A (ja) 等方性Mn−Al−C系磁石の製造法
JP2021091933A (ja) アルミニウム多孔質焼結体及び該アルミニウム多孔質焼結体の製造方法
CN118103343A (zh) 含铝氮化物陶瓷基质复合物及其制造方法和使用方法
WO1998011264A1 (en) Production of cast products with controlled density by controlling gas concentration in a material
JP2003185346A (ja) 希土類合金溶解用のるつぼ
JPH0255269A (ja) Hip処理用金属製カプセル及び酸素雰囲気hip処理方法
JPH0680476A (ja) アルカリ土類炭酸化合物の焼結方法
JPH0736305B2 (ja) 真空バルブ用接点材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant