CN110892520A - 静电吸盘 - Google Patents
静电吸盘 Download PDFInfo
- Publication number
- CN110892520A CN110892520A CN201880045488.6A CN201880045488A CN110892520A CN 110892520 A CN110892520 A CN 110892520A CN 201880045488 A CN201880045488 A CN 201880045488A CN 110892520 A CN110892520 A CN 110892520A
- Authority
- CN
- China
- Prior art keywords
- composite oxide
- aluminum nitride
- sintered body
- nitride sintered
- electrostatic chuck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/6262—Milling of calcined, sintered clinker or ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/87—Grain boundary phases intentionally being absent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/049—Nitrides composed of metals from groups of the periodic table
- H01L2924/0503—13th Group
- H01L2924/05032—AlN
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
本发明的一个实施方式公开了一种由氮化铝烧结体制成的静电吸盘,其中,所述氮化铝烧结体包含氮化铝和沿着所述氮化铝的晶界形成的复合氧化物,其中,其中所述复合氧化物包含:彼此具有固溶关系的至少两种稀土金属,和氧含量比周围区域更高的捕集区域。
Description
技术领域
本发明涉及一种静电吸盘。
背景技术
静电吸盘是利用静电力来固定半导体晶片等的装置,并且可根据吸附方法分为库仑型静电吸盘和约翰森-拉别克型静电吸盘。
库仑型静电吸盘利用存在于介电质上、下面上的不同电荷之间的静电引力来固定半导体晶片。然而,库仑型静电吸盘的介电质的体积电阻率应为1×1015Ω·cm以上,并且随着半导体晶片尺寸的增加,可能无法在整个晶片接触表面上均匀地形成足够的静电吸附力。相反,约翰森-拉别克型静电吸盘即使使用体积电阻率相对较低的介电质,也可以提供足够的吸附力。
另一方面,作为静电吸盘用材料,使用了以铝为主要材料的材料(例如,氮化铝(AlN)),并且由于纯氮化铝(AlN)烧结体在室温下的体积电阻率为1×1014Ω·cm以上,因此当用作约翰森-拉别克型静电吸盘时,可能难以具有足够的吸附率和优异的电流响应特性。
发明内容
技术问题
本发明的实施方式提供了一种体积电阻率降低的静电吸盘。
技术方案
本发明的实施方式公开了一种由氮化铝烧结体制成的静电吸盘,其中,所述氮化铝烧结体包含氮化铝和沿着所述氮化铝的晶界形成的复合氧化物,其中,所述复合氧化物包含彼此具有固溶关系的至少两种稀土金属,并且其中,所述复合氧化物包含氧含量比周围区域更高的捕集区域。
在本实施方式中,所述复合氧化物可以以0.2重量%至20重量%包含在所述氮化铝烧结体中。
在本实施方式中,所述氮化铝烧结体的体积电阻率可以为1×108Ω·cm至1×1012Ω·cm。
在本实施方式中,所述复合氧化物的晶体峰可以不同于所述至少两种稀土金属中的每一种的氧化物的晶体峰。
在本实施方式中,所述氮化铝烧结体在所述氮化铝的晶界处还可以包含氮化钛(TiN)。
在本实施方式中,所述氮化钛(TiN)可以以1重量%至5重量%包含在所述氮化铝烧结体中。
在本实施方式中,所述至少两种稀土金属可以选自镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
在本实施方式中,所述复合氧化物可以包含铕钆复合氧化物(EuGdOX)、钐钆复合氧化物(SmGdOX)、铈铕复合氧化物(CeEuOX)、钐铈复合氧化物(SmCeOX)、钆钐复合氧化物(GdSmOx)和镧铈复合氧化物(LaCeOX)中的至少任何一种。
在本实施方式中,所述周围区域可以包含所述复合氧化物中除所述捕集区域以外的区域和所述氮化铝烧结体。
在本实施方式中,所述复合氧化物可以是由具有纳米尺寸的复合氧化物粉末形成的纳米复合氧化物。
除以上描述以外的其他方面、特征和优点将从以下附图、权利要求和本发明的详细描述中显而易见。
有益效果
根据本发明的实施方式,可以降低静电吸盘的体积电阻率以改善静电吸盘的电流响应特性。
另外,使用具有纳米尺寸的复合氧化物粉末来制造静电吸盘,从而可以在制造过程中降低烧结温度,并且可以改善静电吸盘的物理性能。
当然,本发明的范围不限于这些效果。
附图说明
图1是示出根据本发明实施方式的形成静电吸盘的氮化铝烧结体的照片。
图2是示意性示出根据本发明实施方式的静电吸盘的制造过程的流程图。
图3是示意性示出图2的静电吸盘的制造过程中复合氧化物粉末的制造过程的流程图。
图4是示出图1的复合氧化物粉末的XRD分析结果的图。
图5是示出根据图1的复合氧化物粉末的尺寸的氮化铝烧结体的烧结温度和体积电阻率的柱状图。
图6是示出图1的氮化铝烧结体的氧分布状态的照片。
具体实施方式
由于可以对本发明进行各种修改,并且本发明可以具有各种实施方式,因此将在附图中示出并且在详细描述中具体说明具体实施方式。然而,这些并非旨在将本发明限制于具体实施方式,而应当理解,这些包括在本发明的精神和技术范围中所含的所有修改、等同物和替代物。在描述本发明时,如果确定相关的已知技术的具体描述可能不必要地使本发明的主旨不清楚,则将省略对其的详细描述。
诸如第一和第二等术语可以用于描述各种组件,但组件不应受限于所述术语。所述术语仅用于区分一个组件与另一组件。
本申请中使用的术语仅出于描述具体实施方式的目的,并不旨在限制本发明。除非上下文另外明确指出,否则单数表达包括复数表达。另外,为了描述的便利和清晰,各附图中的组件被放大、省略或示意性地示出,并且各组件的尺寸并不完全反映实际尺寸。
在各组件的描述中,当描述为在上或下形成时,上和下均包括直接或通过其他组件形成的那些,并且将参考附图描述对上和下的标准。
在下文中,将参考附图详细描述本发明的实施方式,并且在参考附图的描述中,将给予相同或相应的组件相同的附图编号,并且将省略对其重复描述。
图1是示出根据本发明实施方式的形成静电吸盘的氮化铝烧结体的照片。
根据本发明实施方式的静电吸盘是约翰森-拉别克型静电吸盘,并且其至少一部分可以由氮化铝烧结体10制成。例如,静电吸盘可以完全由氮化铝烧结体10制成。
氮化铝烧结体10可以以氮化铝11为主要成分,并包含复合氧化物12,复合氧化物12含有用于改善氮化铝11的烧结体的导电性的稀土金属。另外,氮化铝烧结体10还可以包含氮化钛(TiN)。
复合氧化物12可以是包括至少两种稀土金属的复合氧化物12。例如,当复合氧化物12包括两种稀土金属时,任何一种稀土金属可以固溶在另一种稀土金属氧化物中。因此,任何一种稀土金属氧化物的晶体发生变化,因此与单一稀土金属氧化物相比,复合氧化物12的晶格缺陷可能增加。即,根据本发明的包含至少两种稀土金属的复合氧化物12不同于两种稀土金属中的任何一种的氧化物或两种稀土金属中每一种的氧化物的简单混合物。
另一方面,由于晶格缺陷增加的复合氧化物12改善了与氧的反应性,因此可以有效地去除氮化铝11中的氧。因此,由于氮化铝11的纯度改善,因此可以降低氮化铝烧结体10的体积电阻率。
复合氧化物12可以沿着氮化铝11的晶界形成。即,由于沿着氮化铝11的晶界生成连续的导电晶相,因此可以改善氮化铝烧结体10的导电性。
另一方面,复合氧化物12可以包含氧含量比周围区域更高的捕集区域14。其中,所述周围区域包含复合氧化物12中除捕集区域14以外的区域和氮化铝11。
下表1示出了当图1的氮化铝烧结体11包含钐铈复合氧化物(SmCeOX)时,图1的第一点P1至第五点P5处的组合物的含量。
表1
在图1中,第一点P1、第二点P2和第三点P3是捕集区域14,第四点P4和第五点P5是由复合氧化物12形成的导电晶相。从上表1可以看出,捕集区域14中的氧含量远高于捕集区域14的周围区域。如上所述的捕集区域14的形成可以改善氮化铝11的导电性。
更具体地,如下所述,根据本发明的氮化铝烧结体10可以使用具有纳米尺寸的复合氧化物粉末来形成,因此即使在低烧结温度下进行烧结时,氮化铝烧结体10也可以具有低体积电阻率。即,由于以具有纳米尺寸的复合氧化物粉末进行低温液相烧结,因此与在高温下烧结时不同,氮化铝11的晶体尺寸没有显著增长,并且液体复合氧化物穿透氮化铝11的颗粒,使氮化铝烧结体10致密化,从而形成与现有高温烧结形成的微观结构不同的微观结构。该微观结构特征可以在捕集区域14的生成中看到。换句话说,由于具有优异的氧反应性的复合氧化物12在经历低温液相烧结工序的同时吸收了氮化铝11颗粒内外的氧,因此形成了包括捕集区域14的微观结构,同时,减少了氧缺陷,使得氮化铝11的颗粒变成优异的导电颗粒。结果,氮化铝烧结体10可具有低静电性能。
复合氧化物12中所含的至少两种稀土金属可以选自镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。例如,复合氧化物12可以包括铕钆复合氧化物(EuGdOX)、钐钆复合氧化物(SmGdOX)、铈铕复合氧化物(CeEuOX)、钐铈复合氧化物(SmCeOX)、钆钐复合氧化物(GdSmOx)和镧铈复合氧化物(LaCeOX)中的至少任何一种。复合氧化物12与氮化铝11化学键合,从而沿着氮化铝11的晶界形成导电晶相。例如,当复合氧化物12是钐铈复合氧化物(SmCeOX)时,所形成的导电晶相可以是CeX1-SmXAlO3。
基于氮化铝烧结体10,复合氧化物12可以以0.2重量%至20重量%包含在氮化铝烧结体10中。当基于氮化铝烧结体10,复合氧化物12的含量小于0.2重量%时,难以获得氮化铝烧结体10的电阻降低效果;并且,当基于氮化铝烧结体10,复合氧化物12的含量大于20重量%时,氮化铝烧结体10的电阻过度降低,从而可能发生静电吸盘的漏电流。
因此,复合氧化物12优选以0.2重量%至20重量%包含在氮化铝烧结体10中,由此,氮化铝烧结体10的体积电阻率可以为1×108Ω·cm至1×1012Ω·cm,并且,能够由氮化铝烧结体10制成的根据本发明的静电吸盘可以具有高吸附力和优异的电流响应特性,其中,施加电压时的卡盘和去除电压时的去卡盘时间在5秒内。
氮化铝烧结体10还可以包含氮化钛。结果,由于氮化铝烧结体10呈黑色,因此可以增加辐射热通量并且可以改善加热性能。因此,能够由氮化铝烧结体10制成的静电吸盘可以在固定半导体晶片时起到加热半导体晶片的功能。另外,由于比TiO2具有更高导热性和导电性的氮化钛包含在氮化铝11的晶界中,因此可以改善复合氧化物12的电特性。
氮化钛可以以1重量%至5重量%包含在氮化铝烧结体10中。当氮化钛的含量小于1重量%时,可能难以获得复合氧化物12的附加的电阻降低效果,氮化铝烧结体10的颜色可能不均匀,并且可能出现部分的着色。另一方面,当氮化钛的含量大于5重量%时,氮化铝烧结体10的体积电阻率可能增加。因此,氮化钛优选以1重量%至5重量%包含在氮化铝烧结体10中。
图2是示意性示出根据本发明实施方式的静电吸盘的制造过程的流程图,图3是示意性示出图2的静电吸盘的制造过程中的复合氧化物粉末的制造过程的流程图,并且图4是示出图1的复合氧化物粉末的XRD分析结果的图。
如图2和图3所示,根据本发明实施方式的静电吸盘的制造方法可包含以下步骤:制备氮化铝粉末(S10);制备包含至少两种稀土金属的复合氧化物粉末(S20);将氮化铝粉末和复合氧化物粉末混合以形成混合粉末(S30);对混合粉末进行一次压制成形工序以制造预成形体(S40);并且对预成形体进行二次压制成形工序和烧结工序(S50)。其中,氮化铝粉末和复合氧化物粉末中的任何一种均可以先形成。
氮化铝可以通过直接氮化法、还原氮化法、从烷基铝的虚拟合成法(virtualsynthesis method)等来制造。
氮化铝粉末的纯度可以为99.9%以上且平均粒径可以为约1μm,但不限于此。
形成复合氧化物粉末的步骤(S20)至少可包括以下步骤:将第一稀土金属氧化物粉末和第二稀土金属氧化物粉末湿式混合(S21);干燥经混合的第一和第二稀土金属氧化物以形成颗粒(S23);热处理颗粒以合成复合氧化物(S25);并且粉碎复合氧化物(S27)。
彼此不同的第一和第二稀土金属可以选自镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
第一稀土金属氧化物粉末和第二稀土金属氧化物粉末各自可以是纯度为99.5%以上且平均粒径为100nm以下的纳米粉末。
相对于所制造的静电吸盘,第一稀土金属氧化物粉末和第二稀土金属氧化物粉末可以分别以0.1重量%至10重量%混合,并且第一稀土金属氧化物粉末和第二稀土金属氧化物粉末可以以各种比例混合。
第一稀土金属氧化物粉末和第二稀土金属氧化物粉末可以使用无水甲醇或无水乙醇作为溶剂进行湿式混合。例如,第一稀土金属氧化物粉末和第二稀土金属氧化物粉末可以使用氧化铝或尼龙球通过球磨工序均匀地混合。
经湿式混合的第一和第二稀土金属氧化物可以通过干燥工序形成干燥的颗粒。干燥可通过喷雾干燥、真空干燥等进行,并且经干燥的颗粒可通过筛分来划分尺寸。
然后,热处理在氮气气氛或大气压下在500℃至1000℃的温度下干燥1至5小时的颗粒来合成复合氧化物。例如,复合氧化物可以包含铕钆复合氧化物(EuGdOX)、钐钆复合氧化物(SmGdOX)、铈铕复合氧化物(CeEuOX)、钐铈复合氧化物(SmCeOX)、钆钐复合氧化物(GdSmOx)和镧铈复合氧化物(LaCeOX)中的至少任何一种,从图4可以清楚地看到,其明显不同于第一和第二稀土金属中的任何一种的氧化物或第一和第二稀土金属的各自氧化物的简单混合物。
图4是示出复合氧化物和单一稀土金属氧化物的XRD分析结果的图,其中图4的A示出钐(Sm)氧化物作为单一稀土金属氧化物的XRD分析结果,并且图4的B示出钆钐复合氧化物(GdSmOx)作为复合氧化物的XRD分析结果。
从图4的B可以看出,在钆钐复合氧化物(GdSmOx),即,钆掺杂在钐氧化物中的复合氧化物的情况下,钐的峰与A相比具有迁移和宽的形式。换句话说,当形成复合氧化物时,单一氧化物的峰位置在0.1度至0.9度的范围内迁移至复合氧化物的峰位置。这是因为钐氧化物的晶体由钆的固溶而改变,由此与单一氧化物或单一氧化物的简单混合物相比,复合氧化物可具有更多的晶格缺陷,从而可改善与氧的反应性。
如上所述通过热处理合成的复合氧化物可以通过粉碎工序粉碎,从而形成复合氧化物粉末。复合氧化物粉末的平均粒径可以小于氮化铝粉末的平均粒径。例如,复合氧化物粉末的平均粒径可以为100nm以下。
在形成氮化铝粉末和复合氧化物粉末之后,将它们混合以形成混合粉末(S30)。
例如,氮化铝粉末和复合氧化物粉末可与用于成形性的粘合剂和增塑剂等湿式混合以形成浆料,然后干燥以形成混合粉末。例如,湿式混合可以使用纯度为99%以上的氧化铝或尼龙球通过球磨工序进行,并且浆料的干燥可通过喷雾干燥、真空干燥等进行,但其不限于此。
另一方面,在形成混合粉末的步骤(S30)中,还可以添加二氧化钛。二氧化钛用于氮化铝烧结体的黑化和颜色的均匀性,并且其含量基于氮化铝烧结体可以为0.1重量%至5重量%。另外,二氧化钛可以在经历烧结工序的同时形成氮化钛,从而进一步改善复合氧化物12的电性能。
随后,对所形成的混合粉末进行一次压制成形工序以产生具有预定形状的预成形体。例如,用油压机在150bar以下的压力下成形后,可对预成形体进行冷静液压成形以具有恒定的强度。另外,可以在350℃至600℃的温度下在60小时内对预成形体进行氮气脱气。
接下来,对预成形体进行二次压制成形工序和烧结工序(S50)以形成氮化铝烧结体。例如,在二次压制成形工序中,可将预成形体装入石墨模具中,并在高温加压烧结炉中,在300bar以下的压力和1650℃至1850℃的温度下进行二次压制成形工序和烧结工序。当烧结温度低于1650℃或高于1850℃时,氮化铝烧结体的体积电阻率可能显著降低。
由此形成的氮化铝烧结体可以具有低体积电阻率。
更具体地,包括两种稀土金属的具有高晶格缺陷的复合氧化物可以通过在氮化铝烧结体的烧结工序中与氮化铝中的氧有效地反应来降低氮化铝的电阻,并且可以通过沿着氮化铝的晶界形成导电晶相来降低氮化铝烧结体的电阻。
在这种情况下,复合氧化物可以以0.2重量%至20重量%包含在氮化铝烧结体中,使得氮化铝烧结体的体积电阻率可以为1×108Ω·cm至1×1012Ω·cm。因此,能够由氮化铝烧结体制成的根据本发明的静电吸盘可以具有高吸附力和优异的电流响应特性,其中,施加电压时的卡盘和去除电压时的去卡盘时间在5秒内。
另外,由于复合氧化物粉末具有纳米尺寸,因此可以改善氮化铝烧结体的机械强度,降低氮化铝烧结体的制造过程中的烧结温度,减少在混合粉末的形成中添加的添加剂的量,并且进一步改善与氧的反应性。因此,由这种具有纳米尺寸的复合氧化物粉末形成的复合氧化物可以称为纳米复合氧化物。
图5是示出根据图1的复合氧化物粉末的平均粒径的氮化铝烧结体的烧结温度和体积电阻率的柱状图,图6是示出图1的氮化铝烧结体的氧分布状态的照片。
图5是示出根据复合氧化物粉末的尺寸的氮化铝烧结体的烧结温度和体积电阻率的柱状图,其中,图5的(I)至(IV)表示将纯度为99.9%且平均粒径为1μm的氮化铝粉末与铕钆复合氧化物(EuGdOX)混合而产生的氮化铝烧结体。然而,不同之处在于,图5的(I)和(III)的氮化铝烧结体通过混合粒径以μm计的铕钆复合氧化物(EuGdOX)粉末而制成,图5的(II)和(IV)的氮化铝烧结体通过混合粒径以nm计的铕钆复合氧化物(EuGdOX)粉末而制成。另外,图5的(I)和(II)的氮化铝烧结体在1850℃下烧结,并且图5的(III)和(IV)的氮化铝烧结体在1700℃下烧结。
从图5可以看出,(I)和(II)的氮化铝烧结体通过高烧结温度而形成为具有1×1012Ω·cm以下的体积电阻率。然而,当将烧结温度降低至1700℃时,可以看出(III)的氮化铝烧结体具有大于1×1014Ω·cm的增加的体积电阻率,而(IV)的氮化铝烧结体保持低体积电阻率。因此,由于复合氧化物粉末具有纳米尺寸,因此可以降低氮化铝烧结体的烧结温度,从而可以使静电吸盘的制造过程相对容易。
图6是示出包含钐铈复合氧化物(SmCeOX)的氮化铝烧结体的氧分布状态的照片。
图6的(A)表示钐铈复合氧化物(SmCeOX)粉末的粒径以nm计的情况,图6的(B)表示钐铈复合氧化物(SmCeOX)粉末的粒径以μm计的情况。从图6可以看出,图6的(B)示出氧的均匀分布,而图6的(A)示出氧在钐铈复合氧化物(SmCeOX)周围聚集的现象。即,当复合氧化物由具有纳米尺寸的复合氧化物粉末形成时,可以看出,复合氧化物捕集氧的能力得到改善。
因此,根据本发明,由于晶格缺陷增加的复合氧化物粉末具有纳米尺寸,因此进一步改善复合氧化物的氧反应性,从而有效地去除氮化铝中的氧,因此可以降低氮化铝烧结体的体积电阻率。
在下文中,将参考实施例更详细地描述本发明。以下实施例是用于详细说明本发明的目的,并非旨在任何情况下限制本发明的范围。
实施例
在下文中,将参考实施例更详细地描述本发明。以下实施例是用于详细说明本发明的目的,并非旨在任何情况下限制本发明的范围。
1.氮化铝粉末和复合氧化物粉末的制备
氮化铝粉末是通过还原氮化法形成的氮化铝粉末,并且使用纯度为99.9%以上且平均粒径为1μm的氮化铝粉末。
稀土金属选自钆(Gd)、钐(Sm)、铈(Ce)和铕(Eu),并调节其含量以实现相互固溶。钆(Gd)、钐(Sm)、铈(Ce)和铕(Eu)各自的氧化物的纯度为99.5%以上且平均粒径为100nm以下。
复合氧化物粉末通过以下过程形成:以无水甲醇为溶剂使用纯度为99.9%的氧化铝球通过球磨工序将两种不同的稀土金属氧化物粉末湿式混合,然后将其通过喷雾干燥法干燥,在氮气气氛下以800℃的温度对其热处理3小时,并粉碎成平均粒径为100nm以下。
2.氮化铝烧结体的形成
1)混合粉末通过以下过程形成:以无水甲醇为溶剂使用纯度为99.9%的氧化铝球通过球磨工序将氮化铝粉末、复合氧化物粉末、二氧化钛、粘合剂和增塑剂湿式混合,然后将其通过喷雾干燥法干燥。
2)用油压机在150bar的压力下成形混合粉末,从而制造预成形体,并对预成形体进行冷静液压成形,然后以450℃的温度氮气脱气40小时。
3)将预成形体装入石墨模具中,并在高温加压烧结炉中在150bar的压力和1800℃的温度下进行成形工序和烧结工序,从而形成烧结氮化铝。
3.氮化铝烧结体体积电阻率的测量
在真空气氛下在室温下进行测量。氮化铝烧结体的体积电阻率通过以下方式来计算:将施加电压设定为500V/mm并测量在施加电压后1分钟时的电流。
表2
从上表2的比较例1至3和实施例1至7可以看出,氮化铝烧结体包含含有两种稀土金属的复合氧化物的情况,与氮化铝烧结体包含这两种稀土金属的各自氧化物的情况相比,体积电阻率降低。此时,从表2的比较例4至6可以看出,由于当氮化铝烧结体中的复合氧化物的含量在0.2重量%至20重量%以外时,氮化铝烧结体的体积电阻率会过大或过小,因此复合氧化物可以以0.2重量%至20重量%包含在氮化铝烧结体中。
下表3表示根据氮化铝烧结体的烧结温度的氮化铝烧结体的体积电阻率。
表3
从表3可以看出,以1750℃为基准,当烧结温度降低至1710℃时,体积电阻率趋于逐渐降低,而当烧结温度增加至1800℃时,体积电阻率趋于逐渐增加。另外,可以看出,在1800℃以上,体积电阻率再次逐渐降低,而当烧结温度高于1850℃时,由于过度烧结,体积电阻率显著降低。如果体积电阻率小于1×108Ω·cm,则在静电吸盘中可能发生漏电流,因此,优选将烧结温度设定为1850℃以下。另外,如果烧结温度低于1650℃,则同样出现由于未烧结而使体积电阻率显著降低的现象,因此,优选将烧结温度设定为1650℃以上。
尽管已经参考附图中所示的示例性实施方式进行了以上描述,但这仅仅是示例性的,并且本领域技术人员将理解,由此可进行各种修改和等同的其他实施方式。因此,本发明的真正技术保护范围将由所附权利要求的技术实质来限定。
Claims (9)
1.一种由氮化铝烧结体制成的静电吸盘,
其中,所述氮化铝烧结体包含氮化铝和沿着所述氮化铝的晶界形成的复合氧化物,
其中,所述复合氧化物包含彼此具有固溶关系的至少两种稀土金属,
其中,所述复合氧化物包含氧含量比周围区域更高的捕集区域,并且
其中,所述复合氧化物是由具有纳米尺寸的复合氧化物粉末形成的纳米复合氧化物。
2.根据权利要求1所述的静电吸盘,其中,所述复合氧化物以0.2重量%至20重量%包含在所述氮化铝烧结体中。
3.根据权利要求1所述的静电吸盘,其中,所述氮化铝烧结体的体积电阻率为1×108Ω·cm至1×1012Ω·cm。
4.根据权利要求1所述的静电吸盘,其中,所述复合氧化物的晶体峰不同于所述至少两种稀土金属中的每一种的氧化物的晶体峰。
5.根据权利要求1所述的静电吸盘,其中,所述氮化铝烧结体在所述氮化铝的晶界处还包含氮化钛(TiN)。
6.根据权利要求5所述的静电吸盘,其中,所述氮化钛(TiN)以1重量%至5重量%包含在所述氮化铝烧结体中。
7.根据权利要求1所述的静电吸盘,其中,所述至少两种稀土金属选自镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
8.根据权利要求1所述的静电吸盘,其中,所述复合氧化物包含铕钆复合氧化物(EuGdOX)、钐钆复合氧化物(SmGdOX)、铈铕复合氧化物(CeEuOX)、钐铈复合氧化物(SmCeOX)、钆钐复合氧化物(GdSmOx)和镧铈复合氧化物(LaCeOX)中的至少任何一种。
9.根据权利要求1所述的静电吸盘,其中,所述周围区域包含所述复合氧化物中除所述捕集区域以外的区域和所述氮化铝烧结体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0087279 | 2017-07-10 | ||
KR1020170087279A KR101797232B1 (ko) | 2017-07-10 | 2017-07-10 | 정전척 |
PCT/KR2018/005548 WO2019013442A1 (ko) | 2017-07-10 | 2018-05-15 | 정전척 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110892520A true CN110892520A (zh) | 2020-03-17 |
CN110892520B CN110892520B (zh) | 2023-08-18 |
Family
ID=60385930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880045488.6A Active CN110892520B (zh) | 2017-07-10 | 2018-05-15 | 静电吸盘 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11355377B2 (zh) |
JP (1) | JP6944053B2 (zh) |
KR (1) | KR101797232B1 (zh) |
CN (1) | CN110892520B (zh) |
WO (1) | WO2019013442A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115812069A (zh) * | 2020-07-13 | 2023-03-17 | 京瓷株式会社 | 试样保持工具 |
CN116262666A (zh) * | 2022-12-29 | 2023-06-16 | 浙江省冶金研究院有限公司 | 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101965895B1 (ko) * | 2018-11-08 | 2019-04-04 | 주식회사 케이에스엠컴포넌트 | 정전 척 및 그 제조 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020031314A (ko) * | 2000-10-23 | 2002-05-01 | 시바타 마사하루 | 저체적저항 재료, 질화알루미늄 소결체 및 반도체 제조용부재 |
JP2002249379A (ja) * | 2000-12-21 | 2002-09-06 | Ngk Insulators Ltd | 窒化アルミニウム焼結体及び半導体製造装置用部材 |
JP2005294648A (ja) * | 2004-04-01 | 2005-10-20 | Ngk Insulators Ltd | 静電チャックとその製造方法 |
JP2006273587A (ja) * | 2005-03-25 | 2006-10-12 | Ngk Insulators Ltd | 窒化アルミニウム質セラミックス、半導体製造部材及び窒化アルミニウム質セラミックスの製造方法 |
JP2007254164A (ja) * | 2006-03-20 | 2007-10-04 | Ngk Insulators Ltd | 窒化アルミニウム焼結体、半導体製造装置用部材、及び窒化アルミニウム焼結体の製造方法 |
US20130285336A1 (en) * | 2012-04-26 | 2013-10-31 | Ngk Spark Plug Co., Ltd. | Alumina sintered body, member including the same, and semiconductor manufacturing apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217075A (ja) | 1985-07-12 | 1987-01-26 | 電気化学工業株式会社 | 窒化アルミニウム焼結体及びその製法 |
US20050092789A1 (en) | 1998-08-21 | 2005-05-05 | Giacona Corrado Iii | Bottled drink carrier apparatus |
US6607836B2 (en) | 2000-10-23 | 2003-08-19 | Ngk Insulators, Ltd. | Material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors |
JP2002324832A (ja) | 2002-02-19 | 2002-11-08 | Kyocera Corp | 静電チャック |
JP4181359B2 (ja) | 2002-08-22 | 2008-11-12 | 住友大阪セメント株式会社 | 窒化アルミニウム焼結体、及びその製造方法、並びに窒化アルミニウム焼結体を用いた電極内蔵型サセプタ |
JP4386695B2 (ja) | 2002-11-14 | 2009-12-16 | 日本碍子株式会社 | 窒化アルミニウム焼結体の製造方法 |
JP4424659B2 (ja) | 2003-02-28 | 2010-03-03 | 日本碍子株式会社 | 窒化アルミニウム質材料および半導体製造装置用部材 |
JP4939932B2 (ja) | 2004-03-29 | 2012-05-30 | 電気化学工業株式会社 | 窒化アルミニウム粉末及びその製造方法 |
JP5180034B2 (ja) | 2008-11-21 | 2013-04-10 | 日本碍子株式会社 | 窒化アルミニウム焼結体、その製法及びそれを用いた静電チャック |
CN104926314B8 (zh) | 2015-06-17 | 2017-02-22 | 甘肃荣宝科技股份有限公司 | 一种led用陶瓷基板 |
-
2017
- 2017-07-10 KR KR1020170087279A patent/KR101797232B1/ko active IP Right Grant
-
2018
- 2018-05-15 JP JP2020522652A patent/JP6944053B2/ja active Active
- 2018-05-15 CN CN201880045488.6A patent/CN110892520B/zh active Active
- 2018-05-15 WO PCT/KR2018/005548 patent/WO2019013442A1/ko active Application Filing
- 2018-05-15 US US16/629,709 patent/US11355377B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020031314A (ko) * | 2000-10-23 | 2002-05-01 | 시바타 마사하루 | 저체적저항 재료, 질화알루미늄 소결체 및 반도체 제조용부재 |
JP2002249379A (ja) * | 2000-12-21 | 2002-09-06 | Ngk Insulators Ltd | 窒化アルミニウム焼結体及び半導体製造装置用部材 |
JP2005294648A (ja) * | 2004-04-01 | 2005-10-20 | Ngk Insulators Ltd | 静電チャックとその製造方法 |
JP2006273587A (ja) * | 2005-03-25 | 2006-10-12 | Ngk Insulators Ltd | 窒化アルミニウム質セラミックス、半導体製造部材及び窒化アルミニウム質セラミックスの製造方法 |
JP2007254164A (ja) * | 2006-03-20 | 2007-10-04 | Ngk Insulators Ltd | 窒化アルミニウム焼結体、半導体製造装置用部材、及び窒化アルミニウム焼結体の製造方法 |
US20130285336A1 (en) * | 2012-04-26 | 2013-10-31 | Ngk Spark Plug Co., Ltd. | Alumina sintered body, member including the same, and semiconductor manufacturing apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115812069A (zh) * | 2020-07-13 | 2023-03-17 | 京瓷株式会社 | 试样保持工具 |
CN115812069B (zh) * | 2020-07-13 | 2023-12-19 | 京瓷株式会社 | 试样保持工具 |
CN116262666A (zh) * | 2022-12-29 | 2023-06-16 | 浙江省冶金研究院有限公司 | 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用 |
CN116262666B (zh) * | 2022-12-29 | 2024-05-17 | 浙江省冶金研究院有限公司 | 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用 |
Also Published As
Publication number | Publication date |
---|---|
US11355377B2 (en) | 2022-06-07 |
JP2020526939A (ja) | 2020-08-31 |
CN110892520B (zh) | 2023-08-18 |
JP6944053B2 (ja) | 2021-10-06 |
KR101797232B1 (ko) | 2017-11-13 |
US20200219747A1 (en) | 2020-07-09 |
WO2019013442A1 (ko) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111051267B (zh) | 用于制备氮化硅烧结体的流延成型浆料组合物 | |
US9884762B2 (en) | Silicon nitride substrate and silicon nitride circuit board using the same | |
US11251061B2 (en) | Electrostatic chuck and manufacturing method therefor | |
CN110892520B (zh) | 静电吸盘 | |
US10293581B2 (en) | Bonding material composition, aluminum nitride bonded body, and method for producing the same | |
JP4003907B2 (ja) | 窒化アルミニウム焼結体からなる半導体製造装置関連製品及びその製造方法並びに静電チャック、サセプタ、ダミーウエハ、クランプリング及びパーティクルキャッチャー | |
US8231964B2 (en) | Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus | |
EP2189431B1 (en) | Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same | |
KR101769608B1 (ko) | 정전척의 제조 방법 | |
KR102125964B1 (ko) | 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물 | |
JP2003313078A (ja) | 窒化アルミニウム焼結体およびそれを用いた静電チャック | |
JP2003261383A (ja) | 窒化アルミニウム焼結体およびそれを用いた静電チャック | |
CN111302806A (zh) | 一种IC装备用静电卡盘AlN陶瓷及其制备方法 | |
JP4065589B2 (ja) | 窒化アルミニウム焼結体及びその製造方法 | |
WO2019059641A2 (ko) | 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물 | |
JP2008044846A (ja) | 窒化アルミニウム焼結体およびそれを用いた静電チャック | |
JP5641967B2 (ja) | 窒化アルミニウム焼結体およびそれを用いた静電チャック | |
KR100940019B1 (ko) | 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기소결체를 이용한 반도체 제조용 부재 | |
JP4181359B2 (ja) | 窒化アルミニウム焼結体、及びその製造方法、並びに窒化アルミニウム焼結体を用いた電極内蔵型サセプタ | |
JP2016155705A (ja) | 耐食性部材、その製造方法および静電チャック装置 | |
JP2016155704A (ja) | 耐食性部材、その製造方法および静電チャック装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |