CN111302806A - 一种IC装备用静电卡盘AlN陶瓷及其制备方法 - Google Patents

一种IC装备用静电卡盘AlN陶瓷及其制备方法 Download PDF

Info

Publication number
CN111302806A
CN111302806A CN202010110066.1A CN202010110066A CN111302806A CN 111302806 A CN111302806 A CN 111302806A CN 202010110066 A CN202010110066 A CN 202010110066A CN 111302806 A CN111302806 A CN 111302806A
Authority
CN
China
Prior art keywords
aln
electrostatic chuck
aln ceramic
ceramic
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010110066.1A
Other languages
English (en)
Inventor
李晨辉
邹阳
胡梁
史玉升
刘江安
吴甲民
贺智勇
张启富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Cisri Nmt Advanced Materials & Technology Co ltd
Huazhong University of Science and Technology
Original Assignee
Beijing Cisri Nmt Advanced Materials & Technology Co ltd
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Cisri Nmt Advanced Materials & Technology Co ltd, Huazhong University of Science and Technology filed Critical Beijing Cisri Nmt Advanced Materials & Technology Co ltd
Priority to CN202010110066.1A priority Critical patent/CN111302806A/zh
Publication of CN111302806A publication Critical patent/CN111302806A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明属于陶瓷制备领域,并具体公开了一种IC装备用静电卡盘AlN陶瓷及其制备方法。该制备方法具体为:将AlN、Sm2O3的混合粉末或AlN、Y2O3的混合粉末与有机溶剂混合,并利用湿法球磨工艺进行研磨,以此获得混合浆料;采用蒸馏的方式将混合浆料进行固液分离获得干燥粉末;对干燥粉末进行放电等离子烧结,从而制得IC装备用静电卡盘AlN陶瓷。本发明采用Sm2O3或Y2O3作为烧结助剂,能够保证制得陶瓷中形成一种或多种稀土铝酸盐,从而有效改善其体积电阻率,同时本发明采用的放电等离子烧结工艺能够极大地缩短烧结时间,有效提高AlN陶瓷的相对密度,以此满足IC装备用静电卡盘的基材要求。

Description

一种IC装备用静电卡盘AlN陶瓷及其制备方法
技术领域
本发明属于陶瓷制备领域,更具体地,涉及一种IC装备用静电卡盘AlN陶瓷及其制备方法。
背景技术
半导体晶圆片的贴膜和刻蚀等工艺,一般通过约翰森-拉别克静电卡盘吸附半导体晶圆的方式来进行。这种静电卡盘的基材要求体积电阻在1×108~1×1013Ω·㎝,才能保证短时间响应并保持高吸附力。AlN陶瓷具有优良的热导性、耐蚀性、较好的绝缘性、适中的介电常数和介电损耗,高温力学性能良好,能够在于刻蚀或者贴膜时的常有腐蚀性气体和高温的苛刻条件下工作,是理想的静电卡盘制作材料。但氮化铝是一种高熔点(2157℃)的难熔共价键化合物,需要很高的烧结温度(1800℃以上)和较长的保温时间进行常压致密化烧结,但也往往容易变形不利加工,且难以达到97%以上超高致密度。同时AlN表面易吸附氧原子形成氧化铝,烧结时氧原子会进入AlN晶格形成铝空位对声子造成强烈散射,声子自由程的降低会大大降低热导率。一般通过添加烧结助剂、改变烧结方法来降低烧结温度提升AlN烧结体的致密度减少氧原子吸附,例如热压烧结、微波烧结、放电等离子烧结等等。
目前热压烧结是最常见的商业化制备方法,采用该方法可以实现致密化烧结,微观结构良好、热导率高,但热压烧结设备较为昂贵且烧结周期长能耗大,造成生产成本偏高。例如专利CN1203898A公开了氮化铝陶瓷的低温烧结,该方法采用2~10wt%工业级CaC2和一价金属氧化物以及稀土氧化物于1500~1600℃热压烧结,保温4~8小时,总烧结时间超过24小时,制得氮化铝陶瓷的致密度大于99%,热导率系数达到130~230W·m-1·K-1,电阻率为1×1016Ω·cm。专利CN1203899A公开了高热导氮化铝陶瓷的制备方法,该方法将2~8wt%工业级CaC2和CaCO3、Y2O3及其他稀土氧化物的混合物以及稀土氧化物于1800℃热压烧结,保温4~8小时,总烧结时间超过24小时,制得氮化铝陶瓷的致密度大于99%,热导率系数达到130~230W·m-1·K-1,电阻率为1×1013Ω·cm。上述两个专利中的工艺烧结周期过长,烧结成本较高,能耗很大,同时所制备的AlN烧结体电性能不符合AlN陶瓷静电卡盘性能指标要求。专利CN1301935C公开了一种AlN陶瓷材料的制备方法,该方法将4wt%的Y2O3及1wt%的Dy2O3在250MPa压力下等静压成型,并在5.15GPa压力、1675℃条件下热压烧结,总烧结时间2小时,制得AlN陶瓷材料的密度为3.31g/cm3,致密度高,热导率系数达到202W·m-1·K-1,电阻率为1.3×1013Ω·cm。虽然该工艺大大缩短了生产周期,但由于增加了等静压成型设备以及极高压力烧结条件,实际上生产成本大大上升,同时所制备的AlN烧结体电性能指标也达不AlN陶瓷静电卡盘性能指标要求。
微波烧结是一种快速烧结工艺,通过介电材料在微波电磁场中会吸收微波能量而升温的特点来进行整体烧结,升温快速,烧结时间短,加热均匀,能够有效降低AlN陶瓷的烧结温度,进而制备出高致密度、高热导等优异性能的AlN陶瓷。同时,目前国内外有不少厂家均开发出微波烧结设备,降低了设备成本。例如专利CN104072158A公开了氮化铝烧结助剂和制备方法及氮化铝陶瓷基片的制备方法,该方法通过添加Li-B-Si共熔点氧化物和Mn-Cu共熔点氧化物,在1300℃至1450℃保温20min至40min,得到烧结致密、高热导率的AlN陶瓷。虽然该专利通过低温烧结得到高热导率的氮化铝烧结体,但未能探讨添加助剂对电阻率的影响,同时该工艺使用了大量种类繁多的有机试剂以及氧化锂、氧化铍、碳酸锰、氧化铜等腐蚀有毒添加剂,在生产应用过程中需要面对回收和污染问题。因此现有技术大多存在烧结周期较长、能耗大导致成本高、较多使用有机试剂甚至有毒试剂致使潜在的污染风险等问题,且在改善AlN陶瓷电性能方面的研究考虑不足。
发明内容
针对现有技术的上述缺点和/或改进需求,本发明提供了一种IC装备用静电卡盘AlN陶瓷及其制备方法,其中该方法采用Sm2O3或Y2O3作为烧结助剂,并利用放电等离子烧结的方式制备IC装备用静电卡盘AlN陶瓷,能够在AlN陶瓷内形成一种或多种稀土铝酸盐,从而有效提高其体积电阻率,并保证该AlN陶瓷的相对密度,以此满足IC装备用静电卡盘的基材要求。
为实现上述目的,按照本发明的一个方面,提出了一种IC装备用静电卡盘AlN陶瓷的制备方法,该制备方法包括如下步骤:
(a)将AlN、Sm2O3的混合粉末或AlN、Y2O3的混合粉末与有机溶剂混合,并利用湿法球磨工艺进行研磨,以此获得混合浆料;
(b)采用蒸馏的方式将所述混合浆料进行固液分离,以此获得干燥粉末;
(c)对所述干燥粉末进行放电等离子烧结,从而制得所述IC装备用静电卡盘AlN陶瓷。
作为进一步优选地,在步骤(a)中,所述AlN、Sm2O3和Y2O3的纯度不低于99%,所述AlN、Sm2O3和Y2O3的平均粒径为0.01μm~30μm。
作为进一步优选地,在步骤(a)中,所述混合粉末中Sm2O3或Y2O3的掺杂量为1wt%~10wt%。
作为进一步优选地,在步骤(a)中,所述混合粉末与有机溶剂的质量比为1:(0.5~2)。
作为进一步优选地,在步骤(a)中,所述湿法球磨工艺采用的设备为搅拌式球磨机、行星式球磨机或振动式球磨机,所述湿法球磨工艺进行研磨的时间为4h~24h。
作为进一步优选地,在步骤(b)中,将固液分离获得的有机溶剂进行回收。
作为进一步优选地,在步骤(c)中,所述放电等离子烧结的工艺条件为:在氮气气氛下以20℃/min~100℃/min的升温速率下加热到1600℃~2000℃,并保温5min~30min,最后冷却至室温,同时保证烧结时施加压力为10MPa~70MPa。
按照本发明的另一方面,提供了一种利用上述方法制备的IC装备用静电卡盘AlN陶瓷。
作为进一步优选地,当所述混合粉末为AlN和Sm2O3时,所述IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及SmAlO3、Sm4Al2O9、Sm2O3中的一种或者多种;当所述混合粉末为AlN和Y2O3时,所述IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及YAlO3、Y3Al5O12、Y4Al2O9中的一种或者多种。
作为进一步优选地,所述IC装备用静电卡盘AlN陶瓷的相对密度在95%以上,其体积电阻率为1×108Ω·㎝~1×1013Ω·㎝。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明采用Sm2O3或Y2O3作为烧结助剂,能够保证制得的AlN陶瓷中形成一种或多种稀土铝酸盐,从而有效改善AlN陶瓷的体积电阻率,同时制备过程中采用湿法球磨工艺将混合粉末与有机溶剂进行研磨,能够确保AlN与Sm2O3或Y2O3混合均匀,使得相关组分在后期烧结过程中完全接触反应得到目标物相,此外本发明采用的放电等离子烧结工艺能够极大地缩短烧结时间,通过加载通-断式直流脉冲电流瞬间放电等离子体,使得干燥粉末各颗粒都产生焦耳热并使颗粒活化,颗粒间会产生局部高温熔化,并在一定压力作用下迅速完成烧结致密化过程,进而有效提高AlN陶瓷的相对密度,以此满足IC装备用静电卡盘的基材要求;
2.尤其是,本发明通过对Sm2O3或Y2O3的掺杂量以及放电等离子烧结过程中的工艺参数进行优化,能够有效改善AlN陶瓷的电性能,通过上述参数的相互作用能够制得相对密度在95%以上,体积电阻率为1×108Ω·㎝~1×1013Ω·㎝的AlN陶瓷。
附图说明
图1是本发明优选实施例提供的IC装备用静电卡盘AlN陶瓷的制备工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明实施例提供了一种IC装备用静电卡盘AlN陶瓷的制备方法,该制备方法包括如下步骤:
(a)将AlN、Sm2O3的混合粉末或AlN、Y2O3的混合粉末与有机溶剂混合,并利用湿法球磨工艺进行研磨,以此获得混合浆料;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将有机溶剂进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉内进行放电等离子烧结,从而获得IC装备用静电卡盘AlN陶瓷。
进一步,在步骤(a)中,因AlN具有很强的共价键,原子之间的扩散系数小,很难烧结,而Sm2O3和Y2O3是促进其烧结的稀土元素烧结助剂。同时,Sm2O3在高温下生成的SmAl11O18或SmAl11O18在材料内呈连续三维网状分布于晶界,可以大幅降低AlN的电阻率(从1014Ω·cm降低到1010Ω·cm),以此满足IC装备用静电卡盘的基材要求。
为保证产品的质量,AlN、Sm2O3和Y2O3的纯度不低于99%,并且AlN、Sm2O3和Y2O3的平均粒径为0.01μm~30μm。混合粉末中Sm2O3或Y2O3的掺杂量为1wt%-10wt%,从而保证制得的AlN陶瓷满足IC装备用静电卡盘对材料电性能的要求,同时Sm2O3或Y2O3的掺杂量过低时,干燥粉末高温下无法形成足够的液相,导致最终制得的AlN陶瓷的致密度达不到IC装备用静电卡盘对材料相对密度的要求。
混合粉末与有机溶剂的质量比为1:(0.5~2),有机溶剂包括乙醇、丁酮或异丙醇中的一种或多种,并且湿法球磨工艺采用的设备为搅拌式球磨机、行星式球磨机或振动式球磨机,湿法球磨工艺进行研磨的时间为4h~24h。
进一步,在步骤(c)中,放电等离子烧结的工艺条件为:在氮气气氛下以20℃/min~100℃/min的升温速率下加热到1600℃~2000℃,并保温5min~30min,最后冷却至室温,同时保证烧结时施加压力为10MPa~70MPa。
按照本发明的另一方面,提供了一种利用上述方法制备的IC装备用静电卡盘AlN陶瓷,当混合粉末为AlN和Sm2O3时,IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及SmAlO3、Sm4Al2O9、Sm2O3中的一种或者多种;当混合粉末为AlN和Y2O3时,IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及YAlO3、Y3Al5O12、Y4Al2O9中的一种或者多种;IC装备用静电卡盘AlN陶瓷的相对密度在95%以上,其体积电阻率为1×108Ω·㎝~1×1013Ω·㎝。
下面根据具体实施例对本发明作进一步说明。
实施例1
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Sm2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入无水乙醇和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Sm2O3的含量为1wt%,并且混合粉末与无水乙醇的质量比为1:0.5,研磨时间为24h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将无水乙醇进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以20℃/min的升温速率下加热到1600℃,并保温30min,最后冷却至室温,同时保证烧结时施加压力约为70MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度97.2%,电阻率约6.1×1011Ω·cm。
实施例2
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Sm2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入丁酮和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Sm2O3的含量为5wt%,并且混合粉末与丁酮的质量比为1:1,研磨时间为12h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将丁酮进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以60℃/min的升温速率下加热到1800℃,并保温15min,最后冷却至室温,同时保证烧结时施加压力约为45MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度98.4%,电阻率约9.9×1010Ω·cm。
实施例3
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Sm2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入异丙醇和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Sm2O3的含量为10wt%,并且混合粉末与异丙醇的质量比为1:2,研磨时间为4h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将异丙醇进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以100℃/min的升温速率下加热到2000℃,并保温5min,最后冷却至室温,同时保证烧结时施加压力约为10MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度99.3%,电阻率约1.5×1010Ω·cm。
实施例4
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Y2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入无水乙醇和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Y2O3的含量为1wt%,并且混合粉末与无水乙醇的质量比为1:0.5,研磨时间为24h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将无水乙醇进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以20℃/min的升温速率下加热到1600℃,并保温30min,最后冷却至室温,同时保证烧结时施加压力约为70MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度97.2%,电阻率约8.8×1011Ω·cm。
实施例5
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Y2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入丁酮和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Y2O3的含量为5wt%,并且混合粉末与丁酮的质量比为1:1,研磨时间为12h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将丁酮进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以60℃/min的升温速率下加热到1800℃,并保温15min,最后冷却至室温,同时保证烧结时施加压力约为45MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度98.4%,电阻率约3.6×1011Ω·cm。
实施例6
(a)取纯度不低于99%,平均粒径为0.01μm~30μm的AlN和Y2O3,并将其混合粉末置于聚四氟乙烯球磨罐中,加入异丙醇和氧化锆磨球进行湿法球磨,以此获得混合浆料,其中混合粉末里Y2O3的含量为10wt%,并且混合粉末与异丙醇的质量比为1:2,研磨时间为4h;
(b)采用蒸馏的方式将混合浆料进行固液分离,以此获得干燥粉末,同时将异丙醇进行回收;
(c)将干燥粉末置于石墨模具中,并放入等离子体活化烧结炉中进行放电等离子烧结,烧结条件为:在氮气气氛下以100℃/min的升温速率下加热到2000℃,并保温5min,最后冷却至室温,同时保证烧结时施加压力约为10MPa,从而获得IC装备用静电卡盘AlN陶瓷,经检测,样品平均相对密度99.3%,电阻率约5.4×1010Ω·cm。
本领域的技术人员容易理解,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,该制备方法包括如下步骤:
(a)将AlN、Sm2O3的混合粉末或AlN、Y2O3的混合粉末与有机溶剂混合,并利用湿法球磨工艺进行研磨,以此获得混合浆料;
(b)采用蒸馏的方式将所述混合浆料进行固液分离,以此获得干燥粉末;
(c)对所述干燥粉末进行放电等离子烧结,从而制得所述IC装备用静电卡盘AlN陶瓷。
2.如权利要求1所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(a)中,所述AlN、Sm2O3和Y2O3的纯度不低于99%,所述AlN、Sm2O3和Y2O3的平均粒径为0.01μm~30μm。
3.如权利要求1所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(a)中,所述混合粉末中Sm2O3或Y2O3的掺杂量为1wt%~10wt%。
4.如权利要求1所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(a)中,所述混合粉末与有机溶剂的质量比为1:(0.5~2)。
5.如权利要求1所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(a)中,所述湿法球磨工艺采用的设备为搅拌式球磨机、行星式球磨机或振动式球磨机,所述湿法球磨工艺进行研磨的时间为4h~24h。
6.如权利要求1所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(b)中,将固液分离获得的有机溶剂进行回收。
7.如权利要求1~6任一项所述的IC装备用静电卡盘AlN陶瓷的制备方法,其特征在于,在步骤(c)中,所述放电等离子烧结的工艺条件为:在氮气气氛下以20℃/min~100℃/min的升温速率下加热到1600℃~2000℃,并保温5min~30min,最后冷却至室温,同时保证烧结时施加压力为10MPa~70MPa。
8.一种利用如权利要求1~7任一项所述方法制备的IC装备用静电卡盘AlN陶瓷。
9.如权利要求8所述的IC装备用静电卡盘AlN陶瓷,其特征在于,当所述混合粉末为AlN和Sm2O3时,所述IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及SmAlO3、Sm4Al2O9、Sm2O3中的一种或者多种;当所述混合粉末为AlN和Y2O3时,所述IC装备用静电卡盘AlN陶瓷的物相组成为AlN以及YAlO3、Y3Al5O12、Y4Al2O9中的一种或者多种。
10.如权利要求8或9所述的IC装备用静电卡盘AlN陶瓷,其特征在于,所述IC装备用静电卡盘AlN陶瓷的相对密度在95%以上,其体积电阻率为1×108Ω·㎝~1×1013Ω·㎝。
CN202010110066.1A 2020-02-23 2020-02-23 一种IC装备用静电卡盘AlN陶瓷及其制备方法 Pending CN111302806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010110066.1A CN111302806A (zh) 2020-02-23 2020-02-23 一种IC装备用静电卡盘AlN陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010110066.1A CN111302806A (zh) 2020-02-23 2020-02-23 一种IC装备用静电卡盘AlN陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN111302806A true CN111302806A (zh) 2020-06-19

Family

ID=71151353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010110066.1A Pending CN111302806A (zh) 2020-02-23 2020-02-23 一种IC装备用静电卡盘AlN陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111302806A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589286A (zh) * 2023-06-02 2023-08-15 武汉理工大学 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663080A (zh) * 2016-07-27 2018-02-06 北京华卓精科科技股份有限公司 应用于j‑r型静电卡盘的氧化铝陶瓷及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663080A (zh) * 2016-07-27 2018-02-06 北京华卓精科科技股份有限公司 应用于j‑r型静电卡盘的氧化铝陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄林芸等: "稀土氧化物对SPS烧结AlN陶瓷电性能的影响", 《无机材料学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589286A (zh) * 2023-06-02 2023-08-15 武汉理工大学 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法

Similar Documents

Publication Publication Date Title
JP5444387B2 (ja) 半導体装置用放熱板
CN111196728B (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
US20040171474A1 (en) Aluminum nitride materials and members for use in the production of semiconductors
WO2018221504A1 (ja) 窒化アルミニウム質焼結体、および半導体保持装置
CN112028636A (zh) 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN111302809A (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN110892520B (zh) 静电吸盘
KR101681184B1 (ko) 전기전도성 상압소결 탄화규소 소재 제조용 조성물, 탄화규소 소재 및 그 제조방법
CN109592983B (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
CN111302806A (zh) 一种IC装备用静电卡盘AlN陶瓷及其制备方法
JPH05238830A (ja) 窒化アルミニウム焼結体およびその製造方法
CN111484333A (zh) 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
CN116283251A (zh) 一种氧化铝陶瓷及其制备方法与应用
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
KR102371925B1 (ko) 열물리적 특성이 개선된 질화알루미늄 소결체 및 그 제조방법
JP6107503B2 (ja) 窒化アルミニウム焼結体およびその製造方法
JP3106160B2 (ja) 窒化アルミニウム焼結体及びその製造方法
CN109336609A (zh) 一种高热导、电绝缘液相烧结碳化硅陶瓷及其sps工艺制备方法
CN116813352B (zh) 氮化铝陶瓷材料及其制备方法和应用
KR102536630B1 (ko) 중고온에서 높은 비저항을 갖는 정전척용 AlN-MgO계 소결체 및 이의 제조방법
CN108395257A (zh) 一种氮化硅基复合材料及其制备方法
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
CN118754675A (zh) 一种陶瓷浆料、氮化铝陶瓷材料及其制备方法、静电卡盘
KR100381589B1 (ko) 질화알루미늄 소결체 및 반도체 제조용 부재

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200619