CN116589286A - 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法 - Google Patents

一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN116589286A
CN116589286A CN202310654590.9A CN202310654590A CN116589286A CN 116589286 A CN116589286 A CN 116589286A CN 202310654590 A CN202310654590 A CN 202310654590A CN 116589286 A CN116589286 A CN 116589286A
Authority
CN
China
Prior art keywords
aluminum nitride
powder
yttrium acetylacetonate
sintering
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310654590.9A
Other languages
English (en)
Inventor
李美娟
王传一
王传彬
沈强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202310654590.9A priority Critical patent/CN116589286A/zh
Publication of CN116589286A publication Critical patent/CN116589286A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,乙酰丙酮钇粉末与有机溶剂混合并加热后,加入一定质量比的氮化铝粉末,然后进行混合并球磨,得到混合粉末;所得混合粉末进行等离子活化烧结,得到氮化铝陶瓷块体材料。本发明开发了乙酰丙酮钇作为氮化铝烧结助剂的新用途,将其作为烧结助剂制备氮化铝陶瓷有效解决了氮化铝粉体烧结中因氧杂质含量较高导致热导率降低的问题。

Description

一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法
技术领域
本发明涉及电子封装材料领域,具体涉及一种氮化铝陶瓷的制备方法及其产品产品。
背景技术
5G时代的来临,万物互联成为现实。随着微电子技术的发展,更高功率元器件的功耗带来的热能需要被解决,作为电绝缘材料的基板需要具有更高的热导率和优良的介电性能。
在这种情况下,氮化铝(AlN)陶瓷因导热性能好,线膨胀系数与硅和氮化镓接近,体积电阻率高,介电常数和介电损耗小,被视为新一代半导体散热基片和电子器件封装的理想材料。与上一代散热片(Al2O3,BeO)相比,氮化铝生产过程无毒,并且有着更高的导热系数。
但是,氮化铝属于共价化合物,原子自扩散系数小,需要1900℃以上的温度才能烧结为致密的陶瓷材料。由于生产和储存不当,氮化铝粉末中存在氧化铝和氢氧化铝等杂质,这是因为Al和O原子的亲和力较高,导致O进入氮化铝晶格产生铝空位,铝空位会散射声子使得到热导率降低。目前解决氧缺陷的方法是加入适量烧结助剂以实现液相烧结提高基体致密度并夺取晶格氧,从而得到较高的热导率。现在技术中的烧结助剂以稀土元素氧化物和氟化物、稀土硝酸盐、碱土金属氧化物和氟化物为主,科研和生产最为常用的是Y2O3和CaO的复合烧结助剂。
这些氮化铝陶瓷烧结助剂一般以固相形式引入,很难均匀分散于氮化铝基体中,这一方面影响烧结助剂的性能发挥,另一方面,其产生的热导率较低的第二相会发生聚集并散射声子传播,导致热导率降低;并且这些烧结助剂无法生成无铝相而降低铝空位浓度。为解决这一问题,通常采取外加碳材料进行氧化还原反应。但碳材料氧化过程易生成气体,在烧结体中残留气孔而降低其致密度和热导率。同时,晶体碳如石墨或石墨烯,与氮化铝晶粒之间的结合性较差,二者的复合界面会产生严重的声子散射;碳材料的加入也会增大氮化铝陶瓷的电导率,进而影响封装基板材料所要求的绝缘性能。
发明内容
本发明的目的在于提供一种采用可溶于有机溶剂的乙酰丙酮钇(Y(acac)3)作为烧结助剂制备氮化铝陶瓷的方法,有效解决了粉体烧结中因氧杂质含量较高导致热导率降低的问题。
为实现上述发明目的,本发明采用的技术方案如下:
乙酰丙酮钇作为氮化铝烧结助剂的应用,其特征在于将乙酰丙酮钇作为烧结助剂用于制备氮化铝陶瓷,将乙酰丙酮钇粉末与氮化铝粉末混合球磨后,通过烧结制备氮化铝陶瓷材料。其中,烧结制度为:压力20~80MPa,保护气氛,室温下以50~150℃/min的升温速率升温至1500~1800℃,保温3~10min,然后随炉冷却即可。当然,采用较低的烧结温度下比如1500~1600℃,以及较短的保温时间3~5min可以节约能耗。
采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,包括如下步骤:
1)按照乙酰丙酮钇与AlN的质量比为1:(5~25),称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末与有机溶剂混合加热后,与氮化铝粉末经混合并球磨,真空干燥后得到混合粉末;
3)将步骤2)所得混合粉末进行等离子活化烧结(PAS),得到氮化铝陶瓷块体材料。
按上述方案,所述氮化铝陶瓷块体材料还可以经过修磨等磨削加工,制成氮化铝陶瓷片。其中,磨削加工机器为磨床,抛光机,金刚石切割机等。
按上述方案,将步骤3)所得氮化铝陶瓷块体材料还可以进一步进行热处理,热处理温度为1700~2200℃,处理时间4~12h。热处理的原因是,由于PAS是快速烧结致密化的烧结技术,其烧结时间较短,第二相产物来不及进一步反应,故采用热处理促进反应的进行。热处理前后,主要是第二相产物从富铝相YAG转变为贫铝相和无铝相YAM/YN/Y2O3。热处理后的氮化铝空位浓度更低,故热导率提升。
按上述方案,步骤1)所述氮化铝粉末的粒径为0.1~1μm;乙酰丙酮钇粉末的熔点为138~140℃。
按上述方案,步骤1)所述的氮化铝粉末的纯度为95%以上,所述乙酰丙酮钇粉末的纯度为99%以上。
按上述方案,步骤2)中,所述有机溶剂与乙酰丙酮钇粉末的质量比在(80~120):1。
按上述方案,步骤2)所述有机溶剂为异丙醇,丙醇,乙醇等中的一种或几种任意比例的混合物;加热温度为30~60℃。
按上述方案,步骤2)中,球磨转速为100~300r/min,球磨时间为0.5~1h。
按上述方案,步骤2)中,真空干燥的温度为50~70℃,真空干燥的时间为8~12h。
按上述方案,步骤3)中,混合粉末进行等离子活化烧结之前,预压成块体,预压的压力为20~40MPa,压制时间5~10min。
按上述方案,步骤3)中,烧结工艺条件为:轴向压力20~60MPa,保护气氛,室温下以80~100℃/min的升温速率升温至1500~1700℃,保温3~5min,然后随炉冷却。
按本发明所提供的上述方法制备的氮化铝陶瓷具有较高致密度(99%以上),晶粒的平均粒径为7±2μm,热导率为100~110(W/(m·K)。乙酰丙酮钇作为烧结助剂,其生成第二相均匀分布在三叉晶界处,对热导率影响最小。以实施例1为例,所制备得到的氮化铝陶瓷,比纯AlN陶瓷的热导率提高了128%,比添加传统氧化钇的AlN陶瓷的热导率提高了52%。
本发明选用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷,由于乙酰丙酮钇加热可溶解于有机溶剂,然后均匀分散到氮化铝粉末中,并且液相生成温度低,有利于降低烧结温度;而且,乙酰丙酮钇分解残留碳源可在烧结温度下与氧杂质发生碳热还原反应,除去氧杂质的同时,解决了氧缺陷问题,提高了氮化铝陶瓷基板的热导率。
与现有技术相比,本发明的有益效果在于:1、本发明提供的乙酰丙酮钇的杂质含量极少且结构稳定,可在30~60℃范围内,溶于有机溶剂,解决烧结助剂在氮化铝粉末中混合不均匀、分散不均匀的问题。2、本发明的烧结助剂由于是含钇化合物,其除氧效果要远高于碱土金属氧化物和氟化物等,并且生成的第二相(Y-Al-O三元化合物是烧结助剂与氧杂质(氧化铝为主)反应生成的第二相,作用是将晶格和表面氧杂质通过生成三元化合物固定在晶界)稳定,分布在三叉晶界处;生成的第二相均匀分散在氮化铝基体中,同时在升温过程中可产生有机残碳,进一步与氧化钇生成的Y-Al-O三元化合物进行反应,最后得到无铝化合物(无铝化合物指YN和氧化钇这种第二相),这是进一步将第二相里的铝转变为氮化铝,可以降低整体的铝空位浓度;同时,乙酰丙酮钇热分解产生的有机残碳,可以进一步与氧杂质发生碳热还原反应除氧。本发明通过以上两种方式有效解决了氮化铝粉体烧结中因氧杂质含量较高导致热导率降低的问题。
另外,本发明的工艺步骤简单,通过低速球磨,干燥,放电等离子烧结,低温烧结制备氮化铝陶瓷材料,后续采用简单的修磨工艺即可得到氮化铝陶瓷块体或片材,应用于氮化铝陶瓷的制备,适于工业化生产。
附图说明
图1为实施例1、2、3氮化铝粉末的SEM微观形貌图;
图2为实施例1、2、3氮化铝粉末的XRD图;
图3为实施例1制备的氮化铝陶瓷的SEM微观形貌图和粒径分布图;
图4为实施例2制备的氮化铝陶瓷的SEM微观形貌图和粒径分布图;
图5为实施例3制备的氮化铝陶瓷的XRD图;
图6为添加4~13wt.%乙酰丙酮钇制备的氮化铝陶瓷的导热系数曲线,以及相同烧结参数下的添加传统氧化钇烧结助剂的氮化铝陶瓷的热导率和无烧结添加剂的氮化铝陶瓷的热导率。其中,4~13wt.%乙酰丙酮钇,是乙酰丙酮钇占乙酰丙酮钇和氮化铝总质量的质量百分比。
图7中a)、b)分别是实施例2步骤3)和步骤4)制备的氮化铝陶瓷的XRD图谱。
图8实施例1制备的氮化铝陶瓷样品的断面抛光背散射电子扫描图,其中a)为烧结助剂为氧化钇,作为对照;b烧结助剂为乙酰丙酮钇,即实施例1。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,所用原料氮化铝粉体的纯度为95%,粒径在0.1~1μm范围内;乙酰丙酮钇粉体的纯度为99%。
下述实施例中,采用精密金刚石切割机将烧结后的氮化铝陶瓷切割成10*10mm2的块体,接着采用机密磨床打磨上下表面的渗碳层,最后得到厚度为1~2mm后的氮化铝陶瓷块体。先使用LFA457型激光导热仪(德国耐驰公司)测量得到样品的热扩散系数,接着使用法国塞塔拉姆公司C80型号的微量热仪测定样品的比热容,通过计算得到所测材料的热导率,具体公式如下:λ=αρC,其中,式中,ɑ为热扩散系数,ρ为相对密度,C为比热容;测试温度为25℃。
实施例1
采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,具体步骤如下:
1)按照氮化铝粉末与乙酰丙酮钇粉末的质量比9:1(即10wt.%乙酰丙酮钇,是乙酰丙酮钇占乙酰丙酮钇和氮化铝总质量的质量百分比),称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末溶于乙醇加热至30℃,乙酰丙酮钇粉末与乙醇的质量比为1:100,所得混合溶液与氮化铝粉末一起加入球磨罐中,以氧化锆球为研磨球,固体粉体(即氮化铝粉末与乙酰丙酮钇粉末的质量之和):研磨球的质量比为1:10,球磨机转速为250r/min,球磨时间为30min,将球磨后所得浆料置于真空烘箱内,真空烘箱温度为70℃,真空烘干时间为12h,得到混合粉末;
3)将步骤2)所得混合粉末研磨后加入到石墨模具中进行40MPa预压,预压时间10min,然后将模具放入等离子活化烧结炉中,加压40MPa,氮气气氛,从室温下以100℃/min的升温速率升温至1700℃烧结,保温时间5min;接着将烧结所得块体材料进行修磨,除去石墨纸层以及渗碳层,最后得到氮化铝陶瓷块体。
图3为本实施例制备的氮化铝陶瓷的SEM图和粒径分布图,可知其晶粒大小D50=7.0±2.1μm,基本在4~11μm范围内,无明显第二相分布在晶界处;并且,该氮化铝陶瓷的导热性系数(热导率)为91.22W/(m·K);样品的断面抛光背散射电子扫描图如图8所示,白色高亮部分为含Y第二相,可以明显得到,相比烧结助剂氧化钇,采用乙酰丙酮钇生成的第二相分散的更为均匀。
实施例2
一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,具体步骤如下:
1)按照氮化铝粉末与乙酰丙酮钇粉末的质量比9:1(即10wt.%乙酰丙酮钇),称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末溶于乙醇加热至30℃,乙酰丙酮钇粉末与乙醇的质量比为1:100,所得混合溶液与氮化铝粉末一起加入球磨罐中,以氧化锆球为研磨球,固体粉体:研磨球=1:10(质量比),球磨机转速为250r/min,球磨时间为1h,将球磨后所得浆料置于真空烘箱内,真空烘箱温度为70℃,真空烘干时间为12h,得到混合粉末;
3)将步骤2)所得混合粉末研磨后加入到石墨模具中进行40MPa预压,预压时间10min,然后将模具放入等离子活化烧结炉中,加压40MPa,氮气气氛,从室温下以100℃/min的升温速率升温至1600~1700℃(分别取1600℃、1650℃、1700℃三个温度做三个样品)烧结,保温时间5min;接着将烧结所得块体材料进行修磨,除去石墨纸层以及渗碳层,得到氮化铝陶瓷块体;
4)将步骤3)所得氮化铝陶瓷块体进行4h的1800℃热处理,得到热处理后的氮化铝陶瓷。
如图7所示,热处理前后,主要是第二相产物从富铝相YAG转变为贫铝相和无铝相YAM/YN/Y2O3,热处理之前存在YAG相,热处理之后不存在了。
图4为本实施例步骤4)所得氮化铝陶瓷的SEM图和粒径分布图,可知其晶粒大小D50=8.3±2.1μm,主要在6~12μm范围内,无明显第二相;并且,该氮化铝陶瓷的导热性系数为116.2W/(m·K)。
实施例3
一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,具体步骤如下:
1)按照氮化铝粉末与乙酰丙酮钇粉末的质量比20:1,称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末溶于乙醇加热至30℃,乙酰丙酮钇粉末与乙醇的质量比为1:100,所得混合溶液与氮化铝粉末一起加入球磨罐中,以氧化锆球为研磨球,固体粉体:研磨球=1:10,球磨机转速为250r/min,球磨时间为1h,将球磨后所得浆料置于真空烘箱内,真空烘箱温度为70℃,真空烘干时间为12h,得到混合粉末;
3)将步骤2)所得混合粉末研磨后加入到石墨模具中进行40MPa预压,预压时间10min,然后将模具放入等离子活化烧结炉中,加压40MPa,氮气气氛,从室温下以80℃/min的升温速率升温至1700℃烧结,保温时间5min;接着将烧结所得块体材料进行修磨,除去石墨纸层以及渗碳层,最后得到氮化铝陶瓷块体。
图5为本实施例制备的氮化铝陶瓷的XRD图,可知:除了氮化铝相之外,还有微量的第二相钇铝石榴石(Y3Al5O12)存在,无明显其他杂峰;并且,该氮化铝陶瓷的导热性系数为45.56(W/(m·K)。
实施例4
一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,具体步骤如下:
1)按照乙酰丙酮钇粉末质量分数为4~13wt.%(取4wt.%、5wt.%、6wt.%、7wt.%、8wt.%、9wt.%、10wt.%、11wt.%、12wt.%、13wt.%十个样品,即乙酰丙酮钇与氮化铝的质量比分别约为1:24、1:19、1:15.7、1:13.3、1:11.5、1:10.1、1:9、1:8.1、1:7.3、1:6.7,在1:(6~24)范围内),称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末溶于乙醇加热至30℃,乙酰丙酮钇粉末与乙醇的质量比为1:100,所得混合溶液与氮化铝粉末一起加入球磨罐中,以氧化锆球为研磨球,固体粉体:研磨球=1:10(质量比),球磨机转速为250r/min,球磨时间为1h,将球磨后所得浆料置于真空烘箱内,真空烘箱温度为70℃,真空烘干时间为12h,得到混合粉末;
3)将步骤2)所得混合粉末研磨后加入到石墨模具中进行40MPa预压,预压时间10min,然后将模具放入等离子活化烧结炉中,加压40MPa,氮气气氛,从室温下以100℃/min的升温速率升温至1700℃烧结,保温时间5min;接着将烧结所得块体材料进行修磨,除去石墨纸层以及渗碳层,最后得到氮化铝陶瓷块体。
图6为本实施例所制备的10个氮化铝陶瓷块体样品的热导率数据曲线,可以看到:随着乙酰丙酮钇含量的升高热导率逐渐上升,到达峰值后逐渐下降,这是因为乙酰丙酮钇产生的第二相较多,第二相本身热导率极低,故会影响氮化铝陶瓷基体热导率,导致了热导率下降。
最后,本发明所提供的上述方法制备的氮化铝陶瓷具有较高致密度(99%以上),晶粒的平均粒径为7±2μm,热导率为90~110(W/(m·K)。乙酰丙酮钇作为烧结助剂,可溶于有机溶剂,使得生成第二相均匀分布在三叉晶界处,对热导率影响最小。随着乙酰丙酮钇的加入氮化铝陶瓷热导率先升后降。实施例1中采用PAS烧结技术制备得到的氮化铝陶瓷,比纯AlN陶瓷的热导率提高了128%,比添加传统氧化钇的AlN陶瓷的热导率提高了52%。采用无压烧结或者热压烧结等其他烧结工艺和相应烧结设备,相对于传统氧化钇烧结剂,以乙酰丙酮钇作为氮化铝烧结助剂,在平行条件下制备的氮化铝陶瓷的热导率也会得到一定的提高。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (10)

1.乙酰丙酮钇作为氮化铝烧结助剂的用途,其特征在于:将乙酰丙酮钇作为烧结助剂用于烧结制备氮化铝陶瓷。
2.根据权利要求1所述的用途,其特征在于:将乙酰丙酮钇粉末与氮化铝粉末混合球磨后,通过烧结制备氮化铝陶瓷材料。
3.一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:包括如下步骤:
1)按照乙酰丙酮钇与氮化铝的质量比为1:(5~25),称取乙酰丙酮钇粉末与氮化铝粉末;
2)将步骤1)称取的乙酰丙酮钇粉末与有机溶剂混合并加热后,与氮化铝粉末进行混合并球磨,真空干燥后得到混合粉末;
3)将步骤2)所得混合粉末进行等离子活化烧结,得到氮化铝陶瓷块体材料。
4.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:将步骤3)所得氮化铝陶瓷块体材料进一步进行磨削加工和/或热处理。
5.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:步骤1)中,所述氮化铝粉末的粒径为0.1~1μm。
6.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:步骤1)中,氮化铝粉末的纯度为95%以上,所述乙酰丙酮钇粉末的纯度为99%以上。
7.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:步骤2)中,所述有机溶剂与乙酰丙酮钇粉末的质量比为(80~120):1,有机溶剂为异丙醇,丙醇,乙醇中的一种或几种任意比例的混合物;加热温度为30~60℃。
8.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:步骤3)中,混合粉末进行等离子活化烧结之前,预压成块体,预压的压力为20~40MPa,压制时间5~10min。
9.根据权利要求3所述的一种采用乙酰丙酮钇作为烧结助剂制备氮化铝陶瓷的方法,其特征在于:步骤3)中,烧结工艺条件为:烧结压力为20~80MPa,保护气氛下,室温下以50~150℃/min的升温速率升温至1500~1800℃,保温3~10min,然后随炉冷却。
10.权利要求3~9中任一项制备的氮化铝陶瓷,其特征在于:所述氮化铝陶瓷的致密度为99%以上,第二相成分主要为Y3Al5O12,且第二相均匀分布在三叉晶界处,显微结构中的晶粒平均粒径为5~9μm,产品热导率为100~110(W/(m·K);所述氮化铝陶瓷经热处理后,第二相的主要成分由Y3Al5O12经YAP(YAlO3)和/或YAM(Y4Al2O9)向无铝相YN和Y2O3转化。
CN202310654590.9A 2023-06-02 2023-06-02 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法 Pending CN116589286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310654590.9A CN116589286A (zh) 2023-06-02 2023-06-02 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310654590.9A CN116589286A (zh) 2023-06-02 2023-06-02 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN116589286A true CN116589286A (zh) 2023-08-15

Family

ID=87589799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310654590.9A Pending CN116589286A (zh) 2023-06-02 2023-06-02 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116589286A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630303A1 (de) * 1986-09-05 1988-03-10 Heraeus Gmbh W C Verfahren zur herstellung von granulat aus aluminium-nitrid und dessen verwendung
CN111302806A (zh) * 2020-02-23 2020-06-19 华中科技大学 一种IC装备用静电卡盘AlN陶瓷及其制备方法
CN114751761A (zh) * 2022-04-26 2022-07-15 天津城建大学 基于电纺法轻质承载纳米陶瓷气凝胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630303A1 (de) * 1986-09-05 1988-03-10 Heraeus Gmbh W C Verfahren zur herstellung von granulat aus aluminium-nitrid und dessen verwendung
CN111302806A (zh) * 2020-02-23 2020-06-19 华中科技大学 一种IC装备用静电卡盘AlN陶瓷及其制备方法
CN114751761A (zh) * 2022-04-26 2022-07-15 天津城建大学 基于电纺法轻质承载纳米陶瓷气凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI MEIJUAN等: "Improvement of AlN Thermal Conductivity Based on Reductive Compound Additives", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED》, 14 November 2023 (2023-11-14), pages 1025 - 1032 *

Similar Documents

Publication Publication Date Title
Liu et al. Improvement in mechanical properties in AlN-h-BN composites with high thermal conductivity
CN112142476B (zh) 一种提高氮化硅陶瓷基板材料热导率和力学性能的硅热还原方法
Maître et al. Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics
CN111196728B (zh) 一种高强度、高韧性、高热导率氮化硅陶瓷材料及其制备方法
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
KR101751531B1 (ko) 질화 규소 기판 제조방법
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN112159237B (zh) 一种高导热氮化硅陶瓷材料及其制备方法
WO2022156637A1 (zh) 一种氮化硅陶瓷材料的制备方法
CN113307631B (zh) 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN114890797A (zh) 一种氮化硅陶瓷基片的制备方法
CN115028461A (zh) 一种硅粉流延成型制备高导热氮化硅陶瓷基片的方法
CN111302809B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
Lin et al. Effects of doping Al-metal powder on thermal, mechanical and dielectric properties of AlN ceramics
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
Xiang et al. Transparent AlN ceramics sintered from nanopowders produced by the wet chemical method
Wang et al. Effects of YH2 addition on pressureless sintered AlN ceramics
JPH05238830A (ja) 窒化アルミニウム焼結体およびその製造方法
CN116589286A (zh) 一种以乙酰丙酮钇为烧结助剂的氮化铝陶瓷的制备方法
CN116178022A (zh) 一种高致密度、高导热的碳化硅-氧化铍复合陶瓷及其制备方法
CN115010499A (zh) 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法
CN111302806A (zh) 一种IC装备用静电卡盘AlN陶瓷及其制备方法
KR20240098457A (ko) 질화규소 반응소결법을 이용한 질화규소 세라믹스 기판의 제조방법
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
KR102536630B1 (ko) 중고온에서 높은 비저항을 갖는 정전척용 AlN-MgO계 소결체 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination