CN110832007B - 聚醚聚合方法 - Google Patents

聚醚聚合方法 Download PDF

Info

Publication number
CN110832007B
CN110832007B CN201880043973.XA CN201880043973A CN110832007B CN 110832007 B CN110832007 B CN 110832007B CN 201880043973 A CN201880043973 A CN 201880043973A CN 110832007 B CN110832007 B CN 110832007B
Authority
CN
China
Prior art keywords
metal
compound
catalyst
oxide
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880043973.XA
Other languages
English (en)
Other versions
CN110832007A (zh
Inventor
D·K·斯蒂尔曼
D·A·巴布
J·德皮克尔
J·库吉佩尔
M·S·罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN110832007A publication Critical patent/CN110832007A/zh
Application granted granted Critical
Publication of CN110832007B publication Critical patent/CN110832007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/269Mixed catalyst systems, i.e. containing more than one reactive component or catalysts formed in-situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2693Supported catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2220/00Compositions for preparing gels other than hydrogels, aerogels and xerogels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polyethers (AREA)
  • Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

实施例涉及一种产生改性双金属氰化物络合物的方法、包含提供所述改性双金属氰化物络合物的产生一元醇或多元醇的方法、包含提供所述改性双金属氰化物络合物的环氧烷聚合方法、包含提供所述改性双金属氰化物络合物的分批、半分批或连续制造方法以及使用包含提供所述改性双金属氰化物络合物的所述分批、半分批或连续制造方法制备的聚醚多元醇。

Description

聚醚聚合方法
本发明涉及用于使环氧烷聚合以形成聚醚的方法。
在存在聚合催化剂的情况下,通过使一种或多种环氧烷聚合来在全球范围内大量生产聚(环氧烷)。所述聚(环氧烷)是用于生产聚氨酯的重要原料,并且除其它用途外,还用作表面活性剂和工业溶剂。主要的聚合催化剂是碱金属氢氧化物或醇盐和某些通常被称为双金属氰化物(DMC)催化剂的金属络合物。
双金属氰化物催化剂具有某些优点。双金属氰化物催化剂不强烈催化环氧丙烷重排以形成丙烯醇。因此,使用DMC催化剂制备的聚醚多元醇常常具有更少量的不期望的单官能聚合物。另外,DMC催化剂残留物通常不需要从产物中去除。这样做避免了使用碱金属催化剂时所需的中和和催化剂去除步骤。
然而,DMC催化剂也具有某些缺点。在变得“活化”并且快速聚合开始之前,DMC催化剂在聚合条件下暴露于环氧烷之后表现出延迟期。另一个重要的问题是DMC催化剂在高浓度羟基的存在下反应迟缓。为此,在制备低分子量产物时并且在以低当量起始物开始的半分批方法中,DMC催化剂是不利的。
美国专利第9,040,657号公开了一种在DMC催化剂和镁、第3族-第15族金属或镧系化合物的存在下产生聚醚一元醇或多元醇的方法,其中镁、第3族-第15族金属或镧系金属键合到至少一种醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、二硫代磷酸盐、磷酸酯、硫代磷酸酯、酰胺、氧化硅、氢化物、氨基甲酸酯或烃阴离子,并且镁、第3族-第15族或镧系金属化合物不含卤素阴离子。当暴露于高浓度羟基时,此技术在减少活化时间和改进催化剂性能方面非常有效。然而,将催化剂体系的第二组分加入到聚合反应中需要另外的储存和计量设备。由于所需的量很小,因此可能难以精确控制第二组分的添加。
Subhani等人在《欧洲无机化学杂志(Eur.J.Inorg.Chem.)》,2016,1944-1949中描述了混杂物TiO2-DMC混杂催化剂和其在共聚环氧丙烷和二氧化碳以形成聚碳酸酯中的用途。Dienes等人还在《绿色化学(Green Chem.)》,2012,14,1168中描述了用于聚碳酸酯产生的混杂SiO2-DMC催化剂。
美国专利第6,780,813号公开了一种制备DMC催化剂的方法,所述方法包含以下步骤:形成DMC催化剂分散体,同时使用通常不使用的另外的设备(即喷射分散器)分散:Zn(II)、Fe(II)、Ni(II)、Mn(II)、Co(II)、Sn(II)、Pb(II)、Fe(III)、Mo(IV)、Mo(VI)、Al(III)、V(V)、V(IV)、Sr(II)、W(IV)、W(VI)、Cu(II)或Cr(III)的至少一种水溶性盐的液体溶液;以及Fe(II)、Fe(III)、Co(II)、Co(III)、Cr(II)、Cr(III)、Mn(II)、Mn(III)、Ir(III)、Ni(II)、Rh(III)、Ru(II)、V(IV)或V(V)的至少一种水溶性金属氰化物盐或至少一种碱或碱土金属氰化物酸的至少一种溶液。寻求改进以使得无需使用专用设备(如喷射分散器)就能够将添加剂引入到催化剂中。
本发明为一种用于产生聚醚的方法,所述方法:形成包括含羟基的起始物、至少一种环氧烷和催化剂络合物的反应混合物;以及在存在每摩尔环氧烷不超过0.01摩尔的碳酸酯前体的情况下,将所述环氧烷聚合到所述含羟基的起始物上以产生所述聚醚,其中所述催化剂络合物选自由催化剂络合物I、II和III组成的组,其中
催化剂络合物I是以包括以下的方法产生的催化剂络合物:
a)形成起始溶液,所述起始溶液包括:i)包含水和液体脂肪醇中的至少一种的溶剂,所述溶剂已经在其中溶解有:ii)具有M2金属氰基金属盐基团的氰基金属盐化合物;和iii)与所述氰基金属盐化合物反应以形成水不溶性M1金属氰基金属盐的M1金属盐,其中起始溶液进一步含有每摩尔氰基金属盐化合物0.01到10摩尔的iii)至少一种不同于所述M1金属盐的M3金属或半金属化合物,所述M3金属或半金属化合物是M3金属或半金属的化合物,所述M3金属或半金属选自以下中的一种或多种:镁、第3族-第15族金属或半金属或镧系金属,所述M3金属或半金属键合到至少一种醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、二硫代磷酸盐、磷酸酯、硫代磷酸酯、酰胺、氧化物、氧化硅、氢化物、氨基甲酸酯或烃阴离子,并且所述M3金属或半金属化合物不含卤素阴离子;以及
b)使所述氰基金属盐化合物与M1金属盐反应以形成包含M1金属氰基金属盐的水不溶性催化剂络合物;
催化剂络合物Ⅱ对应于下式:
M1 b[M2(CN)r(X1)t]c[M5(X2)6]d·nM4 xA1 y·pM3 wA2 z
其中:
M1和M4各自代表独立地选自以下的金属离子:Zn2+、Fe2+、Co+2+、Ni2+、Mo4+、Mo6+、Al+3+、V4+、V5+、Sr2+、W4+、W6+、Mn2+、Sn2+、Sn4+、Pb2+、Cu2+、La3+和Cr3+
M2和M5各自代表独立地选自以下的金属离子:Fe3+、Fe2+、Co3+、Co2+、Cr2+、Cr3+、Mn2+、Mn3+、Ir3+、Ni2+、Rh3+、Ru2+、V4+、V5+、Ni2+、Pd2+和Pt2+
M3代表至少一种镁、第3族-第15族金属或镧系金属或半金属离子;
X1代表与所述M2离子配位的氰化物之外的基团;
X2代表与所述M5离子配位的氰化物之外的基团;
A1代表卤化物、硝酸盐、硫酸盐、碳酸盐、氰化物、草酸盐、硫氰酸盐、异氰酸盐、高氯酸盐、异硫氰酸盐、链烷磺酸盐、亚芳基磺酸盐、三氟甲磺酸盐或C1-4羧酸盐;
A2代表至少一种醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、酰胺、氧化物、氧化硅、氢化物、氨基甲酸酯或烃阴离子;
b、c和d各自为反映静电中性络合物的数字,条件是b和c各自大于零。
x和y为平衡金属盐M3 xA1 y中的电荷的整数;
r为4到6的整数;
t为0到2的整数;
n为0到20的数字;
p为0.002到10;并且
w和z为平衡金属盐M3 zA2 z中的电荷的整数,条件是w为1到4;并且
催化剂络合物III是六氰基钴酸锌催化剂和颗粒状M3金属或半金属氧化物的混合物,其中所述M3金属或半金属是以下中的至少一种:镁、第3族-第15族金属或半金属或镧系金属离子,并且所述M3金属或半金属氧化物存在的量足以提供每摩尔由所述六氰基钴酸锌催化剂提供的钴0.002到10摩尔M3金属或半金属。
本发明获得了若干个重要的优点。活化催化剂所需的时间较短。一旦催化剂活化,聚合反应就迅速进行。这些优点在常规六氰基钴酸锌催化剂反应迟缓(如果有的话)的条件下是可以看到的(并且事实上是最突出的)。那些条件包含在聚合反应的至少一部分期间存在低当量起始物和/或存在高浓度羟基。在许多情况下,催化剂的高活性允许其以非常少的量使用,同时仍然实现快速聚合动力学。优越的活性允许使用非常小的催化剂负载量。根据本发明选择催化剂络合物还可以减少高分子量级分的形成,其形成对常规六氰基钴酸锌催化剂的使用造成困扰。
图1示出了使用现有技术催化剂(对比样品C)进行的环氧丙烷聚合的反应器压力和环氧丙烷进给速率相对于时间的图示。
图2示出了使用本发明的催化剂络合物(实例1)进行的环氧丙烷聚合的反应器压力和环氧丙烷进给速率相对于时间的图示。
图3示出了使用本发明的催化剂络合物(实例14)进行的环氧丙烷聚合的反应器压力和环氧丙烷进给速率相对于时间的图示。
根据本发明制备聚醚的方法包括:(1)将催化剂络合物与醇类起始物化合物和环氧烷组合以形成聚合混合物,并且然后使聚合混合物经受聚合条件。
在存在每摩尔被聚合的环氧烷不超过0.01摩尔的碳酸酯前体的情况下进行聚合。因此,在所述方法中形成的聚醚几乎没有碳酸酯键。在一些实施例中,在存在每摩尔被聚合的环氧烷不超过0.001摩尔的碳酸酯前体或不超过0.0001摩尔的碳酸酯前体的情况下进行聚合。碳酸酯前体可以完全不存在。
“碳酸酯”前体是一种与环氧烷聚合时会产生碳酸酯(-O-C(O)-O-)键的化合物。碳酸酯前体的实例包含二氧化碳、线性碳酸酯、环状碳酸酯、碳酰氯等。
在所述方法中形成的聚醚可以具有至多0.5重量%的呈碳酸酯键形式的CO2。其优选地含有不超过0.1重量%的此类CO2,并且可以含有不超过0.01重量%的此类CO2。其可以不含此类CO2
起始物化合物的主要功能是提供分子量控制并确定聚醚产物将具有的羟基的数目。含羟基的起始物化合物可以含有1个或更多个(例如,2个或更多个)羟基和多达12个或更多个羟基。例如,产生用于聚氨酯应用中的多元醇的起始物通常具有每个分子2到8个羟基。在一些实施例中,起始物化合物将具有2到4个或2到3个羟基。在其它实施例中,起始物化合物将具有4到8个或4到6个羟基。所述起始物化合物可以具有相对于彼此处于1,2-或1,3-位的羟基(将与羟基中的一个羟基键合的碳原子作为“1”位)。可以使用起始物化合物的混合物。
起始物化合物的羟基当量将小于一元醇或多元醇产物的羟基当量。其羟基当量可以为30到500或更多。所述当量可以高达500、高达250、高达125和/或高达100。
示例性起始物包含但不限于甘油、乙二醇、二甘醇、三甘醇、丙二醇、二丙二醇、三丙二醇、1,4-丁二醇、1,6-己二醇、1,8-辛二醇、环己烷二甲醇、甘油、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、山梨醇、蔗糖、苯酚和多酚起始物(如双酚A或1,1,1-三(羟苯基)乙烷)以及羟基当量小于聚合产物的羟基当量的这些物质中的任一种的烷氧基化物(如乙氧基化物和/或丙氧基化物)。起始物化合物还可以为水。起始物可以用少量酸中和或含有少量酸,特别是在碱基的存在下制备起始物(甘油通常就是这种情况)时。如果存在酸,则按起始物的重量计,其存在的量可以为约10到100ppm,例如,如美国专利第6,077,978号所述。如美国专利公开申请第2005-0209438号所述,按起始物的重量计,酸的用量可以略大些,如100到1000ppm。酸可以在起始物与催化剂络合物组合之前或之后加入到起始物中。
某些起始物可以提供具体的优点。已经发现三甘醇在用于产生聚醚二醇的分批和半分批方法中是特别好的起始物。还发现三丙二醇和二丙二醇是与本发明的催化剂络合物结合使用的特别好的起始物。
环氧烷可以为例如环氧乙烷、1,2-环氧丙烷、2,3-环氧丙烷、1,2-环氧丁烷、2-甲基-1,2-环氧丁烷、2,3-环氧丁烷、四氢呋喃、环氧氯丙烷、环氧己烷、环氧苯乙烷、二乙烯基苯二氧化物、缩水甘油醚(如双酚A二缩水甘油醚)、烯丙基缩水甘油醚或其它可聚合的环氧乙烷。优选的环氧烷为1,2-环氧丙烷或至少40重量%(优选地至少80重量%)的环氧丙烷和至多60重量%(优选地至多20重量%)的环氧乙烷的混合物。
聚合通常在高温下进行。聚合混合物温度可以为例如80℃到220℃(例如,120℃到190℃)。
聚合反应通常可以在超大气压下进行,但也可以在大气压或甚至亚大气压下进行。优选的压力为0到10大气压,特别是0-6大气压(表压)。
优选地在真空下或在如氮气、氦气或氩气等惰性气体下进行聚合。二氧化碳要么不存在,要么至多以如上关于碳酸酯前体所述的量存在。
可以使用足够的催化剂络合物来提供合理的聚合速率,但通常期望使用与合理的聚合速率相符的尽可能少的催化剂络合物,因为这降低了催化剂的成本,而且如果催化剂水平足够低,则还可以消除从产物中去除催化剂残留物的需要。使用较少量的催化剂还减少了产物的残留金属含量。按产物的重量计,催化剂络合物的量可以为1到5000ppm。按产物的重量计,催化剂络合物的量可以为至少2ppm、至少5ppm、至少10ppm、至少25ppm或至多500ppm、或至多200ppm或至多100ppm。催化剂络合物的量可以被选择成提供每百万份重量产物0.25到20、0.5到10、0.5到1或0.5到2.5份重量的钴。
聚合反应可以在适合于所遇压力和温度的任何类型的容器中进行。在连续或半分批方法中,容器应具有一个或多个入口,环氧烷和另外的起始物化合物和催化剂络合物可以通过所述入口在反应过程中引入。在连续方法中,反应器容器应含有至少一个出口,部分聚合反应混合物的一部分可以通过所述出口取出。在半分批操作中,环氧烷(以及任选的另外起始物和催化剂络合物)在反应过程中添加,但通常直到聚合完成才取出产物。具有用于注入起始材料的多个点的管状反应器、环形反应器和连续搅拌槽反应器(CTSR)都是所有合适类型的用于连续或半分批操作的容器。反应器应配备有提供或去除热量的装置,以可以将反应混合物的温度维持在所需范围内。合适的装置包含不同类型的热流体夹套、不同类型的内部或外部加热器等。在防止发生显著返混的反应器中方便地进行在连续取出的产物上进行的蒸煮步骤。管道或管状反应器中的活塞流操作是执行这种蒸煮步骤的优选方式。
在前述方法中的任一种方法中获得的产物可以含有:按总重量计至多0.5%重量的未反应环氧烷;少量起始物化合物和其低分子量烷氧基化物;以及少量其它有机杂质和水。应当从所得产物中闪蒸或汽提挥发性杂质。所述产物通常含有催化剂残留物。这些残留物通常留在产物中,但是如果需要的话,可以去除这些残留物。可以通过汽提多元醇去除水分和挥发物。
聚合反应可以由“构建比率”表征,所述构建比率被定义为产物的数均分子量与起始物化合物的数均分子量之比。此构建比可以高达160,但是更普遍处于2.5到约65的范围内,并且仍更常见地处于2.5到约50、2.5到35、2.5到11或7到11的范围内。
本发明特别适用于具有以下特征中的一种或多种特征的聚合方法:i)使用当量为至多125,特别是至多100或至多75的起始物;ii)按反应混合物的总重量计,在聚合方法的至少一部分中,羟基含量为4.25wt.%到20wt.%,特别是4.25wt.%到15wt.%;以及iii)按产物的重量计,催化剂络合物的浓度足以提供至多5ppm的钴,特别是0.5到2ppm。这些情况中的每一种都代表一种严峻的条件,在所述条件下,常规六氰基金属锌催化剂表现不佳。
在一些实施例中,催化剂络合物是在制备含有起始材料的溶液的沉淀过程中制备的,某些起始材料发生反应,并且催化剂络合物从起始溶液中沉淀出来。总之,例如美国专利第3,278,457号、第3,278,458号、第3,278,459号、第3,404,109号、第3,427,256号、第3,427,334号、第3,427,335号和第5,470,813号中所述的用于产生DMC催化剂的方法可以适用于通过将M3金属或半金属化合物并入到用于制备那些催化剂的起始溶液中来制备本发明的催化剂络合物。
溶剂包含水和液体脂肪醇中的至少一种。所述溶剂是一种起始氰基金属盐化合物和M1金属化合物可溶于的溶剂。所述溶剂可以是或可以不是用于M3金属或半金属化合物的溶剂。
所述溶剂可以为例如水、正丙醇、异丙醇、正丁醇、仲丁醇、叔丁醇、其它具有例如至多12个碳原子的亚烷基一元醇、乙二醇、二甘醇、三甘醇、丙二醇、二丙二醇、三丙二醇或其它具有一个或多个羟基且分子量为例如至多8000g/mol的聚醚。在这些物质中,具有3到6个碳原子的脂肪族一元醇(特别是叔丁醇)是优选的。特别优选的是水和液体脂族醇的混合物,所述脂肪醇以25:75到90:10的体积比溶于存在于混合物(特别是具有3到6个碳原子的脂族一元醇,并且最优选地叔丁醇)中的相对比例的水中。
可以通过形成起始氰基金属盐化合物和M1金属化合物的单独溶液并将其组合来方便地形成起始溶液。将M3金属或半金属化合物方便地加入到这些单独溶液中的一种或另一种中,优选地加入到M1金属或半金属化合物溶液中。起始溶液应伴随混合进行组合。通常优选的是将氰基金属盐化合物溶液混合到M1金属化合物溶液中,优选地通过逐渐加入氰基金属盐化合物溶液,使得M1金属化合物总是过量存在。
优选的是提供多于氰基金属盐化合物的过量的M1金属化合物。在一些实施例中,M1金属化合物与氰基金属盐化合物的摩尔比为至少2:1,优选地至少3:1或至少5:1。此比率可以为例如高达20:1或高达15:1。
在反应发生之前,起始溶液含有每摩尔氰基金属盐化合物0.01到10摩尔的M3金属或半金属化合物。较小的量不会导致催化剂络合物性能的任何改进。较大的量不仅不能改进催化剂的性能,而且实际上常常降低其性能。
氰基金属盐化合物与M1金属化合物反应以形成包含水不溶性M1金属氰基金属盐的催化剂络合物。此反应在室温(23℃)左右或稍高的温度下自发进行。因此,无需特殊的反应条件。所述温度可以为例如0℃到60℃。优选的温度为20℃到50℃或25℃到45℃。优选的是继续搅拌直至发生沉淀为止,这通常通过溶液外观的变化来指示。只要溶剂不蒸发,反应压力就不是特别关键。10到10,000kPa的压力是合适的,而50到250kPa的压力是完全合适的。反应时间可以为30分钟到24小时或更长。
在一些情况下,M3金属或半金属化合物可能会在催化剂制备步骤中发生反应。例如,某些M3金属或半金属化合物可以在催化剂制备过程中与水反应以形成对应的金属氧化物。在一些实施例中,M3金属或半金属化合物或其反应产物(特别是M3金属或半金属氧化物)与M1金属化合物和氰基金属盐化合物的反应产物一起形成具有M1 b[M2(CN)r(X1)t]c相和M3金属或半金属氧化物相两者的混杂颗粒。
优选的是用络合剂处理经过沉淀的催化剂。这通过用络合剂或络合剂在水中的溶液洗涤经过沉淀的催化剂一次或多次来方便地完成。络合剂组分可以包含以下中的至少一种:如之前关于起始溶液所述的醇、聚醚、聚酯、聚碳酸酯、缩水甘油醚、糖苷、多元醇羧酸酯、聚亚烷基二醇脱水山梨糖醇酯、胆汁酸或胆汁盐、羧酸酯或其酰胺、环糊精、有机磷酸盐、亚磷酸盐、膦酸盐、亚膦酸酯、次膦酸酯、次亚膦酸酯、离子型表面或界面活性化合物和/或α,β-不饱和羧酸酯。在示例性实施例中,有机络合剂为以下中的一种或多种:正丙醇、异丙醇、正丁醇、仲丁醇、叔丁醇、其它具有例如至多12个碳原子的亚烷基一元醇、乙二醇、二甘醇、三甘醇、丙二醇、二丙二醇、三丙二醇或其它具有一个或多个羟基且分子量为例如至多8000g/mol的聚醚。
如此制备的催化剂络合物可从起始溶液或任何洗涤液中方便地回收、干燥,并在需要时进行研磨或碾磨,以将催化剂络合物还原成体积平均粒径为例如100μm或更小的粉末。可以通过加热和/或应用真空来进行干燥。
M1金属化合物优选地是水溶性的。其通常是M1金属和一种或多种阴离子的盐。这种盐可以具有式M1 xA1 y,其中x、A1和y如前所述。合适的阴离子A1包含但不限于卤素(如氯离子、溴离子和碘离子)、硝酸根、硫酸根、碳酸根、氰根、草酸根、硫氰酸根、异氰酸根、高氯酸根、异硫氰酸根、烷磺酸根(如甲烷磺酸根)、芳基磺酸根(如对甲苯磺酸根)、三氟甲烷磺酸根(三氟甲磺酸根)和C1-4羧酸根。在示例性实施例中,阴离子A1不是以下中的任一种:醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、二硫代磷酸盐、磷酸酯、硫代磷酸酯、酰胺、氧化物、氧化硅、氢化物、氨基甲酸酯或烃阴离子。M1金属为以下中的一种或多种:Zn2+、Fe2+、Co+2+、Ni2+、Mo4+、Mo6+、Al+3+、V4+、V5+、Sr2+、W4+、W6+、Mn2+、Sn2+、Sn4+、Pb2+、Cu2+、La3+和Cr3+。Zn2+为优选的M1金属。ZnCl2为优选的M1金属化合物。
氰基金属盐化合物包含M2(CN)r(X1)t阴离子,其中r、X1和t如前所述。r优选地为6,并且t优选地为零。M2金属为以下中的一种或多种:Fe3+、Fe2+、Co3+、Co2+、Cr2+、Cr3+、Mn2+、Mn3+、Ir3+、Ni2+、Rh3+、Ru2+、V4+、V5+、Ni2+、Pd2+和Pt2+。M2金属优选地为Fe3+或Co3+,其中Co3+是特别优选的。尽管可以使用对应的氰基金属酸,但是氰基金属盐化合物优选地为碱金属盐或铵盐。六氰基钴酸钾是特别优选的氰基金属酸盐化合物。
M3金属或半金属化合物是一种落入2010IUPAC元素周期表的第3族到第15族(含第3族和第15族)中任一族内的金属或半金属M3和一种或多种阴离子的化合物。所述金属可以为例如钪、钇、镧、锆、铪、钒、铌、钽、铬、钼、钨、锰、铼、铁、钌、锇、钴、铑、铱、镍、钛、硅、钯、铂、铜、银、金、锌、镉、汞、铝、镓、铟、碲、锡、铅、铋和镧系金属,包括原子序数为58(铈)到71(镥)(含58和71)的那些金属。
优选的M3金属和半金属包含钇、锆、铌、硅、钛、钨、钴、钪、钒、钼、镍、锌和锡。更优选的是铪、铝、锰、镓和铟。
M3金属或半金属化合物的阴离子可以为例如以下中的一种或多种:醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、二硫代磷酸盐、磷酸酯、硫代磷酸酯、酰胺、氧化物、氧化硅、氢化物、氨基甲酸酯和/或烃阴离子。示例性实施例包含氧化物、烃基、氧化物和/或烷氧基离子。所述阴离子不是卤素阴离子或氰化物阴离子。
M3金属或半金属化合物可以不溶于溶剂,或者如果可溶,则可以在催化剂络合物的制备过程中发生反应以形成成为催化剂络合物一部分的不溶性反应产物。M3金属或半金属还优选地不还原氰基金属盐基团或防止M1金属化合物和氰基金属盐化合物发生反应以形成M1金属氰基金属盐。
“醇盐”离子是指具有O—R形式的物质,其中R是烷基或经过取代的烷基,并且在去除羟基氢后,其是具有HO-R形式的醇化合物的共轭碱。这些醇的pKa值的范围可以为13到25或更大。在一些实施例中,醇盐离子可以含有1到20(例如,1到6和/或2到6)个碳原子。烷基或经过取代的烷基可以是直链、支链和/或环状的。合适的取代基的实例包含例如另外的羟基(其可以呈醇盐形式)、醚基、羰基、酯基、氨基甲酸根基、碳酸酯基、甲硅烷基、芳香族基团(如苯基和烷基取代的苯基)和卤素。这类醇盐离子的实例包含甲醇盐、乙醇盐、异丙醇盐、正丙醇盐、正丁醇盐、仲丁醇盐、叔丁醇盐、苄氧基。R基团可以含有一个或多个羟基和/或可以含有一个或多个醚键。醇盐离子可以对应于存在于聚合反应中的起始物化合物(如下文描述的那些起始物化合物)的(在去除一个或多个羟基氢之后的)残基。醇盐离子可以是通过从聚醚一元醇或聚醚多元醇中去除一个或多个羟基氢而形成的醇盐;在一些实施例中,此类醇盐对应于去除一个或多个羟基氢原子之后从烷氧基化反应中获得的聚醚一元醇或聚醚多元醇产物的残基或分子量介于起始化合物和烷氧基化反应产物中间的聚醚的残基。
“芳氧基”阴离子是指具有O—Ar形式的物质,其中Ar为芳香族基团或经过取代的基团,并且在去除羟基氢之后,其对应于具有HO-Ar形式的酚类化合物。这些酚类化合物的pKa可以为例如约9到约12。此类芳氧基阴离子的实例包含酚盐和环取代的酚盐,其中环取代基包含例如烷基、CF3、氰基、COCH3、卤素、羟基和烷氧基。一个或多个环取代基(如果存在的话)可以在一个或多个相对于酚基团的邻位、对位和/或间位中。酚盐阴离子还包含多酚化合物(如双酚A、双酚F和各种其它双酚)、1,1,1-三(羟苯基)乙烷和稠环芳香族化合物(如1-萘酚)的共轭碱。
“羧酸盐”阴离子是指含有1到24(例如,2到18和/或2到12)个碳原子的羧酸根。羧酸盐可以为脂肪族的或芳香族的。脂肪族羧酸可以含有取代基。这种物质的实例包含羟基(其可以呈醇盐形式)、醚基、羰基、酯基、氨基甲酸根基、碳酸酯基、甲硅烷基、芳香族基团(如苯基和烷基取代的苯基)和卤素。脂肪族羧酸根阴离子的实例包含甲酸根、乙酸根、丙酸根、丁酸根、2-乙基己酸根、正辛酸根、癸酸根、月桂酸根和其它烷酸根以及卤素取代的烷酸根(如2,2,2-三氟乙酸根、2-氟乙酸根、2,2-二氟乙酸根、2-氯乙酸根、2,2,2-三氯乙酸根)。芳香族羧酸根的实例包含苯甲酸根、烷基取代的苯甲酸根、卤基取代的苯甲酸根、4-氰基苯甲酸根、4-三氟代甲基苯甲酸根、水杨酸根、3,5-二-叔丁基水杨酸根和碱式水杨酸根。在一些实施例中,这类羧酸根离子可以是pKa为1到6(例如,3到5)的羧酸的共轭碱。
“酰基”阴离子是指含有羰基的化合物的共轭碱,所述化合物包含例如醛、酮、乙酰丙酮酯、碳酸盐、酯或具有烯醇形式的类似化合物。这些物质的实例为β-二酮化合物,如乙酰丙酮酯和乙酰丙酮丁酯。
“磷酸根”阴离子是指具有式-O-P(O)(OR1)2的磷酸根阴离子,其中R1是烷基、经过取代的烷基、苯基或经过取代的苯基。“硫代磷酸盐”阴离子是指硫代磷酸盐阴离子具有氧中的一个或多个被硫取代的对应结构。磷酸酯和硫代磷酸酯可以为酯阴离子,如磷酸酯和硫代磷酸酯。
“焦磷酸盐”阴离子是指P2O7 4-阴离子。
“酰胺”阴离子是指氮原子带负电荷的离子。酰胺离子通常采用形式–N(R2)2,其中R2基团独立地为氢、烷基、芳基、三烷基甲硅烷基或三芳基甲硅烷基。烷基可以为直链、支链或环状的。这些基团中的任一个基团可以含有取代基,如醚基或羟基。两个R2基团可以一起形成环结构,所述环结构可以是不饱和的和/或含有一个或多个所述环中的杂原子(除酰胺氮外)。
“氧化物”阴离子是指原子氧的阴离子,即O2-
“氧化硅”阴离子是指具有式(R3)3SiO-的硅酸盐,其中R3基团独立地为氢基或烷基。
“氢化物”阴离子是指氢的阴离子,即H-。
“氨基甲酸酯”阴离子是指阴离子-OOCNH2
“烃”阴离子是指包含脂肪族、环脂族和/或芳香族阴离子的烃基阴离子,其中负电荷驻留于碳原子上。烃基阴离子是pKa值通常超过30的烃的共轭碱。烃基阴离子还可以含有惰性取代基。在芳香族烃基阴离子中,可以使用苯基和经过取代的苯基。脂肪族烃基阴离子可以为烷基,所述烷基例如含有1到12(例如,2到8)个碳原子。例如,甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、环戊二烯基和叔丁基阴离子都是有用的。
用于加成化合物的化合物的实例包含但不限于:
a)烷基镁,如二乙基镁、二丁基镁、丁基乙基镁、二苄基镁等;醇镁,如甲醇镁、乙醇镁、异丙醇镁、叔丁醇镁、仲丁醇镁等;镁芳基氧化物,如酚镁和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚镁;羧酸镁,如甲酸镁、乙酸镁、丙酸镁、2-乙基己酸镁、苯甲酸镁、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸镁、水杨酸镁、3,5-二-叔丁基水杨酸镁;酰胺镁,如二甲基酰胺镁、二乙基酰胺镁、二苯基酰胺镁、双(三甲基甲硅烷基)酰胺镁等;氧化镁;乙酰丙酮镁;以及叔丁基乙酰丙酮镁;
b)钪醇盐,如甲醇钪、乙醇钪、异丙醇钪、叔丁醇钪、仲丁醇钪等;氧化钪,如酚钪和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钪;羧酸钪,如甲酸钪、乙酸钪、丙酸钪、2-乙基己酸钪、苯甲酸钪、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钪;水杨酸钪;乙酰丙酮钪;以及叔丁基乙酰丙酮钪;
c)钇醇盐,如甲醇钇、乙醇钇、异丙醇钇、叔丁醇钇、仲丁醇钇等;氧化钇;钇芳基氧化物,如酚钇和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钇;羧酸钇,如甲酸钇、乙酸钇、丙酸钇、2-乙基己酸钇、苯甲酸钇、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钇、水杨酸钇、3,5-二-叔丁基水杨酸钇;酰胺钇,如二甲基酰胺钇、二乙基酰胺钇、二苯基酰胺钇、双(三甲基甲硅烷基)酰胺钇等;乙酰丙酮钇;以及叔丁基乙酰丙酮钇;
d)烷基铪,如四乙基铪、四丁基铪、四苯甲基铪等;氧化铪;醇铪,如四甲醇铪、四乙醇铪、四异丙醇铪、四叔丁醇铪、四仲丁醇铪等;铪芳基氧化物,如酚铪和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚铪;羧酸铪,如甲酸铪、乙酸铪、丙酸铪、2-乙基己酸铪、苯甲酸铪、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸铪、水杨酸铪、3,5-二-叔丁基水杨酸铪;酰胺铪,如四(二甲基酰胺)铪、四(二乙基酰胺)铪、四(二苯基酰胺)铪、四((双三甲基甲硅烷基)酰胺)铪;乙酰丙酮铪;以及叔丁基乙酰丙酮铪;
e)烷基锆,如四乙基锆、四丁基锆、四苄基锆等;氧化锆;烷氧基锆,如四甲醇锆、四乙醇锆、四异丙醇锆、四叔丁醇锆、四仲丁醇锆等;锆芳基氧化物,如酚锆和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚锆;羧酸锆,如甲酸锆、乙酸锆、丙酸锆、2-乙基己酸锆、苯甲酸锆、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3环取代的苯甲酸锆、卤素、羟基、烷氧基等、水杨酸锆、3,5-二叔丁基水杨酸锆;锆酰胺,如四(二甲基酰胺)锆、四(二乙基酰胺)锆、四(二苯基酰胺)锆、四((双三甲基甲硅烷基)酰胺锆)、乙酰丙酮锆和叔丁基乙酰丙酮锆;
f)钒醇盐,如甲醇钒、乙醇钒、异丙醇钒、叔丁醇钒、仲丁醇钒等;氧化钒;钒氧三(醇盐),例如钒氧三(甲醇盐)、钒氧三(乙醇盐)、钒氧三(异丙醇盐)、钒氧三(叔丁醇盐)、钒氧三(仲丁醇盐)等;钒芳基氧化物,如酚钒和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钒;羧酸钒,如甲酸钒、乙酸钒、丙酸钒、2-乙基己酸钒、苯甲酸钒、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钒、水杨酸钒、3,5-二叔丁基水杨酸钒;三(乙酰丙酮)钒和三(叔丁基乙酰丙酮钒);氧双(乙酰丙酮)钒;
g)烷基锌,如二甲基锌、二乙基锌、二丁基锌、二苯甲基锌等;氧化锌;烷基锌醇盐,如异丙醇乙基锌;锌醇盐,如甲醇锌、乙醇锌、异丙醇锌、叔丁醇锌、仲丁醇锌等;锌芳基氧化物,如酚锌和酚基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚锌;羧酸锌,如甲酸锌、乙酸锌、丙酸锌、2-乙基己酸锌、苯甲酸锌、苯甲酸基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸锌、水杨酸锌、3,5-二-叔丁基水杨酸锌;酰胺锌,如二甲基酰胺锌、二乙基酰胺锌、二苯基酰胺锌、(双三甲基甲硅烷基)酰胺锌;乙酰丙酮锌;以及叔丁基乙酰丙酮锌;
h)三烷基铝化合物,如三甲基铝、三乙基铝、三丁基铝、三苯甲基铝等;铝醇盐,如三甲醇铝、三乙醇铝、三异丙醇铝、三正丁醇铝、三叔丁醇铝、三仲丁醇铝等;铝芳基氧化物,如酚铝和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚铝;氧化铝;羧酸铝,如甲酸铝、乙酸铝、丙酸铝、2-乙基己酸铝、苯甲酸铝、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸铝、水杨酸铝、3,5-二-叔丁基水杨酸铝;酰胺铝,如三(二甲基酰胺)铝、三(二乙基酰胺)铝、三(二(三甲基硅烷基)酰胺)铝等;乙酰丙酮铝;叔丁基乙酰丙酮铝;以及烷基铝氧化物和醇盐,如乙醇二乙基铝、乙醇二甲基铝、异丙醇二乙基铝、异丙醇二甲基铝、甲基铝氧烷、四乙基二铝氧烷等;
i)三烷基镓化合物,如三甲基镓、三乙基镓、三丁基镓、三苯甲基镓等;氧化镓;镓醇盐,如三甲醇镓、三乙醇镓、三异丙醇镓、三叔丁醇镓、三仲丁醇镓等;镓芳基氧化物,如酚镓和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚镓;羧酸镓,如甲酸镓、乙酸镓、丙酸镓、2-乙基己酸镓、苯甲酸镓、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸镓、水杨酸镓、3,5-二-叔丁基水杨酸镓;酰胺镓,如三(二甲基酰胺)镓、三(二乙基酰胺)镓、三(二苯基酰胺)镓、三(二(三甲基硅烷基)酰胺)镓等;乙酰丙酮镓;叔丁基乙酰丙酮镓;以及烷基镓醇盐,如乙醇二乙基镓、乙醇二甲基镓、异丙醇二乙基镓和异丙醇二甲基镓;
j)三烷基铟化合物,如三甲基铟;氧化铟;铟醇盐,如甲醇铟、乙醇铟、异丙醇铟、叔丁醇铟、仲丁醇铟等;铟芳基氧化物,如酚铟和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚铟;羧酸铟,如甲酸铟、乙酸铟、丙酸铟、2-乙基己酸铟、苯甲酸铟、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸铟、水杨酸铟、3,5-二-叔丁基水杨酸铟;乙酰丙酮铟;以及叔丁基乙酰丙酮铟;
k)磷酸亚锡;焦磷酸亚锡;氧化亚锡;氧化锡;亚锡醇盐,如甲醇亚锡、乙醇亚锡、异丙醇亚锡、叔丁醇亚锡、仲丁醇亚锡等;亚锡芳基氧化物,如酚亚锡和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚亚锡;羧酸亚锡,如甲酸亚锡、乙酸亚锡、丙酸亚锡、2-乙基己酸亚锡、苯甲酸亚锡、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸亚锡、水杨酸亚锡、3,5-二-叔丁基水杨酸亚锡;乙酰丙酮亚锡;以及叔丁基乙酰丙酮亚锡;
l)磷酸锰;焦磷酸、氧化锰;锰醇盐,如甲醇锰、乙醇锰、异丙醇锰、叔丁醇锰、仲丁醇锰等;锰芳基氧化物,如酚锰和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚锰;羧酸锰,如甲酸锰、乙酸锰、丙酸锰、2-乙基己酸锰、苯甲酸锰、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸锰、水杨酸锰、3,5-二-叔丁基水杨酸锰;乙酰丙酮锰;以及叔丁基乙酰丙酮锰;
m)钼化合物,包含Mo(IV)和/或Mo(VI)化合物,如磷酸钼;焦磷酸钼;氧化钼;钼醇盐,如甲醇钼、乙醇钼、异丙醇钼、叔丁醇钼、仲丁醇钼等;钼芳基氧化物,如酚钼和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钼;羧酸钼,如甲酸钼、乙酸钼,丙酸钼、2-乙基己酸钼、苯甲酸钼、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钼、水杨酸钼、3,5-二-叔丁基水杨酸钼;乙酰丙酮钼;以及叔丁基乙酰丙酮钼;在每种情况下都是Mo(IV)或(MoVI)化合物;
m)钴(II)和/或钴(III)化合物,如磷酸钴;焦磷酸钴;氧化钴;钴醇盐,如甲醇钴、乙醇钴、异丙醇钴、叔丁醇钴、仲丁醇钴等;钴芳基氧化物,如酚钴和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钴;羧酸钴,如甲酸钴、乙酸钴、丙酸钴、2-乙基己酸钴、苯甲酸钴、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钴、水杨酸钴、3,5-二-叔丁基水杨酸钴;乙酰丙酮钴;以及叔丁基乙酰丙酮钴;在每种情况下都是Co(II)和/或Co(III)化合物;
o)钨化合物,如磷酸钨;焦磷酸钨;氧化钨;钨醇盐,如甲醇钨、乙醇钨、异丙醇钨、叔丁醇钨、仲丁醇钨等;钨芳基氧化物,如酚钨和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯氧化钨;羧酸钨,如甲酸钨、乙酸钨、丙酸钨、2-乙基己酸钨、苯甲酸钨、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钨、水杨酸钨、3,5-二-叔丁基水杨酸钨;乙酰丙酮钨;以及叔丁基乙酰丙酮钨;
p)铁(II)和/或铁(III)化合物,如磷酸铁;焦磷酸铁;氧化铁;铁醇盐,如甲醇铁、乙醇铁、异丙醇铁、叔丁醇铁、仲丁醇铁等;铁芳基氧化物,如酚铁和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚铁;羧酸铁,如甲酸铁、乙酸铁、丙酸铁、2-乙基己酸铁、苯甲酸铁、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸铁、水杨酸铁、3,5-二-叔丁基水杨酸铁;乙酰丙酮铁;以及叔丁基乙酰丙酮铁;在每种情况下都是Fe(II)和/或Fe(III)化合物;
q)钛化合物,如磷酸钛;焦磷酸钛;氧化钛;钛醇盐,如甲醇钛、乙醇钛、异丙醇钛、叔丁醇钛、仲丁醇钛等;钛芳基氧化物,如酚钛和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚钛;羧酸钛,如甲酸钛、乙酸钛、丙酸钛、2-乙基己酸钛、苯甲酸钛、苯甲酸根基团中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的苯甲酸钛、水杨酸钛、3,5-二-叔丁基水杨酸钛;乙酰丙酮钛;以及叔丁基乙酰丙酮钛;以及
r)硅化合物,如氧化硅和硅醇盐,如甲醇硅、四乙醇硅、四异丙醇硅、四叔丁醇硅、四仲丁醇硅等;硅芳基氧化物,如酚四硅和酚根中的一个或多个被烷基、CF3、氰基、COCH3、卤素、羟基、烷氧基等环取代的酚四硅。
在本发明的一些实施例中,催化剂络合物(包含用上述方法制备的催化剂络合物)对应于下式:
M1 b[M2(CN)r(X1)t]c[M5(X2)6]d·nM4 xA1 y·pM3 wA2 z
其中变量如前所述。M1和M4各自最优选地为锌。M2和M5各自最优选地为铁和钴,特别是钴。M3和A2优选地为如上所述的关于M3金属或半金属化合物。r最优选地为6,并且t最优选地为零。d最优选地为0-1。经过组合的M1和M4金属与经过组合的M2和M5金属的摩尔比优选地为0.8:1到20:1。如通过X射线荧光(XRF)法所测定的,M3金属或半金属与经过组合的M2和M5金属的摩尔比可以为例如0.002到10。应当注意,催化剂络合物中的金属的比率可能与催化剂制备方法中所用的比率大不相同。
前述方法中的式不旨在表示任何特殊结晶形式或催化剂络合物的组分M1 b[M2(CN)r(X1)t]c[M5(X2)6]d、M4 xA1 y与M3 w A2 z之间的其它空间或化学关系。某些催化剂络合物的扫描透射电子光谱已经揭示,在此类实施例中,至少一些催化剂络合物包括具有M1 b[M2(CN)r(X1)t]c相和M3金属或半金属氧化物(即M3 wOz相)两者的混杂颗粒。当存在时,M4 xA1 y相被认为至少部分地驻留于M1 b[M2(CN)r(X1)t]c相的颗粒上。除此类混杂颗粒外,催化剂络合物可以含有仅M1 b[M2(CN)r(X1)t]c相或M1 b[M2(CN)r(X1)t]c[M5(X2)6]d·nM4 xA1 y相的颗粒以及仅M4 xA1 y相的其它颗粒。一些M3金属或半金属可能会并入到M1 b[M2(CN)r(X1)t]c相或M1 b[M2(CN)r(X1)t]c[M5(X2)6]d·nM4 xA1 y相中。
在一些实施例中,催化剂络合物包括水不溶性六氰基钴酸锌颗粒与M3金属或半金属氧化物颗粒的物理混合物,M3金属或半金属氧化物颗粒的存在量提供每摩尔由六氰基钴酸锌提供的钴0.002到10摩尔的M3金属或半金属,并且进一步其中使用气体吸附方法测量的M3金属或半金属氧化物颗粒的表面积为至少1m2/g。M3金属或半金属氧化物颗粒的表面积可以为至少10m2/g或至少100m2/g,并且可以高达例如300m3/g或以上。其体积平均粒径可以为100μm或更小、25μm或更小、1μm或更小、或500nm或更小。此类物理混合物可以通过例如形成六氰基钴酸锌固体颗粒并将其与M3金属或半金属氧化物颗粒组合来制备。在六氰基钴酸锌已经沉淀后,这可以在六氰基钴酸锌制备过程的任何阶段完成。例如,通常在最终干燥之前用水和/或配体对经过沉淀的六氰基钴酸锌进行一次或多次洗涤。M3金属或半金属氧化物可以在任何此类洗涤步骤期间与六氰基钴酸锌组合。
根据本发明制备的聚醚可以包含:一元醇,如可用于表面活性剂和工业溶剂或润滑剂应用的一元醇;以及多元醇,如可用于产生如聚氨酯等聚合物的有用原材料,如模塑泡沫、块状泡沫、高弹性泡沫、粘弹性泡沫、硬质泡沫、粘合剂、密封剂、涂料、弹性体、复合材料等。
提供以下实例以说明示例性实施例,但不旨在限制其范围。除非另有指示,否则所有份数和百分比均以重量计。
实例1-4和对比样品A-C
制备实例1:在圆底烧瓶中,将氯化锌(16.00克,117.4摩尔)、叔丁醇(20mL)和去离子水(20mL)的混合物加热到40℃。随后,将仲丁醇铝(以表1所示的量)和水性HCl(48μL,0.001M)加入到烧瓶中,并将混合物在环境条件下搅拌10分钟。接下来,在2.5小时时间段内逐滴添加与水(40mL)预混合的六氰基钴酸钾(3.44克,10.4摩尔)溶液。然后,在回流下加热烧瓶中的混合物,直到约20小时时间段后形成白色凝胶为止。将所得凝胶分散在水(60mL)和叔丁醇(60mL)中,并离心(5000rpm)15分钟。倾析出溶剂,并将所得材料再次分散在水(60mL)和叔丁醇(60mL)的混合物中。将所得分散体加热到55℃保持35分钟,并且然后离心(5000rpm)15分钟。然后用体积比为50/50的蒸馏水和叔丁醇的混合物洗涤所得材料四次,并且再用叔丁醇(120mL)洗涤一次。将洗涤后的材料在真空下在70℃下干燥到恒压(<10毫巴)过夜。对所得干燥固体进行碾磨,从而形成呈精细分散的粉末形式的催化剂样品。
实例2-4和对比样品A和B以相同的方式制备,除了加入到制剂中的仲丁醇铝的量不同之外。在制备对比样品C的过程中,仲丁醇铝被完全消除。添加到这些不同样品的催化剂制剂中的钴:锌:铝的摩尔比如表1所示。通过XRF测定此过程中钴:锌:铝的摩尔比,其结果如表1所示。
表1
名称 仲丁醇铝,g(mmol) Co:Zn:Al摩尔比,制剂 Co:Zn:Al摩尔比,产物
A* 0.0084g,0.034mmol 1:11.3:0.003 1:2:<0.001
1 0.084g,0.340mmol 1:11.3:0.032 1:2:0.003
2 0.83g,3.4mmol 1:11.3:0.32 1:2.0:0.2
3 8.27g,33.6mmol 1:11.3:3.2 1:2.2:2.8
4 16.55g,67.2mmol 1:11.3:6.4 1:2.8:5.2
B* 82.74g,336mmol 1:11.3:32 1:8.5:32
C* 1:11.3:0 1:2:0
催化剂实例1-4和对比样品A、B和C用于在半分批方法中产生聚醚多元醇。在60℃下,将二丙二醇(475.4g)和142.0毫克的催化剂样品(按产物的预期质量计,足以提供百万分之100)加入到7L Juchheim反应器中,并在干燥氮气下在50rpm下搅拌。关闭反应器并设定为100℃和400rpm。然后,将反应器内的气氛用干燥氮气吹扫并施加真空。将此过程的这一部分重复四次。将反应器隔离,并在160℃下在真空下放置1小时以干燥起始材料。然后在相同温度下将140g环氧丙烷加入反应器中。这将反应器内部压力提高到约3巴表压(304kPa)(除非另有说明,否则本文报告的所有压力均为表压)。连续监测反应器内部的压力是否存在压降,所述压降表示催化剂已发生活化。将反应器压力降至1巴(101kPa)所需的时间记为活化时间。在此过程开始后40分钟(或在催化剂活化后,在催化剂在40分钟后仍未活化的情况下),在160℃下将868.8g环氧丙烷进给到反应中。除非内部压力在进给过程中达到4巴(405kPa),否则进给速率会在一小时过程中从零线性地增加到29克/分钟,在这种情况下,进给速率将中断,直到压力降到3.5巴(354kPa)为止,此时将重新开始进给。因此,添加环氧丙烷的最短可能时间为60分钟,所述时间只有在环氧丙烷进给期间反应器压力没有达到压力极限时才能获得。环氧丙烷完成后,将反应混合物在160℃下消化15分钟。然后施加真空以去除任何未反应的环氧丙烷。然后将反应器冷却到100℃,并在干燥氮气下向反应混合物中加入200ppm抗氧化剂。然后,将产物冷却到环境温度并进行收集。在每种情况下,批次大小为约1421.8克。产物分子量为400g/mol。在聚合期间,反应混合物的羟基含量从约20重量%降到约4.25重量%。
在反应过程中监测反应器内部压力,以指示催化剂的活性。由于起始物(二丙二醇)的分子量低,这些聚合条件对常规双金属氰化物催化剂来说是一种困难的挑战。常规DMC催化剂在高浓度羟基的存在下表现不佳,在半分批方法的早期阶段情况确实如此,在这种情况下,起始物分子量较低。正是由于这一原因,在催化剂活化后,环氧丙烷的进给速率逐渐斜升。预期催化剂活性以及因此聚合速率随着产物建立分子量而增加,这使得环氧丙烷消耗得更快,并且因此进给速率也更快。
图1是对比样品C的反应器压力相对于时间的曲线(线1)和环氧丙烷进给速率相对于时间的曲线(线21)。线1的第2部分代表在环氧丙烷初始进给期间反应器压力的增加。压力增加到约3巴(303kPa)。线1的第3部分中指示的反应器压力的随后缓慢降低表明,随着催化剂的活化,环氧丙烷的消耗量增加。点A表示压力降至1巴(101kPa)的时间,所述点在过程开始后约55分钟处。点A为催化剂活化时间。线1的第4段指示压力随着随后的环氧丙烷进给开始而增加。如图1所示,反应器压力在30-40分钟内达到4巴(405kPa)压力极限。在所述时间期间,环氧丙烷的进给速率高达10克/分钟,但是当达到反应器压力极限时,必须定期中断或减慢其进给速率。
线1的第5段表明,催化剂的活性在从过程开始到大约200分钟的时间段内一直很低。在几乎所有这段时间期间,只有在对应的时间段(如线21所示)期间以2-7克/分钟的低进给速率才能进给环氧丙烷;较高的进给速率将导致超过内部压力极限。只有在180-190分钟之后,催化剂活性大大增加,这使得环氧丙烷的进给速率增加到25-30克/分钟。在这一点上,尽管进给速率很快,但反应器压力仍大幅下降,如线1的第6段所示。在反应的这一点上,环氧丙烷的消耗速度大于30克/分钟。在此过程开始后210-220分钟,所进给的全部环氧丙烷量(868.6克)被消耗。线1的第7段指示在所有环氧丙烷都已进给到反应器之后的最终消化步骤期间的反应器压力。
图1展示了这些聚合条件的苛刻程度。所述起始物的当量较低,并且在反应开始时以高浓度存在,直到达到显著量的分子量为止。在整个聚合过程中,羟基含量较高。这些条件使催化剂难以均匀活化,并且当催化剂被活化时,这些条件使其在聚合的大部分过程中反应迟缓。尽管使用了相当高的催化剂浓度。
对比样品A表现出与对比样品C相似的压力曲线。催化剂活化需要65-70分钟。环氧丙烷的进给速率被限制为不超过5克/分钟,直到此过程开始后约180分钟为止,此时每分钟超过30g的环氧丙烷开始快速的聚合反应。将极少量的铝添加到催化剂中实际上对催化剂性能没有影响。
图2示出了实例1的对应压力相对于时间的曲线(线1)和环氧丙烷相对于时间的曲线(线21)。附图标记与图1中的对应附图标记具有相同的特征。如线1的第3段所示,在此实例中,催化剂的活化非常迅速。在开始此过程后仅10-15分钟,反应器压力降到1巴(101kPa),并且在环氧丙烷进给开始之前继续降到0.5巴(50kPa)以下。线1的第4段示出压力随着环氧丙烷进给的开始而升高。随着环氧丙烷进给速率增加到15-20克/分钟,压力上升到3.5-3.7巴(355-376kPa)。应注意的是,尽管环氧丙烷进给速率比对比样品C中发生的环氧丙烷进给速率斜升更快,但从未达到内部压力极限。峰值压力在仅约70分钟后达到。此后,由于环氧丙烷的快速聚合,尽管环氧丙烷的进给速率进一步增加,但是反应器压力仍迅速降低(线1的第6段)。在此过程开始的100分钟内进给所有环氧丙烷。应注意的是,没有线1的段对应于图1中的段5。对于催化剂实例1,无需限制环氧丙烷的进给速率以避免达到内部反应器极限。尽管此测试条件非常苛刻,但是仍然获得了这些良好的结果。实际上,在这些条件下,通过增加环氧丙烷进给的速率,使用这种催化剂可以获得甚至更快的聚合反应。这些数据还表明,即使在这些苛刻的条件下,也可以使用较低的催化剂浓度。
实例1-4和对比样品A-C中每一个的活化时间、快速聚合时间和完成丙烯进给的时间如表2所示:
表2
Figure BDA0002344799170000241
*非本发明实例。**本实验中可能的最短进给时间;因为反应器压力从未达到压力极限,所以可以使用更快的环氧丙烷进给速率来得到显著更短的时间以完成PO进给。1从未清楚看到聚合的快速开始。
从表2的数据可以看出,常规DMC催化剂(对比C)的性能的特征在于活化时间长和到快速聚合反应开始和所有环氧丙烷可以进给的时间长。对比样品A表明,将非常少量的铝化合物添加到催化剂制剂中不会实质性地影响催化剂性能。
但是,实例1-4表明,当添加到催化剂中的铝的量在每摩尔钴约0.003到约5.2摩尔的范围内(并且尤其在0.003到约3摩尔Al/摩尔Co的范围内)时,催化剂活化速率和聚合速率两者都有非常显著的提高。活化时间减少,并且聚合速率急剧增加。
对比样品B表明,过多增加铝的量会导致催化活性下降,就好像这些大量铝的存在用作催化剂毒物一样。
实例5-11
以与实例1相同的方式制备实例5-11,除了分别用表3中所述的33.6摩尔的M3金属或半金属化合物代替仲丁醇铝之外。表3中示出了在制剂中以及在催化剂产物中测量的Co:Zn:M3金属或半金属的摩尔比。在每种情况下,在如关于前述实例所述的多元醇产生过程中的对催化剂进行评估。活化时间、快速聚合开始的时间和完成环氧丙烷添加的时间如表3所示。
表3
Figure BDA0002344799170000251
**本实验中可能的最短进给时间;因为反应器压力从未达到压力极限,所以可以使用更快的环氧丙烷进给速率来得到显著更短的时间以完成PO进给。1在快速聚合开始之前,反应器压力一次或多次达到压力上限。
实例5-11中的每一个均表现出较短的活化时间和/或较短的快速聚合开始时间。特别值得注意的是铪、镓和铟改性的催化剂,所有这些催化剂不仅提供较短的活化时间,而且还将允许环氧丙烷进给速率比这些实验中使用的环氧丙烷进给速率更快。在这三种情况下(如上述实例1-4),PO进给速率可以比这些实验中的速率更快地斜升,这将导致PO进给完成更快并且整个过程的循环时间更短。
实例12-14
以与实例1相同的方式制备实例12-14,除了分别用表4中所述的33.6摩尔的M3金属化合物代替仲丁醇铝(在对比样品F的情况下仅为16.8摩尔,而在对比样品H的情况下为11.2摩尔)之外。表4中示出了在制剂中以及在催化剂产物中测量的Co:Zn:M3金属的摩尔比。
在每种情况下,在替代性多元醇产生方法中评估催化剂,所述方法允许估计活化时间和快速PO聚合的起始时间。
在60℃下,将二丙二醇(475.4g)和足够的催化剂样品(按产物的预期质量计,足以提供百万分之100)加入到7L Juchheim反应器中,并在干燥氮气下在50rpm下搅拌。关闭反应器并设定为在100℃下搅拌。然后,将反应器内的气氛用干燥氮气吹扫一次或多次。然后向反应器填充氮气至大气压(绝对压力)。然后在相同温度下将77.4g环氧丙烷加入反应器中。这将反应器内部压力提高到约3巴表压(305kPa)。连续监测反应器内部的压力是否存在压降,所述压降表示催化剂已发生活化。将反应器压力降到1-1.5巴(101-151kPa)所需的时间记为活化时间。在催化剂活化时,在160℃下,将868.8g的环氧丙烷进给到反应中。除非内部压力在进给过程中达到4.5巴(456kPa),否则进给速率会在一小时过程中从零线性地增加到5mL/min,在这种情况下,进给速率将降低,直到压力降到4巴(405kPa)为止,此时进给速率再次升高。环氧丙烷完成后,将反应混合物在160℃下消化15分钟。然后施加真空以去除任何未反应的环氧丙烷。然后将反应器冷却到100℃,并在干燥氮气下向反应混合物中加入200ppm抗氧化剂。然后,将产物冷却到环境温度并进行收集。在每种情况下,批次大小为约1422克。
图3是实例14的反应器压力相对于时间的曲线(线11)和环氧丙烷进给速率相对于时间的曲线(线21)。因为实例12-14的聚合过程是在氮气下进行的(而不是像以前的实例那样在真空下进行的),所以反应器压力相对于时间的曲线的形状与关于图1所述的有所不同。线21的第12部分代表在初始环氧丙烷进给期间反应器压力的增加,在此期间,环氧丙烷的进给速率为5毫升/分钟(线21的第22段)。在此步骤期间,压力增加到约65psig(448kPa)。线11的第13部分中指示的反应器压力的随后缓慢降低表明,随着催化剂的活化,环氧丙烷的消耗量增加。点A表示压力降至2巴(202kPa)的时间,所述点在过程开始后约33分钟处。点A为催化剂活化时间。线11的第14段指示压力随着随后的环氧丙烷进给开始而增加。如线11的第14段所示,随着环氧丙烷进给速率在约20分钟的时间段内从零逐步斜升到2毫升/分钟,反应器压力近似线性地增加,直到反应器压力在此过程(线11上的B点)开始后约一小时达到4巴(405kPa)压力极限为止。在此时间段期间,环氧丙烷的消耗速率低于进给速率。因此,将进给速率降低至维持反应器压力略低于反应器压力极限的速率;此时间段对应于线11的第15段。在大约20分钟的此时间段期间,环氧丙烷的进给速率可以在大约30分钟内仅从1毫升/分钟缓慢增加到3毫升/分钟。线11的第15段表明,催化剂的活性在从此过程开始到大约90分钟的时间段内保持迟缓。在此过程开始后约90分钟,线11的C点指示快速聚合的开始。在此点之后,即使环氧丙烷进给速率迅速上升到5毫升/分钟,反应器的压力下降,如线11的第16段(压力)和线21的第26段(进给速率)所示。在反应的此点和其后,环氧丙烷的消耗速率大于5毫升/分钟。应注意的是,图3中所示的反应器压力包含氮分压,所述氮分压在过程开始时仅为1巴(101kPa),但随着反应器充满和顶部空间体积的减小而稳定增加。在由线11的第17段指示的时间段期间,反应器压力达到约25psig(172kPa)的恒定值--该值几乎完全归因于氮分压,此时的环氧丙烷分压接近于零。在这一点上,如果需要,聚合速率是使得可以以基本上更高的速率进给环氧丙烷的速率。在此过程开始后110分钟,所进给的环氧丙烷的全部量被消耗。线11的第18段指示在所有环氧丙烷都已进给到反应器之后的最终消化步骤期间的反应器压力。此过程的这一阶段期间的此压力几乎完全归因于顶部空间中氮气的存在。
活化时间和快速聚合开始的时间如表4所示。
表4
Figure BDA0002344799170000271
*非本发明实例。
与对比样品C相比,所有实例12-14均展现出更快的活化和更早的快速聚合开始。
实例15-21和对比样品D-H
六氰基钴酸锌催化剂络合物的制备在圆底烧瓶中,将氯化锌(48.00克,352.1摩尔)、叔丁醇(60mL)和去离子水(60mL)的混合物加热到40℃。将水性HCl(144μL,0.001M)加入到烧瓶中,并将混合物在环境条件下搅拌10分钟。接下来,在2.5小时时间段内逐滴添加与水(80mL)预混合的六氰基钴酸钾(10.37克,31.2摩尔)溶液。然后,在回流下加热混合物,直到形成白色凝胶(大约20小时时间段后)为止。将所得凝胶分散在水(180mL)和叔丁醇(180mL)中,并且然后离心(5000rpm)15分钟。倾析出溶剂,并将所得材料再次分散在水(180mL)和叔丁醇(180mL)的混合物中。将所得分散体加热到55℃保持35分钟,并且然后离心(5000rpm)15分钟。然后用体积比为50/50的蒸馏水和叔丁醇的混合物洗涤所得材料四次,并且然后再用叔丁醇(180mL)洗涤一次。将洗涤后的材料在真空下在60℃下干燥到恒压(<10毫巴)过夜。对所得干燥固体进行碾磨,从而形成呈精细分散的粉末形式的DMC催化剂样品。这被称为对比样品D。
为了制备实例15-21和对比样品E-H,使对比样品D的1克部分在叔丁醇和M3金属化合物的混合物中成浆,如表5所示。对比样品D的量足以提供约0.2克或约3.39毫摩尔的钴。将所得浆液再次离心,如前所述干燥并碾磨。每种情况下的结果都是六氰基钴酸锌络合物颗粒和M3金属化合物颗粒的物理混合物。可能存在两种颗粒类型的一些团聚。
使用实例1-4所述的聚合方法,评估实例15-21和对比样品D-H的活化时间和快速聚合开始的时间。结果如表5所示。
表5
Figure BDA0002344799170000291
实例15-21展现出比对比样品D更短的活化和/或快速聚合时间。含有锑、钙、铜和钡化合物的催化剂混合物的性能甚至比对照物更差。
实例22和对比样品I
对比样品I:使用实例12-14中描述的一般聚合条件,用84.4克环氧丙烷将分子量为260的丙氧基甘油(115.6g)丙氧基化。所述催化剂是0.3g商业可得的六氰基钴酸锌催化剂络合物(按产物的预期质量计,足以提供百万分之150)。即使在275分钟后,催化剂也不会活化。
以相同的方式制备实例22,除了将0.168g的表面积约为155m2/g的氧化铝加入到环氧二丙烷和六氰基钴酸锌的混合物中之外。催化剂在约35分钟后活化,并且甚至在约110分钟后也会发生快速聚合反应的开始。获得分子量为约425的聚醚三醇。
实例22的条件甚至比先前实例的条件更为苛刻,因为使用了三官能起始物和低当量(约140)的产物。甚至在聚合过程结束时,羟基浓度也为12%。

Claims (8)

1.一种用于产生聚醚的方法,所述方法:形成包括含羟基的起始物、至少一种环氧烷和催化剂络合物的反应混合物;以及在存在每摩尔环氧烷不超过0.01摩尔的当与所述环氧烷聚合时产生碳酸酯-O-C(O)-O-键的化合物的情况下,将所述环氧烷聚合到所述含羟基的起始物上以产生所述聚醚,其中所述催化剂络合物在包括以下的方法中产生:
a)形成起始溶液,所述起始溶液包括:i)包含水和液体脂肪醇中的至少一种的溶剂,所述溶剂已经在其中溶解有:ii)具有M2金属氰基金属盐基团的氰基金属盐化合物和iii)与所述氰基金属盐化合物反应以形成水不溶性M1金属氰基金属盐的M1金属盐,所述起始溶液进一步含有每摩尔氰基金属盐化合物0.01到10摩尔的iv)至少一种不同于所述M1金属盐的M3金属化合物,所述M3金属化合物是M3金属的化合物,所述M3金属选自铝、铪、镓、铟、钪、锰、钼、钴、铁、钨、钒、镁、锡、锌和镍,所述M3金属键合到至少一种醇盐、芳氧基、羧酸盐、酰基、焦磷酸盐、磷酸盐、硫代磷酸盐、二硫代磷酸盐、磷酸酯、硫代磷酸酯、酰胺、氧化物、氧化硅、氢化物、氨基甲酸酯或烃阴离子,并且所述M3金属化合物不含卤素阴离子,所述M3金属化合物进一步为(a)在步骤a)和/或步骤b)的条件下与水反应形成M3金属氧化物的化合物或(b)颗粒状M3金属氧化物;以及
b)使所述氰基金属盐化合物与M1金属盐反应以形成包含M1金属氰基金属盐的水不溶性催化剂络合物。
2.根据权利要求1所述的方法,其中所述M3金属为以下中的一种或多种:铝、铪、铟或镓、钨、钴或锰。
3.根据权利要求1所述的方法,其中所述M3金属为以下中的一种或多种:铝、铪、铟、锰或镓。
4.根据权利要求1到3中任一项所述的方法,其中M1为锌,并且所述氰基金属盐化合物为六氰基钴酸盐化合物。
5.根据权利要求1到3中任一项所述的方法,所述方法为半分批方法,其中将所述催化剂络合物和起始物装入反应容器中,使所述催化剂络合物活化,并且之后在不取出产物的情况下,在聚合条件下将所述环氧烷的至少一部分加入到含有经过活化的催化剂络合物和起始物的所述反应容器中,直到加入所有所述环氧烷为止。
6.根据权利要求1到3中任一项所述的方法,所述方法为连续方法,其中在聚合条件下将所述催化剂络合物、起始物和环氧烷连续进给到反应容器,并且连续地从所述反应容器中取出产物。
7.根据权利要求1到3中任一项所述的方法,其中所述起始物的羟基当量为30到200。
8.根据权利要求1到3中任一项所述的方法,其中在所述聚合的至少一部分期间,羟基浓度的范围为所述反应混合物的4.25重量%到20重量%。
CN201880043973.XA 2017-05-10 2018-05-10 聚醚聚合方法 Active CN110832007B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762504133P 2017-05-10 2017-05-10
US201762504145P 2017-05-10 2017-05-10
US62/504133 2017-05-10
US62/504145 2017-05-10
PCT/US2018/032051 WO2018209075A1 (en) 2017-05-10 2018-05-10 Polyether polymerization process

Publications (2)

Publication Number Publication Date
CN110832007A CN110832007A (zh) 2020-02-21
CN110832007B true CN110832007B (zh) 2023-04-04

Family

ID=62245528

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880043922.7A Active CN110869416B (zh) 2017-05-10 2018-05-10 催化剂络合物
CN201880043973.XA Active CN110832007B (zh) 2017-05-10 2018-05-10 聚醚聚合方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201880043922.7A Active CN110869416B (zh) 2017-05-10 2018-05-10 催化剂络合物

Country Status (7)

Country Link
US (3) US11745174B2 (zh)
EP (2) EP3622002A1 (zh)
JP (2) JP7316221B2 (zh)
KR (2) KR102557160B1 (zh)
CN (2) CN110869416B (zh)
BR (2) BR112019023463B1 (zh)
WO (2) WO2018209069A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316221B2 (ja) * 2017-05-10 2023-07-27 ダウ グローバル テクノロジーズ エルエルシー ポリエーテル重合プロセス
EP3810677A1 (en) * 2018-06-19 2021-04-28 Henkel AG & Co. KGaA Highly active double metal cyanide compounds
HUE061272T2 (hu) 2018-12-21 2023-06-28 Dow Global Technologies Llc Poliéter polimerizációs eljárás
WO2020176278A1 (en) 2019-02-28 2020-09-03 Dow Global Technologies Llc Polyether polymerization process
CN111393631B (zh) * 2020-05-29 2022-09-09 上海多纶化工有限公司 仲醇聚氧乙烯醚的合成方法
CN118043376A (zh) 2021-10-25 2024-05-14 陶氏环球技术有限责任公司 聚醚聚合工艺
CN118043375A (zh) * 2021-10-25 2024-05-14 陶氏环球技术有限责任公司 聚醚聚合工艺

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278457A (en) * 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
GB1063525A (en) 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
GB8528071D0 (en) 1985-11-14 1985-12-18 Shell Int Research Polycarbonates
US4843054A (en) * 1987-02-26 1989-06-27 Arco Chemical Technology, Inc. Preparation of filterable double metal cyanide complex catalyst for propylene oxide polymerization
JP3068890B2 (ja) 1991-05-29 2000-07-24 旭硝子株式会社 ポリエーテル類の製造方法
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5783513A (en) * 1997-03-13 1998-07-21 Arco Chemical Technology, L.P. Process for making double metal cyanide catalysts
US6077978A (en) 1997-09-17 2000-06-20 Arco Chemical Technology L.P. Direct polyoxyalkylation of glycerine with double metal cyanide catalysis
DE19834573A1 (de) * 1998-07-31 2000-02-03 Bayer Ag Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
ES2201537T3 (es) * 1997-10-13 2004-03-16 Bayer Ag Catalizadores cristalinos de cianuros metalicos dobles para la fabricacion de polioles polieter.
DE19809539A1 (de) * 1998-03-05 1999-09-09 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
US5952261A (en) * 1998-03-20 1999-09-14 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts modified with Group IIA compounds
ES2233372T3 (es) * 1999-05-05 2005-06-16 Bayer Materialscience Ag Catalizadores de cianuro bimetalico para la fabricacion de polieterpolioles.
AR024679A1 (es) 1999-07-09 2002-10-23 Dow Chemical Co Catalizadores de cianuro metalico sobre soportes inorganicos y metodo de utilizacion
DE19958355A1 (de) 1999-12-03 2001-06-07 Bayer Ag Verfahren zur Herstellung von DMC-Katalysatoren
CN1177645C (zh) * 2000-03-30 2004-12-01 国际壳牌研究有限公司 Dmc配合物催化剂及其制备方法
EP1288244A1 (en) * 2001-08-31 2003-03-05 Asahi Glass Company, Limited Double metal cyanide complex catalyst for ring opening polymerization of alkylene oxide and its production process
JP2003117403A (ja) * 2001-10-15 2003-04-22 Asahi Glass Co Ltd 複合金属シアン化物錯体触媒およびその製造方法
BR0308456A (pt) 2002-03-21 2005-01-11 Dow Global Technologies Inc Método para preparar complexos catalisadores de cianeto metálico usando agentes complexantes parcialmente miscìveis, uso de tais catalisadores e produto obtido
US6716788B2 (en) * 2002-06-14 2004-04-06 Shell Oil Company Preparation of a double metal cyanide catalyst
US6869905B1 (en) * 2004-03-02 2005-03-22 Basf Corporation Synthesis of double metal cyanides with non-aqueous solutions
US20050209438A1 (en) 2004-03-19 2005-09-22 Browne Edward P Starter feed stream acidification in DMC-catalyzed process
US6921737B1 (en) * 2004-05-26 2005-07-26 Basf Corporation Method of synthesizing a double metal cyanide catalyst
US20060058182A1 (en) 2004-09-13 2006-03-16 Combs George G Processes for the preparation of double metal cyanide (DMC) catalysts
US20090043056A1 (en) * 2005-03-22 2009-02-12 Michiel Barend Eleveld Process for the Preparation of an Improved Double Metal Cyanide Complex Catalyst, Double Metal Cyanide Catalyst and Use of Such Catalyst
DE102005020347A1 (de) * 2005-05-02 2006-11-09 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkomplex-Katalysatoren
CN101646492B (zh) * 2007-02-05 2013-06-05 巴斯夫欧洲公司 Dmc催化剂、其制备方法及其用途
MX2012004169A (es) * 2009-10-19 2012-05-08 Basf Se Acondicionado de catalizadores de cianuro de doble metal.
DE102010008410A1 (de) * 2010-02-18 2011-08-18 Bayer MaterialScience AG, 51373 Verfahren zur Herstellung von Polyethercarbonatpolyolen
MX2013001925A (es) 2010-08-20 2013-08-01 Basf Se Proceso para la elaboracion de polioles de polieterester.
US9040657B2 (en) 2010-12-27 2015-05-26 Dow Global Technologies Llc Alkylene oxide polymerization using a double metal cyanide catalyst complex and a magnesium, Group 3-Group 15 metal or lanthanide series metal compound
AR104981A1 (es) * 2015-06-20 2017-08-30 Dow Global Technologies Llc Proceso continuo para producir polioles de poliéter que tienen un elevado contenido de óxido de etileno polimerizado, mediante el uso de un complejo catalizador de cianuro de metal doble y un compuesto metálico de la serie de lantanida o metal del grupo 3 - grupo 15, magnesio
CN109790024B (zh) * 2016-10-05 2023-04-14 埃克森美孚化学专利公司 制备金属氮化物和金属碳化物的方法
JP7316221B2 (ja) * 2017-05-10 2023-07-27 ダウ グローバル テクノロジーズ エルエルシー ポリエーテル重合プロセス
HUE061272T2 (hu) * 2018-12-21 2023-06-28 Dow Global Technologies Llc Poliéter polimerizációs eljárás

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hybrid sol–gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO2;Yvonne Dienes;《Green Chem.》;20120306;第14卷;第1169页左栏第3段,第1170页式(2) *

Also Published As

Publication number Publication date
CN110869416A (zh) 2020-03-06
US20230356207A1 (en) 2023-11-09
BR112019023463B1 (pt) 2023-10-24
US11571690B2 (en) 2023-02-07
US11745174B2 (en) 2023-09-05
CN110869416B (zh) 2023-04-04
BR112019023481A2 (pt) 2020-06-30
JP2020519432A (ja) 2020-07-02
WO2018209075A1 (en) 2018-11-15
US20210198425A1 (en) 2021-07-01
CN110832007A (zh) 2020-02-21
JP2020519715A (ja) 2020-07-02
JP7316221B2 (ja) 2023-07-27
BR112019023481B1 (pt) 2023-10-31
KR20190141253A (ko) 2019-12-23
US20210154656A1 (en) 2021-05-27
KR20200004866A (ko) 2020-01-14
JP7146810B2 (ja) 2022-10-04
EP3622002A1 (en) 2020-03-18
KR102557160B1 (ko) 2023-07-19
EP3622003A1 (en) 2020-03-18
WO2018209069A1 (en) 2018-11-15
BR112019023463A2 (pt) 2020-06-30
KR102584168B1 (ko) 2023-10-05

Similar Documents

Publication Publication Date Title
CN110832007B (zh) 聚醚聚合方法
JP6060092B2 (ja) 複合金属シアン化物触媒錯体およびマグネシウム、第3族〜第15族金属またはランタニド系列金属化合物を用いるアルキレンオキシド重合
CN107750262B (zh) 制备具有高聚合环氧乙烷含量的聚醚多元醇的连续方法
CN113195591B (zh) 聚醚聚合方法
EP3931235B1 (en) Polyether polymerization process
TWI840474B (zh) 聚醚聚合方法
WO2023075987A1 (en) Polyether polymerization process
CN118043375A (zh) 聚醚聚合工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant