CN110352475B - 功率模块和反向导通igbt - Google Patents

功率模块和反向导通igbt Download PDF

Info

Publication number
CN110352475B
CN110352475B CN201880014992.XA CN201880014992A CN110352475B CN 110352475 B CN110352475 B CN 110352475B CN 201880014992 A CN201880014992 A CN 201880014992A CN 110352475 B CN110352475 B CN 110352475B
Authority
CN
China
Prior art keywords
igbt
dummy
gate
emitter
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880014992.XA
Other languages
English (en)
Other versions
CN110352475A (zh
Inventor
佐藤茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN110352475A publication Critical patent/CN110352475A/zh
Application granted granted Critical
Publication of CN110352475B publication Critical patent/CN110352475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明提供能够提高具有虚设沟槽栅结构的IGBT的控制性的功率模块和反向导通IGBT。所述功率模块具备:功率半导体芯片,其在同一芯片内形成有包括虚设沟槽栅极的沟槽栅结构的IGBT(41A)和用于使IGBT(41A)的发射极的过剩载流子回到IGBT(41A)的集电极的续流二极管(5A);以及用于对IGBT(4A)进行导通/关断驱动的驱动芯片(3A),所述功率模块是将功率半导体芯片和驱动芯片(3A)封装而成的功率模块,为了将虚设沟槽栅极用于筛选检查,所述功率模块还具备电荷蓄积元件(CP1),其连接在能够虚拟形成的虚设IGBT(42A)的栅极与发射极之间。

Description

功率模块和反向导通IGBT
技术领域
本发明涉及功率模块和反向导通IGBT,更具体而言,涉及能够提高具有虚设沟槽栅结构的IGBT的控制性的功率模块和反向导通IGBT(在同一芯片内形成续流二极管的IGBT)。
背景技术
车载用的IGBT追求高可靠性,需要在制造阶段排除栅极氧化膜的初期不良。作为这种IGBT,已知使IGBT与续流二极管一体化而成的反向导通IGBT,例如为了降低电场的偏压来实现耐压提高而设置有虚设沟槽栅极。对于虚设沟槽栅极而言,也与栅极氧化膜同样地需要确保品质,例如,在专利文献1中,公开了在制作实际产品时在与发射极端子连接而使用的虚设沟槽栅极设置筛选检查用的焊盘,并且减少IGBT芯片内部的布线的影响的结构。
现有技术文献
专利文献
专利文献1:日本特开2014-53552号公报
发明内容
技术问题
然而,在上述专利文献1的技术中,即使能够一定程度地减少IGBT芯片的内部布线的影响,即内部寄生成分的影响,也存在技术上的阻碍,可以得到的效果是有限的。特别是,在将IGBT芯片封装而形成例如IPM(Intelligent Power Module:智能电源模块)的情况下,内部布线的影响变得更大。另外,在现有技术中,根本没有考虑在具有续流二极管的反向导通IGBT中,因为在续流二极管中流通的正向电流的变化而导致在关断开关动作时产生噪声而引起控制性变差等由反向导通IGBT的特性引起的问题点。
本发明是鉴于上述实际情况而完成的,其目的在于提供能够提高具有虚设沟槽栅结构的IGBT的控制性的功率模块和反向导通IGBT。
技术方案
为了实现上述目的,本发明的第1观点的功率模块具备:功率半导体芯片,其在同一芯片内形成有包含虚设沟槽栅极的沟槽栅结构的IGBT和用于使上述IGBT的发射极的过剩载流子回到上述IGBT的集电极的续流二极管;以及
驱动芯片,其用于对上述IGBT进行导通/关断驱动,
上述功率模块是将上述功率半导体芯片与上述驱动芯片封装而成的功率模块,
上述功率模块还具备连接在为了对上述虚设沟槽栅极进行筛选检查而能够虚拟形成的虚设IGBT的栅极与发射极之间的电荷蓄积元件。
近年来,包含为了提高耐压而形成的虚设沟槽栅极的沟槽栅结构的IGBT逐渐成为主流。为了确保IGBT的高可靠性,该虚设沟槽栅极也成为筛选检查的对象。在同一芯片内形成有续流二极管和IGBT的反向导通IGBT中,在关断开关动作时流过续流二极管的电流的陡峭的变化成为噪声的原因,使反向导通IGBT的控制性降低。在续流二极管中流通的电流的陡峭的变化的重要原因之一是由内部L、C、R寄生成分引起的瞬时电动势,因为该瞬时电动势而导致在IGBT的关断动作时在续流二极管中流通的电流急剧变化,栅极和/或发射极的电位变化。通过在与虚设沟槽栅极相对应形成的虚设IGBT的栅极与发射极之间连接抑制瞬时电动势产生的电荷蓄积元件,从而能够抑制在续流二极管中流通的电流的陡峭的变化,通过抑制产生噪声,从而能够提高IGBT的控制性。
另外,为了实现上述目的,本发明的第2观点的反向导通IGBT在同一芯片内形成有包含虚设沟槽栅极的沟槽栅结构的IGBT和用于使上述IGBT的发射极的过剩载流子回到上述IGBT的集电极的续流二极管,
上述反向导通IGBT还具备连接在为了对上述虚设沟槽栅极进行筛选检查而能够虚拟形成的虚设IGBT的栅极与发射极之间的电荷蓄积元件。
发明效果
根据本发明,通过抑制在续流二极管流通的电流的陡峭的变化,抑制产生噪声,从而能够提高具有虚设沟槽栅结构的IGBT的控制性。
附图说明
图1是表示在反向导通IGBT中栅极-发射极间电位与在续流二极管中流通的正向电流之间的关系的图表。
图2是表示本发明的第1实施方式的功率模块的构成的电路图。
图3是表示针对栅极信号与栅极电位之间的关系进行的电路仿真的结果的波形图。
图4的(a)和图4的(b)是表示针对电容器的形成的一个例子的俯视图。
图5A是表示本发明的第2实施方式的功率模块的构成的电路图。
图5B是表示图5A的另一实施例的功率模块的构成的电路图。
图6的(a)和图6的(b)是表示针对双向二极管的形成的一个例子的俯视图,是与图4的(b)相对应的俯视图。
图7是在伪栅极布线与发射极布线之间形成电荷蓄积元件的用于说明本发明的第3实施方式的图,图7的(a)是与图4的(a)相对应的截面图,图7的(b)是与图7的(a)相对应的斜视截面图,图7的(c)是表示针对电容器的形成的一个例子的截面图,图7的(d)是表示针对双向二极管的形成的一个例子的俯视图。
图8是表示针对电容器的形成的另一例的截面图。
图9的(a)和图9的(b)是表示第2实施方式的变形例的示意图。
符号说明
1:IPM系统
2A、2B:直流电源
3A、3B:驱动/运算电路(驱动芯片)
4A、4B:IGBT部
5A、5B:续流二极管部
41A、41B:IGBT
42A、42B:虚设IGBT
411a、411b:沟槽栅极
411c:沟槽
412a、412b:栅极布线
413a、413b:伪栅极布线
414:发射极布线
415:伪栅极焊盘
416:发射极焊盘
417:栅极焊盘
418:辅助发射极焊盘
419:电介质
420:氧化膜
421:多晶硅
422:N+层
423:发射区
424:P阱
CP1、CP2:电容器
D1、D2:双向二极管
D1’、D2’:反向二极管
C:集电极端子
G:栅极端子
GND:接地端子
E:发射极端子
AE:辅助发射器端子
Ls:电感
Is:绝缘分离区
prs1~prs4:L、C、R寄生成分
具体实施方式
以下,参照附图对本发明的实施方式进行详细说明。本发明的特征之一,作为例子可举出,在虚设沟槽栅极设置抑制作为关断开关动作时的噪声的原因的瞬时电动势产生的元件。
近年来,与IGBT在同一芯片内形成续流二极管的迫切期望提高。通过在与IGBT在同一芯片内形成续流二极管,从而能够提高模块封装的最大额定电流。另一方面,通过流通大的电流,从而载流子的数目变多,使IGBT关断开关时残留的过剩载流子也变多。过剩载流子是关断开关动作时的噪声的一个原因。以往,由于与IGBT在不同芯片形成续流二极管,所以即使在续流二极管中流通大的电流,对在不同芯片形成的IGBT的影响比较和缓。然而,在同一芯片内形成续流二极管的反向导通IGBT的情况下,需要考虑因在续流二极管中流通大电流而造成的噪声的影响。这样的噪声的一个例子为瞬时电动势的上升。
在使反向导通IGBT关断开关时,由于在同一芯片内的续流二极管区域流通大的电流,所以在直到完全关断(即关断过渡状态)为止的极短期间内,产生瞬时电动势从而引起发射极电位和/或栅极电位暂时上升。这是噪声的一个原因,使反向导通IGBT的控制性降低。换言之,为了完全关断反向导通IGBT,需要使蓄积于栅极的电荷放出,但是瞬时电动势的产生妨碍蓄积于反向导通IGBT的栅极的电荷的放出,并且在使关断开关特性变得良好的方面成为阻碍。如图1的图表所示,在沟槽栅结构的反向导通IGBT中,其栅极电位在3V附近~7V附近,续流二极管中流通的正向电流具有陡峭的变化点。
换言之,可知在使反向导通IGBT关断开关时,在栅极电位降低到预定值之前,恒定大小的电流(过剩载流子的残留)持续流过续流二极管。因为这是瞬时电动势上升的一个原因,所以如果能够抑制该瞬时电动势的上升,则能够抑制反向导通IGBT的关断开关动作时的噪声,进而能够提高反向导通IGBT的控制性。
已知这样的瞬时电动势e在IGBT芯片的内部和外部与寄生的L、C和R成分具有如下的关联性。
e=IR (1)
e=Ldi/dt (2)
e=(1/C) ∫idt (3)
在此,I为电流,R为布线电阻,L为布线电感,C为布线容量。
在关断开关动作时,由于上述瞬时电动势e上升,所以在续流二极管中流通的正向电流急剧变化,这成为噪声而降低反向导通IGBT的控制性(例如,以高速完全关断反向导通IGBT)。
鉴于上述式(1)~式(3),如果能够减小瞬时电动势e,则能够抑制发射极电位和/或栅极电位的变化,另外,能够抑制作为噪声原因的续流二极管的正向电流特性的急剧变化。另一方面,上述L成分和/或R成分在芯片结构上以最低限度进行设计。因此,本发明人着眼于C成分来实现改善。以下,针对着眼于C成分来提高反向导通IGBT的控制性的具体实施方式进行详细说明。
(第1实施方式)
(构成)
以下,对第1实施方式的构成进行详细说明。
图2所示,本实施方式的IPM系统1构成为包括直流电源2A、2B、第1驱动/运算电路3A和第2驱动/运算电路3B、IGBT部4A、4B、续流二极管部5A、5B和电感Ls。以下,对各部的详细情况进行说明。
直流电源2A、2B分别是用于介由第1驱动/运算电路3A和第2驱动/运算电路3B对后述的IGBT41A、41B的栅极施加用于导通/关断开关动作的栅极信号的直流电源。
对于第1驱动/运算电路3A和第2驱动/运算电路3B而言,例如第1驱动/运算电路3A为高侧驱动用的电路,第2驱动/运算电路3B为低侧驱动用的电路。第1驱动/运算电路3A和第2驱动/运算电路3B根据从外部供给的驱动信号(控制信号),使用直流电源2A、2B各自的电压生成用于分别使IGBT41A、41B进行导通或关断开关动作的栅极信号,并将其供给到IGBT41A、41B的栅极。由于该驱动/运算电路3A、3B可以使用现有技术,所以省略说明。
由于IGBT部4A、4B具有相同的构成,所以仅对IGBT部4A进行详细说明。IGBT部4A具备IGBT41A、集电极端子C、栅极端子G、发射极端子E和接地端子GND。集电极端子C、栅极端子G和发射极端子E分别与IGBT41A的集电极、栅极、发射极连接。另外,栅极端子G还与第1驱动/运算电路3A连接,栅极信号被供给到IGBT41A的栅极。此外,接地端子GND是将第1驱动/运算电路3A和IGBT41A的发射极接地的端子,并且与IGBT41A的发射极连接。
此外,IGBT部4A具备虚设IGBT 42A和电容器CP1。
虚设IGBT42A例如是用于对虚设沟槽栅极(由图4(a)表示)进行筛选检查而虚拟形成的虚设IGBT,在用于确认有无虚设沟槽栅极的初期不良的筛选检查时被施加预定电压的焊盘与栅极(即,虚设沟槽栅极)连接,所述虚设沟槽栅极是为了降低电场的偏压(缓和电场的局部的集中)从而实现耐压提高而设置的虚设沟槽栅极。虚设IGBT42A的集电极和发射极分别与IGBT41A的集电极和发射极连接。
电容器CP1配置在虚设沟槽栅极与虚设IGBT42A的发射极之间,在筛选检查后连接,并且用于抑制瞬时电动势e的产生。在此,在筛选检查后连接电容器CP1的理由是,在筛选检查时在虚设沟槽栅极与基区之间产生电位差而对虚设沟槽栅极绝缘膜施加电位应力,检查虚设沟槽栅极绝缘膜是否具有所希望的耐压等,为了防止对这样的检查的各条件造成影响。由于电容器CP1越接近虚设沟槽栅极的布线,抑制产生瞬时电动势e的效果越高,所以在本实施方式中,内置在形成有IGBT部4A的芯片。电容器CP1是蓄积电荷的电荷蓄积元件的一个例子。
应予说明,图中的L、C、R以寄生(parasitic)于布线的成分为例进行表示。在本实施方式中,作为一个例子,着眼于与虚设IGBT42A等的栅极连接的布线中的L、C、R寄生成分prs1,与发射极连接的布线中的L、C、R寄生成分prs2以及从栅极和发射极连接到接地的布线中的L、C、R寄生成分prs3、prs4。
续流二极管部5A、5B分别与IGBT41A、41B反向并联连接,在将IGBT41A、41B关断时IGBT41A、41B的发射极侧的过剩载流子回流到IGBT41A、41B的集电极侧。在本实施方式中,续流二极管部5A、5B分别与IGBT部4A、4B形成在同一芯片内,因此,利用IGBT部4A(4B)和二极管部5A(5B)构成单体的反向导通IGBT。该反向导通IGBT是采用沟槽栅结构,并且电流在芯片的纵向流通的纵型IGBT。此时,续流二极管部5A、5B也由沟槽结构形成,由此例如避免耐压降低等问题。
在采用如上构成的IPM系统1中,在以高侧为例时,第1驱动/运算电路3A、IGBT部4A和续流二极管部5A通过铜等导线电连接,由树脂等进行一体的封装,从直流电源2A向该一个封装供给第1驱动/运算电路3的电力。在低侧也是同样。这样的高侧的封装和低侧的封装介由电感Ls彼此连接。换言之,IGBT部4A的发射极端子E与IGBT部4B的集电极端子C介由电感Ls连接。
(作用)
接下来,对采用如上构成的IPM系统1的动作进行说明。应予说明,在IPM系统1的高侧、低侧,本实施方式的特征性作用相同,因此,以下,对高侧的动作进行详细说明。
驱动/运算电路3A根据来自外部的驱动信号,生成用于使IGBT41A关断的栅极信号并将其向IGBT部4A的栅极端子供给。由此,IGBT部4A的IGBT41A开始关断开关动作。
如果IGBT41A开始关断开关动作,则在IGBT41A的关断过渡状态中,续流二极管部5A使IGBT41A的发射极侧的过剩载流子回到其集电极侧。因此,在续流二极管部5A中流通正向的电流。
在此,如上所述,在续流二极管部5A中流通的正向电流特性因上述瞬时电动势e而急剧变化。换言之,在续流二极管部5A形成于同一芯片内的IGBT41A中,在关断开关动作时,在续流二极管部5A中流通的正向电流特性因产生瞬时电动势e而急剧地变化,栅极与发射极之间的电位在直到完全关断为止的极短期间内发生变化。这成为关断开关时的噪声的原因,导致IGBT41A的控制性变差。这在与例如出于提高耐压的目的而设置的虚设沟槽栅极相对应的虚设IGBT 42A中也是同样的。
然而,在本实施方式中,在虚设IGBT42A的栅极与发射极之间设置电容器CP1。由于该电容器CP1蓄积电荷,所以抑制虚设IGBT42A的发射极的电荷,换言之,虚设IGBT42A的栅极与发射极之间的电位的变化。由此,由于能够抑制产生瞬时电动势e,所以能够抑制反向导通IGBT(IGBT部4A和二极管部5A)的关断开关时的噪声,进而能够提高反向导通IGBT的控制性。
应予说明,在上述实施方式中,为了容易理解本发明,对在虚设IGBT42A的栅极与发射极之间设置电容器CP1的情况进行了说明,但本发明并不限于此,可以在IGBT41A的栅极与发射极之间也设置电容器(未图示)。电容器的容量可以根据想要抑制的瞬时电动势的大小来适当设定和选择。
在此,参照图3对设置电容器CP1等的情况下的进行了电路仿真的结果进行说明。图3是表示着眼于瞬时电动势e的产生而对虚设沟槽栅极的电位与栅极信号的信号等级之间的关系进行了仿真的结果的图表。
如图所示,在驱动反向导通IGBT的信号,即,施加于反向导通IGBT的栅极的电压(在图3中为驱动信号波形例)例如从15V降低到0V的期间,反向导通IGBT处于关断过渡状态,但是在该关断过渡状态中,虚设沟槽栅极的电位因上述瞬时电动势而上升。在设置电容器CP1等的情况下,与未设置电容器CP1等的情况比较,栅极的电位的陡峭的上升受到抑制,到零为止的时间被缩短。换言之,根据本实施方式可知,通过设置电容器CP1等,从而与反向导通IGBT未设置电容器CP1的情况相比,由于能够缩短直到完全关断为止所需要的时间,即成为正向阻断状态为止的时间,所以提高控制性。
接下来,参照图4的(a)和图4的(b)的俯视图对如上的电容器CP1(CP2)的形成例进行说明。应予说明,图示的上表面形状仅是一个例子,提供它是出于容易理解本发明的目的,本发明不限于这样的上表面形状。
图4的(a)是从上表面观察反向导通IGBT(包括IGBT部4A和二极管部5A)的功率半导体芯片的图。如图所示,该功率半导体芯片具备沿图中的Y方向延伸的多个沟槽栅极411a、411b,在其上部,以与各自的一部分电连接的方式,以沿X方向延伸的方式形成栅极布线412a、412b、伪栅极布线413a、413b和发射极布线414。在该功率半导体芯片中,例如,图中左侧的3个沟槽栅极411a形成IGBT部4A,右侧的3个沟槽栅极411b形成续流二极管部5A。
在俯视时具有这样构成的功率半导体芯片的栅极布线412a和412b、伪栅极布线413a和413b以及发射极布线414分别与栅极端子G、伪栅极端子DG、发射极端子E和辅助发射器端子AE连接。
在采用这样的构成的功率半导体芯片中,在功率半导体芯片的厚度方向上的任意位置设置有绝缘分离区Is。该绝缘分离区Is是在功率半导体芯片的厚度方向上不流通电流且形成在未施加电压的位置的非活性区域,通常构成在p阱上,如图4的(b)所示,形成有与上述端子电连接的焊盘。更详细而言,在该绝缘分离区Is形成有与伪栅极端子DG连接的伪栅极焊盘415、与发射极端子E连接的发射极焊盘416、与栅极端子G连接的栅极焊盘417和与辅助发射器端子AE连接的辅助发射极焊盘418。应予说明,辅助发射极焊盘418例如是与驱动电路的接地连接的焊盘。另外,为了容易理解本发明,图4的(b)所示的绝缘区域Is将其面积放大进行图示,但是实际的面积相对于图4的(a)所示的功率半导体芯片整体的面积是极小的。
在这样的构成的绝缘区域Is中,发射极焊盘416在包含IGBT部4A和二极管部5A的功率半导体芯片的制造阶段中是所谓的浮置层,在筛选检查结束后形成发射极焊盘416。在该绝缘区域Is中,在发射极焊盘416与伪栅极焊盘415之间配置电容器CP1。该电容器CP1可以利用公知的方法中的任意方法来形成。
(第2实施方式)
在第1实施方式中,对在虚设IGBT42A、42B的栅极与发射极之间设置电容器CP1、CP2的情况进行了说明。此时,电容器CP1、CP2蓄积电荷,但是在蓄积电荷的观点中,通过设置双向二极管也能够得到同样的作用、效果。以下,对采用双向二极管的实施方式进行说明。应予说明,对与第1实施方式相同的构成要素标注相同的附图标记,以下省略其详细的说明。
如图5的(a)所示,在本实施方式中,在虚设IGBT42A、42B的栅极与发射极之间分别形成至少一组双向二极管D1、D2。这些双向二极管D1、D2例如可以通过使p型杂质和n型杂质在多晶硅中扩散而形成。应予说明,材料和形成的方法不限于这些,可以适当选择。
双向二极管D1、D2作为缓冲电路而发挥功能。更详细而言,因为为了使二极管D1或D2处于导通状态而在pn结蓄积一定的载流子,所以根据其蓄积作用的时间,能够延长反向导通IGBT(IGBT部4A和二极管部5A、或者IGBT部4B和二极管部5B)的电流变化率di/dt的dt,因此能够抑制瞬时电动势的产生,进而能够抑制噪声的产生。换言之,双向二极管D1(D2)是本实施方式的电荷蓄积元件的一个例子。
另外,如图5的(b)所示,可以采用相对于各虚设IGBT42A(42B)串联连接多组双向二极管D1(D2)的构成。此时,对于每1组的耐压和组的数目而言,在应用反向导通IGBT(IGBT部4A和二极管部5A等)的系统中,以得到能够吸收噪声的延迟时间的方式适当设定。通过多级串联连接双向二极管D1(D2)的组,从而能够进一步延长蓄积作用的时间,因此有可以适当调整双向二极管D1(D2)的组的串联数目的优点。
参照图6的(a)和图6的(b)对这样的双向二极管D1(D2)的形成进行说明。应予说明,图6的(a)和图6的(b)是与图4的(b)相对应的图。在本实施方式的情况下,如图6的(a)或图6的(b)所示,在绝缘分离区Is上,通过在伪栅极焊盘415与发射极焊盘416之间例如配置多晶硅并扩散p型杂质和n型杂质,从而能够形成1组或多组的双向二极管D1、D2。
(第3实施方式)
在上述第1实施方式和第2实施方式中,对电容器CP1、二极管D1等中示例的电荷蓄积元件在筛选检查结束后连接、结线的元件的情况进行了说明。但是,根据实际的产品需要,有进一步提高噪声抑制效果的迫切期望,因此还考虑不需要筛选检查这样的迫切期望。在这样的情况下,可以通过在图4的(a)所示的上表面,在伪栅极布线413a、413b中的任一个伪栅极布线与发射极布线414之间设置电荷蓄积元件,从而能够应对迫切期望。
以下,参照图7的(a)~图7的(d)对应对这样的迫切期望的第3实施方式进行说明。图4的(a)所示的构成的功率半导体芯片从截面看具有例如图7(a)所示的构成。在图4的(a)和图7的(b)所示的Y方向上,在功率半导体芯片的上表面,在发射极布线414与伪栅极布线413a之间存在预定的距离的空间S。在该空间S形成电荷蓄积元件。应予说明,图4的(a)和图7的(b)中的Y方向是栅极延伸的方向,图4的(a)所示的Z方向是功率半导体芯片的厚度方向,即纵向。另外,如图7的(a)和图7的(b)所示,以在沟槽栅极411a的两侧隔着氧化膜420与该沟槽栅极411a邻接的方式在P阱424内形成发射区423。
在形成电容器CP1等作为电荷蓄积元件的情况下,如图7的(c)所示,在发射极布线414与伪栅极布线413a之间的空间,在绝缘膜420上形成电介质419。在采用该构成的情况下,因为发射极布线414的一部分和伪栅极布线413a的一部分分别作为电容器CP1的一个电极、另一个电极而发挥功能,所以可以省略隔着电介质419另外由多晶硅等形成电极的处理。
另一方面,在形成双向二极管D1等作为电荷蓄积元件的情况下,如图7的(d)所示,以局部分别埋没到发射极布线414和伪栅极布线413a中的方式在空间S形成多晶硅,通过适当地扩散p型的杂质和n型的杂质,从而形成双向二极管D1等。
在采用图7的(a)~图7的(d)所示的构成的情况下,由于电荷蓄积元件与发射极布线414和伪栅极布线413a直接连接,所以难以对伪栅极进行筛选检查,但是与图4的(b)所示的构成相比,由于在伪栅极布线413a直接连接有电荷蓄积元件,所以抑制噪声的效果高。应予说明,在本实施方式中,对在发射极布线414与伪栅极布线413a之间形成电荷蓄积元件的情况进行了说明,但是即使在发射极布线414与伪栅极布线413b之间形成电荷蓄积元件,也得到同样的效果。
以上,对本发明的实施方式进行了说明,但本发明不限于上述实施方式,在不脱离其技术范畴的范围内可以进行各种置换、省略、改变。例如,对在图7的(c)中使用电介质419形成电容器CP1的情况进行了说明,但本发明不限于这样的构成。如图8所示,可以通过形成与沟槽栅极411a等不同的沟槽411c,在该沟槽411c的内壁上形成氧化膜420,向其内侧填充多晶硅421,并且在这样的沟槽411c的外侧形成例如N+层422,从而也能够在沟槽411c内部的氧化膜420形成蓄积电荷的电容器CP1等。该沟槽411c无需是与沟槽栅极411a相同的形状,例如可以是半球状。
另外,在第2实施方式中,对形成双向二极管D1等作为电荷蓄积元件的情况进行了说明,但是本发明不限于该情况。例如,如图9的(a)和图9的(b)所示,可以设置1个以上的反向二极管D1’(D2’)来代替1组或多组的双向二极管D1。在图1所示的特性的例子中,如果能够确保大致7V的耐压,则能够抑制特性的变化,因此得到与上述实施方式相同的作用、效果。因此,每1个二极管D1’的耐压、二极管D1’的个数在应用反向导通IGBT(IGBT部4A和二极管部5A等)的系统中以得到能够吸收噪声的延迟时间的方式适当设定。即使设置这样的耐压的反向二极管D1’等,也由于可以对虚设沟槽栅极(由图4(a)表示)的栅极氧化膜进行筛选检查,所以可以内置于包含反向导通IGBT的功率半导体芯片内的任意位置。

Claims (7)

1.一种功率模块,其特征在于,具备:
功率半导体芯片,其在同一芯片内形成有IGBT和续流二极管,所述IGBT是包含虚设沟槽栅极的沟槽栅结构,所述续流二极管用于使所述IGBT的发射极的过剩载流子回到所述IGBT的集电极;以及
驱动芯片,其用于对所述IGBT进行导通/关断驱动,
所述功率模块是将所述功率半导体芯片和所述驱动芯片封装而成的功率模块,
所述功率模块还具备电荷蓄积元件,所述电荷蓄积元件连接在给所述虚设沟槽栅极提供筛选检查而能够虚拟形成的虚设IGBT的栅极与发射极之间。
2.根据权利要求1所述的功率模块,其特征在于,所述电荷蓄积元件是电容器。
3.根据权利要求1所述的功率模块,其特征在于,所述电荷蓄积元件是反向并联连接的至少1组双向二极管。
4.根据权利要求1所述的功率模块,其特征在于,所述电荷蓄积元件形成在所述功率半导体芯片内。
5.根据权利要求1所述的功率模块,其特征在于,所述电荷蓄积元件在筛选检查结束后电连接在所述虚设IGBT的栅极与发射极之间。
6.根据权利要求1所述的功率模块,其特征在于,所述电荷蓄积元件是至少一个反向二极管。
7.一种反向导通IGBT,其特征在于,在同一芯片内形成有IGBT和续流二极管,所述IGBT是包含虚设沟槽栅极的沟槽栅结构,所述续流二极管用于使所述IGBT的发射极的过剩载流子回到所述IGBT的集电极,
所述反向导通IGBT还具备电荷蓄积元件,所述电荷蓄积元件连接在为了给所述虚设沟槽栅极提供筛选检查而能够虚拟形成的虚设IGBT的栅极与发射极之间。
CN201880014992.XA 2017-09-15 2018-08-02 功率模块和反向导通igbt Active CN110352475B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-178410 2017-09-15
JP2017178410 2017-09-15
PCT/JP2018/029142 WO2019054077A1 (ja) 2017-09-15 2018-08-02 パワーモジュール及び逆導通igbt

Publications (2)

Publication Number Publication Date
CN110352475A CN110352475A (zh) 2019-10-18
CN110352475B true CN110352475B (zh) 2021-12-03

Family

ID=65722660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880014992.XA Active CN110352475B (zh) 2017-09-15 2018-08-02 功率模块和反向导通igbt

Country Status (4)

Country Link
US (1) US11094809B2 (zh)
JP (1) JP6780787B2 (zh)
CN (1) CN110352475B (zh)
WO (1) WO2019054077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828100A (en) * 1995-09-14 1998-10-27 Hitachi, Ltd. Insulated gate semiconductor device having trench gate and inverter provided with the same
JP2011134984A (ja) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd 半導体装置
CN102184918A (zh) * 2009-12-04 2011-09-14 富士电机系统株式会社 内燃机点火器半导体器件
JP2013251466A (ja) * 2012-06-01 2013-12-12 Fuji Electric Co Ltd 半導体装置、半導体装置の制御方法および半導体装置の評価方法
JP2014013798A (ja) * 2012-07-03 2014-01-23 Fuji Electric Co Ltd ワンチップイグナイタ及び内燃機関点火装置
CN104332492A (zh) * 2013-07-22 2015-02-04 三星电子株式会社 半导体器件及其制造方法
CN105874602A (zh) * 2014-07-10 2016-08-17 富士电机株式会社 半导体装置
CN107086217A (zh) * 2016-02-16 2017-08-22 富士电机株式会社 半导体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682593A3 (en) 2012-07-03 2018-09-12 Fuji Electric Co., Ltd. Ignition device with single chip for internal combustion engine
JP6115050B2 (ja) * 2012-09-10 2017-04-19 トヨタ自動車株式会社 半導体装置
JP2016025124A (ja) * 2014-07-16 2016-02-08 株式会社デンソー 半導体装置およびその製造方法
JP6515484B2 (ja) 2014-10-21 2019-05-22 株式会社デンソー 半導体装置
JP6613899B2 (ja) 2016-01-05 2019-12-04 富士電機株式会社 半導体素子の駆動装置
US10396189B2 (en) * 2017-05-30 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
JP7055052B2 (ja) * 2018-04-05 2022-04-15 三菱電機株式会社 半導体装置および電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828100A (en) * 1995-09-14 1998-10-27 Hitachi, Ltd. Insulated gate semiconductor device having trench gate and inverter provided with the same
CN102184918A (zh) * 2009-12-04 2011-09-14 富士电机系统株式会社 内燃机点火器半导体器件
JP2011134984A (ja) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd 半導体装置
JP2013251466A (ja) * 2012-06-01 2013-12-12 Fuji Electric Co Ltd 半導体装置、半導体装置の制御方法および半導体装置の評価方法
JP2014013798A (ja) * 2012-07-03 2014-01-23 Fuji Electric Co Ltd ワンチップイグナイタ及び内燃機関点火装置
CN104332492A (zh) * 2013-07-22 2015-02-04 三星电子株式会社 半导体器件及其制造方法
CN105874602A (zh) * 2014-07-10 2016-08-17 富士电机株式会社 半导体装置
CN107086217A (zh) * 2016-02-16 2017-08-22 富士电机株式会社 半导体装置

Also Published As

Publication number Publication date
WO2019054077A1 (ja) 2019-03-21
US20190386125A1 (en) 2019-12-19
US11094809B2 (en) 2021-08-17
CN110352475A (zh) 2019-10-18
JP6780787B2 (ja) 2020-11-04
JPWO2019054077A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US10679928B2 (en) Power module and motor drive circuit
US9000601B2 (en) Power semiconductor module
JP5783997B2 (ja) 電力用半導体装置
US9966870B2 (en) Power conversion device and drive device
JP5340695B2 (ja) トレンチゲート型絶縁ゲートバイポーラトランジスタ
JP6584893B2 (ja) 半導体装置の製造方法
JP2021065093A (ja) 半導体装置
JP6797005B2 (ja) 半導体装置
US20050194660A1 (en) IGBT module
JP5293831B2 (ja) 高耐圧半導体装置および駆動回路
JP6925250B2 (ja) 半導体装置およびその製造方法
JP6963982B2 (ja) 半導体装置およびその製造方法
JP4857814B2 (ja) モータ駆動装置
JP7002431B2 (ja) 半導体装置
CN110352475B (zh) 功率模块和反向导通igbt
US20130214746A1 (en) Power module and air conditioner
CN110352548B (zh) 功率模块、反向导通igbt及驱动电路
US20150023082A1 (en) Semiconductor device and power conversion device using the same
JP4945948B2 (ja) 半導体装置
US20220321022A1 (en) Semiconductor module
JP7196044B2 (ja) 半導体装置および電力変換装置
Li et al. Influence of auxiliary gate and emitter connections on short circuit behaviour of multichip IGBT modules
US11373997B2 (en) High voltage integrated circuit device employing element separation method using high voltage junction
CN117936572A (zh) 双向rc-mpt igbt器件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant