JP2011134984A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2011134984A
JP2011134984A JP2009295035A JP2009295035A JP2011134984A JP 2011134984 A JP2011134984 A JP 2011134984A JP 2009295035 A JP2009295035 A JP 2009295035A JP 2009295035 A JP2009295035 A JP 2009295035A JP 2011134984 A JP2011134984 A JP 2011134984A
Authority
JP
Japan
Prior art keywords
gate
cell
semiconductor device
gate electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295035A
Other languages
English (en)
Other versions
JP5493840B2 (ja
Inventor
Tadanori Yamada
忠則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009295035A priority Critical patent/JP5493840B2/ja
Publication of JP2011134984A publication Critical patent/JP2011134984A/ja
Application granted granted Critical
Publication of JP5493840B2 publication Critical patent/JP5493840B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

【目的】電磁ノイズとターンオフ損失のトレードオフを改善できる半導体装置を提供すること。
【解決手段】ゲート引き出し部40(ゲート引き出し配線9およびゲート引き出し配線9とゲートランナー15とのコンタクト部13のこと)の抵抗やゲート電極5の抵抗およびゲート容量Cgを一部のセルで大きくして、ゲートの充放電時定数τを大きくし、電流の小さな領域での電流の立ち下りを緩やかにして、オーバーシュート部でのdv/dtを抑制することで、電磁波ノイズの低減を図り、電流の大きな領域での立ち下がりを急峻にしてターンオフ損失の抑制を図ることで、電磁ノイズとターンオフ損失のトレードオフを改善する。
【選択図】 図11

Description

この発明は、パワーMOSFETなどの半導体装置に関する。
図12は、従来のパワーMOSFET700の構成図であり、同図(a)はチップの要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。また、図13は、図12のチップ内の複数のセルの等価回路図である。また、図14はターンオフ時の電圧電流の実測波形図である。
図12(a)において、このパワーMOSFET700(従来品)では、p型のウエル領域2、n型のソース領域3およびポリシリコンで形成されたゲート電極5は、それぞれストライプ状であり単位セル8はストライプ状である。ゲート電極5は、ゲート電極5を延伸して形成されたポリシリコンのゲート引き出し配線9を介して金属で形成されたゲートランナー15にコンタクト部13で接続し、ゲートランナー15は金属で形成されたゲートパッド16に接続する。単位セル8、ゲート引き出し配線9およびコンタクト部13を含めてセル14(後述の第2セル14と同じ構造なので同一符号を付す)と称する。ゲートパッド16は図示しない金属配線によりケースに形成された金属のゲート端子に接続し、ゲート端子は外部配線により制御回路と接続する。
前記のセル14は全て同一寸法であり、また、ゲート引き出し配線9の長さや幅の寸法、ゲート引き出し配線9とゲートランナー15とのコンタクト部13の寸法も全て同一である。そのため、全てのセル14は均一動作する。
図12(b)において、このパワーMOSFET700は、裏面側から表面に向って、図示しないドレイン電極、図示しないn型のドレイン層、ドレイン層よりも低不純物濃度のn型のドリフト層1、p型のウエル層2、n型のソース層3、ゲート酸化膜4、ゲート電極5およびソース電極7をそれぞれ積層した構成となっている。1つのゲート電極5とそのゲート電極5に対峙する2つのソース領域3とを含め、ゲート電極5から透過した領域が単位セル8であるが、ストライプのゲート電極5の場合、1つのゲート電極5自体を単位セルと見て差し支えない。単位セル8は活性領域内で、これらの積層された層の単位ユニットである。図中の符号で17は接続配線、58はチップである。このパワーMOSFET700のセル14のゲート容量Cは、C部に示すゲート電極5とゲート酸化膜4と半導体基板12で構成される寄生容量と、ゲート引き出し配線とその下に配置される図示しない絶縁膜と半導体基板12で構成される寄生容量などを合わせた容量である。
図13において、このMOSFET700の各セル14は並列接続している。各MOSFET部61のゲート電極5はゲート引き出し配線9を経由してゲートランナー15に接続し、さらにゲートパッド16を経由してゲート端子に接続する。ゲート端子は外部配線を経由して制御回路に接続する。ゲート電極5とゲート引き出し配線9はポリシリコンで形成され、ゲートランナー15とゲートパッド16は金属で形成される。そのため、セル14のゲート抵抗Rgはセル14のゲート電極5とゲート引き出し配線9のポリシリコン抵抗とゲート引き出し配線9とゲートランナー15のコンタクト部13の抵抗である。
このパワーMOSFET700のゲート構造はプレーナ型であるが、図15に示すトレンチ型の場合もある。図15の符号で、71はn型のドリフト層、72はp型のウエル層、73はn型のソース層、74はゲート酸化膜、75はゲート電極、76は層間絶縁膜、77はソース電極、78は単位セル、79はチップ、80はトレンチである。
図12の従来のパワーMOSFET700は、ターンオン時、定常時およびターンオフ時で各セルが均一に動作するように前記の各ゲート引き出し配線9は長さと幅の寸法は同一である。つまり、並列接続された各セル14は同一のスイッチング速度で動作する。
このパワーMOSFET700は、一般的にスイッチング電源装置などの電力変換装置に適用され、装置を小型化するために、10kHz〜1MHz程度の高い周波数で動作することが要求される。このような高周波で動作させるためには、パワーMOSFET700のスイッチング速度を高める必要がある。しかし、スイッチング速度を高めると1パルス当たりのターンオフ損失は低減するが、EMIノイズ(電磁波ノイズ)が発生するようになる。
電磁波ノイズを低減するために、従来はパワーMOSFET700の寄生容量を大きくしたり、または駆動回路と素子の間に外部のゲート接続抵抗を接続して、ゲートの充放電時定数τ=C×Rを大きくして対応していた。尚、前記のCはゲート容量、Rは外部で接続するゲート接続抵抗Roと素子内部のゲート抵抗Rgを合わせた抵抗である。
つぎに、関連する特許文献について説明する。
特許文献1にはゲート配線とゲートとの間に抵抗を設けて各セルのスイッチング速度を揃えることで、誘導性負荷を駆動する際の破壊に対して強い縦型MOSFETを提供できることが記載されている。
また、特許文献2、3にはゲートとゲートパッドの間に抵抗を設けることで各セル間での発振を防止し各セルの均一動作性が向上することが記載されている。尚、これらの特許文献1〜3にはゲート端に抵抗を設けることが記載されている。
特許第2760515号公報 特開昭60−171771号公報 特許第4032622号公報
しかし、図13のパワーMOSFET700のゲートと駆動回路の間に外付けのゲート接続抵抗Roを接続し充放電時定数τを大きくするという方策では、ターンオフ時の電流の大きな領域から電流の小さな領域までの立ち下がり波形が緩やかになり、電磁波ノイズは低減されるが、1パルス当たりのターンオフ損失は大きくなるという問題点が生じる。
この電磁波ノイズはパワーMOSFET700のターンオフ時のdv/dtに大きく依存し、特に、中間電圧(ターンオフ時の到達電圧)からオーバーシュートした電圧のdv/dt(オーバーシュート部のdv/dt)に大きく依存する。
また、電磁波ノイズとターンオフ損失の関係を説明すると、1パルス当たりのターンオフ損失を小さくするために電流の立下りを急峻にすると、電圧の立ち上がりが急峻になり、電磁波ノイズが発生する。一方、電流の立下りを緩やかにすると電磁波ノイズは低減するが、ターンオフ損失は増大する。つまり、電磁波ノイズ(オーバーシュート部のdv/dt)とターンオフ損失はトレードオフの関係にある。
図14は、従来のMOSFET700のターンオフ時の電圧電流の実測波形図である。実測したこのパワーMOSFET700は、1本の単位セル8で構成したセル14が540本配置されている。セル14の1本当たりのゲート抵抗は、セル14の両端から電流が流れ出すので、ゲート電極5とゲート引き出し配線9を合わせたポリシリコン(図12のL0+2L01)の抵抗の1/4となり、3kΩである。また、この図14では合成抵抗が5.58Ωである。但し、コンタクト部13の抵抗は小さいので省略した。
図14の波形から、1パルス当たりのターンオフ損失は72μJで、オーバーシュート部のdv/dtは5.85kV/μsであり、大きな電磁波ノイズを放射する。
前記の特許文献1〜3には、ターンオフ時の電流の立ち下がりを電流の小さな領域で緩やかにすることで、電磁波ノイズとターンオフ損失のトレードオフを改善するということについては記載されていない。
この発明の目的は、前記の課題を解決して、電磁ノイズとターンオフ損失のトレードオフを改善できる半導体装置を提供することにある。
前記の目的を達成するために、特許請求の範囲の請求項1記載の発明によれば、第1導電型の半導体基板の第1主面に配置される第2導電型のウエル層と、該ウエル層の表面に配置される第1導電型のソース層と、該ソース層と前記半導体基板に挟まれた前記ウエル層上にゲート絶縁膜を介して配置されるストライプのゲート電極と、前記半導体基板の第2主面に配置される第1導電型のドレイン層と、該ドレイン層と電気的に接続するドレイン電極と、前記ソース層と電気的に接続し前記ゲート電極と絶縁して配置されるソース電極と、前記ゲート電極と接続するゲート引き出し配線と、該ゲート引き出し配線とゲートランナーを接続するコンタクト部とを備え、前記ゲート電極と前記ゲート引き出し配線と前記コンタクト部をセルとし、該セルを複数有する半導体装置において、前記セルは、該セルの抵抗分からなるゲート抵抗と前記ゲート電極のゲート容量との積で決定するゲートの充放電時定数が小さい通常セルと、該通常セルより前記ゲートの充放電時定数が大きい遅延セルとを有することを特徴とする半導体装置とする。
特許請求の範囲の請求項2記載の発明によれば、第1導電型の半導体基板の第1主面に配置される第2導電型のウエル層と、該ウエル層の表面に配置される第1導電型のソース層と、該ソース層と前記ウエル層を貫通するトレンチと、該トレンチの側壁に配置されるゲート絶縁膜と、該ゲート絶縁膜を介して前記トレンチに充填されるストライプのゲート電極と、前記半導体基板の第2主面に配置される第1導電型のドレイン層と、該ドレイン層と電気的に接続するドレイン電極と、前記ソース層と電気的に接続し前記ゲート電極と絶縁して配置されるソース電極と、前記ゲート電極と接続するゲート引き出し配線と、該ゲート引き出し配線とゲートランナーを接続するコンタクト部とを備え、前記ゲート電極と前記ゲート引き出し配線と前記コンタクト部をセルとし、該セルを複数有する半導体装置において、前記セルは、該セルの抵抗分からなるゲート抵抗と前記ゲート電極のゲート容量との積で決定するゲートの充放電時定数が小さい複数の通常セルと、該通常セルよりゲートの充放電時定数が大きい複数の遅延セルとを有することを特徴とする半導体装置とする。
特許請求の範囲の請求項3記載の発明によれば、請求項1または2記載の発明において、前記遅延セルが複数の単位セルと、該単位セル同士を直列に接続する接続配線と、前記ゲート引き出し配線と、前記コンタクト部からなり、前記通常セルが1本の単位セルと、前記ゲート引き出し配線と、前記コンタクト部からなる構成とする。
特許請求の範囲の請求項4記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの前記ゲート引き出し配線の長さが、前記通常セルの前記ゲート引き出し配線の長さに比べ10%以上長いとよい。
特許請求の範囲の請求項5記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの前記ゲート引き出し配線の幅が、前記通常セルの前記ゲート引き出し配線の幅に比べ90%以下であるとよい。
特許請求の範囲の請求項6記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの前記コンタクト部の面積が、前記通常セルの前記コンタクト部の面積に比べ90%以下であるとよい。
特許請求の範囲の請求項7記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの前記ゲート電極の厚さが、前記通常セルの前記ゲート電極の厚さに比べ90%以下であるとよい。
特許請求の範囲の請求項8記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの前記ゲート絶縁膜の厚さが、前記通常セルの前記ゲート絶縁膜の厚さに比べ90%以下であるとよい。
特許請求の範囲の請求項9記載の発明によれば、請求項1または2記載の発明において、前記遅延セルの一方の前記ゲート引き出し配線が前記ゲートランナーに接続するとよい。
特許請求の範囲の請求項10記載の発明によれば、請求項1または2記載の発明において、前記ゲート充放電時定数の異なる複数の遅延セルを有するとよい。
特許請求の範囲の請求項11記載の発明によれば、請求項1または2記載の発明において、前記遅延セルが、1)前記単位セルが複数直列接続されること。2)前記ゲート引き出し配線の長さが10%以上前記通常セルより長いこと。3)前記ゲート引き出し配線の幅が前記通常セルの90%以下であること。4)前記コンタクト部の面積が前記通常セルの90%以下であること。5)前記ゲート電極の厚さが前記通常セルの90%以下であること。6)前記ゲート絶縁膜の厚さが前記通常セルの90%以下であること。7)一方の前記ゲート引き出し配線が前記ゲートランナーに接続すること。8)ゲート充放電時定数の異なる複数のセルで構成されること。のいずれか2つ以上の組み合わせで形成されるとよい。
この発明において、チップ内に形成される一部のセルのゲート抵抗やゲート容量を大きくして、一部のセルでゲートの充放電時定数を大きくすることで、ターンオフ時の電流の立ち下がりを電流の小さな領域で緩やかにする。電流の立ち下がりを緩やかにすることで、ターンオフ時の電圧のオーバーシュート部でのdv/dtが小さくなり、電磁波ノイズの低減を図ることができる。
一方、電流の大きい領域での立ち下がりを急峻とすることで、ターンオフ損失を小さくすることができる。
その結果、dv/dtとターンオフ損失のトレードオフを改善できる。
この発明の第1実施例の半導体装置の構成図であり、(a)はチップ全体の要部平面図、(b)は(a)のX−X線で切断したセルの要部断面図、(c)は(a)のA部拡大図である。 遅延セルである第1セルを3本の単位セルを直列接続して形成した要部平面図である。 模式的なターンオフ時の電圧、電流波形図であり、(a)は第1セルで構成したMOSFETの波形図、(b)は第2セルで構成したMOSFETの波形図、(c)は第1セルおよび第2セルを組み合わせて構成したMOSFETの波形図である。 この発明のパワーMOSFETでのターンオフ時の電圧電流の実測波形図である。 従来品と本発明品のdv/dtとターンオフ損失の関係を示す図である。 この発明の第2実施例の半導体装置の要部平面図である。 この発明の第3実施例の半導体装置の要部平面図である。 この発明の第4実施例の半導体装置の要部平面図である。 この発明の第5実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX1−X1線で切断した第6セル31の要部断面図,(c)は(a)のX2−X2線で切断した第2セル14の要部断面図である。 この発明の第6実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX1−X1線で切断した第7セル34の要部断面図,(c)は(a)のX2−X2線で切断した第2セル14の要部断面図である。 この発明を実施するための形態を説明するための概念図である。 従来のパワーMOSFET700の構成図であり、(a)はチップの要部平面図、(b)は(a)のX−X線で切断した要部断面図である。 図12のチップ内の複数のセルの等価回路図である。 従来のパワーMOSFET700のターンオフ時の電圧電流の実測波形図である。 トレンチゲート型MOSFETの要部断面図である。
図11は、この発明を実施するための形態を説明するための概念図である。この概念図はパワーMOSFETのチップ18の要部平面図である。
この発明は、ゲート引き出し部40(ゲート引き出し配線9およびゲート引き出し配線9とゲートランナー15とのコンタクト部13のこと)の抵抗やゲート電極5の抵抗およびゲート容量Cgを一部のセルで大きくして、ゲートの充放電時定数τを大きくし、電流の小さな領域での電流の立ち下りを緩やかにして、オーバーシュート部でのdv/dtを抑制することで、電磁波ノイズの低減を図ることにある。また、電流領域の大きい領域での電流の立下りを急峻にして、ターンオフ損失の抑制を図る。
一方、電流の大きい領域で電流の立ち下がりと電圧の立ち上がりを急峻にして、ターンオフ損失を抑制することにある。
その結果、電磁波ノイズとターンオフ損失のトレードオフを改善することにある。
その具体的な方策を以下の実施例で説明する。尚、実施例の図中の符号は図12と同一部位には同一の符号を付した。
図1は、この発明の第1実施例の半導体装置の構成図であり、同図(a)はチップ全体の要部平面図、同図(b)は同図(a)のX−X線で切断したセルの要部断面図、同図(c)は同図(a)のA部拡大図である。この半導体装置は縦型のパワーMOSFET100である。
図1のパワーMOSFET100(本発明品)において、p型のウエル領域2、n型のソース領域3およびポリシリコンで形成したゲート電極5は、それぞれストライプ状に形成され、第1セル11もまたストライプ状をしている。ゲート電極5は、ゲート電極5を延伸して形成されたポリシリコンのゲート引き出し配線9を介して金属で形成したゲートランナー15に接続し、ゲートランナー15は金属で形成した接続配線17を経由してゲートパッド16に接続する。
図1において、チップ18の両端部に配置されるストライプ状のゲート電極5の一端と隣接するゲート電極5の一端とを接続配線10を介して直列接続して第1セル11を形成する。この第1セル11は単位セル8が2個直列接続されたセルであり、ゲートの充放電時定数τが単位セル8が1個の場合に比べて長くなるのでここでは遅延セルと称する。ゲート電極5の他端はゲート引き出し配線9を介してゲートランナー15に接続する。
一方、中央に配置される第2セル14は単位セル8が1個であり、そのゲート電極5の両端はゲート引き出し配線9を介してゲートランナー15に接続する。この第2セル14は図12のセル14と同一寸法である。尚、図1の第2セルと図12のセルは同一であるので同じ14の符号を付した。
第1セル11は、単位セル8と、この単位セル8を直列接続する接続配線10と、この単位セル8と接続するゲート引き出し配線9と、このゲート引き出し配線9とゲートランナー15を接続するコンタクト部13で構成される。また、第2セル14は、単位セル8と、この単位セル8と接続するゲート引き出し配線9と、このゲート引き出し配線9とゲートランナー15を接続するコンタクト部13で構成される。第1セル11、第2セル14とも単位セル8、ゲート引き出し配線9およびコンタクト部13は同一寸法で形成される。
また、このMOSFET100の単位セル8の断面構造は、裏面側から表面に向って、図示しないドレイン電極、このドレイン電極上に配置される図示しないn型のドレイン層、このドレイン層上に配置されるドレイン層よりも低不純物濃度なn型のドリフト層1、このドリフト層1上に配置されるp型のウエル層2、ウエル層の表面層に配置されるn型のソース層3、ソース層3とウエル層2上とドリフト層1上に配置されるゲート酸化膜4、このゲート酸化膜4上に配置されるストライプのゲート電極5と、ゲート電極5と層間絶縁膜6で絶縁されてソース層3と電気的に接続するソース電極7で構成される。単位セル8は活性領域内で、これらの積層された層の単位ユニットであり、チップ18にはこの単位セル8が多数配置されている。尚、図中の符号の12は、前記の各層を形成する半導体基板である。
前記の単位セル8のゲート電極長さ(ポリシリコンの長さ)をL0とする。チップ18の両端部に配置される第1セル11のゲート電極5において、ゲート電極5内をMOSFET100のスイッチング時にゲート容量Cgを介して一方のコンタクト部13に流れ出す電流の通電経路の最長の長さをL1、ゲート引き出し配線の長さをL01、接続配線長さLtとすると、L1={(2L0+Lt)/2}+L01となる。但し、ここではゲート容量Cgとはゲート電極5とゲート酸化膜4と半導体基板12で構成されるB部の容量にゲート引き出し配線9および接続配線10とその下に配置される図示しない絶縁膜と半導体基板12で構成される容量を加えた容量のことである。
また、単位セル8をn個直列にして第1セル11を構成する場合には、L1={(nL0+(n−1)Lt)}/2}+Ltとなる。
一方、中央に配置される第2セル14のゲート電極5において、ゲート電極5内をMOSFET100のスイッチング時にゲート容量Cgを介して一方のコンタクト部13に流れ出す電流の通電経路の最長の長さをL2とすると、L2=(L0/2)+L01となる。
チップ18内には前記の第1セル11と第2セル14がそれぞれ多数配置される。
図2は、ゲート抵抗を増やす例であり、同図(a)は単位セルを3本直列接続した場合の要部平面図であり、同図(b)は第1セルの2本のゲート引き出し配線のうち一方のみをゲートランナーに接続した要部断面図である。
図2(a)のパワーMOSFET100aの場合において、単位セルを3本直列接続した第1セル11aのL1は、単位セルを2本直列接続した図1の第1セル11のL1に対して1.5倍になるため、このL1で生じるゲート抵抗Rg1も図1の第1セル11のL1で生じるゲート抵抗Rg1に対して約1.5倍に増大させることができる。
また、単位セルが1本の第2セル14のL2に対して、第1セル11aのL1は3倍増大するので、第2セル14のL2で生じるゲート抵抗Rg2に対して第1セル11aのゲート抵抗Rg1は3倍増大させることができる。
このことから、単位セル8をn本(nは2以上)直列に接続した場合の第1セル11aのゲート抵抗Rg1は図1の第1セル11に対して、n/2倍増大させることができ、また、第2セル14のRg2に対してはn倍増大させることができる。
図2(b)のパワーMOSFET100bの場合において、第1セル11bのL1は、単位セルを2本直列接続し片方のコンタクト部13のみから電流が抜き取られるので、図1の第1セル11のL1に対して長さは同じであるが片方のコンタクト部13のみの接続であるので、ゲート抵抗Rg1は2倍に増大する。また両端を接続する第2セル14のL2に対して片方のコンタクト部13のみの接続であるL1は4倍であり、L1までが直列接続の抵抗となる第1セル11bのゲート抵抗Rg1は、L2までが並列接続の抵抗となる第2セル14のゲート抵抗Rg2に対して8倍に増大する。
このことから、単位セル8をn本(nは2本以上)直列に接続した場合の第1セルのゲート抵抗は図1の第1セル11に対して2n倍増大させることができ、また、第2セル14のゲート抵抗Rg2に対しては4n倍増大させることができる。
つぎに、図1におけるゲートの充放電時定数τについて説明する。第1セル11のL1で生じるゲート抵抗をRg1、ゲート容量をCg1とすると、第1セル11でのゲートの充放電時定数τ1はCg1×Rg1となる。またチップ中央に配置される第2セル14のゲート抵抗をRg2、ゲート容量をCg2とすると、第2セル14でのゲートの充放電時定数τ2はCg2×Rg2となる。
図2(b)では、L1はL2の2倍であり、Rg1はRg2の4倍である。またCg1はCg2の2倍である。従って、τ1はτ2に対して4×2=8倍になる。また、単位セル8をn本直列接続した場合、L1はL2に対してn倍となり、Rg1はRg2に対して2nであり、C1はC2に対してn倍であるので、τ1はτ2に対して2n2倍となる。
図3は、模式的なターンオフ時の電圧、電流波形図であり、同図(a)は第1セルで構成したMOSFETの波形図、同図(b)は第2セルで構成したMOSFETの波形図、同図(c)は第1セルおよび第2セルを組み合わせて構成したMOSFETの波形図である。
第1セル11の合計面積(または単位セル8の総数)と第2セル14の合計面積(または単位セル8の総数)の比が1:2である場合を示す(模式的に示した図1では単位セル8の本数比は4:5となる)。
図3(a)に示す第1セル11の電流波形では充放電時定数τ1が大きいので緩やかに立ち下がり、電圧は緩やかに立ち上がり、オーバーシュート部のdv/dtは小さくなるので電磁波ノイズは低減される。しかし、電流の立ち下がりと電圧の立ち上がりが共に緩やかなため、1パルス当たりのターンオフ損失は大きくなる。
一方、図3(b)で示す第2セル14の電流波形は充放電時定数τ2が小さいので電流は急峻に立ち下がり、電圧は急峻に立ち上がりオーバーシュートしてリンギングを起こす。そのため、オーバーシュート部でのdv/dtが急峻になるため電磁波ノイズが発生する。しかし、電流の立ち下がりと電圧の立ち上がりが共に急峻なため、1パルス当たりのターンオフ損失は小さくなる。
第1セル11と第2セル14が混在したチップ18では、電流波形は電流の大きな領域では立ち下がりが第2セル14の影響で急峻であり、電流が小さくなる領域では第1セル11の影響で立ち下がりが緩くなる。その結果、電圧波形は最初の立ち上がりは急峻になるが、到達電圧レベル付近から電圧波形は緩やかになり、オーバーシュート部でのdv/dtは緩やかになり、電磁波ノイズは低減される。
一方、前記したように、電流の大きな領域での電流の立ち下がりは急峻であり、到達電圧以下の低い領域での電圧の立ち上がりも急峻なため、ターンオフ損失は小さい。その結果、電磁波ノイズとターンオフ損失のトレードオフは従来品に比べて改善される。
つぎに、第2セル14をチップ18の両端部に配置した理由について説明する。チップ18の中央は端部に比べると放熱が効率的に行われないため、動作時には中央の温度が高くなる。そのため、温度の低いチップ18の端部にターンオフ動作の遅い第1セル11(遅延セル)を配置することで、第1セル11のターンオフ失敗を防止できて安定した動作を確保できる。尚、チップ18内の温度分布が均一な場合には、第1セル11の配置はチップ18内の任意の箇所で構わない。
なお、チップ18内で動作の遅いセルを有することとなるが、スイッチングのターンオン過程は、ゼロ電流から電流が流れるので、電流集中等の問題は生じない。また、従来品の場合、ターンオフ過程において電圧の跳ね上がりによりアバランシェ降伏動作した際の電流アンバランスが問題となるが、本発明では電流を遮断する終わりの部分でdi/dtが緩くなる訳であり、L・di/dtによる電圧の跳ね上がりそのものが抑制されるので、アバランシェ降伏そのものが発生しないので、前記の様な問題は生じない。
図4は、この発明のパワーMOSFETでのターンオフ時の電圧電流の実測波形図である。
実測に用いたパワーMOSFET100は4本の単位セル8を直列接続した第1セル11を、チップ18の両端部に各20本配置し合計で160本の単位セル8を配置した。、チップ10の中央には1本の単位セル8で構成された第2セル14を380本配置した。第2セル14のL2で生じるゲート抵抗Rg2を3kΩにし、第1セル11のL1で生じるゲート抵抗Rg1を48kΩとした。従って、40本の第1セル11を並列接続にしたときのゲート抵抗R1tは300Ωであり、380本の第2セル14を並列接続したときのゲート抵抗Rg2tは7.9Ωである。従って、チップとしての合成抵抗は1/(300Ω+7.9Ω)で7.7Ωである。
図5は、従来品と本発明品のdv/dtとターンオフ損失の関係を示す図である。図4の波形から本発明品において、1パルス当たりのターンオフ損失は79μJで、オーバーシュート部のdv/dtは0.89kV/μsである。
一方、従来品において、図14のターンオフ波形から、1パルス当たりのターンオフ損失は72μJで、オーバーシュート部のdv/dtは5.85kV/μsである。また、従来品のdv/dtとターンオフ損失のトレードオフを点線で示した。
図5に示すように、従来品に比べて本発明品は、ターンオフ損失は多少増加するが、dv/dtが大幅に減少しており、点線で示す従来品のdv/dtとターンオフ損失のトレードオフ線から低い方にズレており、dv/dtとターンオフ損失のトレードオフを改善することができる。また、従来品よりdv/dtが大幅に減少することで、電磁波ノイズを大幅に低減することができる。
また、本実施例ではゲート構造はプレーナ型を例として挙げたが、図15のようなトレンチ型でも同様の効果が得られる。トレンチ型の場合、トレンチ80の端部を湾曲させて隣のトレンチ80の端部へつなげる場合がある。そのような場合であっても、トレンチ80内のゲート電極75をストライプとし、接続配線10を各実施例のようにすればよい。
図6は、この発明の第2実施例の半導体装置の要部平面図である。この半導体装置はパワーMOSFET200であり、遅延セルである第3セル21と、図1と同じ通常セルである第2セル14で構成される。第3セル21は、1個の単位セル8と、この単位セル8の両端に接続する長いゲート引き出し配線22と、このゲート引き出し配線22とゲートランナー15を接続するコンタクト部13で構成される。
このパワーMOSFET200は、第3セル21のゲート引き出し配線22の長さを第2セル14のゲート引き出し配線9の長さに対して10%以上長くする。ゲート引き出し配線22が長い分、第2セル14のゲート電極5の長さに比べて第3セル21のゲート電極23の長さは短い。ゲート引き出し配線22の長さが長いために第3セル21のゲート抵抗Rgが大きくなり充放電時定数τが大きくなる。長いゲート引き出し配線22をチップ18の両端部に配置する。本実施例の場合も第1実施例と同様の効果が得られる。
尚、前記のゲート引き出し配線9の長さを10%以上長くするのは、これ以下では効果が殆ど表れないためである。
図7は、この発明の第3実施例の半導体装置の要部平面図である。この半導体装置はパワーMOSFET300であり、遅延セルである第4セル24と、図1と同じ通常セルである第2セル14で構成される。
このパワーMOSFET300は、第4セル24のゲート引き出し配線25の幅を第2セル14のゲート引き出し配線9の幅に対して10%以上狭くした場合である。ゲート引き出し配線25の幅が狭いということは第4セル24のゲート抵抗Rgが大きくなり充放電時定数τが大きくなる。狭いゲート引き出し配線25をチップ18の両端部に配置する。本実施例の場合も第1実施例と同様の効果が得られる。
尚、前記のゲート引き出し配線9の幅を10%以上狭くするのは、これ以下では効果が殆ど表れないためである。
図8は、この発明の第4実施例の半導体装置の要部平面図である。この半導体装置はパワーMOSFET400であり、遅延セルである第5セル27と、図1と同じ通常セルである第2セル14で構成される。
このパワーMOSFET400は、ゲート引き出し配線9のゲートランナー15とのコンタクト部26の面積をチップ18の両側でコンタクト部13の面積に対して10%以上縮小する。コンタクト部26の面積を小さくすることで、コンタクト部26の抵抗を大きくして、第5セル27のゲート抵抗Rgを大きくする。本実施例の場合も第1実施例と同様の効果が得られる。
尚、この場合は、従来品のコンタクト部13のマスクパターンを変更するだけで、本発明品を容易に製造できるので、極めて有効な方法である。
尚、コンタクト部26の面積を減少して第5セル27のゲート抵抗を48kΩにして、130本チップ18の両端部に配置し、ゲート抵抗が3kΩの第2セル14を380本チップの中央に配置することで、図4と同様の波形が得られた。
また、コンタクト部26の面積をコンタクト部13の面積に対して10%以上縮小するのは、これ以下では殆ど効果が表われないためである。
図9は、この発明の第5実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX1−X1線で切断した第6セル31の要部断面図,同図(c)は同図(a)のX2−X2線で切断した第2セル14の要部断面図である。この半導体装置はパワーMOSFET500であり、遅延セルである第6セル31と、図1と同じ通常セルである第2セル14で構成される。
このパワーMOSFET500は、チップ18の両端部に位置する遅延セルである第6セル31のゲート電極32とゲート引き出し配線33の厚さを、第2セル14のゲート電極5とゲート引き出し線9の厚さより10%以上薄くすることで、第6セル31のゲート抵抗Rgを大きくした場合である。本実施例の場合も第1実施例と同様の効果が得られる。
尚、ゲート電極32とゲート引き出し配線33の厚さを、第2セル14のゲート電極5とゲート引き出し線9の厚さより10%以上薄くするのは、これ以下では効果が殆ど表われないためである。
図10は、この発明の第6実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX1−X1線で切断した第7セル34の要部断面図,同図(c)は同図(a)のX2−X2線で切断した第2セル14の要部断面図である。
この半導体装置はパワーMOSFET600であり、遅延セルである第7セル34と、図1と同じ通常セルである第2セル14で構成される。
チップ18の両端部に位置する遅延セルである第7セル34のゲート酸化膜35の厚さを、第2セル14のゲート酸化膜4の厚さに対して10%以上薄くすることで、第7セル34のゲート容量Cgを大きくする。本実施例の場合も第1実施例と同様の効果が得られる。
前記のように、ゲート酸化膜35の厚さを、第2セル14のゲート酸化膜4の厚さに対して10%以上薄くするのは、これ以下では効果が殆ど表われないためである。
尚、前記の第2〜第6実施例においても、第1実施例で説明したように、一方のゲート引き出し配線9のみをゲートランナー15に接続することで、ゲート抵抗Rgを増大させることができる。
また、前記の第1〜第6実施例を組み合わせることで、さらに遅延セルのゲート抵抗Rgを大きくできてdv/dtとターンオフ損失のトレードオフ改善に効果を上げることができる。
また、ゲートの充放電時定数τを2種類にした場合について説明したがこれに限るものではない。さらに種類を増やし、τの長いセルからτの短いセルを順にチップの外側から中央に向って配置することで同様の効果を得ることができる。つまり、τを外周から中央に向って階段的に小さくなるようにセルを配置する。この場合は、ターンオフ時の電流の立ち下がりが滑らかになり、電磁波ノイズの発生を一層抑制することができる。
なお、
以上において、第1導電型をn型、第2導電型をp型で説明してきたが、第1導電型をp型、第2導電型をn型としてもよい。
1 ドリフト層
2 ウエル層
3 ソース層
4、35 ゲート酸化膜
5、23、32 ゲート電極
6 層間絶縁膜
7 ソース電極
8 単位セル
9、22、25、33 ゲート引き出し配線
10 接続配線
11、21、24、27、31、34 第1セル
12 半導体基板
13、26 コンタクト部
14 第2セル
15 ゲートランナー
16 ゲートパッド
18 チップ
40 ゲート引き出し部
100、200、300、400、500、600 パワーMOSFET

Claims (11)

  1. 第1導電型の半導体基板の第1主面に配置される第2導電型のウエル層と、該ウエル層の表面に配置される第1導電型のソース層と、該ソース層と前記半導体基板に挟まれた前記ウエル層上にゲート絶縁膜を介して配置されるストライプのゲート電極と、前記半導体基板の第2主面に配置される第1導電型のドレイン層と、該ドレイン層と電気的に接続するドレイン電極と、前記ソース層と電気的に接続し前記ゲート電極と絶縁して配置されるソース電極と、前記ゲート電極と接続するゲート引き出し配線と、該ゲート引き出し配線とゲートランナーを接続するコンタクト部とを備え、前記ゲート電極と前記ゲート引き出し配線と前記コンタクト部をセルとし、該セルを複数有する半導体装置において、前記セルは、該セルの抵抗分からなるゲート抵抗と前記ゲート電極のゲート容量との積で決定するゲートの充放電時定数が小さい通常セルと、該通常セルより前記ゲートの充放電時定数が大きい遅延セルとを有することを特徴とする半導体装置。
  2. 第1導電型の半導体基板の第1主面に配置される第2導電型のウエル層と、該ウエル層の表面に配置される第1導電型のソース層と、該ソース層と前記ウエル層を貫通するトレンチと、該トレンチの側壁に配置されるゲート絶縁膜と、該ゲート絶縁膜を介して前記トレンチに充填されるストライプのゲート電極と、前記半導体基板の第2主面に配置される第1導電型のドレイン層と、該ドレイン層と電気的に接続するドレイン電極と、前記ソース層と電気的に接続し前記ゲート電極と絶縁して配置されるソース電極と、前記ゲート電極と接続するゲート引き出し配線と、該ゲート引き出し配線とゲートランナーを接続するコンタクト部とを備え、前記ゲート電極と前記ゲート引き出し配線と前記コンタクト部をセルとし、該セルを複数有する半導体装置において、前記セルは、該セルの抵抗分からなるゲート抵抗と前記ゲート電極のゲート容量との積で決定するゲートの充放電時定数が小さい複数の通常セルと、該通常セルよりゲートの充放電時定数が大きい複数の遅延セルとを有することを特徴とする半導体装置。
  3. 前記遅延セルが複数の単位セルと、該単位セル同士を直列に接続する接続配線と、前記ゲート引き出し配線と、前記コンタクト部からなり、前記通常セルが1本の単位セルと、前記ゲート引き出し配線と、前記コンタクト部からなることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記遅延セルの前記ゲート引き出し配線の長さが、前記通常セルの前記ゲート引き出し配線の長さに比べ10%以上長いことを特徴とする請求項1または2に記載の半導体装置。
  5. 前記遅延セルの前記ゲート引き出し配線の幅が、前記通常セルの前記ゲート引き出し配線の幅に比べ90%以下であることを特徴とする請求項1または2に記載の半導体装置。
  6. 前記遅延セルの前記コンタクト部の面積が、前記通常セルの前記コンタクト部の面積に比べ90%以下であることを特徴とする請求項1または2に記載の半導体装置。
  7. 前記遅延セルの前記ゲート電極の厚さが、前記通常セルの前記ゲート電極の厚さに比90%以下であることを特徴とする請求項1または2に記載の半導体装置。
  8. 前記遅延セルの前記ゲート絶縁膜の厚さが、前記通常セルの前記ゲート絶縁膜の厚さに比べ90%以下であることを特徴とする請求項1または2に記載の半導体装置。
  9. 前記遅延セルの一方の前記ゲート引き出し配線が前記ゲートランナーに接続することを特徴とする請求項1または2に記載の半導体装置。
  10. 前記ゲート充放電時定数の異なる複数の遅延セルを有することを特徴とする請求項1または2に記載の半導体装置。
  11. 前記遅延セルが、前記単位セルが複数直列接続された構成であること、前記ゲート引き出し配線の長さが10%以上前記通常セルより長い構成、前記ゲート引き出し配線の幅が前記通常セルの90%以下の構成、前記コンタクト部の面積が前記通常セルの90%以下の構成、前記ゲート電極の厚さが前記通常セルの90%以下の構成および前記ゲート絶縁膜の厚さが前記通常セルの90%以下の構成のいずれか2つ以上を組み合わせることを特徴とする請求項1または2に記載の半導体装置。
JP2009295035A 2009-12-25 2009-12-25 半導体装置 Active JP5493840B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295035A JP5493840B2 (ja) 2009-12-25 2009-12-25 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295035A JP5493840B2 (ja) 2009-12-25 2009-12-25 半導体装置

Publications (2)

Publication Number Publication Date
JP2011134984A true JP2011134984A (ja) 2011-07-07
JP5493840B2 JP5493840B2 (ja) 2014-05-14

Family

ID=44347372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295035A Active JP5493840B2 (ja) 2009-12-25 2009-12-25 半導体装置

Country Status (1)

Country Link
JP (1) JP5493840B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093444A (ja) * 2011-10-26 2013-05-16 Rohm Co Ltd 高速スイッチング動作回路
JP2014216352A (ja) * 2013-04-22 2014-11-17 新電元工業株式会社 半導体装置及び半導体装置の製造方法
WO2016006376A1 (ja) * 2014-07-10 2016-01-14 富士電機株式会社 半導体装置
JP2016031964A (ja) * 2014-07-28 2016-03-07 ルネサスエレクトロニクス株式会社 半導体装置
WO2019054077A1 (ja) * 2017-09-15 2019-03-21 富士電機株式会社 パワーモジュール及び逆導通igbt
JP2019169597A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体装置
JP2020043241A (ja) * 2018-09-11 2020-03-19 富士電機株式会社 半導体装置
DE102019128072A1 (de) * 2019-10-17 2021-04-22 Infineon Technologies Ag Transistorbauelement mit einem variierenden flächenbezogenen spezifischen gaterunnerwiderstand
CN112825333A (zh) * 2019-11-21 2021-05-21 南通尚阳通集成电路有限公司 功率器件
JP2021166297A (ja) * 2020-07-13 2021-10-14 ローム株式会社 スイッチング素子
JP2022051466A (ja) * 2020-09-18 2022-03-31 株式会社東芝 半導体装置
WO2023228587A1 (ja) * 2022-05-23 2023-11-30 株式会社日立パワーデバイス 半導体装置および電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524396B (zh) 2017-09-20 2023-05-12 株式会社东芝 半导体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101076A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 絶縁ゲート型半導体素子とその駆動方法
JP3090132U (ja) * 2002-05-21 2002-11-29 船井電機株式会社 Mos型トランジスタおよびスイッチング電源
JP2004319624A (ja) * 2003-04-14 2004-11-11 Denso Corp 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101076A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 絶縁ゲート型半導体素子とその駆動方法
JP3090132U (ja) * 2002-05-21 2002-11-29 船井電機株式会社 Mos型トランジスタおよびスイッチング電源
JP2004319624A (ja) * 2003-04-14 2004-11-11 Denso Corp 半導体装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093444A (ja) * 2011-10-26 2013-05-16 Rohm Co Ltd 高速スイッチング動作回路
JP2014216352A (ja) * 2013-04-22 2014-11-17 新電元工業株式会社 半導体装置及び半導体装置の製造方法
US9196722B2 (en) 2013-04-22 2015-11-24 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10522668B2 (en) 2014-07-10 2019-12-31 Fuji Electric Co., Ltd. Semiconductor device with current/voltage vibration suppression at turning on and off
WO2016006376A1 (ja) * 2014-07-10 2016-01-14 富士電機株式会社 半導体装置
JP2016031964A (ja) * 2014-07-28 2016-03-07 ルネサスエレクトロニクス株式会社 半導体装置
US9806162B2 (en) 2014-07-28 2017-10-31 Renesas Electronics Corporation Semiconductor device having a plurality of transistors connected in parallel
WO2019054077A1 (ja) * 2017-09-15 2019-03-21 富士電機株式会社 パワーモジュール及び逆導通igbt
CN110352475A (zh) * 2017-09-15 2019-10-18 富士电机株式会社 功率模块和反向导通igbt
CN110352475B (zh) * 2017-09-15 2021-12-03 富士电机株式会社 功率模块和反向导通igbt
JPWO2019054077A1 (ja) * 2017-09-15 2020-01-16 富士電機株式会社 パワーモジュール及び逆導通igbt
US11094809B2 (en) 2017-09-15 2021-08-17 Fuji Electric Co., Ltd. Power module and reverse-conducting IGBT
JP2019169597A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体装置
JP2020043241A (ja) * 2018-09-11 2020-03-19 富士電機株式会社 半導体装置
JP7172317B2 (ja) 2018-09-11 2022-11-16 富士電機株式会社 半導体装置
DE102019128072A1 (de) * 2019-10-17 2021-04-22 Infineon Technologies Ag Transistorbauelement mit einem variierenden flächenbezogenen spezifischen gaterunnerwiderstand
US11417747B2 (en) 2019-10-17 2022-08-16 Infineon Technologies Ag Transistor device with a varying gate runner resistivity per area
CN112825333A (zh) * 2019-11-21 2021-05-21 南通尚阳通集成电路有限公司 功率器件
CN112825333B (zh) * 2019-11-21 2024-04-05 南通尚阳通集成电路有限公司 功率器件
JP2021166297A (ja) * 2020-07-13 2021-10-14 ローム株式会社 スイッチング素子
JP7161582B2 (ja) 2020-07-13 2022-10-26 ローム株式会社 スイッチング素子
JP2022051466A (ja) * 2020-09-18 2022-03-31 株式会社東芝 半導体装置
JP7471974B2 (ja) 2020-09-18 2024-04-22 株式会社東芝 半導体装置
WO2023228587A1 (ja) * 2022-05-23 2023-11-30 株式会社日立パワーデバイス 半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP5493840B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5493840B2 (ja) 半導体装置
CN103051312B (zh) 低阻抗栅极控制方法和设备
CN108463888B (zh) 半导体装置
JP4167294B2 (ja) 半導体素子及び電気機器
US8193570B2 (en) Synchronous buck converter using shielded gate field effect transistors
JP4602465B2 (ja) 半導体装置
JP5806535B2 (ja) 半導体装置及びそれを用いた電力変換装置
JP5659514B2 (ja) 半導体装置
EP1909325A1 (en) Semiconductor element and electric device
JP2010171385A (ja) 半導体装置
JP2009206479A (ja) トレンチゲート型絶縁ゲートバイポーラトランジスタ
JP2015179705A (ja) トレンチmos型半導体装置
CN111801795A (zh) 半导体装置
JP6864713B2 (ja) パワーモジュール構造
JP2005175425A (ja) 絶縁ゲート型半導体装置
JP2007324539A (ja) トレンチ型絶縁ゲート半導体装置
JP7040423B2 (ja) 半導体装置
JP2009021395A (ja) 半導体装置
JP4601874B2 (ja) 半導体装置
JP6033054B2 (ja) 半導体装置
US6403988B2 (en) Semiconductor device with reverse conducting faculty
JP4007242B2 (ja) 半導体装置
JP6806213B2 (ja) 半導体素子
US6576936B1 (en) Bipolar transistor with an insulated gate electrode
WO2011074124A1 (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250