CN110290812A - 用于肌肉萎缩症的外显子跳跃寡聚体缀合物 - Google Patents

用于肌肉萎缩症的外显子跳跃寡聚体缀合物 Download PDF

Info

Publication number
CN110290812A
CN110290812A CN201780086301.2A CN201780086301A CN110290812A CN 110290812 A CN110290812 A CN 110290812A CN 201780086301 A CN201780086301 A CN 201780086301A CN 110290812 A CN110290812 A CN 110290812A
Authority
CN
China
Prior art keywords
conjugate
antisense oligomers
exon
muscular atrophy
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780086301.2A
Other languages
English (en)
Other versions
CN110290812B (zh
Inventor
M.A.帕西尼
G.J.汉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SA Leputa Medical Co
Original Assignee
SA Leputa Medical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SA Leputa Medical Co filed Critical SA Leputa Medical Co
Publication of CN110290812A publication Critical patent/CN110290812A/zh
Application granted granted Critical
Publication of CN110290812B publication Critical patent/CN110290812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

描述了与人抗肌肉萎缩蛋白基因中选定的靶位点互补以诱导外显子51跳跃的反义寡聚体缀合物。

Description

用于肌肉萎缩症的外显子跳跃寡聚体缀合物
相关信息
本专利申请要求于2016年12月19日提交的美国临时专利申请序列号62/436182、2017年1月6日提交的美国临时专利申请序列号62/443476、2017年3月30日提交的美国临时专利申请序列号62/479173和2017年9月22日提交的美国临时专利申请序列号62/562080的权益。上述临时专利申请的全部内容通过引用并入本文。
技术领域
本公开涉及适用于人抗肌萎缩蛋白基因的外显子51跳跃的新型反义寡聚体缀合物及其药物组合物。本公开还提供了使用该新型反义寡聚体缀合物诱导外显子51跳跃的方法,在具有适合于外显子51跳跃的抗肌萎缩蛋白基因突变的受试者中产生抗肌萎缩蛋白的方法,以及治疗具有适合外显子51跳跃的抗肌萎缩蛋白基因突变的受试者的方法。
背景技术
正在开发反义技术,使用一系列化学物质来影响各种不同水平的基因表达(转录,剪接,稳定性,翻译)。大部分研究都集中在使用反义化合物来纠正或补偿各种适应症中的异常或疾病相关基因。反义分子能够以特异性抑制基因表达,因此,许多关于寡聚体作为基因表达调节剂的研究工作集中于抑制靶基因的表达或顺式作用元件的功能。反义寡聚体通常针对RNA,或有义链(例如mRNA),或在一些病毒RNA靶标的情况下为负链。为了实现特定基因下调的期望效果,寡聚体通常促进靶mRNA的衰变,阻断mRNA的翻译或阻断顺式作用RNA元件的功能,从而有效地防止靶蛋白的从头合成或病毒RNA的复制。
然而,当目的是上调天然蛋白质的产生或补偿诱导翻译过早终止的突变(例如无义或移码突变)时,这些技术是无用的。在这些情况下,缺陷基因转录物不应进行靶向降解或空间抑制,因此反义寡聚体化学不应促进靶mRNA衰变或阻断翻译。
在各种遗传疾病中,突变对基因最终表达的影响可以通过在剪接过程中靶向外显子跳跃的过程来调节。剪接过程由复杂的多组分机制引导,其使前mRNA中的相邻外显子-内含子连接点紧密接近,并在内含子的末端进行磷酸二酯键的切割,随后在待拼接在一起的外显子之间进行重组。这种复杂且高度精确的过程由前mRNA中的序列基序介导,所述序列基序是相对较短的半保守RNA区段,其随后参与剪接反应的各种核剪接因子结合。通过改变剪接机器读取或识别前mRNA加工中涉及的基序的方式,可以产生差异剪接的mRNA分子。现在已经认识到,在正常基因表达期间,大多数人类基因是可变剪接的,尽管尚未鉴定出所涉及的机制。Bennett等人(美国专利号6,210,892)描述了使用不诱导RNA酶H介导的靶RNA切割的反义寡聚体类似物对野生型细胞mRNA加工的反义调节。这可用于产生缺少特异性外显子的可变剪接mRNA(参见例如,如Sazani,Kole等人,2007所述,用于产生缺乏编码跨膜结构域的外显子的可溶性TNF超家族受体)。
如果正常功能蛋白由于其中的突变而过早终止,通过反义技术恢复某些功能性蛋白质生产的方法已被证明可以通过在剪接过程中进行干预,并且如果与引起疾病的突变有关的外显子可以从某些基因中特异性地删除,有时可以产生缩短的蛋白质产物,其具有与天然蛋白质相似的生物学特性或具有足够的生物活性以改善由与外显子相关的突变引起的疾病(参见例如Sierakowska,Sambade等人1996;Wilton,Lloyd等人,1999;vanDeutekom,Bremmer-Bout等人,2001;Lu,Mann等人,2003;Aartsma-Rus,Janson等人,2004)。Kole等人(美国专利号5,627,274;5,916,808;5,976,879和5,665,593)公开了使用不促进靶向前mRNA的衰变的修饰的反义寡聚体类似物来对抗异常剪接的方法。Bennett等人(美国专利号6,210,892)描述了野生型细胞mRNA加工的反义调节,其也使用不诱导RNA酶H介导的靶RNA切割的反义寡聚体类似物。
靶向外显子跳跃的过程可能在其中存在许多外显子和内含子、其中外显子的遗传构成存在冗余或者其中蛋白质能够在没有一个或多个特定外显子的情况下起作用的长基因中特别有用。为了治疗与各种基因突变引起的截短相关的遗传疾病,重新定向基因加工的努力集中在使用反义寡聚体,其中:(1)与剪接过程中涉及的元件完全或部分重叠;或者(2)在足够接近该元件的位置与前mRNA结合,以破坏通常介导在该元件处发生的特定剪接反应的剪接因子的结合和功能。
Duchenne肌肉萎缩症(DMD)由蛋白质抗肌萎缩蛋白的表达缺陷引起。编码该蛋白质的基因含有79个外显子,分布在超过200万个DNA核苷酸上。改变外显子的阅读框架、或引入终止密码子、或特征在于删除整个框外外显子或外显子或者重复一个或多个外显子的任何外显子突变有可能破坏功能性抗肌萎缩蛋白的产生,导致DMD。
Becker肌肉萎缩症(BMD)是一种不太严重的肌肉萎缩症,它已被发现其中突变通常是一个或多个外显子的缺失,导致沿整个抗肌肉萎缩蛋白转录的正确阅读框架,从而将mRNA翻译为蛋白质不会过早终止。如果在突变的抗肌肉萎缩蛋白前mRNA的加工中上游和下游外显子的连接保持基因的正确阅读框架,则结果是编码具有短内部缺失的蛋白质的mRNA,其保留一些活性,导致Becker表型。
多年来,已知不改变抗肌肉萎缩蛋白的阅读框架的一个或多个外显子的缺失将产生BMD表型,而引起移码的外显子缺失将产生DMD(Monaco,Bertelson等,1988)。通常,抗肌肉萎缩蛋白突变包括点突变和外显子缺失,其改变阅读框架并因此中断正确的蛋白质翻译导致DMD。还应注意,一些BMD和DMD患者具有覆盖多个外显子的外显子缺失。
已经在体外和体内报道了用反义寡核糖核苷酸调节突变型抗肌肉萎缩蛋白前mRNA剪接(参见例如Matsuo,Masumura等人1991;Takeshima,Nishio等人1995;Pramono,Takeshima等人1996;Dunckley,Eperon等人1997;Dunckley,Manoharan等人1998;Wilton,Lloyd等人1999;Mann,Honeyman等人2002;Errington,Mann等人2003)。
反义寡聚体已被专门设计用于靶向前mRNA的特定区域,通常是外显子,以诱导DMD基因突变的跳跃,从而框内恢复这些框外突变,从而使内部缩短但功能性的抗肌肉萎缩蛋白产生。已知这种反义寡聚体靶向完全在外显子(所谓的外显子内部序列)内或在剪接供体或剪接受体连接处,其从外显子穿过进入内含子的一部分。
这种用于DMD的反义寡聚体的发现和开发已成为先前研究的领域。这些发展包括以下那些:(1)西澳大利亚大学和Sarepta Therapeutics(本申请的受让人):WO 2006/000057;WO 2010/048586;WO 2011/057350;WO 2014/100714;WO 2014/153240;WO 2014/153220;(2)Academisch Ziekenhuis Leiden/Prosensa Technologies(现为BioMarinPharmaceutical):WO 02/24906;WO 2004/083432;WO 2004/083446;WO 2006/112705;WO2007/133105;WO 2009/139630;WO 2009/054725;WO 2010/050801;WO 2010/050802;WO2010/123369;WO 2013/112053;WO 2014/007620;(3)Carolinas Medical Center:WO2012/109296;(4)Royal Holloway:要求美国序列号61/096,073和61/164,978的权益并包括其的专利和申请;例如US 8,084,601和US 2017-0204413(4)JCR Pharmaceuticals和Matsuo:US 6,653,466;要求JP 2000-125448的权益并包括其的专利和申请,例如US 6,653,467;要求JP 2000-256547的权益并包括其的专利和申请,例如US 6,727,355;WO2004/048570;(5)Nippon Shinyaku:WO2012/029986;WO2013/100190;WO 2015/137409;WO2015/194520;(6)伯尔尼大学/皮埃尔和玛丽居里大学//University of laRecherche Scientifique/Synthena AG:WO 2010/115993;WO 2013/053928。
Eteplirsen是一种磷酰二胺吗啉代寡聚体(PMO),设计用于在DMD患者中跳过人抗肌肉萎缩蛋白基因的外显子51,所述DMD患者易于外显子51跳跃以恢复阅读框架并产生功能性较短形式的抗肌肉萎缩蛋白。美国食品和药物管理局(FDA)于2016年批准Exondys 51TM(eteplirsen)用于治疗Duchenne型肌营养不良症(DMD)患者,这些患者的DMD基因已确诊为外显子51突变。
与用于DMD的细胞穿透肽缀合的反义寡聚体的发现和开发也是一个研究领域(参见PCT公开号WO2010/048586;Wu,B.等人,The American Journal of Pathology,Vol.181(2):392-400,2012;Wu,R.等人,Nucleic Acids Research,Vol.35(15):5182-5191,2007;Mulders,S.等人,19th International Congress of the World Muscle Society,PosterPresentation Berlin,2014年10月;Bestas,B.等人,The Journal of ClinicalInvestigation,doi:10.1172/JCI76175,2014;Jearawiriyapaisarn,N.等人,MolecularTherapy,Vol.16(9):1624-1629,2008;Jearawiriyapaisarn,N.等人,CardiovascularResearch,Vol.85:444-453,2010;Moulton,H.M.等人,Biochemical SocietyTransactions,Vol.35(4):826-828,2007;Yin,H.等人,Molecular Therapy,Vol.19(7):1295-1303,2011;Abes,R.等人,J.Pept.Sci.,Vol.14:455-460,2008;Lebleu,B.等人,Advanced Drug Delivery Reviews,Vol.60:517-529,2008;McClorey,G.等人,Gene Therapy,Vol.13:1373-1381,2006;Alter,J.等人,Nature Medicine,Vol.12(2):175-177,2006;和Youngblood,D.等人,American Chemical Society,Bioconjugate Chem.,2007,18(1),pp 50-60)。
细胞穿透肽(CPP),例如富含精氨酸的肽转运部分,可有效增强例如与CPP缀合的反义寡聚体渗透到细胞中。
尽管有这些努力,仍然需要改进靶向外显子51的反义寡聚体和相应的药物组合物,其可能用于产生抗肌肉萎缩蛋白和治疗DMD的治疗方法。
发明内容
本文提供的反义寡聚体缀合物包括与CPP缀合的反义寡聚体部分。在一个方面,本公开提供了反义寡聚体缀合物,其包含:
长度为30个亚基的反义寡聚体,其能够结合选定的靶标以诱导人抗肌肉萎缩蛋白基因中的外显子跳跃,其中反义寡聚体包含与抗肌肉萎缩蛋白前mRNA的外显子51靶区域互补的碱基序列,所述靶区域被指定为退火位点;和
通过接头部分与反义寡聚体缀合的细胞穿透肽(CPP)。
在一些实施方式中,退火位点是H51A(+66+95)。
在一些实施方式中,反义寡聚体的碱基与吗啉代环结构连接,其中吗啉代环结构通过含磷的亚基间键连接而将一个环结构的吗啉代氮连接到相邻环结构的5'环外碳上。在某些实施方式中,细胞穿透肽是六个精氨酸单元(“R6”),并且接头部分是甘氨酸。在一些实施方式中,反义寡聚体包含命名为SEQ ID NO:1的碱基序列。
在各个方面,本公开提供了可以根据式(I)的反义寡聚体缀合物:
或其药学上可接受的盐,其中:
每个Nu是核碱基,它们一起形成靶向序列;并且
T是选自以下的部分:
R1是C1-C6烷基;
其中靶向序列与抗肌肉萎缩蛋白前mRNA中的外显子51退火位点互补,所述退火位点被指定为H51A(+66+95)。
另一方面,本公开提供了式(IV)的反义寡聚体缀合物:
或其药学上可接受的盐。
另一方面,本公开提供了式(IVA)的反义寡聚体缀合物:
另一方面,本公开提供了药物组合物,其包括本公开的反义寡聚体缀合物和药学上可接受的载体。在一些实施方式中,药学上可接受的载体是包含磷酸盐缓冲液的盐溶液。
另一方面,本公开提供了治疗有需要的受试者的杜氏肌营养不良症(DMD)的方法,其中受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,该方法包括向受试者施用本公开的反义寡聚体缀合物。本公开还涉及本公开的反义寡聚体缀合物在制备用于治疗有需要的受试者中的杜氏肌营养不良症(DMD)的药物中的用途,其中所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变。
另一方面,本公开提供了恢复mRNA阅读框以在具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变的受试者中诱导抗肌肉萎缩蛋白产生的方法,该方法包括向受试者施用本公开的反义寡聚体缀合物。另一方面,本公开提供了在具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变的受试者的mRNA加工期间从抗肌肉萎缩蛋白前mRNA排除外显子51的方法,该方法包括向受试者施用本公开的反义寡聚体缀合物。另一方面,本公开提供了在具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变的受试者中结合抗肌肉萎缩蛋白前mRNA的外显子51的方法,该方法包括向受试者施用本公开的反义寡聚体缀合物。
另一方面,本公开提供了本文公开的反义寡聚体缀合物,其用于治疗。在某些实施方式中,本公开提供了本公开的反义寡聚体缀合物,其用于治疗杜氏肌营养不良症。在某些实施方式中,本公开提供了本公开的反义寡聚体缀合物,其用于制备用于治疗的药物。在某些实施方式中,本公开提供了本公开的反义寡聚体缀合物,其用于制备用于治疗杜氏肌营养不良症的药物。
另一方面,本公开还提供了用于治疗有此需要的受试者的杜氏肌营养不良症(DMD)的试剂盒,其中所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,所述试剂盒包含包装在合适容器中的本公开的至少一种反义寡聚体缀合物,以及其使用说明书。
当结合附图阅读本公开的以下详细描述时,将更全面地理解这些和其它目的和特征。
附图说明
图1描绘了正常抗肌肉萎缩蛋白前mRNA和成熟mRNA的一部分。
图2描绘了异常抗肌肉萎缩蛋白前mRNA(DMD的实例)和所得的非功能不稳定的抗肌肉萎缩蛋白的一部分。
图3描绘了eteplirsen,其设计用于跳过外显子51,恢复前mRNA的“框内”阅读以产生内部缺失的抗肌肉萎缩蛋白。
图4提供了通过RT-PCR测量的在处理后96小时,PMO#1和PPMO#1在不同浓度下在分化的人肌细胞中跳过外显子51的百分比的条形图。
图5A-5D提供了蛋白质印迹分析的代表性图像,其测量用PMO(PMO4225)或PPMO(PPMO4225)处理不同时间点[7天(5A),30天(5B),60天(5C)和90天(5D)]的mdx小鼠股四头肌中的抗肌肉萎缩蛋白。
图6A提供了线图,其描绘了通过蛋白质印迹分析测定的注射后90天内mdx小鼠股四头肌中PMO(PMO4225)或PPMO(PPMO4225)诱导的野生型抗肌肉萎缩蛋白的百分比。
图6B提供了线图,其描绘了通过RT-PCR测定的注射后90天内mdx小鼠股四头肌中PMO(PMO4225)或PPMO(PPMO4225)诱导的外显子23跳跃的百分比。
图7A-7D提供了蛋白质印迹分析的代表性图像,其测量用PMO(PMO4225)或PPMO(PPMO4225)处理不同时间点[7天(7A),30天(7B),60天(7C)和90天(7D)]的mdx小鼠膈肌中的抗肌肉萎缩蛋白。
图8A提供了线图,其描绘了通过蛋白质印迹分析测定的注射后90天内mdx小鼠膈膜中PMO(PMO4225)或PPMO(PPMO4225)诱导的野生型抗肌肉萎缩蛋白的百分比。
图8B提供了线图,其描绘了通过RT-PCR测定的注射后90天内mdx小鼠膈膜中PMO(PMO4225)或PPMO(PPMO4225)诱导的外显子23跳跃的百分比。
图9A-9D提供了蛋白质印迹分析的代表性图像,其测量用PMO(PMO4225)或PPMO(PPMO4225)处理的不同时间点[7天(9A),30天(9B),60天(9C)和90天(9D)]的mdx小鼠心脏中的抗肌肉萎缩蛋白。
图10A提供了线图,其描绘了通过蛋白质印迹分析测定的注射后90天内由PMO(PMO4225)或PPMO(PPMO4225)在mdx小鼠心脏中诱导的野生型抗肌肉萎缩蛋白的百分比。
图10B提供了线图,其描绘了通过RT-PCR测定的注射后90天内mdx小鼠心脏中PMO(PMO4225)或PPMO(PPMO4225)诱导的外显子23跳跃的百分比。
图11提供了免疫组织化学分析,其显示了由PMO(PMO4225)或PPMO(PPMO4225)诱导的mdx小鼠左股四头肌中的抗肌肉萎缩蛋白。
图12提供了线图,其显示了在不同剂量下每周用PMO#1或PPMO#1处理四周的非人灵长类动物中外显子51的百分比。通过RT-PCR测定,从膈肌(左)和股四头肌(右)的肌肉样品测量外显子51跳跃的百分比。
图13提供了线图,其显示了在不同剂量下每周用PMO#1或PPMO#1处理四周的非人灵长类动物中外显子51的百分比。通过RT-PCR测定,从心脏(左)和十二指肠(右)的肌肉样品测量外显子51跳跃的百分比。
图14提供了线图,其显示了在不同剂量下每周用PMO#1或PPMO#1处理四周的非人灵长类动物中外显子51的百分比。通过RT-PCR测定,从二头肌(左)和三角肌(右)的肌肉样品测量外显子51跳跃的百分比。
图15提供了线图,其显示在不同剂量下每周用PMO#1或PPMO#1处理四周的非人灵长类动物中外显子51的百分比。通过RT-PCR测定,从食道(左)和主动脉(右)的肌肉样品测量外显子51跳跃的百分比。
图16A-B提供了蛋白质印迹分析的代表性图像,其测量用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)处理的mdx小鼠心脏中的抗肌肉萎缩蛋白。
图17提供了条形图,其描绘了用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)在mdx小鼠心脏中诱导的野生型抗肌肉萎缩蛋白的百分比,如通过蛋白质印迹分析在注射后30天测定的。
图18A-B提供了蛋白质印迹分析的代表性图像,其测量用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)处理的mdx小鼠膈肌中的抗肌肉萎缩蛋白。
图19提供了条形图,其描绘了用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)在mdx小鼠膈肌中诱导的野生型抗肌肉萎缩蛋白的百分比,如通过蛋白质印迹分析在注射后30天测定的。
图20A-B提供了蛋白质印迹分析的代表性图像,其测量用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)处理的mdx小鼠股四头肌中的抗肌肉萎缩蛋白。
图21提供了条形图,其描绘了用不同剂量:40mg/kg,80mg/kg和120mg/kg的PMO(PMO4225)或PPMO(PPMO4225)在mdx小鼠股四头肌中诱导的野生型抗肌肉萎缩蛋白的百分比,如通过蛋白质印迹分析在注射后30天测定的。
图22提供了条形图,其显示了在注射后30和60天用单一40mg/kg剂量的PPMO#1处理的非人灵长类动物中外显子51跳跃的百分比。通过RT-PCR测定,从股四头肌,隔膜,心脏和胃肠道的肌肉样品测量外显子51跳跃的百分比。
图23提供了PMO合成方法B执行的缀合循环。
图24提供了免疫组织化学分析,其显示了与mdx小鼠和野生型小鼠中的盐水相比,PPMO(PPMO4225)诱导的mdx小鼠膈肌和心脏中的抗肌肉萎缩蛋白和层粘连蛋白。
图25提供了通过RT-PCR测量的在处理后96小时,PMO#1和PPMO#1在不同浓度下在健康人成肌细胞中跳过外显子51的百分比的条形图。误差条代表平均值±SD。
图26提供了通过RT-PCR测量的在处理后96小时,PMO#1和PPMO#1在不同浓度下在健康人肌管中跳过外显子51的百分比的条形图。误差条代表平均值±SD。
具体实施方式
本公开的实施方式一般涉及改进的反义寡聚体缀合物及其使用方法,其特别设计用于诱导人抗肌肉萎缩基因中的外显子跳跃。抗肌肉萎缩蛋白在肌肉功能中起重要作用,并且各种肌肉相关疾病的特征在于该基因的突变形式。因此,在某些实施方式中,本文所述的改进的反义寡聚体缀合物以人抗肌肉萎缩蛋白基因的突变形式诱导外显子跳跃,例如在杜氏肌肉萎缩症(DMD)和贝克型肌肉萎缩症(BMD)中发现的突变的抗肌肉萎缩蛋白基因。
由于突变引起的异常mRNA剪接事件,这些突变的人抗肌肉萎缩蛋白基因表达缺陷型抗肌肉萎缩蛋白或者根本不表达可测量的抗肌肉萎缩蛋白,这种情况导致各种形式的肌肉萎缩症。为了弥补这种情况,本公开的反义寡聚体缀合物与突变的人抗肌肉萎缩蛋白基因的预处理mRNA的选定区域杂交,诱导外显子跳跃和差异剪接,否则异常剪接的抗肌肉萎缩蛋白mRNA,从而允许肌细胞产生编码功能性抗肌肉萎缩蛋白的mRNA转录物。在某些实施方式中,所得的抗肌肉萎缩蛋白不一定是抗肌肉萎缩蛋白的“野生型”形式,而是抗肌肉萎缩蛋白的截短但功能性或半功能性形式。
通过增加肌肉细胞中功能性抗肌肉萎缩蛋白的水平,这些和相关的实施方式可用于预防和治疗肌肉萎缩症,尤其是以肌肉萎缩症例如DMD和BMD存在的那些形式,其特征在于由于mRNA的剪接异常使缺陷型抗肌肉萎缩蛋白表达。本文所述的特定反义寡聚体缀合物进一步提供了比使用中的其它寡聚体更好的抗肌肉萎缩蛋白-外显子特异性靶向,从而提供了优于治疗相关形式的肌肉萎缩的替代方法的显著和实用的优点。
因此,本公开提供了反义寡聚体缀合物,其包含:
长度为30个亚基的反义寡聚体,其能够结合选定的靶标以诱导人抗肌肉萎缩蛋白基因中的外显子跳跃,其中反义寡聚体包含与抗肌肉萎缩蛋白前mRNA的外显子51靶区域互补的碱基序列,所述靶区域被指定为退火位点;和
通过接头部分与反义寡聚体缀合的细胞穿透肽(CPP)。
在一些实施方式中,退火位点是H51A(+66+95)。
在一些实施方式中,反义寡聚体的碱基与吗啉代环结构连接,其中吗啉代环结构通过含磷的亚基间键连接而将一个环结构的吗啉代氮连接到相邻环结构的5'环外碳上。在某些实施方式中,细胞穿透肽是“R6”,并且接头部分是甘氨酸。在一些实施方式中,反义寡聚体包含命名为SEQ ID NO:1的碱基序列,其中每个胸腺嘧啶碱基(T)任选地是尿嘧啶碱基(U)。
除非另外定义,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解的相同含义。尽管与本文描述的那些类似或等同的任何方法和材料可用于本公开的实践或测试,但描述了优选的方法和材料。出于本公开的目的,以下术语定义如下。
I.定义
“约”是指数量,水平,数值,数字,频率,百分比,尺寸,大小,量,重量或长度变化多达参考数量,水平,数值,数字,频率,百分比,尺寸,大小,量,重量或长度的30,25,20,15,10,9,8,7,6,5,4,3,2或1%。
除非另有说明,本文所用的术语“烷基”是指饱和的直链或支链烃。在某些实施方式中,烷基是伯、仲或叔烃。在某些实施方式中,烷基包括1-10个碳原子,即C1-C10烷基。在某些实施方式中,烷基包括1-6个碳原子,即C1-C6烷基。在某些实施方式中,烷基选自甲基,CF3,CCl3,CFCl2,CF2Cl,乙基,CH2CF3,CF2CF3,丙基,异丙基,丁基,异丁基,仲丁基,叔丁基,戊基,异戊基,新戊基,己基,异己基,3-甲基戊基,2,2-二甲基丁基和2,3-二甲基丁基。该术语包括取代和未取代的烷基两者,包括卤代烷基。在某些实施方式中,烷基是氟化烷基。烷基可被取代的部分的非限制性实例选自卤素(氟,氯,溴或碘),羟基,氨基,烷基氨基,芳基氨基,烷氧基,芳氧基,硝基,氰基,磺酸,硫酸盐,膦酸,磷酸盐或膦酸盐,如本领域技术人员已知的,其未受保护或在必要时受保护,例如Greene等人,Protective Groups in OrganicSynthesis,John Wiley和Sons,第二版,1991,在此引入作为参考。
如本文所用,关于受试者或患者的“适于外显子51跳跃”旨在包括在抗肌肉萎缩蛋白基因中具有一个或多个突变的受试者和患者,其中没有跳过抗肌肉萎缩蛋白前mRNA的外显子51,导致阅读框架是框外的,从而破坏前mRNA的翻译,导致受试者或患者不能产生功能性或半功能性抗肌肉萎缩蛋白。适合外显子51跳跃的抗肌肉萎缩蛋白基因突变的实例包括例如外显子45-50、47-50、48-50、49-50、50、52和52-63(莱顿Duchenne肌营养不良症突变数据库,莱顿大学医学中心,荷兰)。确定患者是否具有适于外显子跳跃的抗肌肉萎缩蛋白基因突变完全在本领域技术人员的范围内(参见例如Aartsma-Rus等人(2009)Hum Mutat.30:293-299;Gurvich等人,Hum Mutat.2009;30(4)633-640;和Fletcher等人(2010)MolecularTherapy 18(6)1218-1223.)。
如本文所用的术语“寡聚体”是指通过亚基间连接来连接的亚基序列。在某些情况下,术语“寡聚体”用于指“反义寡聚体”。对于“反义寡聚体”,每个亚基由以下组成:(i)核糖或其衍生物;和(ii)与其结合的核碱基,使得碱基配对部分的顺序通过Watson-Crick碱基配对形成与核酸(通常为RNA)中的靶序列互补的碱基序列,以形成核酸:靶序列内的寡聚体异源双链体,条件是亚基、亚基间连接或两者不是天然存在的。在某些实施方式中,反义寡聚体是PMO。在其它实施方式中,反义寡聚体是2'-O-甲基硫代磷酸酯。在其它实施方式中,本公开的反义寡聚体是肽核酸(PNA),锁核酸(LNA)或桥接核酸(BNA),例如2'-O,4'-C-乙烯桥接核酸(ENA)。本文描述了另外的示例性实施方式。
术语“互补”和“互补性”是指两个或更多个寡聚体(即各自包含核碱基序列),它们通过Watson-Crick碱基配对规则彼此相关。例如,核碱基序列“T-G-A(5'→3')”与核碱基序列“A-C-T(3'→5')”互补。互补性可以是“部分的”,其中根据碱基配对规则,给定核碱基序列的少于所有核碱基与另核碱基序列匹配。例如,在一些实施方式中,给定核碱基序列和其它核碱基序列之间的互补性可为约70%,约75%,约80%,约85%,约90%或约95%。或者,给定的核碱基序列和其它核碱基序列之间可能存在“完全”或“完美”(100%)互补性以继续该实例。核碱基序列之间的互补程度对序列之间杂交的效率和强度具有显著影响。
术语“有效量”和“治疗有效量”在本文中可互换使用,并且是指作为单剂量或作为一系列剂量的一部分施用于哺乳动物受试者的治疗化合物(例如反义寡聚体)的量,这对于产生所需的治疗效果是有效的。对于反义寡聚体,通常通过抑制所选靶序列的翻译或天然剪接加工,或产生临床上有意义量的抗肌肉萎缩蛋白(统计显著性)来实现这种效果。
在一些实施方式中,有效量是至少10mg/kg,或至少20mg/kg的包含反义寡聚体的组合物以在一段时间内治疗受试者。在一些实施方式中,有效量是至少20mg/kg的包含反义寡聚体的组合物,以将受试者中抗肌肉萎缩蛋白阳性纤维的数量增加至正常的至少20%。在某些实施方式中,有效量是10mg/kg,或至少20mg/kg包含反义寡聚体的组合物,以稳定、维持或改善患者相对于健康同伴的20%缺少的步行距离,例如6MWT。在各种实施方式中,有效量为至少10mg/kg至约30mg/kg,至少20mg/kg至约30mg/kg,约25mg/kg至约30mg/kg,或约30mg/kg至约50mg/kg。在一些实施方式中,有效量为约10mg/kg,约20mg/kg,约30mg/kg或约50mg/kg。另一方面,有效量为至少约10mg/kg,约20mg/kg,约25mg/kg,约30mg/kg,或约30mg/kg至约50mg/kg,持续至少24周,至少36周,或至少48周,从而将受试者中抗肌肉萎缩蛋白阳性纤维的数量增加至正常的至少20%,约30%,约40%,约50%,约60%,约70%,约80%,约90%,约95%,并稳定或改善患者相对于健康同伴的20%缺少的步行距离(例如6MWT)。在一些实施方式中,治疗将患者的抗肌肉萎缩蛋白阳性纤维的数量增加至正常的20-60%或30-50%。
“增强”或“增强了”、“增加”或“增加了”或“刺激”或“刺激了”通常是指一种或多种反义寡聚体缀合物或药物组合物与由无反义寡聚体缀合物或对照化合物引起的反应相比,产生或引起细胞或受试者中更大生理反应的能力(即下游效应)。更好的生理反应可以包括抗肌肉萎缩蛋白的功能形式的表达增加,或肌肉组织中抗肌肉萎缩蛋白相关的生物活性增加,以及从本领域的理解和本文的描述中显而易见的其它反应。还可以测量增加的肌肉功能,包括增加或改善肌肉功能约1%,2%,3%,4%,5%,6%,7%,8%,9%,10%,11%,12%,13%,14%,15%,16%,17%,18%,19%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%或100%。还可以测量表达功能性抗肌肉萎缩蛋白的肌纤维的百分比,包括增加的抗肌肉萎缩蛋白表达在肌纤维的约1%,2%,%,15%,16%,17%,18%,19%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%或100%。例如,已经表明,如果25-30%的纤维表达抗肌肉萎缩蛋白,则可以发生约40%的肌肉功能改善(参见例如DelloRusso等人,ProcNatl Acad Sci USA 99:12979-12984,2002)。“增加”或“增强”量通常是“统计上显著”的量,并且可以包括增加由没有反义寡聚体缀合物(不存在药剂)或对照化合物产生的量的1.1,1.2,2,3,4,5,6,7,8,9,10,15,20,30,40,50或更多倍(例如500,1000倍,包括其间且超过1的所有整数和小数点,例如1.5,1.6,1.7,1.8等)。
如本文所用,术语“功能”和“功能性”等是指生物学、酶学或治疗功能。
“功能性”抗肌肉萎缩蛋白通常指具有足够生物活性的抗肌肉萎缩蛋白,以减少肌肉组织的进行性降解,这是肌肉萎缩症的其它特征,通常与存在于某些患有DMD或BMD的受试者中的抗肌肉萎缩蛋白的改变或“缺陷”形式相比。在某些实施方式中,根据本领域的常规技术测量,功能性抗肌肉萎缩蛋白可具有野生型抗肌肉萎缩蛋白的体外或体内生物活性的约10%,20%,30%,40%,50%,60%,70%,80%,90%或100%(包括其间的所有整数)。作为一个实例,体外肌肉培养物中的抗肌肉萎缩蛋白相关活性可以根据肌管大小,肌原纤维组织(或解体),收缩活性和乙酰胆碱受体的自发聚集来测量(参见例如Brown等人,Journal of Cell Science.112:209-216,1999)。动物模型也是研究疾病发病机理的宝贵资源,并提供了测试抗肌肉萎缩蛋白相关活性的方法。用于DMD研究的两种最广泛使用的动物模型是mdx小鼠和金毛猎犬肌肉萎缩症(GRMD)狗,两者都是抗肌肉萎缩蛋白阴性的(参见例如Collins&Morgan,Int J Exp Pathol 84:165-172,2003)。这些和其它动物模型可用于测量各种抗肌肉萎缩蛋白的功能活性。包括截短形式的抗肌肉萎缩蛋白,例如在施用本公开的某些外显子跳跃反义寡聚体缀合物后产生的那些形式。
术语“错配”或“错配有”是指根据碱基配对规则与靶前mRNA不匹配的寡聚体核碱基中的一个或多个核碱基(无论是连续的还是分开的)。虽然通常需要完美的互补性,但是一些实施方式可以包括相对于靶前mRNA的一个或多个但优选为6,5,4,3,2或1个错配。包括寡聚体内任何位置的变化。在某些实施方式中,本公开的反义寡聚体缀合物包括内部末端变体附近的核碱基序列变异,并且如果存在,通常在5'和/或3'末端的约6,5,4,3,2或1个亚基内。
术语“吗啉代”,“吗啉代寡聚体”和“PMO”是指以下一般结构的二氨基磷酸酯吗啉代寡聚体:
并且如Summerton,J.等人,Antisense&Nucleic Acid Drug Development,7:187-195(1997)的图2中所述。如本文所述的吗啉代包括前述一般结构的所有立体异构体和互变异构体。吗啉代寡聚体的合成、结构和结合特征详述于美国专利号5,698,685,5,217,866,5,142,047,5,034,506,5,166,315,5,521,063,5,506,337,8,076,476和8,299,206中,所有这些专利均通过引用并入本文。
在某些实施方式中,吗啉代在寡聚体的5'或3'末端与“尾部”部分缀合以增加其稳定性和/或溶解度。示例性尾部包括:
在上述示例性尾部分中,“TEG”或“EG3”是指以下尾部:
在上述示例性尾部分中,“GT”是指以下尾部:
如本文所用,术语“-G-R6”和“-G-R6-Ac”可互换使用,并且是指与本公开的反义寡聚体缀合的肽部分。在各种实施方式中,“G”表示通过酰胺键与“R6”缀合的甘氨酸残基,并且每个“R”表示通过酰胺键缀合在一起的精氨酸残基,使得“R6”表示通过酰胺键缀合在一起的六(6)个精氨酸残基。精氨酸残基可具有任何立体构型,例如,精氨酸残基可以是L-精氨酸残基,D-精氨酸残基,或D-和L-精氨酸残基的混合物。在某些实施方式中,“-G-R6”或“-G-R6-Ac”与本公开的PMO反义寡聚体的3'最多吗啉代亚基的吗啉环氮缀合。在一些实施方式中,“-G-R6”或“-G-R6-Ac”与本公开的反义寡聚体的3'末端缀合,并且具有下式:
术语“核碱基”(Nu),“碱基配对部分”或“碱基”可互换使用,是指天然存在的或“天然”DNA或RNA(例如尿嘧啶,胸腺嘧啶,胞嘧啶和鸟嘌呤)中发现的嘌呤或嘧啶碱基,以及这些天然存在的嘌呤和嘧啶的类似物。这些类似物可赋予寡聚体改善的性质,例如结合亲和力。示例性的类似物包括次黄嘌呤(肌苷的基础组分);2,6-二氨基嘌呤;5-甲基胞嘧啶;C5-丙炔基修饰的嘧啶;和10-(9-(氨基乙氧基)苯氧嗪基)(G-夹)等。
碱基配对部分的其它实例包括但不限于尿嘧啶,胸腺嘧啶,腺嘌呤,胞嘧啶,鸟嘌呤和次黄嘌呤(肌苷),其各自的氨基被酰基保护基团保护,2-氟尿嘧啶,2-氟胞嘧啶,5-溴尿嘧啶,5-碘尿嘧啶,2,6-二氨基嘌呤,氮杂胞嘧啶,嘧啶类似物如假异胞嘧啶和假尿嘧啶以及其它修饰的核碱基如8-取代的嘌呤,黄嘌呤或次黄嘌呤(后两者是天然降解产物)。还考虑了公开于以下的修饰核碱基:Chiu和Rana,RNA,2003,9,1034-1048;Limbach等人,Nucleic Acids Research,1994,22,2183-2196;以及Revankar和Rao,ComprehensiveNatural Products Chemistry,vol.7,313;其内容通过引用并入本文。
碱基配对部分的其它实例包括但不限于其中添加了一个或多个苯环的扩展尺寸的核碱基。核酸碱基替代品描述于:Glen Research目录(www.glenresearch.com);KruegerAT等人,Acc.Chem.Res.,2007,40,141-150;Kool,ET,Acc.Chem.Res.,2002,35,936-943;Benner S.A.等人,Nat.Rev.Genet.,2005,6,553-543;Romesberg,F.E.等人,Curr.Opin.Chem.Biol.,2003,7,723-733;和Hirao,I.,Curr.Opin.Chem.Biol.,2006,10,622-627;其内容通过引用并入本文,预期可用于本文所述的反义寡聚体缀合物中。扩展尺寸的核碱基的实例包括下面所示的那些,以及其互变异构形式。
本文所用的短语“肠胃外施用”和“以肠胃外施用”是指除肠内和局部施用以外的施用方式,通常通过注射施用,包括但不限于静脉内,肌肉内,动脉内,鞘内,囊内,眶内,心内,皮内,腹膜内,经气管,皮下,表皮下,关节内,包膜下,蛛网膜下,脊柱内和胸骨内注射和输注。
为清楚起见,包括例如式(IV)的本公开的结构从5'到3'是连续的,并且为了便于以紧凑的形式描绘整个结构,已包括各种图示中断标记的“BREAK A”、“BREAK B”和“BREAKC”。如本领域技术人员所理解的,例如,“BREAK A”的每个指示示出了在这些点处结构说明的继续。本领域技术人员理解,对于上述结构中的“BREAK B”和“BREAK C”的每个实例都是如此。然而,没有任何图示中断旨在表明,技术人员也不会理解它们意味着上述结构的实际中断。
如本文所用,结构式中使用的一组括号表示重复括号之间的结构特征。在一些实施方式中,所使用的括号可以是“[”和“]”,并且在某些实施方式中,用于表示重复结构特征的括号可以是“(”和“)”。在一些实施方式中,括号之间结构特征的重复迭代次数是括号外指示的数字,例如2、3、4、5、6、7等。在各种实施方式中,括号之间结构特征的重复迭代次数由括号外指示的变量(例如“Z”)表示。
如本文所用,在结构式中绘制成手性碳或磷原子的直键或波浪键表示手性碳或磷的立体化学是不确定的并且旨在包括所有形式的手性中心。这些图示的示例如下所示。
短语“药学上可接受的”是指物质或组合物必须在化学和/或毒理学上与包含制剂的其它成分和/或用其治疗的受试者相容。
本文所用的短语“药学上可接受的载体”是指无毒的惰性固体,半固体或液体填充剂,稀释剂,包封材料或任何类型的制剂助剂。可用作药学上可接受的载体的材料的一些实例是糖,例如乳糖,葡萄糖和蔗糖;淀粉,例如玉米淀粉和马铃薯淀粉;纤维素及其衍生物,例如羧甲基纤维素钠,乙基纤维素和醋酸纤维素;粉末黄蓍草;麦芽;明胶;滑石;辅料,例如可可脂和栓剂蜡;油类,例如花生油,棉籽油,红花油,芝麻油,橄榄油,玉米油和豆油;二醇类,例如丙二醇;酯类,例如油酸乙酯和月桂酸乙酯;琼脂;缓冲剂,例如氢氧化镁和氢氧化铝;海藻酸;无热原水;等渗盐水;林格溶液;乙醇;磷酸盐缓冲溶液,无毒相容润滑剂,例如十二烷基硫酸钠和硬脂酸镁,着色剂,脱模剂,涂层剂,甜味剂,调味剂和芳香剂,防腐剂和抗氧化剂也可以根据配制者的判断存在于组合物中。
关于抗肌肉萎缩蛋白合成或产生的术语“恢复”通常是指在用本文所述的反义寡聚体缀合物处理后肌肉萎缩症患者中抗肌肉萎缩蛋白的产生,包括截短形式的抗肌肉萎缩蛋白。在一些实施方式中,治疗导致患者中新型抗肌肉萎缩蛋白产生增加1%,5%,10%,20%,30%,40%,50%,60%,70%,80%,90%或100%(包括其间的所有整数)。在一些实施方式中,治疗将受试者的抗肌肉萎缩蛋白阳性纤维的量增加至正常的至少约20%,约30%,约40%,约50%,约60%,约70%,约80%,约90%或约95%至100%。在其它实施方式中,治疗将受试者的抗肌肉萎缩蛋白阳性纤维的量增加至正常的约20%至约60%,或约30%至约50%。治疗后患者的抗肌肉萎缩蛋白阳性纤维的百分比可以通过使用已知技术的肌肉活组织检查来确定。例如,肌肉活组织检查可以取自合适的肌肉,例如患者的二头肌。
阳性抗肌肉萎缩蛋白纤维的百分比的分析可以在治疗前和/或治疗后或在整个治疗过程中的时间点进行。在一些实施方式中,治疗后活组织检查取自治疗前活组织检查的对侧肌肉。可以使用任何合适的抗肌肉萎缩蛋白测定进行治疗前和治疗后抗肌肉萎缩蛋白表达分析。在一些实施方式中,使用作为抗肌肉萎缩蛋白标记物的抗体,例如单克隆或多克隆抗体,对来自肌肉活组织检查的组织切片进行免疫组织化学检测。例如,可以使用MANDYS106抗体,其是抗肌肉萎缩蛋白的高度敏感标记物。可以使用任何合适的二抗。
在一些实施方式中,抗肌肉萎缩蛋白阳性纤维的百分比通过将阳性纤维的量除以计数的总纤维来计算。正常肌肉样本具有100%抗肌肉萎缩蛋白阳性纤维。因此,抗肌肉萎缩蛋白阳性纤维的百分比可表示为正常的百分比。为了控制预处理肌肉和回复纤维中痕量水平的抗肌肉萎缩蛋白的存在,可以使用来自患者的治疗前肌肉的部分来设定治疗后肌肉中抗肌肉萎缩蛋白阳性纤维的基线。这可以用作在该患者的治疗后肌肉的切片中计数抗肌肉萎缩蛋白阳性纤维的阈值。在其它实施方式中,抗体染色的组织切片也可以使用Bioquant图像分析软件(Bioquant Image Analysis Corporation,Nashville,TN)用于抗肌肉萎缩蛋白定量。总抗肌肉萎缩蛋白荧光信号强度可以报告为正常的百分比。此外,用单克隆或多克隆抗肌肉萎缩蛋白抗体的Western印迹分析可用于确定抗肌肉萎缩蛋白阳性纤维的百分比。例如,可以使用来自Leica Biosystems的抗肌肉萎缩蛋白抗体NCL-Dys1。抗肌肉萎缩蛋白阳性纤维的百分比也可以通过测定肌聚糖复合物(β,γ)和/或神经元NOS的组分的表达来分析。
在一些实施方式中,用本公开的反义寡聚体缀合物进行的治疗减缓或减少了DMD患者的进行性呼吸肌功能障碍和/或失败,其在没有治疗的情况下是预期的。在一些实施方式中,用本公开的反义寡聚体缀合物进行的治疗可以减少或消除对未经治疗预期的通气辅助的需要。在一些实施方式中,用于跟踪疾病进程的呼吸功能的测量以及潜在治疗干预的评估包括最大吸气压力(MIP),最大呼气压力(MEP)和强制肺活量(FVC)。MIP和MEP分别测量人在吸气和呼气期间可产生的压力水平,并且是呼吸肌力量的敏感度量。MIP是膈肌无力的衡量标准。
在一些实施方式中,MEP可在其它肺功能测试(包括MIP和FVC)的变化之前下降。在某些实施方式中,MEP可以是呼吸功能障碍的早期指标。在某些实施方式中,FVC可用于测量在最大吸气之后强制呼气期间排出的空气总体积。在DMD患者中,FVC随着身体发育而增加,直到青少年时期。然而,随着生长缓慢或因疾病进展而停滞不前,肌肉无力进展,肺活量进入下降阶段,并在10至12岁后以每年平均约8%至8.5%的速度下降。在某些实施方式中,预测的MIP百分比(针对体重调整的MIP),预测的MEP百分比(针对年龄调整的MEP)和预测的FVC百分比(针对年龄和身高调整的FVC)是支持性分析。
如本文所用,术语“受试者”和“患者”包括表现出症状或有风险表现症状的任何动物,其可以用本公开的反义寡聚体缀合物治疗,例如具有或有风险具有DMD或BMD的受试者(或患者),或与这些病症相关的任何症状(例如肌纤维损失)。合适的受试者(或患者)包括实验动物(例如小鼠,大鼠,兔或豚鼠),农场动物和家畜或宠物(例如猫或狗)。包括非人灵长类动物,优选人类患者(或受试者)。还包括在具有适合于外显子51跳跃的抗肌肉萎缩蛋白基因突变的受试者(或患者)中产生抗肌肉萎缩蛋白的方法。
本文所用的短语“全身施用”,“以全身施用”,“外周施用”和“以外周施用”是指将化合物、药物或其它物质直接施用于中枢神经系统,使其进入患者体内。因此,它可以进行新陈代谢和其它类似过程,例如皮下施用。
短语“靶向序列”是指寡聚体的核碱基序列,其与靶前mRNA中的核苷酸序列互补。在本公开的一些实施方式中,靶前mRNA中的核苷酸序列是抗肌肉萎缩蛋白前mRNA中的外显子51退火位点,被指定为H51A(+66+95)。
受试者(例如哺乳动物,例如人)或细胞的“治疗”是用于试图改变受试者或细胞的自然进程的任何类型的干预。治疗包括但不限于施用寡聚体或其药物组合物,并且可以预防性地或在病理事件开始后或与病原体接触后进行。治疗包括对与抗肌肉萎缩蛋白相关的疾病或病症的症状或病理学的任何期望的作用,如在某些形式的肌肉萎缩症中,并且可包括例如正在治疗的疾病或病症的一种或多种可测量的标志物的最小变化或改善。还包括“预防性”治疗,其可以用于降低所治疗的疾病或病症的进展速率,延迟该疾病或病症的发作,或降低其发病的严重程度。“治疗”或“预防”不一定表示完全根除、治愈或防止疾病或病症或其相关症状。
在一些实施方式中,用本公开的反义寡聚体缀合物治疗增加新型抗肌肉萎缩蛋白产生,延缓疾病进展,减缓或减少行走损失,减少肌肉炎症,减少肌肉损伤,改善肌肉功能,减少肺功能损失,和/或增强肌肉再生,这是在没有治疗的情况下预期的。在一些实施方式中,治疗维持、延迟或减缓疾病进展。在一些实施方式中,治疗保持行走或减少行走损失。在一些实施方式中,治疗维持肺功能或减少肺功能损失。在一些实施方式中,治疗维持或增加患者的稳定步行距离,通过例如6分钟步行测试(6MWT)测量。在一些实施方式中,治疗维持或减少步行/跑步10米的时间(即10米步行/跑步测试)。在一些实施方式中,治疗维持或减少从仰卧站立的时间(即站立时间测试)。在一些实施方式中,治疗维持或减少爬升四个标准楼梯的时间(即四阶爬升测试)。在一些实施方式中,治疗维持或减少患者的肌肉炎症,通过例如MRI(例如腿部肌肉的MRI)测量。在一些实施方式中,MRI测量T2和/或脂肪分数以鉴定肌肉退化。MRI可以识别由炎症,水肿,肌肉损伤和脂肪浸润引起的肌肉结构和组成的变化。
在一些实施方式中,用本公开的反义寡聚体缀合物进行治疗增加新型抗肌肉萎缩蛋白产生,并减缓或减少了未经治疗所预期的行走损失。例如,治疗可以稳定,维持,改善或增加受试者的步行能力(例如行走的稳定)。在一些实施方式中,治疗维持或增加患者的稳定步行距离,例如通过McDonald等人(Muscle Nerve,2010;42:966-74,通过引用并入本文)描述的6分钟步行测试(6MWT)测量。6分钟步行距离(6MWD)的变化可以表示为绝对值,百分比变化或%预测值的变化。在一些实施方式中,治疗维持或改善受试者在6MWT中相对于健康同伴的20%缺少的稳定步行距离。可以通过计算%预测值来确定6MWT中DMD患者相对于健康同伴的典型表现的表现。例如,对于男性,%预测的6MWD可以使用以下等式计算:196.72+(39.81×年龄)-(1.36×年龄2)+(132.28×身高(米))。对于女性,%预测的6MWD可以使用以下等式计算:188.61+(51.50×年龄)-(1.86×年龄2)+(86.10×身高(米))(Henricson等人,PLoS Curr.,2012,版本2,通过引用并入本文)。在一些实施方式中,用反义寡聚体治疗增加患者从基线到大于3,5,6,7,8,9,10,15,20,25,30或50米(包括其间的所有整数)的稳定步行距离。
DMD患者的肌肉功能损失可能发生在正常儿童生长发育的背景下。事实上,尽管进行性肌肉损伤,年龄较大的DMD患儿在6MWT期间可能会在约1年的时间内行走距离增加。在一些实施方式中,将来自患有DMD的患者的6MWD与通常发育的对照受试者和来自年龄和性别匹配的受试者的现有标准化数据进行比较。在一些实施方式中,可以使用适合于标准化数据的基于年龄和身高的方程来解释正常生长和发育。这样的方程可用于将6MWD转换为患有DMD的受试者中的百分比预测(%预测)值。在某些实施方式中,%预测的6MWD数据的分析代表了解释正常生长和发育的方法,并且可以显示在早期(例如小于或等于7岁)的功能增益代表稳定而不是改善患有DMD的患者的能力(Henricson等人,PLoS Curr.,2012,第2版,通过引用并入本文)。
提出并公开了反义分子命名系统以区分不同的反义分子(参见Mann等人,(2002)JGen Med4,644-654)。当测试几种略微不同的反义分子时,这种命名法变得特别相关,所有反义分子都指向同一目标区域,如下所示:
H#A/D(x:y)。
第一个字母表示物种(例如H:人,M:鼠,C:犬)。“#”表示靶抗肌肉萎缩蛋白外显子数目。“A/D”分别表示外显子开始和结束时的受体或供体剪接位点。(x y)表示退火坐标,其中“-”或“+”分别表示内含子或外显子序列。例如,A(-6+18)表示靶外显子之前的内含子的最后6个碱基和靶外显子的前18个碱基。最接近的剪接位点将是受体,因此这些坐标前面会有“A”。描述供体剪接位点处的退火坐标可以是D(+2-18),其中最后2个外显子碱基和前18个内含子碱基对应于反义分子的退火位点。完全外显子退火坐标将由A(+65+85)表示,即从该外显子开始的第65和第85个核苷酸之间的位点。
II.反义寡聚体
A.反义寡聚体缀合物旨在诱导外显子51跳跃
在某些实施方式中,本公开的反义寡聚体缀合物与抗肌萎缩蛋白基因的外显子51靶区域互补并诱导外显子51跳跃。特别地,本公开涉及与被指定为退火位点的抗肌肉萎缩蛋白前mRNA的外显子51靶区互补的反义寡聚体缀合物。在一些实施方式中,退火位点为H51A(+66+95)。
本公开的反义寡聚体缀合物靶向抗肌肉萎缩蛋白前mRNA并诱导外显子51的跳跃,因此将其从成熟的剪接mRNA转录物中排除或跳跃。通过跳跃外显子51,中断的阅读框架恢复为框内突变。虽然DMD由各种遗传亚型组成,但本公开的反义寡聚体缀合物被特别设计为跳跃抗肌肉萎缩蛋白前mRNA的外显子51。适于跳跃外显子51的DMD突变包含DMD患者的亚组(13%)。
诱导外显子51跳跃的反义寡聚体缀合物的核碱基序列被设计为与抗肌肉萎缩蛋白前mRNA的外显子51内的特定靶序列互补。在一些实施方式中,反义寡聚体缀合物的反义寡聚体是PMO,其中PMO的每个吗啉代环与核碱基连接,包括例如DNA中发现的核碱基(腺嘌呤,胞嘧啶,鸟嘌呤和胸腺嘧啶)。
B.寡聚体化学特征
本公开的反义寡聚体缀合物可以使用多种反义化学。寡聚体缀合物化学的实例包括但不限于吗啉代寡聚体,硫代磷酸酯修饰的寡聚体,2'O-甲基修饰的寡聚体,肽核酸(PNA),锁核酸(LNA),硫代磷酸酯寡聚体,2'O-MOE修饰的寡聚体,2'-氟修饰的寡聚体,2'O,4'C-乙烯桥连核酸(ENA),三环-DNA,三环-DNA硫代磷酸酯亚基,2'-O-[2-(N-甲基氨基甲酰基)乙基]修饰的寡聚体,包括任何前述物质的组合。可以组合硫代磷酸酯和2'-O-Me-修饰的化学物质以产生2'O-Me-硫代磷酸酯骨架。参见例如PCT公开号WO/2013/112053和WO/2009/008725,其通过引用整体并入本文。以下进一步描述本公开的寡聚体化学的示例性实施方式。
1.肽核酸(PNA)
肽核酸(PNA)是DNA的类似物,其中骨架与脱氧核糖骨架在结构上是同形的,由与嘧啶或嘌呤碱基连接的N-(2-氨基乙基)甘氨酸单元组成。含有天然嘧啶和嘌呤碱基的PNA与遵循Watson-Crick碱基配对规则的互补寡聚体杂交,并且在碱基对识别方面模拟DNA(Egholm,Buchardt等人,1993)。PNA的主链由肽键而不是磷酸二酯键形成,使得它们非常适合反义应用(参见下面的结构)。骨架不带电荷,导致PNA/DNA或PNA/RNA双链体表现出大于正常的热稳定性。PNA不被核酸酶或蛋白酶识别。PNA的非限制性示例如下所示。
尽管天然结构发生了根本性的结构变化,但PNA能够以螺旋形式与DNA或RNA进行序列特异性结合。PNA的特征包括对互补DNA或RNA的高结合亲和力,由单碱基错配引起的去稳定作用,对核酸酶和蛋白酶的抗性,与DNA或RNA的杂交,不依赖于盐浓度和具有同型嘌呤DNA的三链体形成。PANAGENETM开发了其专有的Bts PNA单体(Bts;苯并噻唑-2-磺酰基)和专有的寡聚化方法。使用Bts PNA单体的PNA寡聚化由脱保护、缀合和加帽的重复循环组成。PNA可以使用本领域已知的任何技术合成产生。参见例如美国专利号6,969,766;7,211,668;7,022,851;7,125,994;7,145,006和7,179,896。还参见美国专利号5,539,082;5,714,331;和5,719,262用于制备PNA。PNA化合物的进一步教导可以在Nielsen等人,Science,254:1497-1500,1991中找到。前述各自均通过引用整体并入。
2.锁核酸(LNA)
反义寡聚体缀合物还可含有“锁核酸”亚基(LNA)。“LNA”是称为桥接核酸(BNA)的一类修饰的成员。BNA的特征在于共价连接,其将核糖环的构象锁定在C30-内(北)糖皱褶中。对于LNA,桥由2'-O和4'-C位置之间的亚甲基组成。LNA增强骨架预组织和碱基堆积以增加杂交和热稳定性。
LNA的结构可以在例如Wengel等人,Chemical Communications(1998)455;Koshkin等人,Tetrahedron(1998)54:3607;Jesper Wengel,Accounts of Chem.Research(1999)32:301);Obika等人,Tetrahedron Letters(1997)38:8735;Obika等人,Tetrahedron Letters(1998)39:5401;和Obika等人,Bioorganic Medicinal Chemistry(2008)16:9230,其通过引用整体并入本文。LNA的非限制性示例如下所示。
本公开的反义寡聚体缀合物可以包含一种或多种LNA;在某些情况下,反义寡聚体缀合物可以完全由LNA组成。用于合成单个LNA核苷亚基及其掺入寡聚体的方法描述于例如美国专利号7,572,582;7,569,575;7,084,125;7,060,809;7,053,207;7,034,133;6,794,499和6,670,461,它们各自通过引用整体并入。典型的亚基间连接子包括磷酸二酯和硫代磷酸酯部分;或者,可以使用不含磷的接头。进一步的实施方式包括含LNA的反义寡聚体缀合物,其中每个LNA亚基被DNA亚基分开。某些反义寡聚体缀合物由交替的LNA和DNA亚基组成,其中亚基间连接基是硫代磷酸酯。
2'O,4'C-乙烯-桥接核酸(ENA)是BNA类的另一成员。下面描述了一个非限制性示例。
ENA寡聚体及其制备描述于Obika等人,Tetrahedron Lett(1997)38(50):8735中,其通过引用整体并入本文。本公开的反义寡聚体缀合物可以包含一个或多个ENA亚基。
3.非锁核酸(UNA)
反义寡聚体缀合物还可含有非锁核酸(UNA)亚基。UNA和UNA寡聚体是RNA的类似物,其中亚基的C2'-C3'键已被切割。尽管LNA在构象上受到限制(相对于DNA和RNA),但UNA非常灵活。例如,在WO2016/070166中公开了UNA。UNA的非限制性示例如下所示。
典型的亚基间接头包括磷酸二酯和硫代磷酸酯部分;或者,可以使用含非磷的接头。
4.硫代磷酸酯
“硫代磷酸酯”(或S-寡聚体)是正常DNA的变体,其中一个非桥连氧被硫取代。硫代磷酸酯的非限制性实例描述如下。
核苷酸间键的硫化降低了内切核酸酶和核酸外切酶的作用,包括5'至3'和3'至5'DNA POL 1核酸外切酶,核酸酶S1和P1,RNA酶,血清核酸酶和蛇毒磷酸二酯酶。硫代磷酸酯通过两种主要途径制备:通过二硫化碳中元素硫溶液在膦酸氢盐上的作用,或通过用四乙基秋兰姆二硫化物(TETD)或3H-1,2-苯并二硫-3-酮1,1-二氧化物(BDTD)硫化亚磷酸三酯的方法制备(参见例如Iyer等人,J.Org.Chem.55,4693-4699,1990,其通过引用整体并入本文)。后一种方法避免了元素硫在大多数有机溶剂中的不溶性和二硫化碳的毒性问题。TETD和BDTD方法也产生更高纯度的硫代磷酸酯。
5.三环-DNA和三环-硫代磷酸酯亚基
三环-DNA(tc-DNA)是一类受约束的DNA类似物,其中通过引入环丙烷环来修饰每个核苷酸以限制骨架的构象灵活性并优化扭转角γ的骨架几何形状。含有腺嘌呤和胸腺嘧啶的tc-DNA与互补RNA形成非常稳定的A-T碱基对。三环-DNA及其合成描述于国际专利申请公开号WO2010/115993中,其通过引用整体并入本文。本公开的反义寡聚体缀合物可以掺入一种或多种三环-DNA亚基;在某些情况下,反义寡聚体缀合物可以完全由三环-DNA亚基组成。
三环硫代磷酸酯亚基是具有硫代磷酸酯亚基间连接的三环-DNA亚基。三环硫代磷酸酯亚基及其合成描述于国际专利申请公开号WO2013/053928中,其通过引用整体并入本文。本公开的反义寡聚体缀合物可以掺入一种或多种三环-DNA亚基;在某些情况下,反义寡聚体缀合物可以完全由三环-DNA亚基组成。三环-DNA/三环-硫代磷酸酯亚基的非限制性实例描述如下。
6.2'O-甲基,2'O-MOE和2'-F寡聚体
“2'-O-Me寡聚体”分子在核糖分子的2'-OH残基处带有甲基。2'-O-Me-RNA显示出与DNA相同(或相似)的行为,但保护免于核酸酶降解。2'-O-Me-RNA也可以与硫代磷酸酯寡聚体(PTO)组合以进一步稳定化。可以根据本领域的常规技术合成2'O-Me寡聚体(磷酸二酯或硫代磷酸酯)(参见例如Yoo等人,Nucleic Acids Res.32:2008-16,2004,其通过引用整体并入本文)。2'O-Me寡聚体的非限制性实例描述如下。
2'O-甲氧基乙基寡聚体(2'-O MOE),如2'O-Me寡聚体,在核糖分子的2'-OH残基处带有甲氧基乙基,并在Martin等人,Helv.Chim.Acta,78,486-504,1995中讨论,其通过引用整体并入本文。2'O-MOE亚基的非限制性实例描述如下。
与前述烷基化的2'OH核糖衍生物相反,2'-氟(2'-F)寡聚体在2'位置具有氟基,代替2'OH。2'-F寡聚体的非限制性实例描述如下:
2'-氟寡聚体进一步描述于WO 2004/043977中,其通过引用整体并入本文。
2'O-甲基、2'O-MOE和2'-F寡聚体也可包含一种或多种硫代磷酸酯(PS)键,如下所示。
另外,2'O-甲基、2'O-MOE和2'-F寡聚体可以在整个寡聚体中包含PS亚基间键,例如在下面描述的2'O-甲基PS寡聚体drisapersen中。
或者,2'O-甲基、2'O-MOE和/或2'-F寡聚体可在寡聚体的末端包含PS键,如下所示。
其中:
R是CH2CH2OCH3(甲氧基乙基或MOE);并且
x,y和z分别表示每个指定的5'翼,中心间隙和3'翼区域中包含的核苷酸数。
本公开的反义寡聚体缀合物可以掺入一个或多个2'O-甲基,2'O-MOE和2'-F亚基,并且可以利用本文所述的任何亚基间连接。在一些情况下,本公开的反义寡聚体缀合物可以由完全2'O-甲基,2'O-MOE或2'-F亚基组成。本公开的反义寡聚体缀合物的一个实施方式完全由2'O-甲基亚基组成。
7.2'-O-[2-(N-甲基氨基甲酰基)乙基]寡聚体(MCE)
MCE是可用于本公开的反义寡聚体缀合物的2'O修饰的核糖核苷的另一个实例。此处,将2'OH衍生为2-(N-甲基氨基甲酰基)乙基部分以增加核酸酶抗性。MCE寡聚体的非限制性实例描述如下。
MCE及其合成描述于Yamada等人,J.Org.Chem.(2011)76(9):3042-53中,其通过引用整体并入本文。本公开的反义寡聚体缀合物可以包含一个或多个MCE亚基。
8.立体特异性寡聚体
立体特异性寡聚体是通过合成方法固定每个含磷键的立体化学,从而产生基本上立体纯的寡聚体。立体特异性寡聚体的非限制性实例描述如下。
在上面的示例中,寡聚体的每个磷具有相同的立体构型。另外的实例包括上述寡聚体。例如,LNA,ENA,三环-DNA,MCE,2'O-甲基,2'O-MOE,2'-F和基于吗啉代的寡聚体可以用立体特异性含磷的核苷间键合制备,例如硫代磷酸酯,磷酸二酯,氨基磷酸酯,二氨基磷酸酯或其它含磷的核苷间键。用于制备这种寡聚体的立体特异性寡聚体,制备方法,手性控制合成,手性设计和手性助剂详细描述于例如WO2017192664,WO2017192679,WO2017062862,WO2017015575,WO2017015555,WO2015107425,WO2015108048,WO2015108046,WO2015108047,WO2012039448,WO2010064146,WO2011034072,WO2014010250,WO2014012081,WO20130127858和WO2011005761中,其各自通过引用整体并入本文。
立体特异性寡聚体可以在RP或SP构型中具有含磷的核苷间键。其中键的立体构型受控的手性含磷键被称为“立体纯”,而其中键的立体构型不受控的手性含磷键被称为“立体随机”。在某些实施方式中,本公开的寡聚体包含多个立体纯和立体随机键,使得所得寡聚体在寡聚体的预定位置具有立体纯的亚单元。立体纯的亚单元的位置实例在图7A和7B的国际专利申请公开号WO 2017/062862A2中提供。在一个实施方式中,寡聚体中的所有手性含磷键是立体随机的。在一个实施方式中,寡聚体中的所有手性含磷键是立体纯的。
在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中的所有n个手性含磷键是立体随机的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中所有n个手性含磷键是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少10%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的实施方式中,寡聚体中含n个含磷键的至少20%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少30%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少40%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少50%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少60%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少70%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少80%(至最接近的整数)是立体纯的。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体中含n个含磷键的至少90%(至最接近的整数)是立体纯的。
在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少2个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少3个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少4个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少5个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少6个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少7个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少8个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少9个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少10个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少11个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少12个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少13个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少14个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少15个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少16个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少17个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少18个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少19个连续立体纯的含磷键。在具有n个手性含磷键(其中n是1或更大的整数)的寡聚体的一个实施方式中,寡聚体含有相同立体取向(即SP或RP)的至少20个连续立体纯的含磷键。
9.吗啉代寡聚体
本公开的示例性实施方式涉及以下一般结构的二氨基磷酸酯吗啉代寡聚体:
并且如Summerton,J.等人,Antisense&Nucleic Acid Drug Development,7:187-195(1997)的图2中所述。如本文所述的吗啉代旨在涵盖前述一般结构的所有立体异构体和互变异构体。吗啉代寡聚体的合成、结构和结合特征详述于美国专利号5,698,685;5,217,866;5,142,047;5,034,506;5,166,315;5,521,063;5,506,337;8,076,476和8,299,206中,所有这些专利均通过引用并入本文。
在某些实施方式中,吗啉代在寡聚体的5'或3'末端与“尾部”部分缀合以增加其稳定性和/或溶解度。示例性尾部包括:
在各种实施方式中,本公开的反义寡聚体缀合物是根据式(I):
或其药学上可接受的盐,其中:
每个Nu是核碱基,它们一起形成靶向序列;
T是选自以下的部分:
R1是C1-C6烷基;
其中靶向序列与被指定为H51A(+66+95)的抗肌肉萎缩蛋白前mRNA中的外显子51退火位点互补。
在各种实施方式中,T是
在各种实施方式中,R1是甲基,CF3,CCl3,CFCl2,CF2Cl,乙基,CH2CF3,CF2CF3,丙基,异丙基,丁基,异丁基,仲丁基,叔丁基,戊基,异戊基,新戊基,己基,异己基,3-甲基戊基,2,2-二甲基丁基或2,3-二甲基丁基。
在一些实施方式中,式(I)的反义寡聚体缀合物是其HCl(盐酸)盐。在某些实施方式中,HCl盐是.6HCl盐。
在一些实施方式中,每个Nu独立地选自胞嘧啶(C),鸟嘌呤(G),胸腺嘧啶(T),腺嘌呤(A),5-甲基胞嘧啶(5mC),尿嘧啶(U)和次黄嘌呤(I)。
在一些实施方式中,靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3'),其中每个胸腺嘧啶(T)任选地是尿嘧啶(U)。
在各种实施方式中,T是并且靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3'),其中每个胸腺嘧啶(T)任选地是尿嘧啶(U)。
在各种实施方式中,T是并且靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3')。
在一些实施方式中,包括例如式(I)的一些实施方式,本公开的反义寡聚体缀合物是根据式(II):
或其药学上可接受的盐,其中:
每个Nu是核碱基,它们一起形成靶向序列,该序列与被指定为H51A(+66+95)的抗肌肉萎缩蛋白前mRNA中的外显子51退火位点互补。
在一些实施方式中,每个Nu独立地选自胞嘧啶(C),鸟嘌呤(G),胸腺嘧啶(T),腺嘌呤(A),5-甲基胞嘧啶(5mC),尿嘧啶(U)和次黄嘌呤(I)。
在各种实施方式中,从1至30以及5'至3'的每个Nu是(SEQ ID NO:1):
其中,A是C是G是并且X是在某些实施方式中,每个X独立地为
在一些实施方式中,式(II)的反义寡聚体缀合物是其HCl(盐酸)盐。在某些实施方式中,HCl盐是.6HCl盐。
在一些实施方式中,包括例如式(II)的一些实施方式,本公开的反义寡聚体缀合物是根据式(IIA):
每个Nu是核碱基,它们一起形成靶向序列,该序列与被指定为H51A(+66+95)的抗肌肉萎缩蛋白前mRNA中的外显子51退火位点互补。
在一些实施方式中,每个Nu独立地选自胞嘧啶(C),鸟嘌呤(G),胸腺嘧啶(T),腺嘌呤(A),5-甲基胞嘧啶(5mC),尿嘧啶(U)和次黄嘌呤(I)。
在各种实施方式中,从1至30以及5'至3'的每个Nu是(SEQ ID NO:1):
其中,A是C是G是并且X是在某些实施方式中,每个X独立地为
在一些实施方式中,包括例如式(II)和式(IIA)的反义寡聚体缀合物的实施方式,靶向序列是SEQ ID NO:1(5'CTCCAACATCAAGGAAGATGGCATTTCTAG-3'),其中每个胸腺嘧啶(T)任选地是尿嘧啶(U)。在各种实施方式中,包括例如式(II)和式(IIA)的反义寡聚体缀合物的实施方式,靶向序列是SEQ ID NO:1(5'CTCCAACATCAAGGAAGATGGCATTTCTAG-3')。
在一些实施方式中,包括例如式(I)的反义寡聚体缀合物的实施方式,本公开的反义寡聚体缀合物是根据式(III):
或其药学上可接受的盐。
在一些实施方式中,式(III)的反义寡聚体缀合物是其HCl(盐酸)盐。在某些实施方式中,HCl盐是.6HCl盐。
在一些实施方式中,包括例如式(III)的一些实施方式,本公开的反义寡聚体缀合物是根据式(IIIA):
在本公开的一些实施方式中,包括式(I)的反义寡聚体缀合物的一些实施方式和式(III)的反义寡聚体缀合物的一些实施方式,反义寡聚体缀合物是根据式(IV):
或其药学上可接受的盐。
在一些实施方式中,式(IV)的反义寡聚体缀合物是其HCl(盐酸)盐。在某些实施方式中,HCl盐是.6HCl盐。
在一些实施方式中,包括例如式(IV)的一些实施方式,本公开的反义寡聚体缀合物是根据式(IVA):
10.核碱基修饰和取代
在某些实施方式中,本公开的反义寡聚体由RNA核碱基和DNA核碱基组成(本领域通常简称为“碱基”)。RNA碱基通常称为腺嘌呤(A),尿嘧啶(U),胞嘧啶(C)和鸟嘌呤(G)。DNA碱基通常称为腺嘌呤(A),胸腺嘧啶(T),胞嘧啶(C)和鸟嘌呤(G)。在各种实施方式中,本公开的反义寡聚体缀合物由胞嘧啶(C),鸟嘌呤(G),胸腺嘧啶(T),腺嘌呤(A),5-甲基胞嘧啶(5mC),尿嘧啶(U)和次黄嘌呤(I)组成。
在某些实施方式中,寡聚体中的一个或多个RNA碱基或DNA碱基可以被修饰或用除RNA碱基或DNA碱基之外的碱基取代。含有修饰或取代的碱基的寡聚体包括寡聚体,其中核酸中最常见的一个或多个嘌呤或嘧啶碱基被较不常见或非天然的碱基取代。
嘌呤碱基包含与咪唑环稠合的嘧啶环,如以下通式所述。
腺嘌呤和鸟嘌呤是核酸中最常见的两个嘌呤核碱基。其它天然存在的嘌呤包括但不限于N6-甲基腺嘌呤,N2-甲基鸟嘌呤,次黄嘌呤和7-甲基鸟嘌呤。
嘧啶碱包含六元嘧啶环,如下以下通式所述。
胞嘧啶,尿嘧啶和胸腺嘧啶是最常见于核酸中的嘧啶碱基。其它天然存在的嘧啶包括但不限于5-甲基胞嘧啶,5-羟甲基胞嘧啶,假尿嘧啶和4-硫尿嘧啶。在一个实施方式中,本文所述的寡聚体含有胸腺嘧啶碱基代替尿嘧啶。
其它合适的碱包括但不限于2,6-二氨基嘌呤,乳清酸,阿马替啶,赖氨酸,2-硫代嘧啶(例如2-硫尿嘧啶,2-硫代胸腺嘧啶),G-钳及其衍生物,5-取代的嘧啶(例如5-卤代尿嘧啶,5-丙炔基尿嘧啶,5-丙炔基胞嘧啶,5-氨基甲基尿嘧啶,5-羟甲基尿嘧啶,5-氨基甲基胞嘧啶,5-羟甲基胞嘧啶,Super T),7-脱氮鸟嘌呤,7-脱氮腺嘌呤,7-氮杂-2,6-二氨基嘌呤,8-氮杂-7-脱氮鸟嘌呤,8-氮杂-7-脱氮腺嘌呤,8-氮杂-7-脱氮-2,6-二氨基嘌呤,SuperG,Super A和N4-乙基胞嘧啶,或其衍生物;N2-环戊基鸟嘌呤(cPent-G),N2-环戊基-2-氨基嘌呤(cPent-AP)和N2-丙基-2-氨基嘌呤(Pr-AP),假尿嘧啶或其衍生物;和简并或通用碱基,如2,6-二氟甲苯或缺乏碱基如无碱基位点(如1-脱氧核糖,1,2-二脱氧核糖,1-脱氧-2-O-甲基核糖;或吡咯烷衍生物,其中环氧已被氮代替(氮杂核糖))。Super A,Super G和Super T的衍生物的实例可以在美国专利6,683,173(Epoch Biosciences)中找到,其通过引用整体并入本文。当掺入siRNA中时,显示cPent-G,cPent-AP和Pr-AP降低免疫刺激作用(Peacock H.等人,J.Am.Chem.Soc.2011,133,9200)。假尿嘧啶是天然存在的尿嘧啶异构化形式,具有C-糖苷而不是尿苷中的常规N-糖苷。与含尿苷的mPvNA相比,含假尿苷的合成mRNA可具有改善的安全性特征(WO 2009127230,其通过引用整体并入本文)。
某些核碱基特别可用于增加本公开的反义寡聚体缀合物的结合亲和力。这些包括5-取代的嘧啶,6-氮杂嘧啶以及N-2,N-6和O-6取代的嘌呤,包括2-氨基丙基腺嘌呤,5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已显示5-甲基胞嘧啶取代使核酸双链体稳定性增加0.6-1.2℃,并且目前是优选的碱基取代,甚至更特别是当与2'-O-甲氧基乙基糖修饰组合时。另外的示例性修饰的核碱基包括其中核碱基的至少一个氢原子被氟取代的那些。
11.反义寡聚体缀合物的药学上可接受的盐
本文所述反义寡聚体缀合物的某些实施方式可含有碱性官能团,例如氨基或烷基氨基,因此能够与药学上可接受的酸形成药学上可接受的盐。在这方面,术语“药学上可接受的盐”是指本公开反义寡聚体缀合物的相对无毒的无机和有机酸加成盐。这些盐可以在施用载体或剂型制造过程中原位制备,或者通过使本公开的纯化反义寡聚体缀合物以其游离碱形式与合适的有机或无机酸分别反应,并在随后的纯化过程中分离由此形成的盐。代表性的盐包括氢溴酸盐,盐酸盐,硫酸盐,硫酸氢盐,磷酸盐,硝酸盐,乙酸盐,戊酸盐,油酸盐,棕榈酸盐,硬脂酸盐,月桂酸盐,苯甲酸盐,乳酸盐,磷酸盐,甲苯磺酸盐,柠檬酸盐,马来酸盐,富马酸盐,琥珀酸盐,酒石酸盐,萘二甲酸盐,甲磺酸盐,葡庚糖酸盐,乳糖酸盐和月桂基磺酸盐等。(参见例如Berge等人(1977)“Pharmaceutical Salts”,J.Pharm.Sci.66:1-19)。
本公开反义寡聚体缀合物的药学上可接受的盐包括反义寡聚体缀合物的常规无毒盐或季铵盐,例如,来自无毒的有机或无机酸。例如,这种常规的无毒盐包括衍生自无机酸的那些,例如盐酸盐,氢溴酸盐,硫酸盐,氨基磺酸盐,磷酸盐,硝酸盐等;由有机酸制备的盐,例如乙酸,丙酸,琥珀酸,乙醇酸,硬脂酸,乳酸,苹果酸,酒石酸,柠檬酸,抗坏血酸,棕榈酸,马来酸,羟基马来酸,苯乙酸,谷氨酸,苯甲酸,水杨酸,磺胺,2-乙酰氧基苯甲酸,富马酸,甲苯磺酸,甲磺酸,乙烷二磺酸,草酸和等硫离子等。
在某些实施方式中,本公开的反义寡聚体缀合物可含有一个或多个酸性官能团,因此能够与药学上可接受的碱形成药学上可接受的盐。在这些情况下,术语“药学上可接受的盐”是指本公开反义寡聚体缀合物的相对无毒的无机和有机碱加成盐。这些盐同样可以在施用载体或剂型制造过程中原位制备,或者通过使纯化的反义寡聚体缀合物以其游离酸形式与合适的碱(例如药学上可接受的金属阳离子,氨,或药学上可接受的有机伯,仲或叔胺的氢氧化物,碳酸盐或碳酸氢盐)分别反应来制备。代表性的碱金属或碱土金属盐包括锂盐,钠盐,钾盐,钙盐,镁盐和铝盐等。可用于形成碱加成盐的代表性有机胺包括乙胺,二乙胺,乙二胺,乙醇胺,二乙醇胺和哌嗪等。(参见例如Berge等人,同上)。
III.制剂和施用模式
在某些实施方式中,本公开提供了适合于治疗性递送本文所述的反义寡聚体缀合物的制剂或药物组合物。因此,在某些实施方式中,本公开提供了药学上可接受的组合物,其包含治疗有效量的一种或多种本文所述的反义寡聚体缀合物,与一种或多种药学上可接受的载体(添加剂)和/或稀释剂一起配制。虽然本公开的反义寡聚体缀合物可以单独施用,但优选将该反义寡聚体缀合物作为药物制剂(组合物)施用。在一个实施方式中,制剂的反义寡聚体缀合物是根据式(III)。
可用于本公开的反义寡聚体缀合物的用于递送核酸分子的方法描述于例如Akhtar等人,1992,Trends Cell Bio.,2:139;和Delivery Strategies for AntisenseOligonucleotide Therapeutics,ed.Akhtar,1995,CRC Press;和Sullivan等人,PCT WO94/02595。这些和其它方式可用于递送实际上任何核酸分子,包括本公开的反义寡聚体缀合物。
本公开的药物组合物可以特别配制用于以固体或液体形式施用,包括适于以下的那些:(1)口服施用,例如浸液(水性或非水性溶液或悬浮液),片剂(用于口腔,舌下或全身吸收),丸剂,粉末,颗粒,用于舌头的糊剂;(2)肠胃外施用,例如通过皮下,肌肉内,静脉内或硬膜外注射,例如无菌溶液或悬浮液,或缓释制剂;(3)局部施用,例如作为霜剂,软膏剂或控释贴剂或喷雾施用于皮肤;(4)阴道内或直肠内,例如子宫托,乳膏或泡沫;(5)舌下;(6)眼睛;(7)透皮;或(8)鼻腔。
可用作药学上可接受的载体的材料的一些实例包括但不限于:(1)糖,例如乳糖,葡萄糖和蔗糖;(2)淀粉,例如玉米淀粉和马铃薯淀粉;(3)纤维素及其衍生物,例如羧甲基纤维素钠,乙基纤维素和醋酸纤维素;(4)粉末黄蓍胶;(5)麦芽;(6)明胶;(7)滑石粉;(8)辅料,例如可可脂和栓剂蜡;(9)油类,例如花生油,棉籽油,红花油,芝麻油,橄榄油,玉米油和豆油;(10)二醇类,例如丙二醇;(11)多元醇,例如甘油,山梨糖醇,甘露醇和聚乙二醇;(12)酯类,例如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,例如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原水;(17)等渗盐水;(18)林格溶液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯,聚碳酸酯和/或聚酸酐;(22)药物制剂中使用的其它无毒相容物质。
适用于与本公开的反义寡聚体缀合物一起配制的试剂的其它非限制性实例包括:PEG缀合的核酸,磷脂缀合的核酸,含有亲脂部分的核酸,硫代磷酸酯,P-糖蛋白抑制剂(例如Pluronic P85),其可以加强药物进入各种组织;可生物降解的聚合物,例如聚(D,L-丙交酯-共-乙交酯)微球,用于植入后的持续释放递送(Emerich,D F等人,1999,CellTransplant,8,47-58)Alkermes,Inc.,Cambridge,Mass;和负载的纳米颗粒,例如由聚氰基丙烯酸丁酯制成的纳米颗粒,其可以通过血脑屏障递送药物并且可以改变神经元摄取机制(Prog Neuropsychopharmacol Biol Psychiatry,23,941-949,1999)。
本公开还涉及包含表面修饰的脂质体的组合物的用途,所述脂质体含有聚(乙二醇)(“PEG”)脂质(PEG-修饰的,支化的和非支化的或其组合,或长循环脂质体或隐形脂质体)。本公开的寡聚体缀合物还可包含各种分子量的共价连接的PEG分子。这些制剂提供了增加靶组织中药物积累的方法。这类药物载体通过单核吞噬细胞系统(MPS或RES)抵抗调理和消除,从而使包封药物的血液循环时间更长并且组织暴露增加(Lasic等人,Chem.Rev.1995,95,2601-2627;Ishiwata等人,Chem.Pharm.Bull.1995,43,1005-1011)。已经显示这种脂质体在肿瘤中选择性地积累,可能是通过外渗和在新血管化的靶组织中捕获(Lasic等人,Science 1995,267,1275-1276;Oku等人,1995,Biochim.Biophys.Acta,1238,86-90)。长循环脂质体增强DNA和RNA的药代动力学和药效学,特别是与已知在MPS组织中积累的常规阳离子脂质体相比(Liu等人,J.Biol.Chem.1995,42,24864-24870;Choi等人,国际PCT公开号WO 96/10391;Ansell等人,国际PCT公开号WO 96/10390;Holland等人,国际PCT公开号WO 96/10392)。与阳离子脂质体相比,长循环脂质体还可以更大程度地保护药物免受核酸酶降解,这是基于它们避免在代谢侵袭性MPS组织例如肝脏和脾脏中积累的能力。
在进一步的实施方式中,本公开包括制备用于递送的反义寡聚体缀合物药物组合物,如美国专利号6,692,911;7,163,695和7,070,807中所述。在这方面,在一个实施方式中,本公开提供了本公开的反义寡聚体缀合物,其包含单独的赖氨酸和组氨酸(HK)的共聚物(如美国专利号7,163,695;7,070,807和6,692,911中所述),或与PEG(例如支链或非支链PEG或两者的混合物)组合,与PEG和靶向部分或任何与交联剂组合的前述物质组合。在某些实施方式中,本公开提供了包含葡糖酸修饰的多组氨酸或葡糖酸化的多组氨酸/转铁蛋白-多聚赖氨酸的药物组合物中的反义寡聚体缀合物。本领域技术人员还将认识到,具有与His和Lys相似性质的氨基酸可在组合物中被取代。
润湿剂,乳化剂和润滑剂(例如十二烷基硫酸钠和硬脂酸镁),着色剂,脱模剂,包衣剂,甜味剂,调味剂,芳香剂,防腐剂和抗氧化剂也可以存在于组合物中。
药学上可接受的抗氧化剂的实例包括:(1)水溶性抗氧化剂,例如抗坏血酸,半胱氨酸盐酸盐,硫酸氢钠,偏亚硫酸氢钠和亚硫酸钠等;(2)油溶性抗氧化剂,例如抗坏血酸棕榈酸酯,丁基化羟基苯甲醚(BHA),丁基化羟基甲苯(BHT),卵磷脂,没食子酸丙酯和α-生育酚等;(3)金属螯合剂,例如柠檬酸,乙二胺四乙酸(EDTA),山梨糖醇,酒石酸和磷酸等。
本公开的制剂包括适合口服,鼻腔,局部(包括口腔和舌下),直肠,阴道和/或肠胃外施用的制剂。制剂可以方便地以单位剂型存在,并且可以通过药学领域熟知的任何方法制备。可以与载体材料组合以产生单一剂型的活性成分的量将根据所治疗的受试者和特定施用方式而变化。可以与载体材料组合以产生单一剂型的活性成分的量通常是产生治疗效果的活性成分的量。通常,在百分之百中,该量为活性成分的约0.1%至约99%,优选约5%至约70%,最优选约10%至约30%。
在某些实施方式中,本公开的制剂包含选自环糊精,纤维素,脂质体,胶束形成剂(例如胆汁酸)和聚合物载体(例如聚酯和聚酸酐)的赋形剂;和本公开的反义寡聚体缀合物。在一个实施方式中,制剂的反义寡聚体缀合物是根据式(III)。在某些实施方式中,前述制剂使得本公开的反义寡聚体缀合物是口服生物可利用的。
制备这些制剂或药物组合物的方法包括使本公开的反义寡聚体缀合物与载体和任选的一种或多种辅助成分结合的步骤。通常,通过将本公开的反义寡聚体缀合物与液体载体或细碎的固体载体或两者均匀且紧密地结合,然后如果需要,使产物成形,以制备制剂。
适于口服施用的本公开的制剂可以是胶囊,扁囊剂,丸剂,片剂,锭剂(使用调味基础,通常是蔗糖和阿拉伯胶或黄蓍胶),粉末,颗粒或作为水性或非水性液体的溶液或悬浮液的形式,或作为水包油或油包水液体乳液,或作为酏剂或糖浆,或作为锭剂(使用惰性碱,例如明胶和甘油,或蔗糖和阿拉伯胶)和/或作为口腔清洗剂等,各自含有预定量的本公开反义寡聚体缀合物作为活性成分。本公开的反义寡聚体缀合物也可以以大丸剂,药糖剂或糊剂形式施用。
在本公开的用于口服施用的固体剂型(胶囊,片剂,丸剂,糖衣丸,粉末,颗粒,小片等)中,活性成分可以与一种或多种药学上可接受的载体混合,例如柠檬酸钠或磷酸二钠,和/或以下任一种:(1)填充剂或增量剂,例如淀粉,乳糖,蔗糖,葡萄糖,甘露糖醇和/或硅酸;(2)粘合剂,例如羧甲基纤维素,藻酸盐,明胶,聚乙烯吡咯烷酮,蔗糖和/或阿拉伯胶;(3)保湿剂,例如甘油;(4)崩解剂,例如琼脂,碳酸钙,马铃薯或木薯淀粉,海藻酸,某些硅酸盐和碳酸钠;(5)溶液缓凝剂,例如石蜡;(6)吸收促进剂,例如季铵化合物和表面活性剂,例如泊洛沙姆和十二烷基硫酸钠;(7)润湿剂,例如鲸蜡醇,单硬脂酸甘油酯和非离子表面活性剂;(8)吸收剂,例如高岭土和膨润土;(9)润滑剂,例如滑石,硬脂酸钙,硬脂酸镁,固体聚乙二醇,十二烷基硫酸钠,硬脂酸锌,硬脂酸钠,硬脂酸及其混合物;(10)着色剂;(11)控释剂例如交聚维酮或乙基纤维素。在胶囊,片剂和丸剂的情况下,药物组合物还可包含缓冲剂。类似类型的固体药物组合物也可用作软和硬壳明胶胶囊中的填充剂,使用诸如乳糖或乳糖等赋形剂,以及高分子量聚乙二醇等。
片剂可以通过压缩或模塑制备,任选地含有一种或多种辅助成分。可以使用粘合剂(例如明胶或羟丙基甲基纤维素),润滑剂,惰性稀释剂,防腐剂,崩解剂(例如羟基乙酸淀粉钠或交联羧甲基纤维素钠),表面活性剂或分散剂制备压缩片剂。模制片剂可以通过在合适的机器中模制用惰性液体稀释剂润湿的粉末化合物的混合物来制备。
本公开的药物组合物的片剂和其它固体剂型,例如糖衣丸,胶囊,丸剂和颗粒,可任选地用涂层和外壳刻痕或制备,例如药学制剂领域中熟知的肠溶包衣和其它包衣。它们也可以配制成使其中的活性成分缓慢或受控释放,例如,使用不同比例的羟丙基甲基纤维素以提供所需的释放曲线,其它聚合物基质,脂质体和/或微球。它们可以配制成快速释放,例如冷冻干燥。它们可以通过例如通过细菌截留过滤器过滤,或通过掺入无菌固体药物组合物形式的灭菌剂来灭菌,所述灭菌剂可以在使用前立即溶解在无菌水或一些其它无菌可注射介质中。这些药物组合物还可以任选地含有遮光剂,并且可以是仅在肠胃道的某一部分中或优选以延迟的方式释放活性成分的组合物。可以使用的包埋组合物的实例包括聚合物质和蜡。如果合适,活性成分也可以是一种或多种上述赋形剂的微胶囊形式。
用于口服施用本公开反义寡聚体缀合物的液体剂型包括药学上可接受的乳液,微乳液,溶液,悬浮液,糖浆和酏剂。除活性成分外,液体剂型可含有本领域常用的惰性稀释剂,例如水或其它溶剂,增溶剂和乳化剂,例如乙醇,异丙醇,碳酸乙酯,乙酸乙酯,苯甲醇,苯甲酸苄酯,丙二醇,1,3-丁二醇,油(特别是棉籽,花生,玉米,胚芽,橄榄,蓖麻和芝麻油),甘油,四氢呋喃醇,聚乙二醇和脱水山梨糖醇的脂肪酸酯,及其混合物。
除惰性稀释剂外,口服药物组合物还可包括佐剂,如润湿剂,乳化剂和悬浮剂,甜味剂,调味剂,着色剂,芳香剂和防腐剂。
除活性化合物外,悬浮液可含有悬浮剂,例如乙氧基化异硬脂醇,聚氧乙烯山梨糖醇和脱水山梨糖醇酯,微晶纤维素,偏氢氧化铝,膨润土,琼脂和黄蓍胶,及其混合物。
用于直肠或阴道施用的制剂可以作为栓剂提供,其可以通过将一种或多种本公开的化合物与一种或多种合适的非刺激性赋形剂或载体混合来制备,所述赋形剂或载体包括例如可可脂,聚乙二醇,栓剂蜡或水杨酸盐,在室温下为固体,但在体温下为液体,因此会在直肠或阴道腔内融化并释放出活性化合物。
用于局部或透皮施用本文提供的寡聚体的制剂或剂型包括粉末,喷雾剂,软膏,糊剂,乳膏,洗剂,凝胶,溶液,贴剂和吸入剂。活性寡聚体缀合物可以在无菌条件下与药学上可接受的载体混合,并与可能需要的任何防腐剂,缓冲剂或推进剂混合。除了本公开的活性化合物之外,软膏,糊剂,乳膏和凝胶可以含有赋形剂,例如动物和植物脂肪,油,蜡,石蜡,淀粉,黄蓍胶,纤维素衍生物,聚乙二醇,硅氧烷,膨润土,硅酸,滑石和氧化锌,或其混合物。
除本公开的反义寡聚体缀合物外,粉剂和喷雾剂还可含有赋形剂,例如乳糖,滑石,硅酸,氢氧化铝,硅酸钙和聚酰胺粉末,或这些物质的混合物。喷雾剂可另外含有常规推进剂,例如氯氟烃和挥发性的未取代烃,例如丁烷和丙烷。
透皮贴剂具有额外的优点,即向身体提供本公开的反义寡聚体缀合物的受控递送。这种剂型可以通过将寡聚体溶解或分散在适当的介质中来制备。吸收促进剂也可用于增加药剂在皮肤上的通量。除了本领域已知的其它方法之外,可以通过提供速率控制膜或将试剂分散在聚合物基质或凝胶中来控制这种通量的速率。
适用于肠胃外施用的药物组合物可包含一种或多种本公开的反义寡聚体缀合物与一种或多种药学上可接受的无菌等渗水溶液或非水溶液,分散液,悬浮液或乳液,或可重构成无菌可注射溶液或分散液的无菌粉末的组合,在使用之前,其可含有糖,醇,抗氧化剂,缓冲剂,抑菌剂,溶质,其使制剂与预期接受者的血液或悬浮剂或增稠剂等渗。可用于本公开的药物组合物中的合适的水性和非水性载体的实例包括水,乙醇,多元醇(例如甘油,丙二醇和聚乙二醇等),及其合适的混合物,植物油,例如橄榄油和可注射的有机酯,如油酸乙酯。例如,通过使用包衣材料如卵磷脂,通过在分散体的情况下保持所需的粒度,以及通过使用表面活性剂,可以保持适当的流动性。在一个实施方式中,药物组合物的反义寡聚体缀合物是根据式(III)。
这些药物组合物还可含有佐剂,如防腐剂,润湿剂,乳化剂和分散剂。通过包含各种抗细菌剂和抗真菌剂,例如对羟基苯甲酸酯,氯丁醇和苯酚山梨酸等,可以确保防止微生物对本公开寡聚体缀合物的作用。还可能需要在组合物中包含等渗剂,例如糖和氯化钠等。此外,可以通过包含延迟吸收的试剂如单硬脂酸铝和明胶来延长可注射药物形式的吸收。
在某些情况下,为了延长药物的作用,希望减慢皮下或肌内注射药物的吸收。这可以通过使用本领域已知的其它方法,使用水溶性差的结晶或无定形材料的液体悬浮液来实现。然后,药物的吸收速率取决于其溶解速率,而溶解速率又取决于晶体大小和晶形。或者,通过将药物溶解或悬浮在油性载体中来实现肠胃外施用的药物形式的延迟吸收。
可注射的储库形式可以通过在可生物降解的聚合物如聚丙交酯-聚乙交酯中形成本公开的寡聚体缀合物的微囊基质来制备。取决于寡聚体与聚合物的比例,以及所用特定聚合物的性质,可以控制寡聚体的释放速率。其它可生物降解的聚合物的实例包括聚(原酸酯)和聚(酸酐)。还可以通过将药物包埋在与身体组织相容的脂质体或微乳液中来制备储库可注射制剂。
当本公开的反义寡聚体缀合物作为药物施用于人和动物时,它们可以按本身给予或作为含有例如0.1-99%(更优选10-30%)反义寡聚体缀合物与药学上可接受的载体组合的药物组合物给予。
如上所述,本公开的制剂或制品可以口服,肠胃外,局部或直肠施用。它们通常以适合于每种施用途径的形式给出。例如,它们以片剂或胶囊形式通过注射,吸入,眼用洗剂,软膏,栓剂等施用,通过注射,输注或吸入施用;通过乳液或软膏局部施用;和通过栓剂直肠施用。
无论选择何种施用途径,可以通过本领域技术人员已知的常规方法将本公开的反义寡聚体缀合物(可以以合适的水合形式使用)和/或本公开的药物组合物配制成药学上可接受的剂型。可以改变本公开的药物组合物中活性成分的实际剂量水平,以便获得有效实现特定患者、组合物和施用方式的所需治疗反应的活性成分的量,而不是对患者不可接受地有毒。
所选择的剂量水平将取决于多种因素,包括所用本公开的特定反义寡聚体缀合物,或其酯、盐或酰胺的活性,施用途径,施用时间,所用特定寡聚体的排泄或代谢的速率,吸收的速度和程度,治疗的持续时间,与所用特定寡聚体组合使用的其它药物、化合物和/或材料,年龄,性别,体重,病症,一般健康状况和待治疗患者的既往病史,以及医学领域众所周知的因素。
具有本领域普通技能的医生或兽医可以容易地确定和开出所需药物组合物的有效量。例如,医生或兽医可以以低于实现所需治疗效果所需的水平开始药物组合物中使用的本公开反义寡聚体缀合物的剂量,并逐渐增加剂量直至达到所需效果。通常,本公开反义寡聚体缀合物的合适日剂量是反义寡聚体缀合物的量,其是有效产生治疗效果的最低剂量。这种有效剂量通常取决于本文所述的因素。通常,当用于所示效果时,本公开反义寡聚体缀合物的口服,静脉内,脑室内和皮下剂量对于患者而言在每天每千克体重约0.0001至约100mg的范围内。
在一些实施方式中,本公开的反义寡聚体缀合物以通常约10-160mg/kg或20-160mg/kg的剂量施用。在某些情况下,可能需要大于160mg/kg的剂量。在一些实施方式中,静脉注射施用的剂量为约0.5mg至160mg/kg。在一些实施方式中,反义寡聚体缀合物以约0.5mg/kg,1mg/kg,2mg/kg,3mg/kg,4mg/kg,5mg/kg,6mg/kg,7mg/kg,8mg/kg,9mg/kg或10mg/kg的剂量施用。在一些实施方式中,反义寡聚体缀合物以约10mg/kg,11mg/kg,12mg/kg,15mg/kg,18mg/kg,20mg/kg,21mg/kg,25mg/kg,26mg/kg,27mg/kg,28mg/kg,29mg/kg,30mg/kg,31mg/kg,32mg/kg,33mg/kg,34mg/kg,35mg/kg,36mg/kg,37mg/kg,38mg/kg,39mg/kg,40mg/kg,41mg/kg,42mg/kg,43mg/kg,44mg/kg,45mg/kg,46mg/kg,47mg/kg,48mg/kg,49mg/kg,50mg/kg,51mg/kg,52mg/kg,53mg/kg,54mg/kg,55mg/kg,56mg/kg,57mg/kg,58mg/kg,59mg/kg,60mg/kg,65mg/kg,70mg/kg,75mg/kg,80mg/kg,85mg/kg,90mg/kg,95mg/kg,100mg/kg,105mg/kg,110mg/kg,115mg/kg,120mg/kg,125mg/kg,130mg/kg,135mg/kg,140mg/kg,145mg/kg,150mg/kg,155mg/kg,160mg/kg的剂量施用,包括其间的所有整数。在一些实施方式中,寡聚体以10mg/kg施用。在一些实施方式中,寡聚体以20mg/kg施用。在一些实施方式中,寡聚体以30mg/kg施用。在一些实施方式中,寡聚体以40mg/kg施用。在一些实施方式中,寡聚体以60mg/kg施用。在一些实施方式中,寡聚体以80mg/kg施用。在一些实施方式中,寡聚体以160mg/kg施用。在一些实施方式中,寡聚体以50mg/kg施用。
在一些实施方式中,式(III)的反义寡聚体缀合物以通常约10-160mg/kg或20-160mg/kg的剂量施用。在一些实施方式中,式(III)的反义寡聚体缀合物的静脉注射施用的剂量为约0.5mg至160mg/kg。在一些实施方式中,式(III)的反义寡聚体缀合物以约0.5mg/kg,1mg/kg,2mg/kg,3mg/kg,4mg/kg,5mg/kg,6mg/kg,7mg/kg,8mg/kg,9mg/kg或10mg/kg的剂量施用。在一些实施方式中,式(III)的反义寡聚体缀合物以约10mg/kg,11mg/kg,12mg/kg,15mg/kg,18mg/kg,20mg/kg,21mg/kg,25mg/kg,26mg/kg,27mg/kg,28mg/kg,29mg/kg,30mg/kg,31mg/kg,32mg/kg,33mg/kg,34mg/kg,35mg/kg,36mg/kg,37mg/kg,38mg/kg,39mg/kg,40mg/kg,41mg/kg,42mg/kg,43mg/kg,44mg/kg,45mg/kg,46mg/kg,47mg/kg,48mg/kg,49mg/kg,50mg/kg,51mg/kg,52mg/kg,53mg/kg,54mg/kg,55mg/kg,56mg/kg,57mg/kg,58mg/kg,59mg/kg,60mg/kg,65mg/kg,70mg/kg,75mg/kg,80mg/kg,85mg/kg,90mg/kg,95mg/kg,100mg/kg,105mg/kg,110mg/kg,115mg/kg,120mg/kg,125mg/kg,130mg/kg,135mg/kg,140mg/kg,145mg/kg,150mg/kg,155mg/kg,160mg/kg的剂量施用,包括其间的所有整数。在一些实施方式中,式(III)的反义寡聚体缀合物以10mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以20mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以30mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以40mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以60mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以80mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以160mg/kg施用。在一些实施方式中,式(III)的反义寡聚体缀合物以50mg/kg施用。
如果需要,活性化合物的有效日剂量可以作为两个,三个,四个,五个,六个或更多个亚剂量施用,所述亚剂量在一天中以适当的间隔分开施用,任选地以单位剂型施用。在某些情况下,施用是每天一次施用。在某些实施方式中,施用是根据需要每2,3,4,5,6,7,8,9,10,11,12,13,14天,或每1,2,3,4,5,6,7,8,9,10,11,12周,或每1,2,3,4,5,6,7,8,9,10,11,12个月一次或多次施用,以保持所需功能性抗肌肉萎缩蛋白的表达。在某些实施方式中,施用是每两周一次或多次施用。在一些实施方式中,施用是每两周一次施用。在各种实施方式中,施用是每月一次或多次施用。在某些实施方式中,施用是每月一次施用。
在各种实施方式中,反义寡聚体缀合物以10mg/kg每周施用。在各种实施方式中,反义寡聚体缀合物以20mg/kg每周施用。在各种实施方式中,反义寡聚体缀合物以30mg/kg每周施用。在各种实施方式中,反义寡聚体缀合物以40mg/kg每周施用。在一些实施方式中,反义寡聚体缀合物以60mg/kg每周施用。在一些实施方式中,反义寡聚体缀合物以80mg/kg每周施用。在一些实施方式中,反义寡聚体缀合物以100mg/kg每周施用。在一些实施方式中,反义寡聚体缀合物以160mg/kg每周施用。如本文所用,每周被理解为具有每一个周的本领域接受的含义。
在各种实施方式中,反义寡聚体缀合物以10mg/kg每两周施用。在各种实施方式中,反义寡聚体缀合物以20mg/kg每两周施用。在各种实施方式中,反义寡聚体缀合物以30mg/kg每两周施用。在各种实施方式中,反义寡聚体缀合物以40mg/kg每两周施用。在一些实施方式中,反义寡聚体缀合物以60mg/kg每两周施用。在一些实施方式中,反义寡聚体缀合物以80mg/kg每两周施用。在一些实施方式中,反义寡聚体缀合物以100mg/kg每两周施用。在一些实施方式中,反义寡聚体缀合物以160mg/kg每两周施用。如本文所用,每两周被理解为具有每两个周的本领域接受的含义。
在各种实施方式中,反义寡聚体缀合物以10mg/kg每三周施用。在各种实施方式中,反义寡聚体缀合物以20mg/kg每三周施用。在各种实施方式中,反义寡聚体缀合物以30mg/kg每三周施用。在各种实施方式中,反义寡聚体缀合物以40mg/kg每三周施用。在一些实施方式中,反义寡聚体缀合物以60mg/kg每三周施用。在一些实施方式中,反义寡聚体缀合物以80mg/kg每三周施用。在一些实施方式中,反义寡聚体缀合物以100mg/kg每三周施用。在一些实施方式中,反义寡聚体缀合物以160mg/kg每三周施用。如本文所用,每三周被理解为具有每三个周的本领域接受的含义。
在各种实施方式中,反义寡聚体缀合物以10mg/kg每月施用。在各种实施方式中,反义寡聚体缀合物以20mg/kg每月施用。在各种实施方式中,反义寡聚体缀合物以30mg/kg每月施用。在各种实施方式中,反义寡聚体缀合物以40mg/kg每月施用。在一些实施方式中,反义寡聚体缀合物以60mg/kg每月施用。在一些实施方式中,反义寡聚体缀合物以80mg/kg每月施用。在一些实施方式中,反义寡聚体缀合物以100mg/kg每月施用。在一些实施方式中,反义寡聚体缀合物以160mg/kg每月施用。如本文所用,每月被理解为具有每一个月的本领域接受的含义。
如本领域所理解的,每周,每两周,每三周或每月施用可以是如本文所讨论的一个或多个施用或亚剂量。
本文所述核酸分子和反义寡聚体缀合物可通过本领域熟悉的各种方法施用于细胞,包括但不限于脂质体包封,离子电渗疗法,或掺入其它载体,如水凝胶,环糊精,可生物降解的纳米胶囊和生物粘附性微球,如本文所述和本领域已知的。在某些实施方式中,微乳化技术可用于改善亲脂性(水不溶性)药剂的生物利用度。实例包括Trimetrine(Dordunoo,SK等人,Drug Development and Industrial Pharmacy,17(12),1685-1713,1991和REV5901(Sheen,PC等人,J Pharm Sci 80(7),712-714,1991)。除了其它益处之外,微乳化通过优先将吸收引导至淋巴系统而不是循环系统来提供增强的生物利用度,循环系统因此绕过肝脏,并防止肝胆循环中化合物的破坏。
在公开的一个方面,制剂含有由本文提供的寡聚体和至少一种两亲性载体形成的胶束,其中胶束的平均直径小于约100nm。更优选的实施方式提供平均直径小于约50nm的胶束,甚至更优选的实施方式提供平均直径小于约30nm,或甚至小于约20nm的胶束。
虽然考虑了所有合适的两亲性载体,但目前优选的载体通常是具有通常认可的安全(GRAS)状态,并且可以溶解本公开的反义寡聚体缀合物并在溶液与复杂的水相(例如在人类胃肠道中发现的水相)发生接触的后期微乳化它们的那些。通常,满足这些要求的两亲性成分具有2-20的HLB(亲水性至亲脂性平衡)值,并且它们的结构含有C-6至C-20范围内的直链脂族基团。实例是聚乙二醇化脂肪酸甘油酯和聚乙二醇。
两亲性载体的实例包括饱和和单不饱和的聚乙二醇化脂肪酸甘油酯,例如由完全或部分氢化的各种植物油获得的那些。这些油可有利地由三-、二-和单-脂肪酸甘油酯和相应脂肪酸的二-和单-聚(乙二醇)酯组成,特别优选的脂肪酸组合物包括癸酸4-10%,癸酸3-9%,月桂酸40-50%,肉豆蔻酸14-24%,棕榈酸4-14%和硬脂酸5-15%。另一类有用的两亲载体包括部分酯化的脱水山梨糖醇和/或山梨糖醇,饱和或单不饱和脂肪酸(SPAN-系列)或相应的乙氧基化类似物(TWEEN-系列)。
市售的两亲性载体可能是特别有用的,包括Gelucire系列,Labrafil,Labrasol或Lauroglycol(均由Gattefosse Corporation,Saint Priest,France制造和分销),PEG-单油酸酯,PEG-二油酸酯,PEG-单-月桂酸酯和二-月桂酸酯,卵磷脂,聚山梨醇酯80等(由美国和全球的许多公司生产和销售)。
在某些实施方式中,递送可以通过使用脂质体,纳米胶囊,微粒,微球,脂质颗粒和囊泡等进行,以将本公开的药物组合物引入合适的宿主细胞中。特别地,本公开的药物组合物可以配制成包封在脂质颗粒,脂质体,囊泡,纳米球或纳米颗粒等中以用于递送。可以使用已知和常规技术进行这种递送载体的配制和使用。
适用于本公开的亲水性聚合物是易溶于水的,可共价连接到形成囊泡的脂质,并且在体内耐受而没有毒性作用(即是生物相容的)的那些。合适的聚合物包括聚(乙二醇)(PEG),聚乳酸(也称为聚丙交酯),聚乙醇酸(也称为聚乙交酯),聚乳酸-聚乙醇酸共聚物和聚乙烯醇。在某些实施方式中,聚合物的重均分子量为约100或120道尔顿至约5000或10000道尔顿,或约300道尔顿至约5000道尔顿。在其它实施方式中,聚合物是分子量为约100至约5000道尔顿的聚乙二醇,或分子量为约300至约5000道尔顿的聚(乙二醇)。在某些实施方式中,聚合物是重均分子量为750道尔顿的聚(乙二醇),例如PEG(750)。聚合物也可以由其中的单体数量来定义;本公开的优选实施方式使用至少约三种单体的聚合物,例如由三种重均分子量为约150道尔顿的单体组成的PEG聚合物。
可适用于本公开的其它亲水性聚合物包括聚乙烯吡咯烷酮,聚甲恶唑啉,聚乙基恶唑啉,聚羟丙基甲基丙烯酰胺,聚甲基丙烯酰胺,聚二甲基丙烯酰胺和衍生的纤维素,如羟甲基纤维素或羟乙基纤维素。
在某些实施方式中,本公开的制剂包含选自由聚酰胺,聚碳酸酯,聚亚烷基,丙烯酸和甲基丙烯酸酯的聚合物,聚乙烯基聚合物,聚乙交酯,聚硅氧烷,聚氨酯及其共聚物,纤维素,聚丙烯,聚乙烯,聚苯乙烯,乳酸和乙醇酸聚合物,聚酸酐,聚(邻)酯,聚(丁酸),聚(戊酸),聚(丙交酯-己内酯),多糖,蛋白质,聚透明质酸,聚氰基丙烯酸酯,及其共混物,混合物或共聚物组成的组中的生物相容性聚合物。
环糊精是环状低聚糖,由6,7或8个葡萄糖单元组成,分别用希腊字母α,β或γ表示。葡萄糖单元通过α-1,4-糖苷键连接。由于糖单元的椅子构象,所有仲羟基(在C-2,C-3处)位于环的一侧,而C-6处的所有伯羟基位于另一侧。因此,外表面是亲水的,使环糊精具有水溶性。相反,环糊精的空腔是疏水的,因为它们通过原子C-3和C-5的氢以及类似醚的氧排列。这些基质允许与各种相对疏水的化合物络合,包括例如类固醇化合物如17α-雌二醇(参见,例如,van Uden等人,Plant Cell Tiss.Org.Cult.38:1-3-113(1994))。络合通过范德华相互作用和氢键形成发生。关于环糊精化学的综述,参见Wenz,Agnew.Chem.Int.Ed.Engl.,33:803-822(1994)。
环糊精衍生物的物理化学性质很大程度上取决于取代的种类和程度。例如,它们在水中的溶解度范围从不溶性(例如,三乙酰基-β-环糊精)到147%可溶性(w/v)(G-2-β-环糊精)。此外,它们可溶于许多有机溶剂中。环糊精的性质使得能够通过增加或降低其溶解度来控制各种制剂组分的溶解度。
已经描述了许多环糊精及其制备方法。例如,Parmeter(I)等人(美国专利号3,453,259)和Gramera等人(美国专利号3,459,731)描述了电中性环糊精。其它衍生物包括具有阳离子性质的环糊精[Parmeter(II),美国专利号3,453,257],不溶性交联环糊精(Solms,美国专利号3,420,788)和具有阴离子性质的环糊精[Parmeter(III),美国专利号3,426,011]。在具有阴离子性质的环糊精衍生物中,羧酸,亚磷酸,次膦酸,膦酸,磷酸,硫代膦酸,硫代亚磺酸和磺酸已被附加到母体环糊精上[参见Parmeter(III),同上]。此外,Stella等人(美国专利号5,134,127)已经描述了磺烷基醚环糊精衍生物。
脂质体由至少一个包封含水内部隔室的脂质双层膜组成。脂质体可以通过膜类型和大小来表征。小单层囊泡(SUV)具有单个膜,通常直径在0.02和0.05μm之间;大单层囊泡(LUVS)通常大于0.05μm。寡层大囊泡和多层囊泡具有多个(通常是同心的)膜层,并且通常大于0.1μm。具有几个非同心膜的脂质体,即几个较小囊泡包含在较大囊泡内,被称为多泡囊泡。
本公开的一个方面涉及包含含有本公开的反义寡聚体缀合物的脂质体的制剂,其中配制脂质体膜以提供具有增加的携带能力的脂质体。或者或另外,本公开的反义寡聚体缀合物可包含在脂质体的脂质体双层内或吸附在脂质体的脂质体双层上。本公开的反义寡聚体缀合物可以与脂质表面活性剂聚集并且携带在脂质体的内部空间内;在这些情况下,配制脂质体膜以抵抗活性剂-表面活性剂聚集体的破坏作用。
根据本公开的一个实施方式,脂质体的脂质双层包含用聚(乙二醇)(PEG)衍生的脂质,使得PEG链从脂质双层的内表面延伸到由脂质体包封的内部空间中,并且延伸从脂质双层的外部进入周围环境。
包含在本公开的脂质体内的活性剂是溶解形式。根据本发明,表面活性剂和活性剂(例如含有目标活性剂的乳液或胶束)的聚集体可以包埋在脂质体的内部空间内。表面活性剂用于分散和溶解活性剂,并且可以选自任何合适的脂族,脂环族或芳族表面活性剂,包括但不限于具有不同链长(例如约C14至约C20)的生物相容性溶血磷脂酰胆碱(LPG)。聚合物衍生的脂质如PEG-脂质也可用于胶束形成,因为它们将起到抑制胶束/膜融合的作用,并且因为向表面活性剂分子中加入聚合物会降低表面活性剂的CMC并有助于胶束形成。优选的是具有微摩尔范围的CMO的表面活性剂;较高CMC表面活性剂可用于制备包埋在本公开的脂质体内的胶束。
根据本公开的脂质体可以通过本领域已知的多种技术中的任一种来制备。参见例如美国专利号第4,235,871;公布的PCT申请WO 96/14057;New RRC,Liposomes:Apractical approach,IRL Press,Oxford(1990),第33-104页;和Lasic DD,Liposomesfrom physics to applications,Elsevier Science Publishers BV,Amsterdam,1993。例如,本公开的脂质体可以通过将用亲水聚合物衍生的脂质扩散到预先形成的脂质体中来制备,例如通过将预先形成的脂质体暴露于由脂质接枝的聚合物组成的胶束,其脂质浓度对应于脂质体中所需的衍生化脂质的最终摩尔百分比。含有亲水性聚合物的脂质体也可以通过本领域已知的均质化,脂质场水合或挤出技术形成。
在另一个示例性制剂程序中,首先通过超声处理将活性剂分散在溶血磷脂酰胆碱或其它低CMC表面活性剂(包括聚合物接枝的脂质)中,其容易溶解疏水分子。然后将所得的活性剂胶束悬浮液用于再水合含有合适摩尔百分比的聚合物接枝的脂质或胆固醇的干燥脂质样品。然后使用本领域已知的挤出技术将脂质和活性剂悬浮液形成脂质体,并通过标准柱分离将所得脂质体与未包封的溶液分离。
在本公开的一个方面,制备脂质体以在选定的尺寸范围内具有基本上均匀的尺寸。一种有效的定尺寸方法包括将脂质体的水性悬浮液挤出通过一系列具有选定的均匀孔径的聚碳酸酯膜;膜的孔径大致对应于通过该膜挤出产生的最大尺寸的脂质体。参见例如美国专利号4,737,323(1988年4月12日)。在某些实施方式中,可以使用诸如的试剂将多核苷酸或蛋白质引入细胞中。
本公开制剂的释放特征取决于包封材料,包封药物的浓度和释放调节剂的存在。例如,可以将释放操作为pH依赖性,例如,使用仅在低pH下释放的pH敏感性涂层,如在胃中,或在较高的pH下,如在肠中。肠溶包衣可用于防止在通过胃之前发生释放。包封在不同材料中的多种包衣或氨腈的混合物可用于在胃中获得初始释放,随后在肠中释放。还可以通过包含盐或成孔剂来控制释放,所述盐或成孔剂可以通过从胶囊扩散来增加水的摄取或释放。改变药物溶解度的赋形剂也可用于控制释放速率。还可以掺入增强基质降解或从基质中释放的试剂。它们可以加入到药物中,作为单独的相加入(即作为颗粒),或者可以根据化合物共溶在聚合物相中。在大多数情况下,该量应在0.1%至30%(w/w聚合物)之间。降解增强剂的种类包括无机盐如硫酸铵和氯化铵,有机酸如柠檬酸,苯甲酸和抗坏血酸,无机碱如碳酸钠,碳酸钾,碳酸钙,碳酸锌和氢氧化锌,和有机碱如硫酸鱼精蛋白,精胺,胆碱,乙醇胺,二乙醇胺和三乙醇胺,以及表面活性剂如将微观结构添加到基质中的孔形成剂(即水溶性化合物,例如无机盐和糖)作为颗粒加入。该范围通常在1%至30%(w/w聚合物)之间。
还可以通过改变颗粒在肠中的停留时间来控制摄取。例如,这可以通过用粘膜粘合剂聚合物涂覆或选择包封材料来实现。实例包括具有游离羧基的大多数聚合物,例如脱乙酰壳多糖,纤维素,尤其是聚丙烯酸酯(如本文所用,聚丙烯酸酯是指包括丙烯酸酯基团和改性丙烯酸酯基团的聚合物,例如氰基丙烯酸酯和甲基丙烯酸酯)。
反义寡聚体缀合物可以配制成包含在外科手术或医疗装置或植入物内,或者适于通过外科手术或医疗装置或植入物释放。在某些方面,植入物可以用反义寡聚体缀合物涂覆或以其它方式处理。例如,水凝胶或其它聚合物,例如生物相容的和/或可生物降解的聚合物,可用于用本公开的药物组合物涂覆植入物(即通过使用水凝胶或其它聚合物,该组合物可适于与医疗装置一起使用)。用于用药剂涂覆医疗装置的聚合物和共聚物在本领域中是众所周知的。植入物的实例包括但不限于支架,药物洗脱支架,缝合线,假体,血管导管,透析导管,血管移植物,假体心脏瓣膜,心脏起搏器,植入式心律转复除颤器,IV针,骨固定装置和结构,例如销,螺钉,板和其它装置,以及用于伤口愈合的人造组织基质。
除了本文提供的方法之外,根据本公开使用的反义寡聚体缀合物可以通过与其它药物类似的方式配制用于以任何方便的方式用于人或兽医学中。反义寡聚体缀合物及其相应的制剂可以单独施用或与其它治疗策略组合施用,用于治疗肌肉萎缩症,例如成肌细胞移植,干细胞疗法,氨基糖苷类抗生素的施用,蛋白酶体抑制剂和上调疗法(例如上调抗肌肉萎缩蛋白相关蛋白,一种抗肌肉萎缩蛋白的常染色体旁系同源物)。
在一些实施方式中,另外的治疗剂可以在施用本公开的反义寡聚体缀合物之前,同时或之后施用。例如,反义寡聚体缀合物可以与类固醇和/或抗生素组合施用。在某些实施方式中,将反义寡聚体缀合物施用于患有背景类固醇理论的患者(例如间歇性或慢性/连续背景类固醇治疗)。例如,在一些实施方式中,患者在施用反义寡聚体之前已经用皮质类固醇治疗,并且继续接受类固醇治疗。在一些实施方式中,类固醇是糖皮质激素或泼尼松。
所描述的施用途径仅作为指导,因为熟练的从业者将能够容易地确定任何特定动物和病症的最佳施用途径和任何剂量。已经尝试了多种用于在体外和体内将功能性新遗传物质引入细胞的方法(Friedmann(1989)Science,244:1275-1280)。这些方法包括将待表达的基因整合到修饰的逆转录病毒中(Friedmann(1989)同上;Rosenberg(1991)CancerResearch 51(18),suppl.:5074S-5079S);整合到非逆转录病毒载体(例如腺相关病毒载体)中(Rosenfeld,等人(1992)Cell,68:143-155;Rosenfeld等人(1991)Science,252:431-434);或通过脂质体递送与异源启动子-增强子元件连接的转基因(Friedmann(1989),同上;Brigham等人(1989)Am.J.Med.Sci.,298:278-281;Nabel等人(1990)Science,249:1285-1288;Hazinski等人(1991)Am.J.Resp.Cell Molec.Biol.,4:206-209;以及Wang和Huang(1987)Proc.Natl.Acad.Sci.(USA),84:7851-7855);与配体特异性的、基于阳离子的转运系统相结合(Wu和Wu(1988)J.Biol.Chem.,263:14621-14624)或裸DNA、表达载体的使用(Nabel等人(1990),同上;Wolff等人(1990)Science,247:1465-1468)。将转基因直接注射到组织中仅产生局部表达(Rosenfeld(1992)同上;Rosenfeld等人(1991)同上;Brigham等人(1989)同上;Nabel(1990)同上;和Hazinski等人(1991)同上)。Brigham等人小组(Am.J.Med.Sci.(1989)298:278-281和Clinical Research(1991)39(摘要))已报道了在静脉内或气管内施用DNA脂质体复合物后仅对小鼠肺进行体内转染。人类基因治疗程序的综述文章的一个示例是:Anderson,Science(1992)256:808-813。
在进一步的实施方式中,本公开的药物组合物可另外包含Han等人,Nat.Comms.7,10981(2016)中提供的碳水化合物,其全部内容通过引用并入本文。在一些实施方式中,本公开的药物组合物可包含5%的己糖碳水化合物。例如,本公开的药物组合物可包含5%葡萄糖,5%果糖或5%甘露糖。在某些实施方式中,本公开的药物组合物可包含2.5%葡萄糖和2.5%果糖。在一些实施方式中,本公开的药物组合物可包含选自以下的碳水化合物:以5体积%的量存在的阿拉伯糖,以5体积%的量存在的葡萄糖,以5体积%的量存在的山梨糖醇,以5体积%的量存在的半乳糖,以5体积%的量存在的果糖,以5体积%的量存在的木糖醇,以5体积%的量存在的甘露糖,各自以2.5体积%的量存在的葡萄糖和果糖的组合,以及以5.7体积%的量存在的葡萄糖、以2.86体积%的量存在的果糖和以1.4体积%的量存在的木糖醇的组合。
IV.使用方法
使用外显子跳跃恢复抗肌萎缩蛋白阅读框架
由抗肌肉萎缩蛋白基因的框外突变引起的DMD治疗的潜在治疗方法由称为BMD的较轻微形式的抗肌肉萎缩蛋白病暗示,其由框内突变引起。将框外突变转换为框内突变的能力将假设保留mRNA阅读框架并产生内部缩短但功能性的抗肌肉萎缩蛋白。设计本公开的反义寡聚体缀合物以实现此目的。
PMO与靶向前mRNA序列的杂交干扰前mRNA剪接复合物的形成并从成熟mRNA中删除外显子51。本公开的反义寡聚体缀合物的结构和构象允许与互补序列的序列特异性碱基配对。通过类似的机制,例如eteplirsen设计为跳跃抗肌肉萎缩蛋白前mRNA的外显子51的PMO,允许序列特异性碱基配对抗肌肉萎缩蛋白前mRNA的外显子51中包含的互补序列。
含有全部79个外显子的正常抗肌肉萎缩蛋白mRNA将产生正常的抗肌肉萎缩蛋白。图1中的图片描绘了抗肌肉萎缩蛋白前mRNA和成熟mRNA的一小部分,从外显子47到外显子53。每个外显子的形状描绘了密码子如何在外显子之间分裂;值得注意的是,一个密码子由三个核苷酸组成。矩形外显子以完整密码子开始和结束。箭形外显子以完整的密码子开始,但以分开的密码子结束,仅包含密码子的核苷酸#1。该密码子的核苷酸#2和#3包含在随后的外显子中,其将以人字形开始。
抗肌肉萎缩蛋白mRNA缺失来自抗肌肉萎缩蛋白基因的整个外显子通常导致DMD。图2中的图片说明了一种已知导致DMD的遗传突变(外显子50的缺失)。由于外显子49以完整密码子结束并且外显子51以密码子的第二个核苷酸开始,因此外显子49之后的阅读框架移位,导致框外mRNA读取框架和在突变下游掺入不正确的氨基酸。随后缺乏功能性的C-末端抗肌肉萎缩聚糖结合结构域导致产生不稳定的抗肌肉萎缩蛋白。
Eteplirsen跳跃外显子51以恢复mRNA阅读框架。由于外显子49以完整密码子结束并且外显子52以密码子的第一个核苷酸开始,外显子51的缺失恢复了阅读框架,导致产生内部缩短的抗肌肉萎缩蛋白,其具有完整的抗肌肉萎缩聚糖结合位点,类似于“框内”BMD突变(图3)。
非临床研究支持使用外显子跳跃改善抗肌肉萎缩蛋白mRNA开放阅读框架来改善DMD表型的可行性。在DMD的肌肉萎缩动物模型中的大量研究表明,通过外显子跳跃恢复抗肌肉萎缩蛋白导致肌肉力量和功能的可靠改善(Sharp 2011;Yokota 2009;Wu 2008;Wu2011;Barton-Davis 1999;Goyenvalle 2004;Gregorevic 2006;Yue 2006;Welch 2007;Kawano 2008;Reay 2008;van Putten 2012)。一个引人注目的示例来自一项研究,其中将外显子跳跃(使用PMO)治疗后的抗肌肉萎缩蛋白水平与相同组织中的肌肉功能进行比较。在肌肉萎缩的mdx小鼠中,用小鼠特异性PMO治疗的胫骨前肌(TA)肌肉在应激诱导收缩后保持其最大力容量的约75%,而未治疗的对侧TA肌肉仅保持其最大力容量的约25%(p<0.05)(Sharp2011)。在另一项研究中,3只肌肉萎缩的CXMD狗在2-5个月大时接受外显子跳跃治疗,使用PMO特异性基因突变,每周一次持续5到7周,或每隔一周一次持续22周。在外显子跳跃治疗后,所有3只狗在骨骼肌中表现出广泛的全身抗肌肉萎缩蛋白表达,以及相对于基线保持或改善的行走(15米跑步测试)。相比之下,未经治疗的年龄匹配的CXMD狗在研究过程中显示出行走的显著减少(Yokota,2009)。
在mdx小鼠和在人源化DMD(hDMD)小鼠模型两者中,PMO在等摩尔浓度下具有比硫代磷酸酯更多的外显子跳跃活性,其表达整个人DMD转录物(Heemskirk 2009)。体外实验使用逆转录聚合酶链反应(RT-PCR)和蛋白质印迹(WB)在正常人骨骼肌细胞或DMD患者的肌肉细胞中具有不同的突变,适合于外显子51跳跃鉴定的eteplirsen(PMO)作为强效诱导剂外显子51跳跃。在hDMD小鼠模型(Arechavala-Gomeza 2007)中已经在体内证实了Eteplirsen诱导的外显子51跳跃。
分析与人抗肌肉萎缩蛋白前mRNA的外显子51的靶区域互补并诱导外显子51跳跃的反义寡聚体缀合物的影响的临床结果包括抗肌肉萎缩蛋白阳性纤维百分比(PDPF),六分钟步行试验(6MWT),行走损失(LOA),北极星动态评估(NSAA),肺功能测试(PFT),在没有外部支持的情况下起升能力(从仰卧位),从头抗肌肉萎缩蛋白生产和其它功能测量。
在一些实施方式中,本公开提供了在具有适合于外显子51跳跃的抗肌肉萎缩蛋白基因突变的受试者中产生抗肌肉萎缩蛋白的方法,该方法包括向受试者施用如本文所述的反义寡聚体缀合物或其药学上可接受的盐。在某些实施方式中,本公开提供了用于恢复mRNA阅读框架以在患有杜氏肌肉萎缩症(DMD)的受试者中诱导抗肌肉萎缩蛋白产生的方法,所述受试者具有适合于外显子51跳跃的抗肌肉萎缩蛋白基因突变。蛋白质产生可以通过逆转录聚合酶链反应(RT-PCR),蛋白质印迹分析或免疫组织化学(IHC)来测量。
在一些实施方式中,本公开提供了在有需要的受试者中治疗DMD的方法,其中所述受试者具有适合于外显子51跳跃的抗肌肉萎缩蛋白基因的突变,该方法包括向受试者施用如本文所述的反义寡聚体缀合物或其药学上可接受的盐。在各种实施方式中,通过延迟疾病进展来测量受试者的治疗。在一些实施方式中,通过维持受试者的行走或减少受试者的行走损失来测量受试者的治疗。在一些实施方式中,使用6分钟步行测试(6MWT)测量行走。在某些实施方式中,使用北极星动态评估(NSAA)测量行走。
在各种实施方式中,本公开提供了用于维持患有DMD的受试者的肺功能或减少肺功能损失的方法,其中所述受试者具有适合于外显子51跳跃的DMD基因突变,该方法包括向受试者施用如本文所述的反义寡聚体或缀合物其药学上可接受的盐。在一些实施方式中,肺功能测量为最大呼气压力(MEP)。在某些实施方式中,肺功能测量为最大吸气压力(MIP)。在一些实施方式中,肺功能测量为强迫生命能力(FVC)。
在进一步的实施方式中,本发明的药物组合物可以与本公开的方法中的碳水化合物共同施用,或者在相同的制剂中或者是单独的制剂,如Han等人,Nat.Comms.7,10981(2016)中提供的,其全部内容通过引用并入本文。在一些实施方式中,本公开的药物组合物可与5%的己糖碳水化合物共同施用。例如,本公开的药物组合物可以与5%葡萄糖,5%果糖或5%甘露糖共同施用。在某些实施方式中,本公开的药物组合物可与2.5%葡萄糖和2.5%果糖共同施用。在一些实施方式中,本公开的药物组合物可与选自以下的碳水化合物共同施用:以5体积%的量存在的阿拉伯糖,以5体积%的量存在的葡萄糖,以5体积%的量存在的山梨糖醇,以5体积%的量存在的半乳糖,以5体积%的量存在的果糖,以5体积%的量存在的木糖醇,以5体积%的量存在的甘露糖,各自以2.5体积%的量存在的葡萄糖和果糖的组合,以及以5.7体积%的量存在的葡萄糖、以2.86体积%的量存在的果糖和以1.4体积%的量存在的木糖醇的组合。
在各种实施方式中,本公开的反义寡聚体缀合物与治疗有效量的非甾体抗炎化合物共同施用。在一些实施方式中,非甾体抗炎化合物是NF-κB抑制剂。例如,在一些实施方式中,NF-κB抑制剂可以是CAT-1004或其药学上可接受的盐。在各种实施方式中,NF-κB抑制剂可以是水杨酸盐和DHA的缀合物。在一些实施方式中,NF-kB抑制剂是CAT-1041或其药学上可接受的盐。在某些实施方式中,NF-κB抑制剂是水杨酸盐和EPA的缀合物。在各种实施方式中,NF-κB抑制剂是或其药学上可接受的盐。
在一些实施方式中,非甾体抗炎化合物是TGF-β抑制剂。例如,在某些实施方式中,TGF-β抑制剂是HT-100。
在某些实施方式中,描述了如本文所述的反义寡聚体缀合物,其用于治疗。在某些实施方式中,描述了如本文所述的反义寡聚体缀合物,其用于治疗杜氏肌营养不良症。在某些实施方式中,描述了如本文所述的反义寡聚体缀合物,其用于制备用于治疗的药物。在某些实施方式中,描述了如本文所述的反义寡聚体缀合物,其用于制备用于治疗杜氏肌营养不良症的药物。
V.试剂盒
本公开还提供了用于治疗患有遗传疾病的患者的试剂盒,该试剂盒包含至少一种反义分子(例如包含SEQ ID NO:1中所示的反义寡聚体的反义寡聚体缀合物),包装在合适的容器中,及其使用说明书。试剂盒还可以含有外周试剂,例如缓冲剂,稳定剂等。本领域普通技术人员应该理解,上述方法的应用广泛应用于鉴定适用于治疗许多其它疾病的反义分子。在一个实施方式中,试剂盒包含根据式(III)的反义寡聚体缀合物。
实施例
尽管为了清楚理解的目的已经通过说明和实施例详细地描述了前述公开,但是根据本公开的教导,本领域普通技术人员将容易明白,可以是在不脱离所附权利要求的精神或范围的情况下对其进行某些改变和修改。以下实施例仅以说明的方式提供,而不是作为限制。本领域技术人员将容易地认识到可以改变或修改以产生基本相似结果的各种非关键参数。
材料和方法
细胞和组织培养处理条件
利用分化的人肌细胞(ZenBio,Inc.)测量外显子跳跃。具体地,将成肌细胞(ZenBio,Inc.,SKB-F)在生长培养基(SKB-M;ZenBio,Inc.)中于37℃和5%CO2生长至80-90%汇合。通过用分化培养基(SKM-D;ZenBio,Inc.)替换生长培养基来启动分化。为了测定外显子51跳跃,将1x104个分化的细胞接种在24孔板中,并向每个孔中加入1mL含有各种浓度的PMO或PPMO的分化培养基(SKM-D;ZenBio,Inc.)并孵育96小时。
蛋白质印迹分析
对于蛋白质印迹分析,将组织用均质化缓冲液(4%SDS,4M尿素,125mM tris-HCl(pH6.8))以9至18×20-μm组织切片的比例在133μL缓冲液中以直径约5mm均质化。收集相应的裂解物,并使用RC DC Protein Assay Kit按照制造商的说明书(BioRad Cat.500-0122)进行蛋白质定量。使用匀浆缓冲液以1:10稀释组织提取物样品,使其落入BSA标准曲线的范围内。制备样品使得35μl样品含有25μl蛋白质裂解物,7μl NuPAGELDS样品缓冲液(LifeTechnologies Cat.NP0008,Carlsbad,California,USA)和3μl NuPAGE还原剂(10x)(LifeTechnologies Cat.NP0004)。将蛋白质样品在95℃加热5分钟后,将样品离心并将上清液加载到NuPAGE Novex 10孔,1mm,微型3-8%聚丙烯酰胺三乙酸酯凝胶(Life TechnologiesCat.EA0375)上,最大值为每个泳道50μg总蛋白质负荷。将凝胶在室温下以150伏运行,直到染料前沿离开凝胶。使用NuPAGE转移缓冲液(Life Technologies NP006-1),10%甲醇和0.1%NuPAGE抗氧化剂(Life Technologies NP0005)将所得蛋白质凝胶在室温下以30伏转移至PVDF膜(Life Technologies Cat.LC2007)75分钟。
蛋白质转移后,将PVDF膜浸入TTBS缓冲液(1X TBS(Amresco Cat.J640-4L),0.1%(v/v)吐温-20)中。将膜转移至封闭缓冲液(5%(w/v)脱脂奶粉(Lab ScientificCat.M0841),在TTBS中)并在4℃下轻轻摇动过夜。封闭后,将膜在室温下在使用封闭缓冲液1:20稀释的DYS1(Leica Cat.NCL-DYS1)中孵育60分钟,或在室温下在用封闭缓冲液以1:100000稀释的抗-α-肌动蛋白抗体(Sigma-Aldrich Cat.NA931V)中孵育20分钟,然后进行六次洗涤(每次用TTBS洗涤5分钟)。使用封闭缓冲液将缀合辣根过氧化物酶(GEHealthcare Cat.NA931V)的抗小鼠IgG 1:40000稀释,并加入膜中45分钟(DYS1)或15分钟(α-辅肌动蛋白),然后再洗涤6次。使用ECL Prime Western Detection Kit(GEHealthcare Cat.RPN2232),将膜暴露于凝胶并相应地显影。使用ImageQuant TL Plus软件(版本8.1)扫描和分析显影的胶片,并使用Graphpad软件进行线性回归分析。
每种蛋白质印迹凝胶包括4或5个点的抗肌肉萎缩蛋白标准曲线,其使用从正常组织(小鼠股四头肌,隔膜或心脏)提取的总蛋白质稀释至例如64%,16%,4%,1%和0.25%(参见例如图5A和5B)并掺入DMD组织(例如mdx小鼠股四头肌,膈肌或心脏,或NHP股四头肌,膈肌或平滑肌(GI))提取物中而制得。如上所述处理标准曲线样品。抗肌萎缩蛋白蛋白水平占野生型抗肌肉萎缩蛋白水平的百分比(%WT)通过比较抗肌肉萎缩蛋白条带强度与凝胶标准曲线来确定。
RT-PCR分析
对于RT-PCR分析,使用Illustra GE旋转试剂盒按照制造方案从细胞中分离RNA。使用NanoDrop测定RNA的浓度和纯度。通过RT-PCR测量外显子51跳跃,其中正向引物结合外显子49SEQ ID NO:5(5'CCAGCCACTCAGCCAGTGAAG-3')和反向引物结合外显子52SEQ ID NO:6(5'-CGATCCGTATGTTCTAGCC-3')。跳跃的外显子51导致246bp的扩增子和未跳跃的外显子51导致478bp的扩增子。
通过RT-PCR测量小鼠外显子23跳跃,其中正向引物为SEQ ID NO:7(5'-CACATCTTTGATGGTGTGAGG-3'),并且反向引物为SEQ ID NO:8(5'-CAACTTCAGCCATCCATTTCTG-3')。
在RNA进行RT-PCR后,使用Caliper机器分析样品,其使用凝胶毛细管电泳。使用以下等式计算外显子跳跃百分比:(跳跃的带的曲线下面积)/(跳跃和未跳跃的带的曲线下面积的总和)x100。
免疫组化:抗肌肉萎缩蛋白染色:
通过抗肌肉萎缩蛋白一抗(稀释1:250,兔,Abcam,猫#ab15277)于10%山羊血清+1%BSA于PBS,和二抗Alexa-Fluoro 488山羊抗兔(稀释度为1:1000)于10%山羊血清+1%BSA,小鼠股四头肌的10微米冷冻组织切片用于检测抗肌肉萎缩蛋白。
吗啉代亚基的制备
方案1:PMO亚基的一般合成途径
参考方案1,其中B代表碱基配对部分,吗啉代亚基可以由相应的核糖核苷(1)制备,如图所示。吗啉代亚基(2)可任选地通过与合适的保护基前体(例如三苯甲基氯)反应来保护。通常在固态寡聚体合成期间除去3'保护基团,如下面更详细描述的。碱基配对部分可以适当地保护固相寡聚体合成。合适的保护基包括腺嘌呤和胞嘧啶的苯甲酰,鸟嘌呤的苯乙酰基和次黄嘌呤的新戊酰氧基甲基(I)。新戊酰氧基甲基可以引入次黄嘌呤杂环碱基的N1位置。尽管可以使用未受保护的次黄嘌呤亚基,但是当碱基被保护时,活化反应的产率要高得多。其它合适的保护基团包括美国专利号8,076,476中公开的那些,其通过引用整体并入本文。
3与活化磷化合物4的反应产生具有所需连接部分的吗啉代亚基5。
结构4的化合物可使用本领域技术人员已知的许多方法制备。然后如上所述进行与吗啉代部分的缀合。
结构5的化合物可用于固相寡聚体合成,以制备包含亚基间连接的寡聚体。这些方法在本领域中是公知的。简而言之,结构5的化合物可以在5'末端修饰以含有与固体支持物的接头。一旦被支持,去除5的保护基团(例如3'末端的三苯甲基),并使游离胺与结构5的第二化合物的活化磷部分反应。重复该序列直至获得所需长度的寡核苷酸。如果需要3'修饰,则末端3'端的保护基团可以被除去或保留。可以使用任何数量的方法从固体支持物中除去寡聚体,或用碱处理以裂解与固体支持物的连接。
本公开的一般吗啉代寡聚体和特定吗啉代寡聚体的制备在实施例中更详细地描述。
吗啉代寡聚体的制备
根据方案2,使用以下方案进行本公开化合物的制备:
方案2:活化尾酸的制备
三苯甲基哌嗪苯基氨基甲酸酯35的制备:向冷却的化合物11的二氯甲烷(6mL/g11)悬浮液中加入碳酸钾(3.2当量)的水(4mL/g碳酸钾)溶液。向该两相混合物中缓慢加入氯甲酸苯酯(1.03当量)的二氯甲烷溶液(2g/g氯甲酸苯酯)。将反应混合物温热至20℃。反应完成后(1-2小时),分离各层。用水洗涤有机层,并用无水碳酸钾干燥。通过从乙腈中结晶分离产物35。
氨基甲酸酯醇36的制备:将氢化钠(1.2当量)悬浮在1-甲基-2-吡咯烷酮(32mL/g氢化钠)中。向该悬浮液中加入三甘醇(10.0当量)和化合物35(1.0当量)。将所得浆液加热至95℃。反应完成后(1-2小时),将混合物冷却至20℃。向该混合物中加入30%二氯甲烷/甲基叔丁基醚(v:v)和水。依次用NaOH水溶液,琥珀酸水溶液和饱和氯化钠水溶液洗涤含产物的有机层。通过从二氯甲烷/甲基叔丁基醚/庚烷中结晶分离产物36。
尾酸37的制备:向化合物36的四氢呋喃(7mL/g 36)溶液中加入琥珀酸酐(2.0当量)和DMAP(0.5当量)。将混合物加热至50℃。反应完成后(5小时),将混合物冷却至20℃并用NaHCO3水溶液调节至pH 8.5。加入甲基叔丁基醚,将产物萃取到水层中。加入二氯甲烷,用柠檬酸水溶液将混合物调节至pH 3。含有产物的有机层用pH=3的柠檬酸盐缓冲液和饱和氯化钠水溶液的混合物洗涤。在制备化合物38时,不经分离使用该37的二氯甲烷溶液。
38的制备:向化合物37的溶液中加入N-羟基-5-降冰片烯-2,3-二羧酸酰亚胺(HONB)(1.02当量),4-二甲基氨基吡啶(DMAP)(0.34当量),然后1-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐(EDC)(1.1当量)。将混合物加热至55℃。反应完成后(4-5小时),将混合物冷却至20℃并依次用1:10.2M柠檬酸/盐水和盐水洗涤。将二氯甲烷溶液与丙酮进行溶剂交换,然后与N,N-二甲基甲酰胺进行溶剂交换,通过从丙酮/N,N-二甲基甲酰胺中沉淀到饱和氯化钠水溶液中分离产物。将粗产物在水中重新浆化数次,以除去残留的N,N-二甲基甲酰胺和盐。
PMO合成方法A:二硫化物锚的使用
通过用于在固相合成期间结合亚基的程序,在二甲基咪唑烷酮(DMI)中进行将活化“尾部”引入到锚固树脂上。
方案3:用于合成吗啉代寡聚体的固体载体的制备
该程序在硅烷化的夹套肽容器(ChemGlass,NJ,USA)中进行,该容器具有粗孔隙率(40-60μm)玻璃料,顶置式搅拌器和三通Teflon旋塞阀,以允许N2通过玻璃料鼓泡或真空抽气。
以下步骤中的树脂处理/洗涤步骤包括两种基本操作:树脂流化或搅拌床反应器和溶剂/溶液萃取。对于树脂流化,将活塞定位成允许N2向上流过玻璃料,并将指定的树脂处理/洗涤加入反应器中并使其渗透并完全润湿树脂。然后开始混合并将树脂浆料混合指定的时间。对于溶剂/溶液萃取,停止混合和N2流动并启动真空泵,然后定位旋塞以允许将树脂处理/洗涤排出到废物中。除非另有说明,否则所有树脂处理/洗涤体积均为15mL/g树脂。
在硅烷化的夹套肽容器中向氨甲基聚苯乙烯树脂(100-200目;基于氮置换的~1.0mmol/g负载;75g,1当量,Polymer Labs,UK,part#1464-X799)中加入1-甲基-2-吡咯烷酮(NMP;20ml/g树脂),并使树脂在搅拌下溶胀1-2小时。在抽空溶胀溶剂后,用二氯甲烷(2×1-2分钟),5%二异丙基乙胺的25%异丙醇/二氯甲烷溶液(2×3-4分钟)和二氯甲烷(2×1-2分钟)洗涤树脂。抽真空后,用二硫化物锚34的1-甲基-2-吡咯烷酮(0.17M;15mL/g树脂,~2.5当量)溶液处理树脂,并将树脂/试剂混合物加热至45℃达60小时。反应完成后,停止加热,抽空锚固溶液,用1-甲基-2-吡咯烷酮(4×3-4分钟)和二氯甲烷(6×1-2分钟)洗涤树脂。将树脂用10%(v/v)二碳酸二乙酯的二氯甲烷溶液(16mL/g;2×5-6min)处理,然后用二氯甲烷(6×1-2min)洗涤。将树脂39在N2流下干燥1-3小时,然后真空干燥至恒重(±2%)。产率:原树脂重量的110-150%。
氨甲基聚苯乙烯-二硫化物树脂的负载的测定:树脂的负载(潜在可用的反应性位点的数量)通过对每克树脂的三苯基甲基(三苯甲基)基团数量的光谱测定法来确定。
将已知重量的干燥树脂(25±3mg)转移到硅烷化的25ml容量瓶中,加入~5mL 2%(v/v)三氟乙酸的二氯甲烷溶液。通过轻轻旋转混合内容物,然后静置30分钟。用另外的2%(v/v)三氟乙酸的二氯甲烷溶液将体积升至25mL并充分混合内容物。使用正位移移液管,将等分试样的含三苯甲基的溶液(500μL)转移至10mL容量瓶中,用甲磺酸将体积升至10mL。
最终溶液中的三苯甲基阳离子含量通过在431.7nm处的UV吸光度和使用适当体积,稀释度,消光系数(ε:41μmol-1cm-1)和树脂重量以每克树脂的三苯甲基基团计算的树脂负载(μmol/g)来测量。一式三份进行测定并计算平均负载。
该实施例中的树脂负载程序将对树脂提供约500μmol/g的负载。如果二硫化物锚固结合步骤在室温下进行24小时,则获得300-400μmol/g的负载。
尾部负载:使用与制备氨甲基聚苯乙烯-二硫化物树脂相同的设置和体积,可将尾部引入固体载体中。首先将锚固树脂在酸性条件下脱保护,并在缀合之前将所得材料中和。对于缀合步骤,使用38(0.2M)的含有4-乙基吗啉(NEM,0.4M)的DMI溶液代替二硫化物锚溶液。在45℃下2小时后,将树脂39用5%二异丙基乙胺的25%异丙醇/二氯甲烷溶液洗涤两次并用DCM洗涤一次。向树脂中加入苯甲酸酐(0.4M)和NEM(0.4M)的溶液。25分钟后,将反应器夹套冷却至室温,用5%二异丙基乙胺的25%异丙醇/二氯甲烷溶液洗涤树脂两次,用DCM洗涤8次。过滤树脂40并在高真空下干燥。树脂40的负载定义为在尾部负载中使用的原始氨甲基聚苯乙烯-二硫化物树脂39的负载。
固相合成:在2mL Gilson聚丙烯反应柱(部件号3980270)中,在Gilson AMS-422自动化肽合成仪上制备吗啉代寡聚体。当柱子置于合成器上时,在柱子周围放置一个带有水流通道的铝块。AMS-422可选择添加试剂/洗涤溶液,保持指定时间,并使用真空抽空色谱柱。
对于长度最多约25个亚基的寡聚体,优选负载接近500μmol/g树脂的氨甲基聚苯乙烯-二硫化物树脂。对于较大的寡聚体,优选负载300-400μmol/g树脂的氨甲基聚苯乙烯-二硫化物树脂。如果需要具有5'-尾部的分子,则选择具有相同负载指南的已负载尾部的树脂。
制备以下试剂溶液:
·脱三苯甲基化溶液:10%氰基乙酸(w/v)的4:1二氯甲烷/乙腈溶液;
·中和溶液:5%二异丙基乙胺的3:1二氯甲烷/异丙醇溶液;和
·缀合溶液:0.18M(或对于长度超过20个亚基的寡聚体为0.24M)所需碱基和连接类型的活化吗啉代亚基和0.4M N-乙基吗啉的1,3-二甲基咪唑烷酮溶液。
使用二氯甲烷(DCM)作为分离不同试剂溶液洗涤的过渡洗涤液。
在合成器上,将嵌段设定为42℃,向每个含有30mg氨甲基聚苯乙烯-二硫化物树脂(或尾部树脂)的柱中加入2mL 1-甲基-2-吡咯烷酮,并使其在室温下静置30分钟。用2mL二氯甲烷洗涤2次后,采用以下合成循环:
将各个寡聚体的序列编程到合成仪中,使得每个柱以适当的顺序接收适当的缀合溶液(A,C,G,T,I)。当柱中的寡聚体完成其最终亚基的掺入时,将柱从挡板中取出,并用含有0.89M 4-乙基吗啉的4-甲氧基三苯基甲基氯(0.32M,在DMI中)所组成的缀合溶液手动进行最终循环。
从树脂裂解并除去碱基和骨架保护基:甲氧基三苯甲基化后,用2mL 1-甲基-2-吡咯烷酮洗涤树脂8次。加入1mL由0.1M 1,4-二硫苏糖醇(DTT)和0.73M三乙胺的1-甲基-2-吡咯烷酮组成的裂解溶液,盖上柱子,并使其在室温下静置30分钟。此后,将溶液倒入12mLWheaton小瓶中。用300μL裂解溶液洗涤大大收缩的树脂两次。向溶液中加入4.0mL浓氨水(储存在-20℃),小瓶盖紧(用Teflon衬里的螺旋盖),旋转混合物以混合溶液。将小瓶置于45℃烘箱中16-24小时,以实现碱基和骨架保护基的切割。
粗产物纯化:将瓶装的氨解溶液从烘箱中取出并冷却至室温。将溶液用20mL0.28%氨水稀释,并通过含有Macroprep HQ树脂(BioRad)的2.5×10cm柱。使用盐梯度(A:0.28%氨与B:1M氯化钠在0.28%氨中;0-100%B在60分钟内)洗脱含甲氧基三苯甲基的峰。将结合的级分合并,并根据所需产物进一步处理。
吗啉代寡聚体的脱甲氧基三苯甲基化:将来自Macroprep纯化的合并级分用1MH3PO4处理以将pH降低至2.5。初始混合后,样品在室温下静置4分钟,此时用2.8%氨/水将它们中和至pH 10-11。通过固相萃取(SPE)纯化产物。
SPE柱填料和调节:将Amberchrome CG-300M(Rohm和Haas;Philadelphia,PA)(3mL)装入20mL烧结柱(BioRad Econo-Pac Chromatography Columns(732-1011))中,并用3mL以下物质冲洗树脂:0.28%NH4OH/80%乙腈;0.5M NaOH/20%乙醇;水;50mM H3PO4/80%乙腈;水;0.5NaOH/20%乙醇;水;0.28%NH4OH。
SPE纯化:将来自脱甲氧基三苯甲基化的溶液加载到柱上,并用3-6mL 0.28%氨水冲洗树脂三次。将Wheaton小瓶(12mL)置于柱下,通过用2mL 45%乙腈的0.28%氨水溶液洗涤两次以洗脱产物。
产物分离:将溶液在干冰中冷冻,将小瓶置于冷冻干燥器中以产生蓬松的白色粉末。将样品溶解在水中,使用注射器通过0.22微米过滤器(Pall Life Sciences,Acrodisc25mm注射过滤器,具有0.2微米HT Tuffryn膜)过滤,并在UV分光光度计上测量光密度(OD)以确定存在的寡聚体的OD单位,以及分配样品用于分析。然后将溶液放回Wheaton小瓶中进行冻干。
通过MALDI分析吗啉代寡聚体:使用MALDI-TOF质谱法测定纯化中级分的组成,并提供寡聚体的同一性(分子量)的证据。在用3,5-二甲氧基-4-羟基肉桂酸(芥子酸),3,4,5-三羟基苯乙酮(THAP)或α-氰基-4-羟基肉桂酸(HCCA)的溶液稀释后,将样品作为基质进行操作。
PMO合成方法B:NCP2锚的使用
NCP2锚合成:
1. 4-氟-3-硝基苯甲酸甲酯的制备(1)
向100L烧瓶中加入12.7kg 4-氟-3-硝基苯甲酸,加入40kg甲醇和2.82kg浓硫酸。将混合物在回流(65℃)下搅拌36小时。将反应混合物冷却至0℃。晶体在38℃形成。将混合物在0℃保持4小时,然后在氮气下过滤。洗涤100L烧瓶,用10kg已冷却至0℃的甲醇洗涤滤饼。将固体滤饼在漏斗上干燥1小时,转移至托盘,并在室温下在真空烘箱中干燥至恒重13.695kg的4-氟-3-硝基苯甲酸甲酯(100%收率;HPLC99%)。
2. 3-硝基-4-(2-氧代丙基)苯甲酸的制备
A.(Z)-4-(3-羟基-1-甲氧基-1-氧代丁-2-烯-2-基)-3-硝基苯甲酸甲酯(2)
向100L烧瓶中加入3.98kg来自前一步骤的4-氟-3-硝基苯甲酸甲酯(1),9.8kgDMF,2.81kg乙酰乙酸甲酯。搅拌混合物并冷却至0℃。在约4小时内向其中加入3.66kg DBU,同时将温度保持在5℃或低于5℃。将混合物再搅拌1小时。向反应烧瓶中加入8.15kg柠檬酸在37.5kg纯水中的溶液,同时将反应温度保持在15℃或低于15℃。加完后,将反应混合物再搅拌30分钟,然后在氮气下过滤。将湿滤饼与14.8kg纯水一起放回100L烧瓶中。将浆液搅拌10分钟,然后过滤。将湿滤饼再次放回100L烧瓶中,用14.8kg纯水浆化10分钟,并过滤成粗(Z)-4-(3-羟基-1-甲氧基-1-氧代丁-2-烯-2-基)-3-硝基苯甲酸甲酯。
B.3-硝基-4-(2-氧代丙基)苯甲酸
在氮气下,将粗(Z)-4-(3-羟基-1-甲氧基-1-氧代丁-2-烯-2-基)-3-硝基苯甲酸甲酯加入100L反应烧瓶中。向其中加入14.2kg 1,4-二恶烷并搅拌。在2小时内向混合物中加入16.655kg浓HCl和13.33kg纯水(6M HCl)的溶液,同时将反应混合物的温度保持在15℃以下。加完后,将反应混合物加热回流(80℃)24小时,冷却至室温,并在氮气下过滤。将固体滤饼与14.8kg纯水一起研磨,过滤,再次用14.8kg纯水研磨,并过滤。将固体返回到具有39.9kg DCM的100L烧瓶中并在搅拌下回流1小时。加入1.5kg纯水以溶解剩余的固体。将底部有机层分至预热的72L烧瓶,然后返回干净的100L烧瓶中。将溶液冷却至0℃,保持1小时,然后过滤。将固体滤饼各自用9.8kg DCM和5kg庚烷的溶液洗涤两次,然后在漏斗上干燥。将固体转移到托盘中并干燥至恒重1.855kg的3-硝基-4-(2-氧代丙基)苯甲酸。化合物1的总收率为42%。HPLC 99.45%。
3.N-三苯甲基哌嗪琥珀酸盐(NTP)的制备
在氮气下,向72L夹套烧瓶中加入1.805kg三苯甲基氯和8.3kg甲苯(TPC溶液)。搅拌混合物直至固体溶解。在氮气下,向100L夹套反应烧瓶中加入5.61kg哌嗪,19.9kg甲苯和3.72kg甲醇。搅拌混合物并冷却至0℃。在4小时内将TPC溶液分批缓慢加入其中,同时将反应温度保持在10℃或低于10℃。将混合物在10℃下搅拌1.5小时,然后升温至14℃。将32.6kg纯水加入72L烧瓶中,然后转移至100L烧瓶中,同时将内部批料温度保持在20℃+/-5℃。使各层分开,分离并储存底部水层。将有机层各自用32kg纯水萃取三次,分离水层并与储存的水溶液合并。
将剩余的有机层冷却至18℃,并将847g琥珀酸在10.87kg纯水中的溶液分批缓慢加入有机层中。将混合物在20+/-5℃下搅拌1.75小时。过滤混合物,用2kg TBME和2kg丙酮洗涤固体,然后在漏斗上干燥。将滤饼用各5.7kg丙酮研磨两次,过滤并在研磨之间用1kg丙酮洗涤。将固体在漏斗上干燥,然后转移到托盘中并在室温下在真空烘箱中干燥至恒重2.32kg的NTP。收率80%。
4.(4-(2-羟丙基)-3-硝基苯基)(4-三苯甲基哌嗪-1-基)甲酮的制备
A.1-(2-硝基-4(4-三苯甲基哌嗪-1-羰基)苯基)丙-2-酮的制备
在氮气下向100L夹套烧瓶中加入2kg 3-硝基-4-(2-氧代丙基)苯甲酸(3),18.3kgDCM和1.845kg N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐(EDC.HCl)。搅拌溶液直至形成均匀混合物。在室温下在30分钟内加入3.048kg NTP并搅拌8小时。向反应混合物中加入5.44kg纯水并搅拌30分钟。使各层分离,将含有产物的底部有机层排出并储存。将水层用5.65kg DCM萃取两次。将合并的有机层用1.08kg氯化钠在4.08kg纯水中的溶液洗涤。将有机层用1.068kg硫酸钠干燥并过滤。用1.3kg DCM洗涤硫酸钠。将合并的有机层用252g硅胶浆化,并通过含有252g硅胶床的过滤漏斗过滤。用2kg DCM洗涤硅胶床。将合并的有机层在旋转蒸发器上蒸发。向残余物中加入4.8kg THF,然后在旋转蒸发器上蒸发,直至达到2.5体积的在THF中的粗1-(2-硝基-4-(4-三苯甲基哌嗪-1-羰基)苯基)丙-2-酮。
B.(4-(2-羟丙基)-3-硝基苯基)(4-三苯甲基哌嗪-1-基)甲酮(5)的制备
在氮气下向100L夹套烧瓶中加入3600g来自前一步骤的4和9800g THF。将搅拌的溶液冷却至≤5℃。将溶液用11525g乙醇稀释,并在≤5℃下在约2小时内加入194g硼氢化钠。将反应混合物在≤5℃下再搅拌2小时。通过缓慢加入,用约1.1kg氯化铵在约3kg水中的溶液淬灭反应,以保持温度≤10℃。将反应混合物再搅拌30分钟,过滤除去无机物,并再加入100L夹套烧瓶中,用23kg DCM萃取。分离有机层,并用4.7kg DCM各自萃取水相两次。将合并的有机层用约800g氯化钠在约3kg水中的溶液洗涤,然后用2.7kg硫酸钠干燥。过滤悬浮液,滤饼用2kg DCM洗涤。将合并的滤液浓缩至2.0体积,用约360g乙酸乙酯稀释,并蒸发。将粗产物加载到4kg填充有DCM的二氧化硅的硅胶柱上,在氮气下用2.3kg乙酸乙酯在7.2kgDCM中的溶液洗脱。蒸发合并的级分,将残余物溶于11.7kg甲苯中。过滤甲苯溶液,滤饼用2kg甲苯洗涤两次。将滤饼干燥至恒重2.275kg的化合物5(化合物3的46%收率)。HPLC96.99%。
5. 2,5-二氧代吡咯烷-1-基(1-(2-硝基-4-(4-三苯基甲基哌嗪-1-羰基)苯基)丙-2-基)碳酸酯(NCP2锚)的制备
在氮气下向100L夹套烧瓶中加入4.3kg化合物5(通过H1NMR基于残余甲苯调节重量;此后所有试剂均相应地缩放)和12.7kg吡啶。向其中加入3.160kg DSC(通过H1NMR为78.91重量%),同时将内部温度保持在≤35℃。将反应混合物在环境下老化约22小时,然后过滤。滤饼用200g吡啶洗涤。在分别包含1/2滤液体积的两批中,将滤液缓慢加入到100L夹套烧瓶中,该烧瓶含有约11kg柠檬酸在约50kg水中的溶液并搅拌30分钟以进行固体沉淀。用过滤漏斗收集固体,每次洗涤用4.3kg水以洗涤两次,并在真空下在过滤漏斗上干燥。
将合并的固体装入100L夹套烧瓶中并溶于28kg DCM中,并用900g碳酸钾在4.3kg水中的溶液洗涤。1小时后,使各层分离,除去水层。用10kg水洗涤有机层,分离,用3.5kg硫酸钠干燥。将DCM过滤,蒸发,并在真空下干燥至6.16kg NCP2锚(114%收率)。
NCP2锚固树脂合成
向带有特氟隆终止旋塞的75L固相合成反应器中加入约52L NMP和2300g氨基甲基聚苯乙烯树脂。将树脂在NMP中搅拌以溶胀约2小时,然后排出。每次洗涤用约4L DCM以洗涤树脂两次,然后每次洗涤用39L中和溶液以洗涤两次,然后每次洗涤用39L DCM以洗涤两次。将NCP2锚溶液缓慢加入搅拌的树脂溶液中,在室温下搅拌24小时,并排出。每次洗涤用39LNMP以洗涤树脂四次,每次洗涤用39L DCM以洗涤六次。处理树脂并用1/2DEDC封盖溶液搅拌30分钟,排出,并用第二1/2DEDC封盖溶液处理并搅拌30分钟并排出。每次用39L DCM以洗涤树脂六次,然后在烘箱中干燥至恒重3573.71g的锚固树脂。
用NCP2锚制备吗啉代寡聚体
50L固相合成Eteplirsen(PMO#1)原料药物
1.材料
表2:起始材料
原料的化学结构:
A.活化的EG3尾部
B.活化的C亚基(对于制备,参见美国专利号8,067,571)
C.活化的A亚基(对于制备,参见美国专利号8,067,571)
D.活化的DPG亚基(对于制备,参见WO 2009/064471)
E.活化的T亚基(对于制备,参见WO 2013/082551)
F.锚固树脂
其中R1是载体介质。
表3:Eteplirsen原料药物的固相寡聚体合成溶液的描述
溶液名称 溶液组成
NCP2锚溶液 37.5LNMP和1292gNCP2锚
DEDC封盖溶液 4.16L二碳酸二乙酯(DEDC),3.64LNEM和33.8LDCM
CYTFA溶液 2.02kg4-氰基吡啶,158LDCM,1.42LTFA,39LTFE和2L纯水
中和溶液 35.3LIPA,7.5LDIPEA和106.5LDCM
裂解溶液 1530.04gDTT,6.96LNMP和2.98LDBU
2.Eteplirsen原料药物的合成
A.树脂膨胀
将750g锚固树脂和10.5L NMP加入50L硅烷化反应器中并搅拌3小时。排出NMP并将锚固树脂用各5.5L DCM洗涤两次,并用各5.5L 30%TFE/DCM洗涤两次。
B.循环0:EG3尾部缀合
将锚固树脂用各5.5L 30%TFE/DCM洗涤三次并排出,用5.5L CYFTA溶液洗涤15分钟并排出,再次用5.5L CYTFA溶液洗涤15分钟而不排出,向其中加入122mL 1:1NEM/DCM并将悬浮液搅拌2分钟并排出。将树脂用5.5L中和溶液洗涤两次5分钟并排出,然后用各5.5LDCM洗涤两次并排出。将706.2g活化的EG3尾部(MW 765.85)和234mL NEM在3L DMI中的溶液加入到树脂中并在室温下搅拌3小时并排出。每次洗涤将树脂用各5.5L中和溶液洗涤两次,每次洗涤5分钟,并用5.5L DCM洗涤一次并排出。加入374.8g苯甲酸酐和195mL NEM在2680mL NMP中的溶液并搅拌15分钟并排出。将树脂与5.5L中和溶液一起搅拌5分钟,然后用5.5L DCM洗涤一次并用各5.5L 30%TFE/DCM洗涤两次。将树脂悬浮在5.5L 30%TFE/DCM中并保持14小时。
C.亚基缀合循环1-30
i.缀合前处理
在如图23所述的每个缀合循环之前,将树脂:1)用30%TFE/DCM洗涤;2)a)用CYTFA溶液处理15分钟并排出,和b)用CYTFA溶液处理15分钟,向其中加入1:1NEM/DCM,搅拌并排出;3)用中和溶液搅拌三次;4)用DCM洗涤两次。参见图23。
ii.缀合后处理
在如图23所述排出每个亚基溶液后,将树脂:1)用DCM洗涤;2)用30%TFE/DCM洗涤两次。如果在下一个缀合循环之前将树脂保持一段时间,则不排出第二TFE/DCM洗涤液并将树脂保留在所述TFE/DCM洗涤溶液中。参见图23。
iii.活化的亚基缀合循环
如图23所述进行缀合循环。
iv.最终IPA洗涤
在如图23所述进行最终缀合步骤后,用各19.5L IPA洗涤树脂8次,并在室温下真空干燥约63.5小时至干重为5579.8g。
C.裂解
将上述树脂结合的Eteplisen原料药物分成两批,每批如下处理。将2789.9g树脂:1)与10L NMP一起搅拌2小时,然后排出NMP;2)用各10L 30%TFE/DCM洗涤三次;3)用10LCYTFA溶液处理15分钟;4)10L CYTFA溶液15分钟,然后向其中加入130ml 1:1NEM/DCM并搅拌2分钟并排出。将树脂用各10L中和溶液处理三次,用10L DCM洗涤六次,并用各10L NMP洗涤八次。将树脂用1530.4g DTT的裂解溶液和在6.96L NMP中的2980DBU处理2小时,以从树脂上分离Eteplirsen原料药物。将裂解溶液排出并保留在单独的容器中。用4.97L NMP洗涤反应器和树脂,将其与裂解溶液合并。
D.去保护
将合并的裂解溶液和NMP洗涤液转移到压力容器中,向其中加入39.8L NH4OH(NH3·H2O),其已在冰箱中冷却至-10℃至-25℃的温度。将压力容器密封并加热至45℃达16小时,然后冷却至25℃。将含有Eteplirsen原料药物的该去保护溶液用纯水稀释3:1,用2M磷酸将pH调节至3.0,然后用NH4OH调节至pH 8.03。HPLC(C18)73-74%。
Eteplirsen(PMO#1)原料药物的纯化
将含有Eteplirsen原料药物的上述D部分的去保护溶液加载到ToyoPearl Super-Q 650S阴离子交换树脂(Tosoh Bioscience)柱上,用超过17柱体积的0-35%B梯度洗脱(缓冲液A:10mM氢氧化钠;缓冲液B:在10mM氢氧化钠中的1M氯化钠),并将可接受纯度的级分(C18和SCX HPLC)合并到纯化的药物产品溶液中。HPLC:97.74%(C18)94.58%(SCX)。
将纯化的药物溶液脱盐并冻干成1959g纯化的Eteplirsen药物。收率61.4%;HPLC:97.7%(C18)94.6%(SCX)。
表5.缩略语
缩略语 名称
DBU 1,8-二氮杂双环十一-7-烯
DCM 二氯甲烷
DIPEA N,N-二异丙基乙胺
DMI 1,3-二甲基-2-咪唑啉酮
DTT 二硫苏糖醇
IPA 异丙醇
MW 分子量
NEM N-乙基吗啉
NMP N-甲基-2-吡咯烷酮
RT 室温
TFA 2,2,2-三氟乙酸
TFE 2,2,2-三氟乙醇
CPP缀合
分析程序:使用芥子酸(SA)基质在Bruker AutoflexTM Speed上记录基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)。SCX-HPLC在配备有3000二极管阵列检测器和ProPacTM SCX-20柱(250x 4mm)的Thermo Dionex UltiMate 3000系统上进行,流速为1.0mL/min(pH=2;30℃柱温度)。流动相为A(含有24mM H3PO4的25%乙腈水溶液)和B(含有1M KCl和24mM H3PO4的25%乙腈水溶液)。使用梯度洗脱:0分钟,35%B;2分钟,35%B;22分钟,80%B;25分钟,80%B;25.1分钟,35%B;30分钟,35%B。
向PMO#1(1.82g,0.177mmol,通过冻干新鲜干燥2天),Ac-L-Arg-L-Arg-L-Arg-L-Arg-L-Arg-L-Arg-Gly-OH六氟乙酸酯(614.7mg,0.354mmol)和1-[双(二甲基氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶-3-氧化六氟磷酸盐(HATU,134.4mg,0.354mmol)的混合物中加入二甲基亚砜(DMSO,20mL)。将混合物在室温下搅拌3分钟,然后加入N,N-二异丙基乙胺(DIPEA,68.5mg,0.530mmol)。5分钟后,混浊的混合物变成澄清溶液。通过SCX-HPLC监测反应。2小时后,加入20mL 10%氢氧化铵溶液(2.8%NH3)。将混合物在室温下搅拌另外2小时。加入400mL水终止反应。将三氟乙醇(2.0mL)加入到溶液中。
将溶液分成两部分,每部分用WCX柱(每柱10g树脂)纯化。首先用20%乙腈水溶液(v/v)洗涤每个WCX柱以除去PMO#1原料。当MALDI-TOF质谱分析显示不存在PMO#1信号时,停止洗涤(每柱225mL)。然后用水(每柱100mL)洗涤每个柱。用2.0M盐酸胍(每柱140mL)洗脱所需产物PPMO#1。将纯化的PPMO#1溶液合并在一起,并然后分成两部分,每一部分用SPE柱脱盐(每柱10g树脂)。
首先用1.0M NaCl水溶液(每柱100mL)洗涤SPE柱,以产生PPMO#1的六氢氯化物盐。然后用水(每柱200mL)洗涤每个SPE柱。最终脱盐的PPMO#1用50%乙腈水溶液(v/v,每柱150mL)洗脱。通过减压抽空除去乙腈。将得到的水溶液冻干,得到所需的缀合物PPMO#1六氢氯化物(1.93g,94.5%收率)。
实施例1:PMO#1
使用上述PMO合成方法B方案,合成PMO#1:
其中,从1至30以及5'至3'的每个Nu是:
其中A是C是G是并且T是
HPLC:97.7%(C18)94.6%(SCX)。
实施例2:PPMO#1
使用上述方案,从PMO#1合成PPMO#1:
其中,从1至30以及5'至3'的每个Nu是:
其中A是C是G是并且T是
SCX-HPLC分析显示主峰积分纯度为93.3%,总PPMO#1积分纯度为99.69%。MALDI-TOF质谱:C404H647N202O130P30[M+1]+的m/z计算值:11342.25;实测值:11342.12。
实施例3:外显子51体外跳跃(肌细胞)
评估如下表所述的靶向抗肌肉萎缩蛋白外显子51的两种化合物(即以相同序列组装的PMO#1和PPMO#1)诱导外显子51跳跃的能力。
名称 靶向序列(TS) TSSEQ ID NO. 5’ 3’
PMO#1 CTCCAACATCAAGGAAGATGGCATTTCTAG 1 EG3 H
PPMO#1 CTCCAACATCAAGGAAGATGGCATTTCTAG 1 EG3 -G-R<sub>6</sub>
具体地,使用分化的人肌细胞来确定上述化合物在不同浓度(即40μm,20μm,10μm,5μm,2.5μm和1.25μm)下诱导外显子51跳跃的能力。分化后,将细胞与化合物一起温育96小时,然后进行RNA分离,并如上所述通过RT-PCR测量外显子51跳跃。结果显示,与PMO#1相比,PPMO#1显著增加外显子51的跳跃,如下表和图4所示:
实施例4:MDX小鼠研究
mdx小鼠是Duchene肌营养不良症(DMD)的公认且充分表征的动物模型,其在抗肌肉萎缩蛋白基因的外显子23中具有突变。已知M23D反义序列(SEQ ID NO:2)诱导外显子23跳跃并恢复功能性抗肌肉萎缩蛋白表达。6-7周龄的MDX小鼠以40mg/kg的剂量单次尾静脉注射下表的PPMO4225或PMO4225,或用盐水。
名称 靶向序列(TS) TSSEQ ID NO. 5’ 3’
PMO4225 GGCCAAACCTCGGCTTACCTGAAAT 2 EG3 H
PPMO4225 GGCCAAACCTCGGCTTACCTGAAAT 2 EG3 -G-R<sub>6</sub>
PMO4225和PPMO4225各自通过上述PMO方法A和CPP缀合方法制备。
在单剂量注射后7、30、60和90天处死处理的小鼠(每组n=6)。对膈肌、心脏和右股四头肌进行蛋白质印迹分析以测量抗肌肉萎缩蛋白的产生和RT-PCR分析以测量外显子跳跃的百分比,并且如上所述处理左股四头肌用于免疫组织化学和H/E染色。
通过蛋白质印迹定量抗肌萎缩蛋白蛋白质恢复,并且如上所述通过RT-PCR测量外显子23跳跃的百分比。
RT-PCR结果显示在图5A-10B和下表中。令人惊讶的是,与PMO4225相比,PPMO4225诱导显著更高和持续的抗肌肉萎缩蛋白恢复水平和外显子23跳跃,其中最高水平发生在注射后30天。更令人惊讶的是,当PMO4225没有时,PPMO4225增加心脏中的抗肌肉萎缩蛋白水平;在PMO4225的所有时间点,在心脏中未观察到抗肌肉萎缩蛋白和外显子跳跃。
免疫组织化学结果显示在图11中。这里,PPMO4225在整个股四头肌中恢复抗肌肉萎缩蛋白,而4225产生“片状样”的表达模式。抗肌肉萎缩蛋白与PPMO4225治疗的均匀分布表明可以实现骨骼肌的广泛靶向。PPMO4225在体内显著改善PMO4225的递送。
实施例5:NHP中的外显子51跳跃
为了进一步证明外显子跳跃PPMO反义寡聚体的功效,使用非人灵长类动物。具体地,根据下表中的给药方案,用PPMO#1,PMO#1(来自实施例2)或盐水静脉注射具有完整肌肉组织的食蟹猴:
食蟹剂量表
组1-5中的动物以20、40和80mg/kg耐受所有4种剂量。第三剂后动物不能耐受160mg/kg,这导致两只动物在给药当天实施安乐死,一只动物在第二天安乐死。这些动物表现出体重减轻。
在每次预定的尸检时,或在极端情况下安乐死,收集膈肌、十二指肠、食道和主动脉、股四头肌、三角肌、二头肌和心脏的平滑肌切片并快速冷冻。如上所述使用RT-PCR测定外显子51跳跃百分比。结果显示在图12-15和下表中。
nd=未测定
令人惊讶的是,与PMO#1相比,PPMO#1在测试的完整组织中产生显著水平的外显子跳跃。具体而言,尽管PMO#1施用未导致在任何收集的组织中检测到任何跳跃,但PPMO#1产生外显子跳跃,例如,在80mg/kg剂量水平时在股四头肌和膈肌中超过90%并且在十二指肠中超过60%。特别令人惊讶的是在心脏中实现的外显子跳跃水平,例如在80mg/kg中外显子跳跃超过60%。不希望受任何特定理论的束缚,PPMO#1全身施用和递送到完整的非营养不良的NHP肌肉组织中,并且外显子51跳跃达到PPMO#1所达到的程度,特别是在心肌中,在来自实施例4中的上述mdx小鼠中这是未被预测的。相反,如在NHP中递送至健康组织不同于递送至营养不良组织。
对于组7和8,如上所述使用RT-PCR测定外显子51跳跃百分比。结果显示在图22和下表中。
从结果可以看出,在分析的每个肌肉中与60天相比,外显子跳跃在30天时更高,这表明单次剂量后外显子跳跃效率随时间降低。
实施例6:MDX小鼠剂量反应研究
6-7周龄的MDX小鼠以40mg/kg、80mg/kg或120mg/kg的剂量单次尾静脉注射上述PPMO4225或PMO4225(每组n=6)。
注射后30天处死处理过的小鼠。对膈肌、股四头肌和心脏进行蛋白质印迹分析以基于上述蛋白质印迹方案(例如在实施例4中使用)测量抗肌肉萎缩蛋白的产生,具有以下修改:
参数 实施例的蛋白质印迹方案 蛋白质印迹方案修改
蛋白质定量 RCDC蛋白质测定试剂盒 BCA方法
封闭步骤 在4℃过夜 室温下1h
一抗孵化 室温下1h 在4℃过夜
一抗浓度 1:20 1:500
抗肌萎缩蛋白蛋白质恢复作为%野生型,如下表和图16-19所示。
令人惊讶的是,数据显示单剂量的PPMO4225以剂量依赖性方式在mdx小鼠中增加抗肌肉萎缩蛋白水平,显著且基本上大于PMO4225。
实施例7:膈肌和心脏的MDX小鼠IHC研究
6-7周龄的MDX小鼠以80mg/kg或盐水的剂量单次尾静脉注射PPMO4225,而对6-7周龄的野生型小鼠给予单次盐水注射。在单剂量注射后30天处死经处理的mdx小鼠,盐水mdx小鼠和野生型小鼠(每组n=4)。免疫组织化学结果显示在图24中。这里,结果显示在用PPMO4225处理的mdx小鼠中与DMD中的发病率和死亡率相关的组织中抗肌肉萎缩蛋白的均匀增加。
实施例8:外显子51体外跳跃(成肌细胞)
如下表所述,用靶向人抗肌肉萎缩蛋白(DMD)外显子51的两种反义寡聚体缀合物(其中PMO#1和PPMO#1均含有相同序列)评估在健康人成肌细胞中的DMD外显子51跳跃。
用于人DMD外显子51的PMO#1和PPMO#1的序列。
名称 靶向序列(TS) TSSEQ ID NO. 5’ 3’
PMO#1 CTCCAACATCAAGGAAGATGGCATTTCTAG 1 EG3 H
PPMO#1 CTCCAACATCAAGGAAGATGGCATTTCTAG 1 EG3 -G-R<sub>6</sub>
具体地,当用在SKM-M培养基(Zen-Bio,Inc.)中的PMO#1或PPMO#1以各种浓度(即40μm,20μm,10μm,5μm,2.5μm和1.25μm)处理时,健康的人成肌细胞(第5-6代,购自Zen-Bio,Inc.的SKB-F-SL)以~40%汇合进行电镀。孵育96小时后,用PBS洗涤成肌细胞,并用Illustra GE RNAspin 96试剂盒(Cat#25-055-75,GE Healthcare Bio-Sciences)中的RA1裂解缓冲液裂解。根据制造商的建议分离总RNA,除了使用40μL不含RNase的水洗脱RNA。
为了确定两种化合物的外显子51跳跃,进行两步终点RT-PCR。具体地,首先按照制造商的说明使用随机六聚体,通过SuperScript IV第一链合成试剂盒(Cat#18091200,Invitrogen)将11μL总RNA第一逆转录成cDNA。通过将9μL cDNA加入Platinum Taq DNA聚合酶PCR Supermix High Fidelity(Cat#12532024,Invitrogen)中,用靶向人DMD外显子49和52的引物[正向引物(SEQ ID NO:5):CCAGCCACTCAGCCAGTGAAG;反向引物(SEQ ID NO:6):CGATCCGTAATGATTGTTCTAGCC]进行PCR。使用BioRad CFX96实时热循环仪,使用下表中所示的程序进行PCR扩增。通过使用DNA高灵敏度试剂盒(CLS760672,Perkin Elmer)将32μL PCR产物加载到LabChip GX系统上来评估跳跃或未跳跃的PCR产物表达。DMD外显子51跳跃的百分比计算为外显子51跳跃带(246bp)的摩尔浓度(nmol/l)与跳跃带(246bp)和未跳跃带(478bp)的总摩尔浓度相比的百分比。
使用双尾未配对的学生t检验(同方差)来评估在每个剂量下两组的平均值是否在统计学上彼此不同。P值<0.05被认为具有统计学意义。
在有或没有外显子51跳跃下用热循环仪程序扩增DMD扩增子。
结果在下表和图25中提供。
在人成肌细胞中PMO#1和PPMO#1的DMD外显子51跳跃的百分比。
这些体外结果显示,与人成肌细胞中的PMO#1相比,PPMO#1显著增加DMD外显子51的跳跃。
实施例9:体外外显子51跳跃(肌管)
用靶向抗肌肉萎缩蛋白(DMD)外显子51的两种反义寡聚体缀合物(其中PMO#1和PPMO#1均含有相同序列)评估在健康人肌管中的DMD外显子51跳跃。
具体地,通过在低血清培养基(SKM-D,Zen-Bio,Inc.)中孵育,在开始分化之前培养健康的人成肌细胞(第5-6代,购自Zen-Bio,Inc.的SKB-F-SL)以在SKM-M培养基中达到80-90%汇合。分化后5天,将成熟肌管与PMO#1或PPMO#1以各种浓度(即40μm,20μm,10μm,5μm,2.5μm和1.25μm)温育。孵育96小时后,用PBS洗涤肌管,并用Illustra GE RNAspin 96试剂盒(Cat#25-055-75,GE Healthcare Bio-Sciences)中的RA1裂解缓冲液裂解。根据制造商的建议分离总RNA,除了使用40μL不含RNase的水洗脱RNA。
为了确定PMO#1或PPMO#1的DMD外显子51跳跃,进行两步终点RT-PCR。具体地,首先按照制造商的说明使用随机六聚体,通过SuperScript IV第一链合成试剂盒(Cat#18091200,Invitrogen)将11μL总RNA第一逆转录成cDNA。通过将9μL cDNA加入PlatinumTaq DNA聚合酶PCR Supermix High Fidelity(Cat#12532024,Invitrogen)中,用靶向人DMD外显子49和52的引物[正向引物(SEQ ID NO:5):CCAGCCACTCAGCCAGTGAAG;反向引物(SEQ ID NO:6):CGATCCGTAATGATTGTTCTAGCC]进行PCR。使用BioRad CFX96实时热循环仪,使用下表中所示的程序进行PCR扩增。通过使用DNA高灵敏度试剂盒(CLS760672,PerkinElmer)将32μL PCR产物加载到LabChip GX系统上来评估跳跃和未跳跃的PCR产物表达。DMD外显子51跳跃的百分比计算为外显子51跳跃带(246bp)的摩尔浓度(nmol/l)与跳跃带(246bp)和未跳跃带(478bp)的总摩尔浓度相比的百分比。
使用双尾未配对的学生t检验(同方差)来评估在每个剂量下两组的平均值是否在统计学上彼此不同。P值<0.05被认为具有统计学意义。
在有或没有外显子51跳跃下用热循环仪程序扩增DMD扩增子。
结果显示,与PMO#1相比,PPMO#1显著增加DMD外显子51跳跃,如下表和图26所示。
在人肌管中PMO#1和PPMO#1的DMD外显子51跳跃的百分比。
*********************
本说明书中引用的所有出版物和专利申请均通过引用并入本文,如同每个单独的出版物或专利申请被具体和单独地指出通过引用并入。
参考文献
Aartsma-Rus,A.,A.A.Janson等人(2004)。"Antisense-induced multiexonskipping for Duchenne muscular dystrophy makes more sense."Am J Hum Genet 74(1):83-92。
Abes,R.等人(2008)。"Arginine-rich cell penetrating peptides:design,structure-activity,and applications to alter pre-mRNA splicing by steric-block oligonucleotides."J Pept.Sci.14:455-460。
Alter,J.等人(2006)。"Systemic delivery of morpholino oligonucleotiderestores dystrophin expression bodywide and improves dystrophic pathology."Nat.Med.12(2):175-177。
Bestas,B.等人(2014)。"Splice-correcting ligonucleotides restore BTKfunction in X-linked agammaglobulinemia model."J.Clin.Invest
Cirak,S.,V.Arechavala-Gomeza等人(2011)。"Exon skipping and dystrophinrestoration in patients with Duchenne muscular dystrophy after systemicphosphorodiamidate morpholino oligomer treatment:an open-label,phase 2,dose-escalation study."Lancet 378(9791):595-605。
Dunckley,M.G.,I.C.Eperon等人(1997)。"Modulation of splicing in the DMDgene by antisense oligoribonucleotides."Nucleosides&Nucleotides 16(7-9):1665-1668。
Dunckley,M.G.,M.Manoharan等人(1998)。"Modification of splicing in thedystrophin gene in cultured Mdx muscle cells by antisenseoligoribonucleotides."Hum Mol Genet 7(7):1083-90。
Errington,S.J.,C.J.Mann等人(2003)。"Target selection for antisenseoligonucleotide induced exon skipping in the dystrophin gene."J Gene Med 5(6):518-27。
Goemans,N.M.,M.Tulinius等人(2011)。"Systemic Administration ofPRO051in Duchenne's Muscular Dystrophy."N Engl J Med
Jearawiriyapaisarn,N.,H.M.Moulton等人(2008)。"Sustained DystrophinExpression Induced by Peptide-conjugated Morpholino Oligomers in the Musclesof mdx Mice."Mol Ther
Jearawiriyapaisarn,N.等人(2010)。"Long-term improvement in mdxcardiomyopathy after therapy with peptide-conjugated morpholino oligomers."Cardiovascular Research 85:444-453。
Kinali,M.,V.Arechavala-Gomeza等人(2009)。"Local restoration ofdystrophin expression with the morpholino oligomer AVI-4658 in Duchennemuscular dystrophy:a single-blind,placebo-controlled,dose-escalation,proof-of-concept study."Lancet Neurol 8(10):918-28。
Leblue,B.等人(2008)。"Cell penetrating peptide conjugates of stericblock oligonucleotides."Adv.Drug Deliv.Rev.60:517-529。
Lu,Q.L.,C.J.Mann等人(2003)。"Functional amounts of dystrophin producedby skipping the mutated exon in the mdx dystrophic mouse."Nat Med 9(8):1009-14。
Mann,C.J.,K.Honeyman等人(2002)。"Improved antisense oligonucleotideinduced exon skipping in the mdx mouse model of muscular dystrophy."J Gene Med 4(6):644-54。
Marshall,N.B.,S.K.Oda等人(2007)。"Arginine-rich cell-penetratingpeptides facilitate delivery of antisense oligomers into murine leukocytesand alter pre-mRNA splicing."Journal of Immunological Methods 325(1-2):114-126。
Matsuo,M.,T.Masumura等人(1991)。"Exon skipping during splicing ofdystrophin mRNA precursor due to an intraexon deletion in the dystrophin geneof Duchenne muscular dystrophy kobe."J Clin Invest 87(6):2127-31。
McClory,G.等人(2006)。"Antisense oligonucleotide-induced exon skippingrestored dystrophin expression in vitro in a canine model of DMD."Gene Therapy 13:1373-1381。
Monaco,A.P.,C.J.Bertelson等人(1988)。"An explanation for thephenotypic differences between patients bearing partial deletions of the DMDlocus."Genomics 2(1):90-5。
Moulton,H.M.,(2007)。"Cell-penetrating peptide-morpholino conjugatesalter pre-mRNA splicing of DMD(Duchenne muscular dystrophy)and inhibit murinecoronavirus replication in vivo."Biochem.Society Trans 35(4):826-828
Pramono,Z.A.,Y.Takeshima等人(1996)。"Induction of exon skipping of thedystrophin transcript in lymphoblastoid cells by transfecting an antisenseoligodeoxynucleotide complementary to an exon recognition sequence."Biochem Biophys Res Commun 226(2):445-9。
Sazani,P.,R.Kole等人(2007)。Splice switching oligomers for the TNFsuperfamily receptors and their use in treatment of disease.PCT WO2007058894,University of North Carolina
Sierakowska,H.,M.J.Sambade等人(1996)。"Repair of thalassemic humanbeta-globin mRNA in mammalian cells by antisense oligonucleotides."Proc Natl Acad Sci U S A 93(23):12840-4。
Summerton,J.和D.Weller(1997)。"Morpholino antisense oligomers:design,preparation,and properties."Antisense Nucleic Acid Drug Dev 7(3):187-95。
Takeshima,Y.,H.Nishio等人(1995)。"Modulation of in vitro splicing ofthe upstream intron by modifying an intra-exon sequence which is deleted fromthe dystrophin gene in dystrophin Kobe."J Clin Invest 95(2):515-20。
van Deutekom,J.C.,M.Bremmer-Bout等人(2001)。"Antisense-induced exonskipping restores dystrophin expression in DMD patient derived muscle cells."Hum Mol Genet 10(15):1547-54。
van Deutekom,J.C.,A.A.Janson等人(2007)。"Local dystrophin restorationwith antisense oligonucleotide PRO051."N Engl J Med 357(26):2677-86。
Wilton,S.D.,A.M.Fall等人(2007)。"Antisense oligonucleotide-inducedexon skipping across the human dystrophin gene transcript."Mol Ther15(7):1288-96。
Wilton,S.D.,F.Lloyd等人(1999)。"Specific removal of the nonsensemutation from the mdx dystrophin mRNA using antisense oligonucleotides."Neuromuscul Disord 9(5):330-8。
Wu,B.,H.M.Moulton等人(2008)。"Effective rescue of dystrophin improvescardiac function in dystrophin-deficient mice by a modified morpholinooligomer."Proc Natl Acad Sci U S A 105(39):14814-9。
Wu,B.等人(2012)。"Long-term rescue of dystrophin expression andimprovement in muscle pathology and function in dystrophic mdx mice bypeptide-conjugated morpholino."The Am.J.Pathol.181(2):392-400。
Wu,P.等人(2007)"Cell-penetrating peptides as transporters formorpholino oligomers:effects of amino acid composition on intracellulardelivery and cytotoxicity."Nucleic Acids Research 35(15):5182-5191。
Yin,H.,H.M.Moulton等人(2008)。"Cell-penetrating peptide-conjugatedantisense oligonucleotides restore systemic muscle and cardiac dystrophinexpression and function."Hum Mol Genet 17(24):3909-18。
Yin,H.等人(2011)。"Pip5transduction peptides direct high efficiencyoligonucleotide-mediated dystrophin exon skipping in heart and phenotypiccorrection in mdx mice."Mol.Ther 19(7):1295-1303。
Youngblood,D.等人(2006)。"Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells."Am.Chem.Soc
序列表

Claims (26)

1.一种式(I)的反义寡聚体缀合物:
或其药学上可接受的盐,其中:
每个Nu是核碱基,它们一起形成靶向序列;并且
T是选自以下的部分:
R1是C1-C6烷基;
其中,所述靶向序列与抗肌肉萎缩蛋白前mRNA中的外显子51退火位点互补,所述退火位点被指定为H51A(+66+95)。
2.根据权利要求1所述的反义寡聚体缀合物,其中,每个Nu独立地选自胞嘧啶(C)、鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)、5-甲基胞嘧啶(5mC)、尿嘧啶(U)和次黄嘌呤(I)。
3.根据权利要求1所述的反义寡聚体缀合物,其中,所述靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3'),其中,每个胸腺嘧啶(T)任选地是尿嘧啶(U)。
4.根据权利要求1所述的反义寡聚体缀合物,其中,T是并且所述靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3'),其中,每个胸腺嘧啶(T)任选地是尿嘧啶(U)。
5.根据权利要求1所述的反义寡聚体缀合物,其中,T是并且所述靶向序列是SEQ ID NO:1(5'-CTCCAACATCAAGGAAGATGGCATTTCTAG-3')。
6.一种式(II)的反义寡聚体缀合物:
或其药学上可接受的盐,其中,从1至30以及5'至3'的每个Nu是(SEQ ID NO:1):
并且其中,A是C是G是并且每个X独立地是
7.根据权利要求6所述的反义寡聚体缀合物,其中,每个X是
8.根据权利要求6所述的反义寡聚体缀合物,其中,所述反义寡聚体是式(IIA):
其中,从1至30以及5'至3'的每个Nu是(SEQ ID NO:1):
并且其中,A是C是G是并且每个X独立地是
9.根据权利要求8所述的反义寡聚体缀合物,其中,每个X是
10.一种式(IV)的反义寡聚体缀合物:
或其药学上可接受的盐。
11.根据权利要求9所述的反义寡聚体缀合物,其中,所述反义寡聚体是式(IVA):
12.一种药物组合物,其包含根据权利要求1至11中任一项所述的反义寡聚体缀合物或其药学上可接受的盐,以及药学上可接受的载体。
13.一种治疗有需要的受试者的杜氏肌营养不良症(DMD)的方法,其中,所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求1至11中任一项所述的反义寡聚体缀合物。
14.根据权利要求13所述的方法,其中,每周施用一次所述反义寡聚体缀合物。
15.根据权利要求13所述的方法,其中,每两周施用一次所述反义寡聚体缀合物。
16.根据权利要求13所述的方法,其中,每三周施用一次所述反义寡聚体缀合物。
17.根据权利要求13所述的方法,其中,每月施用一次所述反义寡聚体缀合物。
18.一种在受试者中恢复mRNA阅读框以诱导抗肌肉萎缩蛋白产生的方法,所述受试者具有适于外显子51跳跃的抗肌萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求1至11中任一项所述的反义寡聚体缀合物。
19.根据权利要求18所述的方法,其中,每周施用一次所述反义寡聚体缀合物。
20.根据权利要求18所述的方法,其中,每两周施用一次所述反义寡聚体缀合物。
21.根据权利要求18所述的方法,其中,每三周施用一次所述反义寡聚体缀合物。
22.根据权利要求18所述的方法,其中,每月施用一次所述反义寡聚体缀合物。
23.一种治疗有需要的受试者的杜氏肌营养不良症(DMD)的方法,其中,所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求12所述的药物组合物。
24.一种在受试者中恢复mRNA阅读框以诱导抗肌肉萎缩蛋白产生的方法,所述受试者具有适于外显子51跳跃的抗肌萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求12所述的药物组合物。
25.一种在受试者中在mRNA加工期间从抗肌肉萎缩蛋白前mRNA排除外显子51的方法,所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求12所述的药物组合物。
26.一种在受试者中结合抗肌肉萎缩蛋白前mRNA的外显子51的方法,所述受试者具有适于外显子51跳跃的抗肌肉萎缩蛋白基因突变,所述方法包括向所述受试者施用根据权利要求12所述的药物组合物。
CN201780086301.2A 2016-12-19 2017-12-13 用于肌肉萎缩症的外显子跳跃寡聚体缀合物 Active CN110290812B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201662436182P 2016-12-19 2016-12-19
US62/436182 2016-12-19
US201762443476P 2017-01-06 2017-01-06
US62/443476 2017-01-06
US201762479173P 2017-03-30 2017-03-30
US62/479173 2017-03-30
US201762562080P 2017-09-22 2017-09-22
US62/562080 2017-09-22
PCT/US2017/066222 WO2018118599A1 (en) 2016-12-19 2017-12-13 Exon skipping oligomer conjugates for muscular dystrophy

Publications (2)

Publication Number Publication Date
CN110290812A true CN110290812A (zh) 2019-09-27
CN110290812B CN110290812B (zh) 2023-06-02

Family

ID=61006315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780086301.2A Active CN110290812B (zh) 2016-12-19 2017-12-13 用于肌肉萎缩症的外显子跳跃寡聚体缀合物

Country Status (27)

Country Link
US (4) US10888578B2 (zh)
EP (1) EP3554553B1 (zh)
JP (3) JP7118063B2 (zh)
KR (2) KR102552428B1 (zh)
CN (1) CN110290812B (zh)
AU (1) AU2017382723A1 (zh)
BR (1) BR112019012647A2 (zh)
CA (1) CA3046793A1 (zh)
CO (1) CO2019007397A2 (zh)
DK (1) DK3554553T3 (zh)
ES (1) ES2927079T3 (zh)
HR (1) HRP20220943T1 (zh)
HU (1) HUE059843T2 (zh)
IL (2) IL267244B (zh)
LT (1) LT3554553T (zh)
MD (1) MD3554553T2 (zh)
MX (1) MX2019006882A (zh)
MY (1) MY195801A (zh)
NZ (1) NZ755416A (zh)
PL (1) PL3554553T3 (zh)
PT (1) PT3554553T (zh)
RS (1) RS63610B1 (zh)
SA (1) SA519402154B1 (zh)
SG (1) SG10202012839TA (zh)
TW (1) TWI760402B (zh)
WO (1) WO2018118599A1 (zh)
ZA (1) ZA201904092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636866A (zh) * 2016-12-19 2019-12-31 萨勒普塔医疗公司 用于肌肉萎缩症的外显子跳跃寡聚体缀合物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI541024B (zh) 2010-09-01 2016-07-11 日本新藥股份有限公司 反義核酸
FI3464306T3 (fi) 2016-05-24 2024-05-16 Sarepta Therapeutics Inc Menetelmiä fosforodiamidaattimorfolino-oligomeerien valmistamiseksi
SG10202101830WA (en) 2016-05-24 2021-04-29 Sarepta Therapeutics Inc Processes for preparing oligomers
MX2019006989A (es) 2016-12-19 2019-08-16 Sarepta Therapeutics Inc Conjugados de oligomeros de omision de exon para distrofia muscular.
DK3554553T3 (da) * 2016-12-19 2022-09-19 Sarepta Therapeutics Inc Exon-overspringnings-oligomerkonjugat til muskeldystrofi
SG11201906200WA (en) 2017-01-06 2019-08-27 Avidity Biosciences Llc Nucleic acid-polypeptide compositions and methods of inducing exon skipping
GB201711809D0 (en) 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
GB201821269D0 (en) 2018-12-28 2019-02-13 Nippon Shinyaku Co Ltd Myostatin signal inhibitor
US20220193246A1 (en) * 2019-04-18 2022-06-23 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
EP3987029A1 (en) * 2019-06-19 2022-04-27 Sarepta Therapeutics, Inc. Methods for treating muscular dystrophy
CA3165961A1 (en) 2019-12-26 2021-07-01 Nippon Shinyaku Co., Ltd. Antisense nucleic acid that induces skipping of exon 50
US20230140736A1 (en) 2020-02-28 2023-05-04 Nippon Shinyaku Co., Ltd. Antisense nucleic acid inducing skipping of exon 51
WO2022232478A1 (en) 2021-04-30 2022-11-03 Sarepta Therapeutics, Inc. Treatment methods for muscular dystrophy
TW202307208A (zh) 2021-06-23 2023-02-16 日商日本新藥股份有限公司 反義寡聚物之組合
EP4368187A1 (en) 2021-07-08 2024-05-15 Nippon Shinyaku Co., Ltd. Precipitation suppressing agent
WO2023282344A1 (ja) 2021-07-08 2023-01-12 日本新薬株式会社 腎毒性軽減剤
CA3225454A1 (en) 2021-07-08 2023-01-12 Nippon Shinyaku Co., Ltd. Nephrotoxicity reducing agent
IL315280A (en) 2022-03-17 2024-10-01 Sarepta Therapeutics Inc Morpholino phosphorodiamidate oligomer conjugates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029986A1 (ja) * 2010-09-01 2012-03-08 日本新薬株式会社 アンチセンス核酸
US20140315862A1 (en) * 2013-03-15 2014-10-23 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
CN104603271A (zh) * 2012-07-03 2015-05-06 普罗森萨科技有限公司 用于治疗肌肉萎缩症患者的寡核苷酸

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH445129A (fr) 1964-04-29 1967-10-15 Nestle Sa Procédé pour la préparation de composés d'inclusion à poids moléculaire élevé
US3459731A (en) 1966-12-16 1969-08-05 Corn Products Co Cyclodextrin polyethers and their production
US3426011A (en) 1967-02-13 1969-02-04 Corn Products Co Cyclodextrins with anionic properties
US3453257A (en) 1967-02-13 1969-07-01 Corn Products Co Cyclodextrin with cationic properties
US3453259A (en) 1967-03-22 1969-07-01 Corn Products Co Cyclodextrin polyol ethers and their oxidation products
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
ATE171185T1 (de) 1985-03-15 1998-10-15 Antivirals Inc Immunotestmittel für polynukleotid und verfahren
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
US5217866A (en) 1985-03-15 1993-06-08 Anti-Gene Development Group Polynucleotide assay reagent and method
US5521063A (en) 1985-03-15 1996-05-28 Antivirals Inc. Polynucleotide reagent containing chiral subunits and methods of use
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
US5087617A (en) 1989-02-15 1992-02-11 Board Of Regents, The University Of Texas System Methods and compositions for treatment of cancer using oligonucleotides
US5652122A (en) 1989-12-21 1997-07-29 Frankel; Alan Nucleic acids encoding and methods of making tat-derived transport polypeptides
KR0166088B1 (ko) 1990-01-23 1999-01-15 . 수용해도가 증가된 시클로덱스트린 유도체 및 이의 용도
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
GB9209032D0 (en) 1992-04-25 1992-06-10 Ciba Geigy Ag New peptide derivatives
AU4769893A (en) 1992-07-17 1994-02-14 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
CA2135642C (en) 1992-08-21 1999-12-14 James G. Barsoum Tat-derived transport polypeptides
PT690726E (pt) 1993-01-07 2002-05-31 Univ Jefferson Inibicao anti-sentido de c-myc para modular a proliferacao de celulas do musculo liso
PT698092E (pt) 1993-05-11 2007-10-29 Univ North Carolina Oligonucleótidos complementares de uma cadeia codificadora que combatem splicing aberrante e métodos para a sua utilização
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5753613A (en) 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
IL115849A0 (en) 1994-11-03 1996-01-31 Merz & Co Gmbh & Co Tangential filtration preparation of liposomal drugs and liposome product thereof
US5849727A (en) 1996-06-28 1998-12-15 Board Of Regents Of The University Of Nebraska Compositions and methods for altering the biodistribution of biological agents
AU734827B2 (en) 1997-05-21 2001-06-21 Board Of Trustees Of The Leland Stanford Junior University Composition and method for enhancing transport across biological membranes
US6329501B1 (en) 1997-05-29 2001-12-11 Auburn University Methods and compositions for targeting compounds to muscle
US7572582B2 (en) 1997-09-12 2009-08-11 Exiqon A/S Oligonucleotide analogues
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
WO1999042091A2 (en) 1998-02-19 1999-08-26 Massachusetts Institute Of Technology Use of polycations as endosomolytic agents
US6683173B2 (en) 1998-04-03 2004-01-27 Epoch Biosciences, Inc. Tm leveling methods
EP1109821A4 (en) 1998-08-25 2002-04-03 Human Genome Sciences Inc 49 HUMAN-SECRETED PROTEINS
US6210892B1 (en) 1998-10-07 2001-04-03 Isis Pharmaceuticals, Inc. Alteration of cellular behavior by antisense modulation of mRNA processing
JP2000125448A (ja) 1998-10-14 2000-04-28 Yazaki Corp 電気接続箱
JP2002535015A (ja) 1999-01-29 2002-10-22 エイブイアイ バイオファーマ, インコーポレイテッド 標的rnaを検出するための非侵襲性方法
JP2000256547A (ja) 1999-03-10 2000-09-19 Sumitomo Dow Ltd 耐熱性プラスチックカード用樹脂組成物
US7084125B2 (en) 1999-03-18 2006-08-01 Exiqon A/S Xylo-LNA analogues
CA2365984A1 (en) 1999-04-08 2000-10-19 Oasis Biosciences, Inc. Antisense oligonucleotides comprising universal and/or degenerate bases
ATE356824T1 (de) 1999-05-04 2007-04-15 Santaris Pharma As L-ribo-lna analoge
JP2000325085A (ja) 1999-05-21 2000-11-28 Masafumi Matsuo デュシェンヌ型筋ジストロフィー治療剤
DE60039601D1 (de) 1999-05-24 2008-09-04 Avi Biopharma Inc Antisense gegen c-myc zur behandlung von polyzystischer nierenkrankheit
US6303573B1 (en) 1999-06-07 2001-10-16 The Burnham Institute Heart homing peptides and methods of using same
US6593292B1 (en) 1999-08-24 2003-07-15 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
US7229961B2 (en) 1999-08-24 2007-06-12 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into ocular tissues
US6669951B2 (en) 1999-08-24 2003-12-30 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
US20030104622A1 (en) 1999-09-01 2003-06-05 Robbins Paul D. Identification of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, DNA and viruses
US7070807B2 (en) 1999-12-29 2006-07-04 Mixson A James Branched histidine copolymers and methods for using same
US7163695B2 (en) 1999-12-29 2007-01-16 Mixson A James Histidine copolymer and methods for using same
US20020009491A1 (en) 2000-02-14 2002-01-24 Rothbard Jonathan B. Compositions and methods for enhancing drug delivery across biological membranes and tissues
US6653467B1 (en) 2000-04-26 2003-11-25 Jcr Pharmaceutical Co., Ltd. Medicament for treatment of Duchenne muscular dystrophy
US6727355B2 (en) 2000-08-25 2004-04-27 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
US6559279B1 (en) 2000-09-08 2003-05-06 Isis Pharmaceuticals, Inc. Process for preparing peptide derivatized oligomeric compounds
US20040170955A1 (en) 2000-09-08 2004-09-02 Wadih Arap Human and mouse targeting peptides identified by phage display
EP1191097A1 (en) 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
AU2002225714A1 (en) 2000-11-10 2002-05-21 The Regents Of The University Of California Il-17 receptor-like protein, uses thereof, and modulation of catabolic activity of il-17 cytokines on bone and cartilage
US7138238B2 (en) 2001-02-06 2006-11-21 Auburn University Ligand sensor devices and uses thereof
US20030031655A1 (en) 2001-02-08 2003-02-13 Sequitur, Inc. Methods of light activated release of ligands from endosomes
JP2005508832A (ja) 2001-02-16 2005-04-07 セルゲイト, インコーポレイテッド 間隔を開けてアルギニン部分を含むトランスポーター
US7456146B2 (en) 2001-05-09 2008-11-25 Ghc Research Development Corporation Lytic peptide prodrugs
KR20040004629A (ko) 2001-05-17 2004-01-13 에이브이아이 바이오파마 인코포레이티드 c-myc 안티센스 올리고머를 사용한 암치료를 위한조합 접근법
JP3735292B2 (ja) 2001-07-26 2006-01-18 三菱重工業株式会社 ダイエット効果のある健康食品および製剤
US6645974B2 (en) 2001-07-31 2003-11-11 Merck & Co., Inc. Androgen receptor modulators and methods for use thereof
US20090075377A1 (en) 2001-08-03 2009-03-19 Arbor Vita Corporation Molecular interactions in cells
CA2459347C (en) 2001-09-04 2012-10-09 Exiqon A/S Locked nucleic acid (lna) compositions and uses thereof
CA2469336C (en) 2001-12-11 2013-06-11 The Board Of Trustees Of The Leland Stanford Junior University Guanidinium transport reagents and conjugates
KR100464261B1 (ko) 2002-01-24 2005-01-03 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
KR20030084444A (ko) 2002-04-26 2003-11-01 주식회사 파나진 Pna 올리고머를 합성하기 위한 신규한 단량체 및 그의제조방법
US7569575B2 (en) 2002-05-08 2009-08-04 Santaris Pharma A/S Synthesis of locked nucleic acid derivatives
WO2004044140A2 (en) 2002-11-05 2004-05-27 Isis Pharmaceticals, Inc. 2’-substituted oligomeric compounds and compositions for use in gene modulations
ES2566632T3 (es) 2002-11-25 2016-04-14 Masafumi Matsuo Fármacos de ácido nucleico ENA que modifican el corte y empalme en precursores de ARNm
US7482016B2 (en) 2003-03-19 2009-01-27 The J. David Gladstone Institutes Immunogenic compositions comprising HIV-1 acetylated Tat polypeptides
WO2004083432A1 (en) 2003-03-21 2004-09-30 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
WO2004097017A2 (en) 2003-04-29 2004-11-11 Avi Biopharma, Inc. Compositions for enhancing transport and antisense efficacy of nucleic acid analog into cells
MXPA06000347A (es) 2003-07-08 2006-03-28 Genentech Inc Polipeptidos heterologos il-17 a/f y usos terapeuticos de los mismos.
US7211668B2 (en) 2003-07-28 2007-05-01 Panagene, Inc. PNA monomer and precursor
US20050222068A1 (en) 2003-10-23 2005-10-06 Mourich Dan V Method and antisense composition for selective inhibition of HIV infection in hematopoietic cells
US20050203041A1 (en) 2003-09-23 2005-09-15 Mourich Dan V. Antisense compound and method for selectively killing activated T cells
US7786151B2 (en) 2004-01-09 2010-08-31 Kinopharma, Inc. Therapeutic composition of treating abnormal splicing caused by the excessive kinase induction
CA2553104A1 (en) 2004-01-23 2005-08-11 Avi Biopharma, Inc. Antisense oligomers and methods for inducing immune tolerance and immunosuppression
US20060078542A1 (en) 2004-02-10 2006-04-13 Mah Cathryn S Gel-based delivery of recombinant adeno-associated virus vectors
US7402574B2 (en) 2004-03-12 2008-07-22 Avi Biopharma, Inc. Antisense composition and method for treating cancer
US20050288246A1 (en) 2004-05-24 2005-12-29 Iversen Patrick L Peptide conjugated, inosine-substituted antisense oligomer compound and method
WO2005117928A1 (en) 2004-05-30 2005-12-15 Cemines, Inc. Compositions and methods for the treatment of skin cancer
EP2206781B1 (en) 2004-06-28 2015-12-02 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
CA2572151A1 (en) 2004-06-30 2006-08-24 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a non-phosphate backbone linkage
EP2801366A3 (en) 2004-09-02 2015-04-29 Cognosci, Inc. Improved apo E analogs and methods for their use
WO2006031996A2 (en) 2004-09-14 2006-03-23 University Of Pittsburgh Of The Commonwealth System Of Higher Education Targeting viruses using a modified sindbis glycoprotein
US8129352B2 (en) 2004-09-16 2012-03-06 Avi Biopharma, Inc. Antisense antiviral compound and method for treating ssRNA viral infection
US8357664B2 (en) 2004-10-26 2013-01-22 Avi Biopharma, Inc. Antisense antiviral compound and method for treating influenza viral infection
US7524829B2 (en) 2004-11-01 2009-04-28 Avi Biopharma, Inc. Antisense antiviral compounds and methods for treating a filovirus infection
NZ538097A (en) 2005-02-07 2006-07-28 Ovita Ltd Method and compositions for improving wound healing
WO2006086667A2 (en) 2005-02-09 2006-08-17 Avi Bio Pharma, Inc. Antisense composition and method for treating muscle atrophy
EP2322553A3 (en) 2005-02-14 2011-11-16 Wyeth LLC Interleukin-17F antibodies and other IL-17F signaling antagonists and uses therefor
WO2006112705A2 (en) 2005-04-22 2006-10-26 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the binding of sr proteins and by interfering with secondary rna structure.
JP2008539209A (ja) 2005-04-26 2008-11-13 カリヨン−シーティーティー リミテッド 診断及び治療剤
US8067571B2 (en) 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
WO2007009094A2 (en) 2005-07-13 2007-01-18 Avi Biopharma, Inc. Antisense antibacterial method and compound
US7790694B2 (en) 2005-07-13 2010-09-07 Avi Biopharma Inc. Antisense antibacterial method and compound
US8524676B2 (en) 2005-09-08 2013-09-03 Sarepta Therapeutics, Inc. Method for treating enterovirus or rhinovirus infection using antisense antiviral compounds
CA2621964A1 (en) 2005-09-08 2007-03-15 Avi Biopharma, Inc. Antisense antiviral compound and method for treating picornavirus infection
CA2624081C (en) 2005-09-29 2014-09-16 Medimmune, Inc. Method of identifying membrane ig specific antibodies and use thereof for targeting immunoglobulin-producing precursor cells
AU2006311586A1 (en) 2005-11-08 2007-05-18 Avi Biopharma, Inc. Immunosuppression compound and treatment method
US8501704B2 (en) 2005-11-08 2013-08-06 Sarepta Therapeutics, Inc. Immunosuppression compound and treatment method
CA2629323A1 (en) 2005-11-10 2007-05-24 The University Of North Carolina At Chapel Hill Splice switching oligomers for tnf superfamily receptors and their use in treatment of disease
WO2007103529A2 (en) 2006-03-07 2007-09-13 Avi Biopharma, Inc. Antisense antiviral compound and method for treating arenavirus infection
LT2024499T (lt) 2006-05-10 2018-02-26 Sarepta Therapeutics, Inc. Oligonukleotido analogai, turintys katijonines jungtis tarp subvienetų
US8785407B2 (en) 2006-05-10 2014-07-22 Sarepta Therapeutics, Inc. Antisense antiviral agent and method for treating ssRNA viral infection
US20090173556A1 (en) 2006-05-17 2009-07-09 Svetlana Anatolevna Sokolova Transport Means
AU2006345724B2 (en) 2006-06-30 2013-11-21 Lakewood-Amedex, Inc. Compositions and methods for the treatment of muscle wasting
NZ574807A (en) 2006-08-11 2011-01-28 Prosensa Technologies Bv Methods and means for treating dna repeat instability associated genetic disorders
US20080199961A1 (en) 2006-08-25 2008-08-21 Avi Biopharma, Inc. ANTISENSE COMPOSITION AND METHOD FOR INHIBITION OF miRNA BIOGENESIS
US20080267978A1 (en) 2006-08-28 2008-10-30 Mary Zutter Anti-angiogenic targets for cancer therapy
CA2981308C (en) 2006-09-21 2020-12-22 University Of Rochester Compositions and methods related to protein displacement therapy for myotonic dystrophy
FR2908999B1 (fr) 2006-11-29 2012-04-27 Biomerieux Sa Nouveau medicament destine a l'inhibition, la prevention ou le traitement de la polyarthrite rhumatoide.
EP1938802A1 (en) 2006-12-22 2008-07-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Interfering RNAs targeting pro-inflammatory cytokines
US20100016215A1 (en) 2007-06-29 2010-01-21 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
EP2170363B1 (en) 2007-06-29 2018-08-08 Sarepta Therapeutics, Inc. Tissue specific peptide conjugates and methods
EP2167135A2 (en) 2007-07-12 2010-03-31 Prosensa Technologies B.V. Molecules for targeting compounds to various selected organs, tissues or tumor cells
WO2009026412A1 (en) 2007-08-21 2009-02-26 Children's Medical Center Corporation Treatment of airway hyperreactivity
CN101896186A (zh) 2007-10-26 2010-11-24 莱顿教学医院 对抗肌肉病症的方式和方法
US8299206B2 (en) 2007-11-15 2012-10-30 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
BRPI0819828A8 (pt) 2007-11-15 2022-12-27 Avi Biopharma Inc Processo de síntese de oligômeros de morfolino
US8076476B2 (en) 2007-11-15 2011-12-13 Avi Biopharma, Inc. Synthesis of morpholino oligomers using doubly protected guanine morpholino subunits
US7989608B2 (en) 2007-12-28 2011-08-02 Avi Biopharma Inc. Immunomodulatory agents and methods of use
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
EP2119783A1 (en) 2008-05-14 2009-11-18 Prosensa Technologies B.V. Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means
WO2009144481A2 (en) 2008-05-30 2009-12-03 Isis Innovation Limited Conjugates for delivery of biologically active compounds
US8084601B2 (en) * 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
SI3133160T1 (sl) 2008-10-24 2019-05-31 Sarepta Therapeutics, Inc. Sestavki, ki preskakujejo ekson za DMD
DK2607484T3 (en) 2008-10-27 2016-03-07 Biomarin Technologies B V Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-MRNA
CA2744987C (en) 2008-12-02 2018-01-16 Chiralgen, Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
EP2376633A1 (en) 2008-12-17 2011-10-19 AVI BioPharma, Inc. Antisense compositions and methods for modulating contact hypersensitivity or contact dermatitis
US20120149756A1 (en) 2009-04-10 2012-06-14 Associatin Institut de Myologie Tricyclo-dna antisense oligonucleotides, compositions, and methods for the treatment of disease
ES2593836T3 (es) 2009-04-24 2016-12-13 Biomarin Technologies B.V. Oligonucleótido que comprende una inosina para tratar la DMD
US20110269665A1 (en) 2009-06-26 2011-11-03 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
AU2010270714B2 (en) 2009-07-06 2015-08-13 Wave Life Sciences Ltd. Novel nucleic acid prodrugs and methods use thereof
JP5878758B2 (ja) 2009-09-16 2016-03-08 株式会社Wave Life Sciences Japan Rna及びその誘導体合成のための新規保護基
ES2693459T3 (es) 2009-11-12 2018-12-11 The University Of Western Australia Moléculas antisentido y métodos para el tratamiento de patologías
CA2805086C (en) 2010-05-13 2020-10-20 Sarepta Therapeutics, Inc. Antisense modulation of interleukins 17 and 23 signaling
TWI620756B (zh) 2010-05-28 2018-04-11 薩羅塔治療公司 具有經修飾之單元間連結及/或末端基團之寡核苷酸類似物
EP2620428B1 (en) 2010-09-24 2019-05-22 Wave Life Sciences Ltd. Asymmetric auxiliary group
WO2012109296A1 (en) 2011-02-08 2012-08-16 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center Antisense oligonucleotides
KR102339196B1 (ko) 2011-05-05 2021-12-15 사렙타 쎄러퓨틱스, 인코퍼레이티드 펩타이드 올리고뉴클레오타이드 접합체
US9161948B2 (en) * 2011-05-05 2015-10-20 Sarepta Therapeutics, Inc. Peptide oligonucleotide conjugates
US9607308B2 (en) 2011-06-29 2017-03-28 American Express Travel Related Services Company, Inc. Spend based digital ad targeting and measurement
ES2535654T3 (es) 2011-10-13 2015-05-13 Association Institut De Myologie ADN triciclo-fosforotioato
ES2727481T3 (es) 2011-11-30 2019-10-16 Sarepta Therapeutics Inc Inclusión inducida de exón en atrofia muscular espinal
EP2799548B1 (en) 2011-12-28 2019-08-21 Nippon Shinyaku Co., Ltd. Antisense nucleic acid
EP4043039A1 (en) 2012-01-27 2022-08-17 BioMarin Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
DE102012101676A1 (de) 2012-02-29 2013-08-29 Klaus-Dieter Rösler Verfahren und Vorrichtung zum Bearbeiten von Formularen mit einer Datenverarbeitungsanlage
WO2014012081A2 (en) 2012-07-13 2014-01-16 Ontorii, Inc. Chiral control
SG11201500239VA (en) 2012-07-13 2015-03-30 Wave Life Sciences Japan Asymmetric auxiliary group
EP3885439A1 (en) 2012-12-20 2021-09-29 Sarepta Therapeutics, Inc. Improved exon skipping compositions for treating muscular dystrophy
EP3633035A1 (en) 2013-03-14 2020-04-08 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
MX366274B (es) 2013-03-14 2019-07-04 Sarepta Therapeutics Inc Composiciones para el salto del exón para el tratamiento de distrofia muscular.
JP6618910B2 (ja) * 2013-09-05 2019-12-11 サレプタ セラピューティクス,インコーポレイテッド 酸性α−グルコシダーゼにおけるアンチセンス誘導エクソン2包含
EP3095461A4 (en) 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
JPWO2015108046A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 抗アレルギー作用を有するキラル核酸アジュバンド及び抗アレルギー剤
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
MX2016009290A (es) 2014-01-16 2017-02-28 Wave Life Sciences Ltd Diseño quiral.
TR201901939T4 (tr) 2014-03-12 2019-03-21 Nat Center Neurology & Psychiatry Antisens nükleik asit.
MX2016016526A (es) 2014-06-17 2017-04-04 Nippon Shinyaku Co Ltd Acidos nucleicos antisentido.
AU2015338923B2 (en) 2014-11-02 2021-10-21 Arcturus Therapeutics, Inc. Messenger UNA molecules and uses thereof
MA43072A (fr) 2015-07-22 2018-05-30 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
CN108699555A (zh) * 2015-10-09 2018-10-23 萨勒普塔医疗公司 用于治疗杜兴肌营养不良和相关病症的组合物和方法
AU2016334232B2 (en) 2015-10-09 2022-05-26 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
MA45270A (fr) 2016-05-04 2017-11-09 Wave Life Sciences Ltd Compositions d'oligonucléotides et procédés associés
MA45290A (fr) 2016-05-04 2019-03-13 Wave Life Sciences Ltd Procédés et compositions d'agents biologiquement actifs
DK3554553T3 (da) * 2016-12-19 2022-09-19 Sarepta Therapeutics Inc Exon-overspringnings-oligomerkonjugat til muskeldystrofi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029986A1 (ja) * 2010-09-01 2012-03-08 日本新薬株式会社 アンチセンス核酸
CN104603271A (zh) * 2012-07-03 2015-05-06 普罗森萨科技有限公司 用于治疗肌肉萎缩症患者的寡核苷酸
US20140315862A1 (en) * 2013-03-15 2014-10-23 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
CN105307723A (zh) * 2013-03-15 2016-02-03 萨勒普塔医疗公司 改进的用于治疗肌营养不良的组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANNEMIEKE AARTSMA-RUS ET AL.: "Antisense-Induced Multiexon Skipping for Ducchenne Muscular Dystrophy Makes More Sense", 《AM J HUM GENET》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636866A (zh) * 2016-12-19 2019-12-31 萨勒普塔医疗公司 用于肌肉萎缩症的外显子跳跃寡聚体缀合物

Also Published As

Publication number Publication date
IL267244A (en) 2019-08-29
JP2023156512A (ja) 2023-10-24
BR112019012647A2 (pt) 2019-11-19
LT3554553T (lt) 2022-08-25
EP3554553A1 (en) 2019-10-23
HUE059843T2 (hu) 2023-01-28
JP2020503009A (ja) 2020-01-30
US20220280546A1 (en) 2022-09-08
RS63610B1 (sr) 2022-10-31
MX2019006882A (es) 2019-08-16
CO2019007397A2 (es) 2019-10-09
TWI760402B (zh) 2022-04-11
SA519402154B1 (ar) 2022-12-19
CA3046793A1 (en) 2018-06-28
PT3554553T (pt) 2022-08-04
KR20230110811A (ko) 2023-07-25
US20180177814A1 (en) 2018-06-28
MD3554553T2 (ro) 2022-10-31
US20210169919A1 (en) 2021-06-10
DK3554553T3 (da) 2022-09-19
CN110290812B (zh) 2023-06-02
HRP20220943T1 (hr) 2022-10-28
ZA201904092B (en) 2022-01-26
EP3554553B1 (en) 2022-07-20
IL267244B (en) 2021-10-31
SG10202012839TA (en) 2021-01-28
US11642364B2 (en) 2023-05-09
WO2018118599A1 (en) 2018-06-28
MY195801A (en) 2023-02-22
KR102552428B1 (ko) 2023-07-06
ES2927079T3 (es) 2022-11-02
AU2017382723A1 (en) 2019-08-01
IL287047A (en) 2021-12-01
US20230381216A1 (en) 2023-11-30
NZ755416A (en) 2023-05-26
KR20190099237A (ko) 2019-08-26
TW201828996A (zh) 2018-08-16
US10888578B2 (en) 2021-01-12
JP7118063B2 (ja) 2022-08-15
JP2021045160A (ja) 2021-03-25
PL3554553T3 (pl) 2022-11-07

Similar Documents

Publication Publication Date Title
CN110290812A (zh) 用于肌肉萎缩症的外显子跳跃寡聚体缀合物
CN110337308A (zh) 用于肌肉萎缩症的外显子跳跃寡聚体缀合物
CN110636866B (zh) 用于肌肉萎缩症的外显子跳跃寡聚体缀合物
CN105392884B (zh) 用于治疗肌肉萎缩的外显子跳跃组合物
JP2020537501A (ja) 筋ジストロフィーのためのエクソンスキッピングオリゴマーコンジュゲート
CN109311919A (zh) 用于肌肉萎缩症的外显子跳跃寡聚体
CN112384222B (zh) 用于肌营养不良的外显子跳跃寡聚物缀合物
JP2024116362A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマー
JP2024051108A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマーコンジュゲート
JP2021526807A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマーおよびオリゴマーコンジュゲート
JP2021531009A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマー
JP2021521794A (ja) 筋ジストロフィーに対するエクソンスキッピングオリゴマーおよびオリゴマーコンジュゲート
EP4219717A2 (en) Exon skipping oligomers for muscular dystrophy
EA044076B1 (ru) Конъюгаты олигомеров для пропуска экзона при мышечной дистрофии

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant