CN109786699A - 一种高压实磷酸铁锂正极材料及其水热法制备方法 - Google Patents

一种高压实磷酸铁锂正极材料及其水热法制备方法 Download PDF

Info

Publication number
CN109786699A
CN109786699A CN201811654741.6A CN201811654741A CN109786699A CN 109786699 A CN109786699 A CN 109786699A CN 201811654741 A CN201811654741 A CN 201811654741A CN 109786699 A CN109786699 A CN 109786699A
Authority
CN
China
Prior art keywords
lithium
iron phosphate
hydro
lithium iron
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811654741.6A
Other languages
English (en)
Other versions
CN109786699B (zh
Inventor
张沁沁
戴首
王广进
朱二涛
杨阳
徐从胜
吴金林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Rongjie Energy Materials Co Ltd
Original Assignee
Hefei Rongjie Energy Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Rongjie Energy Materials Co Ltd filed Critical Hefei Rongjie Energy Materials Co Ltd
Priority to CN201811654741.6A priority Critical patent/CN109786699B/zh
Publication of CN109786699A publication Critical patent/CN109786699A/zh
Application granted granted Critical
Publication of CN109786699B publication Critical patent/CN109786699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种高压实磷酸铁锂正极材料及其水热法制备方法,其步骤如下先将还原表活剂和溶剂加入容器中,再加入锂源、铁源和添加剂,搅拌均匀得固含量为20‑70%的混合液;将混合液加热进行水热反应;对水热反应物进行抽滤、清洗后,烘干得到纳米级、均匀规则的磷酸铁锂颗粒;在磷酸铁锂颗粒中加入碳源混合均匀;置于惰性气体中于煅烧处理,冷却后即得到高压实磷酸铁锂正极材料。本申请中由于加入了还原表活剂,使水热法制成的磷酸铁锂颗粒的粒径为200‑300nm、且颗粒分布均匀规则,然后煅烧处理后粒径仅为200‑600nm,其符合锂电池正极材料的要求,无需对其再进行分级破碎处理,从而节省了时间、成本。

Description

一种高压实磷酸铁锂正极材料及其水热法制备方法
技术领域
本发明涉及锂离子电池正极材料领域,具体涉及一种高压实磷酸铁锂正极材料及其水热法制备方法。
背景技术
磷酸铁锂正极材料以其充放电效率高、循环稳定性好、电池耐用、安全性高、价格便宜、资源丰富等倍受重视,并得到广泛研究和应用,但由于其电导率及压实密度的问题,又极大地限制了磷酸铁锂正极材料的应用。目前,针对电导率问题,通过碳包覆以及各种掺杂均达到提高电导率。其中压实密度作为衡量正极材料能量密度的重要参数,所以提升磷酸铁锂的压实密度尤为重要。
磷酸铁锂常用生产方法有高温固相法、碳热还原法、共沉淀法、水热合成法等,其中现有水热合成是先将铁源、锂源、磷源混合于溶剂中,然后通过水热反应一步制得磷酸铁锂碳包覆粉末;或者再经过二次碳包覆高温处理或者多次多段高温处理得到磷酸铁锂。虽然其制得的碳包覆磷酸铁锂的低温、倍率、循环性能都较好,但对磷酸铁锂压实密度未见有效提升。
发明内容
本发明的目的是提供一种高压实磷酸铁锂正极材料及其水热法制备方法。
具体技术方案如下:
一种高压实磷酸铁锂正极材料的水热法制备方法,其步骤如下:
(1)先将还原表活剂和溶剂按体积比1:(1-6)加入容器中,再加入锂源、铁源和添加剂,搅拌均匀得固含量为20-70%的混合液;
(2)将混合液加热至160-220℃进行水热反应6h-12h,反应结束后自然降温;
(3)对水热反应物进行抽滤、清洗后,烘干得到纳米级、均匀规则的磷酸铁锂颗粒;
(4)在步骤(3)得到的磷酸铁锂颗粒中加入占磷酸铁锂颗粒质量2-6%的碳源混合均匀;
(5)将混合物料置于惰性气体中于200-600℃煅烧处理2-5h,冷却后即得到高压实磷酸铁锂正极材料。
进一步方案,步骤(1)中所述锂源和铁源是按锂、铁元素摩尔比为1.01-1.1进行加入的;所述添加剂的加入量为铁源质量的0.05-3%。
进一步方案,步骤(1)中所述铁源优选为无水磷酸铁或含水磷酸铁;所述锂源优选为氢氧化锂或醋酸锂,其他本领域常规的铁源、锂源也可。
进一步方案,所述添加剂为二氧化钛、氢氧化铝、氢氧化镁、五氧化二铌中的至少一种。
进一步方案,所述溶剂为纯水或乙醇。
进一步方案,所述还原表活剂为二乙烯三胺、三乙烯四胺、四乙烯五胺、五乙烯六胺中的至少一种。
进一步方案,步骤(3)中所述的清洗是指依次用去离子水、酒精对水热反应物进行至少三次清洗;所述烘干是指置于真空干燥箱中以70-100℃烘干;磷酸铁锂颗粒的粒径为200-300nm。
进一步方案,步骤(4)中所述的碳源为葡萄糖、蔗糖、淀粉、柠檬酸、聚乙二醇、聚丙烯酸、聚乙烯吡咯烷酮中的至少一种。
本发明的另一个发明目的是提供上述方法所制备的高压实磷酸铁锂正极材料,其粒径为200-600nm。
本发明是在混料过程添加特殊的既作为还原剂又作为表面活性剂的还原表活剂,然后经过水热反应,待反应结束冷却后对沉淀物洗涤、干燥得到纳米级、颗粒均匀规则的磷酸铁锂颗粒;再将磷酸铁锂颗粒与一定量的碳源混合均匀,最后通过高温短时处理得到碳包覆均匀无杂碳的磷酸铁锂,不仅提升了压实密度而且具有较高的放电比容量。
与已有技术相比,本发明的有益效果体现在:
1、本申请中还原表活剂既可以作为还原剂又可以作为表面活性剂,有助于水热法合成制得纳米级、颗粒均匀规则的磷酸铁锂颗粒。
2、本申请中是先将还原表活剂、添加剂和锂源、铁源进行混合、水热反应,经洗涤后再与碳源进行混合煅烧处理,即得到磷酸铁锂正极材料;由于加入了还原表活剂,使水热法制成的磷酸铁锂颗粒的粒径为200-300nm的纳米级、且颗粒分布均匀规则,然后煅烧处理所得的正极材料的粒径仅为200-600nm,其符合锂电池正极材料的要求,所以后续无需对其再进行分级破碎处理,从而节省了时间、成本。
3、本申请中磷酸铁锂的碳包覆过程是在200-600℃煅烧处理2-5h,其处理时间短,即形成碳包覆,不仅提升了压实密度(2.5g/cm3左右),而且具有较高的放电比容量。
4、本申请中加入了添加剂能提高合成得到的磷酸铁锂的电导率,利于磷酸铁锂电性能发挥。
附图说明:
图1为实施例1制备的磷酸铁锂颗粒的XRD图;
图2为实施例1制备的磷酸铁锂颗粒的SEM图;
图3为实施例1制备的碳包覆磷酸铁锂的SEM图;
图4为对比例制备的磷酸铁锂颗粒的SEM图;
图5为对比例制备的碳包覆磷酸铁锂颗粒的SEM图。
具体实施方式
实施例1
(1)先将体积比1:4的二乙烯三胺和纯水倒入烧杯中,再将锂、铁元素摩尔比1.04的醋酸锂和无水磷酸铁以及占铁源质量0.5%的添加剂二氧化钛溶于上述混合溶剂中,搅拌均匀得固含量为40%的混合液;
(2)将步骤(1)中混合液倒入反应釜中,在180℃烘箱中反应8h,水热反应结束后自然降温;
(3)将水热反应冷却后的溶液抽滤处理,然后分别用去离子水和酒精多次清洗,再置于真空干燥箱80℃烘干,得到磷酸铁锂颗粒;
对磷酸铁锂进行X射线衍射分析,如图1所示,所有衍射峰都对应橄榄石结构的磷酸铁锂,且衍射峰尖锐、无杂峰,说明水热180℃保温8h合成得到的磷酸铁锂结晶性好、无其他杂相。
对磷酸铁锂进行扫描电镜形貌分析,如图2所示,水热180℃保温8h合成得到的磷酸铁锂颗粒是纳米级别、颗粒均匀规则的,其粒径在200-300nm。
(4)在步骤(3)得到的磷酸铁锂颗粒中添加占磷酸铁锂颗粒质量6%的葡萄糖,然后于混料罐中混合均匀。
(5)将混合物料在惰性气体保护下于400℃处理2h,冷却后得到均匀碳包覆磷酸铁锂。
对碳包覆后的磷酸铁锂进行扫描电镜形貌分析,其电镜结果如图3所示,高温处理后的碳包覆磷酸铁锂形貌和水热得到的磷酸铁锂形貌基本无变化,个别颗粒有所长大,但整体粒径在200-600nm,颗粒表面均匀的包覆了一层碳层,且无明显的絮状杂碳存在。所以无需对其再进行分级破碎处理。
本实施例制备的碳包覆磷酸铁锂进行了极片压实和软包电池性能测试,其压实和电性能均较高,其中软包叠片电池的极片使用压实达到2.49g/cm3,1C放电比容量144.6mAh/g。
实施例2
(1)先将体积比1:4的二乙烯三胺和乙醇倒入烧杯中,再将锂、铁元素摩尔比1.04的醋酸锂和含水磷酸铁以及占铁源质量0.05%添加剂五氧化二铌溶于上述混合溶剂中,搅拌均匀得固含量为50%的混合液。
(2)步骤(1)中混合液倒入反应釜中,在200℃烘箱中反应6h。水热反应结束后自然降温;
(3)将水热反应冷却后的溶液抽滤处理然后分别用去离子水和酒精多次清洗,再置于真空干燥箱80℃烘干,得到纳米级颗粒均匀规则的磷酸铁锂颗粒。
(4)在磷酸铁锂颗粒中添加占磷酸铁锂颗粒质量2.5%的葡萄糖和1%柠檬酸,然后于混料罐中混合均匀。
(5)将均匀混合碳源后的磷酸铁锂在惰性气体保护下于600℃处理2h,冷却后得到均匀碳包覆磷酸铁锂,其粒径在200-600nm可直接作为锂电池正极材料,无需再对其进行分级破碎处理。
本实施例制备的碳包覆磷酸铁锂进行了极片压实和软包电池性能测试,其中软包叠片电池的极片使用压实达到2.54g/cm3,1C放电比容量142.9mAh/g。
实施例3
(1)先将体积比1:1的四乙烯五胺和纯水倒入烧杯中,再将锂、铁元素摩尔比1.1的氢氧化锂和无水磷酸铁以及占铁源质量1%添加剂氢氧化镁溶于上述混合溶剂中,搅拌均匀得固含量为20%的混合液。
(2)步骤(1)中混合液倒入反应釜中,在160℃烘箱中反应12h,水热反应结束后自然降温;
(3)将水热反应冷却后的溶液抽滤处理然后分别用去离子水和酒精多次清洗,再置于真空干燥箱80℃烘干,得到纳米级颗粒均匀规则的磷酸铁锂颗粒。
(4)在磷酸铁锂颗粒中添加占磷酸铁锂颗粒质量3.5%的聚乙二醇,然后于混料罐中混合均匀。
(5)将均匀混合碳源后的磷酸铁锂在惰性气体保护下于400℃处理3h,冷却后得到均匀碳包覆磷酸铁锂,其粒径在200-600nm可直接作为锂电池正极材料,无需再对其进行分级破碎处理。
本实施例制备的碳包覆磷酸铁锂进行了极片压实和软包电池性能测试,其中软包叠片电池的极片使用压实达到2.48g/cm3,1C放电比容量144.4mAh/g。
实施例4
(1)先将体积比1:6的五乙烯六胺和乙醇倒入烧杯中,再将锂、铁元素摩尔比1.01的氢氧化锂和含水磷酸铁以及占铁源质量3%添加剂氢氧化铝溶于上述混合溶剂中,搅拌均匀得固含量为70%的混合液。
(2)将步骤(1)中混合液倒入反应釜中,在220℃烘箱中反应6h,水热反应结束后自然降温;
(3)将水热反应冷却后的溶液抽滤处理然后分别用去离子水和酒精多次清洗,再置于真空干燥箱80℃烘干,得到纳米级颗粒均匀规则的磷酸铁锂颗粒。
(4)在磷酸铁锂颗粒中添加占磷酸铁锂颗粒质量1%的聚丙烯酸和1%柠檬酸,然后于混料罐中混合均匀。
(5)将均匀混合碳源后的磷酸铁锂在惰性气体保护下于200℃处理5h,冷却后得到均匀碳包覆磷酸铁锂,其粒径在200-600nm可直接作为锂电池正极材料,无需再对其进行分级破碎处理。
本实施例制备碳包覆磷酸铁锂进行了极片压实和软包电池性能测试,其中软包叠片电池的极片使用压实达到2.51g/cm3,1C放电比容量143.1mAh/g。
对比例
(1)按40%固含量配置溶液,即将锂、铁元素摩尔比1.04的醋酸锂和含水磷酸铁以及占铁源质量0.5%添加剂二氧化钛溶于纯水中,搅拌均匀。
(2)将步骤(1)混合均匀的溶液倒入反应釜中,在180℃烘箱中反应8h。水热反应结束后自然降温。
(3)将水热反应冷却后的溶液抽滤处理,然后分别用去离子水和酒精多次清洗,再置于真空干燥箱80℃烘干,得到磷酸铁锂颗粒。
对制得的磷酸铁锂颗粒进行扫描电镜形貌分析,电镜结果如图4所示,单一溶剂水热180℃保温8h合成得到的磷酸铁锂颗粒分布较均匀规则,但是粒径明显较大,其粒径范围在0.3-1.5μm。
(4)在磷酸铁锂颗粒中添加占磷酸铁锂颗粒质量3.5%的葡萄糖,然后于混料罐中混合均匀。
(5)将均匀混合碳源后的磷酸铁锂在惰性气体保护下于400℃处理2h,冷却后得到均匀碳包覆磷酸铁锂。
对碳包覆磷酸铁锂进行扫描电镜形貌分析,电镜结果如图5所示,可以看到高温处理后的碳包覆磷酸铁锂颗粒长大较明显,粒径范围在0.8-2.5μm,需要分级破碎处理后才能用于锂电池正极材料或测试。
(6)将碳包覆磷酸铁锂采用小型气流粉碎机分级破碎,得到粒径D50在1μm左右的成品粉末,用于后续测试。
对碳包覆磷酸铁锂进行了极片压实和软包电池性能测试,其中软包叠片电池的极片使用压实达到2.36g/cm3,1C放电比容量145.7mAh/g。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种高压实磷酸铁锂正极材料的水热法制备方法,其特征在于:其步骤如下:
(1)先将还原表活剂和溶剂按体积比1:(1-6)加入容器中,再加入锂源、铁源和添加剂,搅拌均匀得固含量为20-70%的混合液;
(2)将混合液加热至160-220℃进行水热反应6h-12h,反应结束后自然降温;
(3)对水热反应物进行抽滤、清洗后,烘干得到纳米级、均匀规则的磷酸铁锂颗粒;
(4)在步骤(3)得到的磷酸铁锂颗粒中加入占磷酸铁锂颗粒质量2-6%的碳源混合均匀;
(5)将步骤(4)混合所得的混合物料置于惰性气体中于200-600℃煅烧处理2-5h,冷却后即得到高压实磷酸铁锂正极材料。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中所述锂源和铁源是按锂、铁元素摩尔比为1.01-1.1进行加入的;所述添加剂的加入量为铁源质量的0.05-3%。
3.根据权利要求1所述的方法,其特征在于:步骤(1)中所述铁源为无水磷酸铁或含水磷酸铁;所述锂源为氢氧化锂或醋酸锂。
4.根据权利要求1所述的方法,其特征在于:所述添加剂为二氧化钛、氢氧化铝、氢氧化镁、五氧化二铌中的至少一种。
5.根据权利要求1所述的方法,其特征在于:所述溶剂为纯水或乙醇。
6.根据权利要求1所述的方法,其特征在于:所述还原表活剂为二乙烯三胺、三乙烯四胺、四乙烯五胺、五乙烯六胺中的至少一种。
7.根据权利要求1所述的方法,其特征在于:步骤(3)中所述的清洗是指依次用去离子水、酒精对水热反应物进行至少三次清洗;所述烘干是指置于真空干燥箱中以70-100℃烘干;磷酸铁锂颗粒的粒径为200-300nm。
8.根据权利要求1所述的方法,其特征在于:步骤(4)中所述的碳源为葡萄糖、蔗糖、淀粉、柠檬酸、聚乙二醇、聚丙烯酸、聚乙烯吡咯烷酮中的至少一种。
9.如权利要求1-8任一项所述的方法所制备的高压实磷酸铁锂正极材料,其特征在于:所述高压实磷酸铁锂正极材料的粒径为200-600nm。
CN201811654741.6A 2018-12-29 2018-12-29 一种高压实磷酸铁锂正极材料及其水热法制备方法 Active CN109786699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811654741.6A CN109786699B (zh) 2018-12-29 2018-12-29 一种高压实磷酸铁锂正极材料及其水热法制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811654741.6A CN109786699B (zh) 2018-12-29 2018-12-29 一种高压实磷酸铁锂正极材料及其水热法制备方法

Publications (2)

Publication Number Publication Date
CN109786699A true CN109786699A (zh) 2019-05-21
CN109786699B CN109786699B (zh) 2022-05-06

Family

ID=66499664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811654741.6A Active CN109786699B (zh) 2018-12-29 2018-12-29 一种高压实磷酸铁锂正极材料及其水热法制备方法

Country Status (1)

Country Link
CN (1) CN109786699B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554922A (zh) * 2020-04-14 2020-08-18 合肥国轩电池材料有限公司 一种倍率型磷酸铁锂的制备方法
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法
CN112614979A (zh) * 2020-12-17 2021-04-06 华中科技大学 一种二次碳包覆的磷酸铁锂及其制备方法
CN114348985A (zh) * 2021-12-31 2022-04-15 江苏贝特瑞纳米科技有限公司 一种高压实磷酸盐型正极材料
CN114725557A (zh) * 2022-04-11 2022-07-08 天津市捷威动力工业有限公司 一种磷酸铁锂废料的回收复用方法
CN115367724A (zh) * 2022-08-20 2022-11-22 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
CN101777648A (zh) * 2010-01-26 2010-07-14 中国科学院宁波材料技术与工程研究所 单分散磷酸铁锂纳米材料的制备方法及其锂离子二次电池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
CN102496715A (zh) * 2011-12-22 2012-06-13 中国计量学院 制备LiFePO4的溶剂热方法
CN102522551A (zh) * 2011-12-26 2012-06-27 彩虹集团公司 一种动力电池正极材料LiFePO4超细粉的制备方法
CN102544487A (zh) * 2011-12-22 2012-07-04 浙江天能能源科技有限公司 利用水热辅助微乳液法制备纳米LiFePO4
CN102569796A (zh) * 2012-01-17 2012-07-11 东南大学 一种磷酸铁锂与碳纳米管复合材料的制备方法
CN103400962A (zh) * 2013-08-08 2013-11-20 湘潭大学 一种球形LiFePO4/(C+La2/3-xLi3xTiO3)复合物正极材料及其制备方法
CN104638261A (zh) * 2013-11-06 2015-05-20 国家纳米科学中心 一种高倍率LiFePO4/C正极材料及其制备方法
CN104681814A (zh) * 2015-02-09 2015-06-03 湘潭大学 一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法
CN106744780A (zh) * 2017-03-22 2017-05-31 广东光华科技股份有限公司 一种高压实锂离子电池正极材料磷酸铁锂的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
CN101777648A (zh) * 2010-01-26 2010-07-14 中国科学院宁波材料技术与工程研究所 单分散磷酸铁锂纳米材料的制备方法及其锂离子二次电池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
CN102496715A (zh) * 2011-12-22 2012-06-13 中国计量学院 制备LiFePO4的溶剂热方法
CN102544487A (zh) * 2011-12-22 2012-07-04 浙江天能能源科技有限公司 利用水热辅助微乳液法制备纳米LiFePO4
CN102522551A (zh) * 2011-12-26 2012-06-27 彩虹集团公司 一种动力电池正极材料LiFePO4超细粉的制备方法
CN102569796A (zh) * 2012-01-17 2012-07-11 东南大学 一种磷酸铁锂与碳纳米管复合材料的制备方法
CN103400962A (zh) * 2013-08-08 2013-11-20 湘潭大学 一种球形LiFePO4/(C+La2/3-xLi3xTiO3)复合物正极材料及其制备方法
CN104638261A (zh) * 2013-11-06 2015-05-20 国家纳米科学中心 一种高倍率LiFePO4/C正极材料及其制备方法
CN104681814A (zh) * 2015-02-09 2015-06-03 湘潭大学 一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法
CN106744780A (zh) * 2017-03-22 2017-05-31 广东光华科技股份有限公司 一种高压实锂离子电池正极材料磷酸铁锂的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554922A (zh) * 2020-04-14 2020-08-18 合肥国轩电池材料有限公司 一种倍率型磷酸铁锂的制备方法
CN111554922B (zh) * 2020-04-14 2022-04-01 合肥国轩电池材料有限公司 一种倍率型磷酸铁锂的制备方法
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法
CN112614979A (zh) * 2020-12-17 2021-04-06 华中科技大学 一种二次碳包覆的磷酸铁锂及其制备方法
CN114348985A (zh) * 2021-12-31 2022-04-15 江苏贝特瑞纳米科技有限公司 一种高压实磷酸盐型正极材料
CN114348985B (zh) * 2021-12-31 2023-08-11 江苏贝特瑞纳米科技有限公司 一种高压实磷酸盐型正极材料
CN114725557A (zh) * 2022-04-11 2022-07-08 天津市捷威动力工业有限公司 一种磷酸铁锂废料的回收复用方法
CN115367724A (zh) * 2022-08-20 2022-11-22 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法
CN115367724B (zh) * 2022-08-20 2023-08-04 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法

Also Published As

Publication number Publication date
CN109786699B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN109786699A (zh) 一种高压实磷酸铁锂正极材料及其水热法制备方法
CN106229505B (zh) 一种高密度球形纳米磷酸铁锂材料及其制备方法和包含其的锂离子电池
CN103636035B (zh) 锂离子二次电池用正极活性物质的制造方法
CN101330141B (zh) 一种锂离子电池正极材料球形LiFePO4/C的制备方法
CN106058225A (zh) 核壳结构LiMn1‑xFexPO4正极材料及其制备方法、锂离子电池
CN104577082B (zh) 一种纳米硅材料及其用途
CN107565132B (zh) 磷酸铁的制备方法及其制备的磷酸铁、磷酸铁锂的制备方法及其制备的磷酸铁锂以及锂电池
CN106564867B (zh) 一种添加还原性有机物制备磷酸铁材料的方法
CN105990562B (zh) 一种核壳结构的纳米磷酸锰铁锂复合材料及其制备方法和应用
CN102623705B (zh) 一种锂离子电池正极材料LiFePO4/C及其制备方法和应用
CN105378986A (zh) 锂离子二次电池用正极活性物质的制造方法
JP6099038B2 (ja) 電極材料の製造方法
CN105226267B (zh) 三维碳纳米管修饰尖晶石镍锰酸锂材料及其制备方法和应用
CN107256964A (zh) 一种高电压锂电池正极材料棒状镍锰酸锂的制备方法
CN105576236A (zh) 锂离子电池442型三元正极改性材料及其制备方法
CN102185136A (zh) 一种锂离子电池正极材料纳米磷酸亚铁锂的制备方法
CN114573033B (zh) 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池
CN108365218A (zh) 一种三维多孔结构磷酸钒钠复合正极材料的简单制备方法
CN105810910B (zh) 一种Na2‑2xFe1+xP2O7/碳复合材料及其制备方法和应用
CN104183827B (zh) 一种磷酸铁锂纳米棒及其制备方法
CN104733709A (zh) 一种晶型可控的磷酸锰铁锂或其复合材料的制备方法
CN104795553B (zh) 锐钛矿TiO2混合碳纳米管的锂离子电池负极材料
CN107275635A (zh) 一种多孔空心球形三元正极材料的超声雾化制备方法
CN106450186A (zh) 一种锂离子电池正极材料硅酸锰锂/碳复合材料的制备方法、正极浆料及应用
CN108767231A (zh) 一种LiNixCoyMnl-x-yO2/Li2O·B2O3复合正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A high pressure solid lithium iron phosphate cathode material and its hydrothermal preparation method

Effective date of registration: 20220714

Granted publication date: 20220506

Pledgee: Hefei science and technology rural commercial bank Limited by Share Ltd. Shushan branch

Pledgor: HEFEI RONGJIE ENERGY MATERIALS CO.,LTD.

Registration number: Y2022980010493

PE01 Entry into force of the registration of the contract for pledge of patent right